OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 1994-2006 Sun Microsystems Inc. |
| 2 // All Rights Reserved. |
| 3 // |
| 4 // Redistribution and use in source and binary forms, with or without |
| 5 // modification, are permitted provided that the following conditions |
| 6 // are met: |
| 7 // |
| 8 // - Redistributions of source code must retain the above copyright notice, |
| 9 // this list of conditions and the following disclaimer. |
| 10 // |
| 11 // - Redistribution in binary form must reproduce the above copyright |
| 12 // notice, this list of conditions and the following disclaimer in the |
| 13 // documentation and/or other materials provided with the |
| 14 // distribution. |
| 15 // |
| 16 // - Neither the name of Sun Microsystems or the names of contributors may |
| 17 // be used to endorse or promote products derived from this software without |
| 18 // specific prior written permission. |
| 19 // |
| 20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| 23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| 24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| 25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| 27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| 29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| 31 // OF THE POSSIBILITY OF SUCH DAMAGE. |
| 32 |
| 33 // The original source code covered by the above license above has been modified |
| 34 // significantly by Google Inc. |
| 35 // Copyright 2006-2008 the V8 project authors. All rights reserved. |
| 36 |
| 37 #ifndef V8_ARM_ASSEMBLER_THUMB2_INL_H_ |
| 38 #define V8_ARM_ASSEMBLER_THUMB2_INL_H_ |
| 39 |
| 40 #include "arm/assembler-thumb2.h" |
| 41 #include "cpu.h" |
| 42 |
| 43 |
| 44 namespace v8 { |
| 45 namespace internal { |
| 46 |
| 47 Condition NegateCondition(Condition cc) { |
| 48 ASSERT(cc != al); |
| 49 return static_cast<Condition>(cc ^ ne); |
| 50 } |
| 51 |
| 52 |
| 53 void RelocInfo::apply(intptr_t delta) { |
| 54 if (RelocInfo::IsInternalReference(rmode_)) { |
| 55 // absolute code pointer inside code object moves with the code object. |
| 56 int32_t* p = reinterpret_cast<int32_t*>(pc_); |
| 57 *p += delta; // relocate entry |
| 58 } |
| 59 // We do not use pc relative addressing on ARM, so there is |
| 60 // nothing else to do. |
| 61 } |
| 62 |
| 63 |
| 64 Address RelocInfo::target_address() { |
| 65 ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY); |
| 66 return Assembler::target_address_at(pc_); |
| 67 } |
| 68 |
| 69 |
| 70 Address RelocInfo::target_address_address() { |
| 71 ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY); |
| 72 return reinterpret_cast<Address>(Assembler::target_address_address_at(pc_)); |
| 73 } |
| 74 |
| 75 |
| 76 void RelocInfo::set_target_address(Address target) { |
| 77 ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY); |
| 78 Assembler::set_target_address_at(pc_, target); |
| 79 } |
| 80 |
| 81 |
| 82 Object* RelocInfo::target_object() { |
| 83 ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); |
| 84 return Memory::Object_at(Assembler::target_address_address_at(pc_)); |
| 85 } |
| 86 |
| 87 |
| 88 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) { |
| 89 ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); |
| 90 return Memory::Object_Handle_at(Assembler::target_address_address_at(pc_)); |
| 91 } |
| 92 |
| 93 |
| 94 Object** RelocInfo::target_object_address() { |
| 95 ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); |
| 96 return reinterpret_cast<Object**>(Assembler::target_address_address_at(pc_)); |
| 97 } |
| 98 |
| 99 |
| 100 void RelocInfo::set_target_object(Object* target) { |
| 101 ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); |
| 102 Assembler::set_target_address_at(pc_, reinterpret_cast<Address>(target)); |
| 103 } |
| 104 |
| 105 |
| 106 Address* RelocInfo::target_reference_address() { |
| 107 ASSERT(rmode_ == EXTERNAL_REFERENCE); |
| 108 return reinterpret_cast<Address*>(Assembler::target_address_address_at(pc_)); |
| 109 } |
| 110 |
| 111 |
| 112 Address RelocInfo::call_address() { |
| 113 ASSERT(IsPatchedReturnSequence()); |
| 114 // The 2 instructions offset assumes patched return sequence. |
| 115 ASSERT(IsJSReturn(rmode())); |
| 116 return Memory::Address_at(pc_ + 2 * Assembler::kInstrSize); |
| 117 } |
| 118 |
| 119 |
| 120 void RelocInfo::set_call_address(Address target) { |
| 121 ASSERT(IsPatchedReturnSequence()); |
| 122 // The 2 instructions offset assumes patched return sequence. |
| 123 ASSERT(IsJSReturn(rmode())); |
| 124 Memory::Address_at(pc_ + 2 * Assembler::kInstrSize) = target; |
| 125 } |
| 126 |
| 127 |
| 128 Object* RelocInfo::call_object() { |
| 129 return *call_object_address(); |
| 130 } |
| 131 |
| 132 |
| 133 Object** RelocInfo::call_object_address() { |
| 134 ASSERT(IsPatchedReturnSequence()); |
| 135 // The 2 instructions offset assumes patched return sequence. |
| 136 ASSERT(IsJSReturn(rmode())); |
| 137 return reinterpret_cast<Object**>(pc_ + 2 * Assembler::kInstrSize); |
| 138 } |
| 139 |
| 140 |
| 141 void RelocInfo::set_call_object(Object* target) { |
| 142 *call_object_address() = target; |
| 143 } |
| 144 |
| 145 |
| 146 bool RelocInfo::IsPatchedReturnSequence() { |
| 147 // On ARM a "call instruction" is actually two instructions. |
| 148 // mov lr, pc |
| 149 // ldr pc, [pc, #XXX] |
| 150 return (Assembler::instr_at(pc_) == kMovLrPc) |
| 151 && ((Assembler::instr_at(pc_ + Assembler::kInstrSize) & kLdrPCPattern) |
| 152 == kLdrPCPattern); |
| 153 } |
| 154 |
| 155 |
| 156 Operand::Operand(int32_t immediate, RelocInfo::Mode rmode) { |
| 157 rm_ = no_reg; |
| 158 imm32_ = immediate; |
| 159 rmode_ = rmode; |
| 160 } |
| 161 |
| 162 |
| 163 Operand::Operand(const char* s) { |
| 164 rm_ = no_reg; |
| 165 imm32_ = reinterpret_cast<int32_t>(s); |
| 166 rmode_ = RelocInfo::EMBEDDED_STRING; |
| 167 } |
| 168 |
| 169 |
| 170 Operand::Operand(const ExternalReference& f) { |
| 171 rm_ = no_reg; |
| 172 imm32_ = reinterpret_cast<int32_t>(f.address()); |
| 173 rmode_ = RelocInfo::EXTERNAL_REFERENCE; |
| 174 } |
| 175 |
| 176 |
| 177 Operand::Operand(Object** opp) { |
| 178 rm_ = no_reg; |
| 179 imm32_ = reinterpret_cast<int32_t>(opp); |
| 180 rmode_ = RelocInfo::NONE; |
| 181 } |
| 182 |
| 183 |
| 184 Operand::Operand(Context** cpp) { |
| 185 rm_ = no_reg; |
| 186 imm32_ = reinterpret_cast<int32_t>(cpp); |
| 187 rmode_ = RelocInfo::NONE; |
| 188 } |
| 189 |
| 190 |
| 191 Operand::Operand(Smi* value) { |
| 192 rm_ = no_reg; |
| 193 imm32_ = reinterpret_cast<intptr_t>(value); |
| 194 rmode_ = RelocInfo::NONE; |
| 195 } |
| 196 |
| 197 |
| 198 Operand::Operand(Register rm) { |
| 199 rm_ = rm; |
| 200 rs_ = no_reg; |
| 201 shift_op_ = LSL; |
| 202 shift_imm_ = 0; |
| 203 } |
| 204 |
| 205 |
| 206 bool Operand::is_reg() const { |
| 207 return rm_.is_valid() && |
| 208 rs_.is(no_reg) && |
| 209 shift_op_ == LSL && |
| 210 shift_imm_ == 0; |
| 211 } |
| 212 |
| 213 |
| 214 void Assembler::CheckBuffer() { |
| 215 if (buffer_space() <= kGap) { |
| 216 GrowBuffer(); |
| 217 } |
| 218 if (pc_offset() >= next_buffer_check_) { |
| 219 CheckConstPool(false, true); |
| 220 } |
| 221 } |
| 222 |
| 223 |
| 224 void Assembler::emit(Instr x) { |
| 225 CheckBuffer(); |
| 226 *reinterpret_cast<Instr*>(pc_) = x; |
| 227 pc_ += kInstrSize; |
| 228 } |
| 229 |
| 230 |
| 231 Address Assembler::target_address_address_at(Address pc) { |
| 232 Instr instr = Memory::int32_at(pc); |
| 233 // Verify that the instruction at pc is a ldr<cond> <Rd>, [pc +/- offset_12]. |
| 234 ASSERT((instr & 0x0f7f0000) == 0x051f0000); |
| 235 int offset = instr & 0xfff; // offset_12 is unsigned |
| 236 if ((instr & (1 << 23)) == 0) offset = -offset; // U bit defines offset sign |
| 237 // Verify that the constant pool comes after the instruction referencing it. |
| 238 ASSERT(offset >= -4); |
| 239 return pc + offset + 8; |
| 240 } |
| 241 |
| 242 |
| 243 Address Assembler::target_address_at(Address pc) { |
| 244 return Memory::Address_at(target_address_address_at(pc)); |
| 245 } |
| 246 |
| 247 |
| 248 void Assembler::set_target_at(Address constant_pool_entry, |
| 249 Address target) { |
| 250 Memory::Address_at(constant_pool_entry) = target; |
| 251 } |
| 252 |
| 253 |
| 254 void Assembler::set_target_address_at(Address pc, Address target) { |
| 255 Memory::Address_at(target_address_address_at(pc)) = target; |
| 256 // Intuitively, we would think it is necessary to flush the instruction cache |
| 257 // after patching a target address in the code as follows: |
| 258 // CPU::FlushICache(pc, sizeof(target)); |
| 259 // However, on ARM, no instruction was actually patched by the assignment |
| 260 // above; the target address is not part of an instruction, it is patched in |
| 261 // the constant pool and is read via a data access; the instruction accessing |
| 262 // this address in the constant pool remains unchanged. |
| 263 } |
| 264 |
| 265 } } // namespace v8::internal |
| 266 |
| 267 #endif // V8_ARM_ASSEMBLER_THUMB2_INL_H_ |
| 268 |
OLD | NEW |