| Index: src/d8-posix.cc
|
| ===================================================================
|
| --- src/d8-posix.cc (revision 0)
|
| +++ src/d8-posix.cc (revision 0)
|
| @@ -0,0 +1,504 @@
|
| +// Copyright 2009 the V8 project authors. All rights reserved.
|
| +// Redistribution and use in source and binary forms, with or without
|
| +// modification, are permitted provided that the following conditions are
|
| +// met:
|
| +//
|
| +// * Redistributions of source code must retain the above copyright
|
| +// notice, this list of conditions and the following disclaimer.
|
| +// * Redistributions in binary form must reproduce the above
|
| +// copyright notice, this list of conditions and the following
|
| +// disclaimer in the documentation and/or other materials provided
|
| +// with the distribution.
|
| +// * Neither the name of Google Inc. nor the names of its
|
| +// contributors may be used to endorse or promote products derived
|
| +// from this software without specific prior written permission.
|
| +//
|
| +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| +
|
| +
|
| +#include <stdlib.h>
|
| +#include <errno.h>
|
| +#include <sys/types.h>
|
| +#include <sys/time.h>
|
| +#include <time.h>
|
| +#include <unistd.h>
|
| +#include <fcntl.h>
|
| +#include <sys/wait.h>
|
| +#include <signal.h>
|
| +
|
| +
|
| +#include "d8.h"
|
| +#include "d8-debug.h"
|
| +#include "debug.h"
|
| +
|
| +
|
| +namespace v8 {
|
| +
|
| +
|
| +// If the buffer ends in the middle of a UTF-8 sequence then we return
|
| +// the length of the string up to but not including the incomplete UTF-8
|
| +// sequence. If the buffer ends with a valid UTF-8 sequence then we
|
| +// return the whole buffer.
|
| +static int LengthWithoutIncompleteUtf8(char* buffer, int len) {
|
| + int answer = len;
|
| + // 1-byte encoding.
|
| + static const int kUtf8SingleByteMask = 0x80;
|
| + static const int kUtf8SingleByteValue = 0x00;
|
| + // 2-byte encoding.
|
| + static const int kUtf8TwoByteMask = 0xe0;
|
| + static const int kUtf8TwoByteValue = 0xc0;
|
| + // 3-byte encoding.
|
| + static const int kUtf8ThreeByteMask = 0xf0;
|
| + static const int kUtf8ThreeByteValue = 0xe0;
|
| + // 4-byte encoding.
|
| + static const int kUtf8FourByteMask = 0xf8;
|
| + static const int kUtf8FourByteValue = 0xf0;
|
| + // Subsequent bytes of a multi-byte encoding.
|
| + static const int kMultiByteMask = 0xc0;
|
| + static const int kMultiByteValue = 0x80;
|
| + int multi_byte_bytes_seen = 0;
|
| + while (answer > 0) {
|
| + int c = buffer[answer - 1];
|
| + // Ends in valid single-byte sequence?
|
| + if ((c & kUtf8SingleByteMask) == kUtf8SingleByteValue) return answer;
|
| + // Ends in one or more subsequent bytes of a multi-byte value?
|
| + if ((c & kMultiByteMask) == kMultiByteValue) {
|
| + multi_byte_bytes_seen++;
|
| + answer--;
|
| + } else {
|
| + if ((c & kUtf8TwoByteMask) == kUtf8TwoByteValue) {
|
| + if (multi_byte_bytes_seen >= 1) {
|
| + return answer + 2;
|
| + }
|
| + return answer - 1;
|
| + } else if ((c & kUtf8ThreeByteMask) == kUtf8ThreeByteValue) {
|
| + if (multi_byte_bytes_seen >= 2) {
|
| + return answer + 3;
|
| + }
|
| + return answer - 1;
|
| + } else if ((c & kUtf8FourByteMask) == kUtf8FourByteValue) {
|
| + if (multi_byte_bytes_seen >= 3) {
|
| + return answer + 4;
|
| + }
|
| + return answer - 1;
|
| + } else {
|
| + return answer; // Malformed UTF-8.
|
| + }
|
| + }
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +
|
| +// Suspends the thread until there is data available from the child process.
|
| +// Returns false on timeout, true on data ready.
|
| +static bool WaitOnFD(int fd,
|
| + int read_timeout,
|
| + int* total_timeout,
|
| + struct timeval& start_time) {
|
| + fd_set readfds, writefds, exceptfds;
|
| + struct timeval timeout;
|
| + if (*total_timeout != -1) {
|
| + struct timeval time_now;
|
| + gettimeofday(&time_now, NULL);
|
| + int seconds = time_now.tv_sec - start_time.tv_sec;
|
| + int gone = seconds * 1000 + (time_now.tv_usec - start_time.tv_usec) / 1000;
|
| + if (gone >= *total_timeout) return false;
|
| + *total_timeout -= gone;
|
| + }
|
| + FD_ZERO(&readfds);
|
| + FD_ZERO(&writefds);
|
| + FD_ZERO(&exceptfds);
|
| + FD_SET(fd, &readfds);
|
| + FD_SET(fd, &exceptfds);
|
| + if (read_timeout == -1 ||
|
| + (*total_timeout != -1 && *total_timeout < read_timeout)) {
|
| + read_timeout = *total_timeout;
|
| + }
|
| + timeout.tv_usec = (read_timeout % 1000) * 1000;
|
| + timeout.tv_sec = read_timeout / 1000;
|
| + int number_of_fds_ready = select(fd + 1,
|
| + &readfds,
|
| + &writefds,
|
| + &exceptfds,
|
| + read_timeout != -1 ? &timeout : NULL);
|
| + return number_of_fds_ready == 1;
|
| +}
|
| +
|
| +
|
| +// Checks whether we ran out of time on the timeout. Returns true if we ran out
|
| +// of time, false if we still have time.
|
| +static bool TimeIsOut(const struct timeval& start_time, const int& total_time) {
|
| + if (total_time == -1) return false;
|
| + struct timeval time_now;
|
| + gettimeofday(&time_now, NULL);
|
| + // Careful about overflow.
|
| + int seconds = time_now.tv_sec - start_time.tv_sec;
|
| + if (seconds > 100) {
|
| + if (seconds * 1000 > total_time) return true;
|
| + return false;
|
| + }
|
| + int useconds = time_now.tv_usec - start_time.tv_usec;
|
| + if (seconds * 1000000 + useconds > total_time * 1000) {
|
| + return true;
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +
|
| +// A utility class that does a non-hanging waitpid on the child process if we
|
| +// bail out of the System() function early. If you don't ever do a waitpid on
|
| +// a subprocess then it turns into one of those annoying 'zombie processes'.
|
| +class ZombieProtector {
|
| + public:
|
| + explicit ZombieProtector(int pid): pid_(pid) { }
|
| + ~ZombieProtector() { if (pid_ != 0) waitpid(pid_, NULL, WNOHANG); }
|
| + void ChildIsDeadNow() { pid_ = 0; }
|
| + private:
|
| + int pid_;
|
| +};
|
| +
|
| +
|
| +// A utility class that closes a file descriptor when it goes out of scope.
|
| +class OpenFDCloser {
|
| + public:
|
| + explicit OpenFDCloser(int fd): fd_(fd) { }
|
| + ~OpenFDCloser() { close(fd_); }
|
| + private:
|
| + int fd_;
|
| +};
|
| +
|
| +
|
| +// A utility class that takes the array of command arguments and puts then in an
|
| +// array of new[]ed UTF-8 C strings. Deallocates them again when it goes out of
|
| +// scope.
|
| +class ExecArgs {
|
| + public:
|
| + ExecArgs(Handle<Value> arg0, Handle<Array> command_args) {
|
| + String::Utf8Value prog(arg0);
|
| + int len = prog.length() + 1;
|
| + char* c_arg = new char[len];
|
| + snprintf(c_arg, len, "%s", *prog);
|
| + exec_args_[0] = c_arg;
|
| + int i = 1;
|
| + for (unsigned j = 0; j < command_args->Length(); i++, j++) {
|
| + Handle<Value> arg(command_args->Get(Integer::New(j)));
|
| + String::Utf8Value utf8_arg(arg);
|
| + int len = utf8_arg.length() + 1;
|
| + char* c_arg = new char[len];
|
| + snprintf(c_arg, len, "%s", *utf8_arg);
|
| + exec_args_[i] = c_arg;
|
| + }
|
| + exec_args_[i] = NULL;
|
| + }
|
| + ~ExecArgs() {
|
| + for (unsigned i = 0; i < kMaxArgs; i++) {
|
| + if (exec_args_[i] == NULL) {
|
| + return;
|
| + }
|
| + delete [] exec_args_[i];
|
| + exec_args_[i] = 0;
|
| + }
|
| + }
|
| + static const unsigned kMaxArgs = 1000;
|
| + char** arg_array() { return exec_args_; }
|
| + char* arg0() { return exec_args_[0]; }
|
| + private:
|
| + char* exec_args_[kMaxArgs + 1];
|
| +};
|
| +
|
| +
|
| +// Gets the optional timeouts from the arguments to the system() call.
|
| +static bool GetTimeouts(const Arguments& args,
|
| + int* read_timeout,
|
| + int* total_timeout) {
|
| + if (args.Length() > 3) {
|
| + if (args[3]->IsNumber()) {
|
| + *total_timeout = args[3]->Int32Value();
|
| + } else {
|
| + ThrowException(String::New("system: Argument 4 must be a number"));
|
| + return false;
|
| + }
|
| + }
|
| + if (args.Length() > 2) {
|
| + if (args[2]->IsNumber()) {
|
| + *read_timeout = args[2]->Int32Value();
|
| + } else {
|
| + ThrowException(String::New("system: Argument 3 must be a number"));
|
| + return false;
|
| + }
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +
|
| +static const int kReadFD = 0;
|
| +static const int kWriteFD = 1;
|
| +
|
| +
|
| +// This is run in the child process after fork() but before exec(). It normally
|
| +// ends with the child process being replaced with the desired child program.
|
| +// It only returns if an error occurred.
|
| +static void ExecSubprocess(int* exec_error_fds,
|
| + int* stdout_fds,
|
| + ExecArgs& exec_args) {
|
| + close(exec_error_fds[kReadFD]); // Don't need this in the child.
|
| + close(stdout_fds[kReadFD]); // Don't need this in the child.
|
| + close(1); // Close stdout.
|
| + dup2(stdout_fds[kWriteFD], 1); // Dup pipe fd to stdout.
|
| + close(stdout_fds[kWriteFD]); // Don't need the original fd now.
|
| + fcntl(exec_error_fds[kWriteFD], F_SETFD, FD_CLOEXEC);
|
| + execvp(exec_args.arg0(), exec_args.arg_array());
|
| + // Only get here if the exec failed. Write errno to the parent to tell
|
| + // them it went wrong. If it went well the pipe is closed.
|
| + int err = errno;
|
| + write(exec_error_fds[kWriteFD], &err, sizeof(err));
|
| + // Return (and exit child process).
|
| +}
|
| +
|
| +
|
| +// Runs in the parent process. Checks that the child was able to exec (closing
|
| +// the file desriptor), or reports an error if it failed.
|
| +static bool ChildLaunchedOK(int* exec_error_fds) {
|
| + int bytes_read;
|
| + int err;
|
| + do {
|
| + bytes_read = read(exec_error_fds[kReadFD], &err, sizeof(err));
|
| + } while (bytes_read == -1 && errno == EINTR);
|
| + if (bytes_read != 0) {
|
| + ThrowException(String::New(strerror(err)));
|
| + return false;
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +
|
| +// Accumulates the output from the child in a string handle. Returns true if it
|
| +// succeeded or false if an exception was thrown.
|
| +static Handle<Value> GetStdout(int child_fd,
|
| + struct timeval& start_time,
|
| + int read_timeout,
|
| + int* total_timeout) {
|
| + Handle<String> accumulator = String::Empty();
|
| + const char* source = "function(a, b) { return a + b; }";
|
| + Handle<Value> cons_as_obj(Script::Compile(String::New(source))->Run());
|
| + Handle<Function> cons_function(Function::Cast(*cons_as_obj));
|
| + Handle<Value> cons_args[2];
|
| +
|
| + int fullness = 0;
|
| + static const int kStdoutReadBufferSize = 4096;
|
| + char buffer[kStdoutReadBufferSize];
|
| +
|
| + if (fcntl(child_fd, F_SETFL, O_NONBLOCK) != 0) {
|
| + return ThrowException(String::New(strerror(errno)));
|
| + }
|
| +
|
| + int bytes_read;
|
| + do {
|
| + bytes_read = read(child_fd,
|
| + buffer + fullness,
|
| + kStdoutReadBufferSize - fullness);
|
| + if (bytes_read == -1) {
|
| + if (errno == EAGAIN) {
|
| + if (!WaitOnFD(child_fd,
|
| + read_timeout,
|
| + total_timeout,
|
| + start_time) ||
|
| + (TimeIsOut(start_time, *total_timeout))) {
|
| + return ThrowException(String::New("Timed out waiting for output"));
|
| + }
|
| + continue;
|
| + } else if (errno == EINTR) {
|
| + continue;
|
| + } else {
|
| + break;
|
| + }
|
| + }
|
| + if (bytes_read + fullness > 0) {
|
| + int length = bytes_read == 0 ?
|
| + bytes_read + fullness :
|
| + LengthWithoutIncompleteUtf8(buffer, bytes_read + fullness);
|
| + Handle<String> addition = String::New(buffer, length);
|
| + cons_args[0] = accumulator;
|
| + cons_args[1] = addition;
|
| + accumulator = Handle<String>::Cast(cons_function->Call(
|
| + Shell::utility_context()->Global(),
|
| + 2,
|
| + cons_args));
|
| + fullness = bytes_read + fullness - length;
|
| + memcpy(buffer, buffer + length, fullness);
|
| + }
|
| + } while (bytes_read != 0);
|
| + return accumulator;
|
| +}
|
| +
|
| +
|
| +// Modern Linux has the waitid call, which is like waitpid, but more useful
|
| +// if you want a timeout. If we don't have waitid we can't limit the time
|
| +// waiting for the process to exit without losing the information about
|
| +// whether it exited normally. In the common case this doesn't matter because
|
| +// we don't get here before the child has closed stdout and most programs don't
|
| +// do that before they exit.
|
| +#if defined(WNOWAIT) && !defined(ANDROID)
|
| +#define HAS_WAITID 1
|
| +#endif
|
| +
|
| +
|
| +// Get exit status of child.
|
| +static bool WaitForChild(int pid,
|
| + ZombieProtector& child_waiter,
|
| + struct timeval& start_time,
|
| + int read_timeout,
|
| + int total_timeout) {
|
| +#ifdef HAS_WAITID
|
| +
|
| + siginfo_t child_info;
|
| + child_info.si_pid = 0;
|
| + int useconds = 1;
|
| + // Wait for child to exit.
|
| + while (child_info.si_pid == 0) {
|
| + waitid(P_PID, pid, &child_info, WEXITED | WNOHANG | WNOWAIT);
|
| + usleep(useconds);
|
| + if (useconds < 1000000) useconds <<= 1;
|
| + if ((read_timeout != -1 && useconds / 1000 > read_timeout) ||
|
| + (TimeIsOut(start_time, total_timeout))) {
|
| + ThrowException(String::New("Timed out waiting for process to terminate"));
|
| + kill(pid, SIGINT);
|
| + return false;
|
| + }
|
| + }
|
| + child_waiter.ChildIsDeadNow();
|
| + if (child_info.si_code == CLD_KILLED) {
|
| + char message[999];
|
| + snprintf(message,
|
| + sizeof(message),
|
| + "Child killed by signal %d",
|
| + child_info.si_status);
|
| + ThrowException(String::New(message));
|
| + return false;
|
| + }
|
| + if (child_info.si_code == CLD_EXITED && child_info.si_status != 0) {
|
| + char message[999];
|
| + snprintf(message,
|
| + sizeof(message),
|
| + "Child exited with status %d",
|
| + child_info.si_status);
|
| + ThrowException(String::New(message));
|
| + return false;
|
| + }
|
| +
|
| +#else // No waitid call.
|
| +
|
| + int child_status;
|
| + printf("waitpid");
|
| + waitpid(pid, &child_status, 0); // We hang here if the child doesn't exit.
|
| + child_waiter.ChildIsDeadNow();
|
| + if (WIFSIGNALED(child_status)) {
|
| + char message[999];
|
| + snprintf(message,
|
| + sizeof(message),
|
| + "Child killed by signal %d",
|
| + WTERMSIG(child_status));
|
| + ThrowException(String::New(message));
|
| + return false;
|
| + }
|
| + if (WEXITSTATUS(child_status) != 0) {
|
| + char message[999];
|
| + int exit_status = WEXITSTATUS(child_status);
|
| + snprintf(message,
|
| + sizeof(message),
|
| + "Child exited with status %d",
|
| + exit_status);
|
| + ThrowException(String::New(message));
|
| + return false;
|
| + }
|
| +
|
| +#endif // No waitid call.
|
| +
|
| + return true;
|
| +}
|
| +
|
| +
|
| +// Implementation of the system() function (see d8.h for details).
|
| +Handle<Value> Shell::System(const Arguments& args) {
|
| + HandleScope scope;
|
| + int read_timeout = -1;
|
| + int total_timeout = -1;
|
| + if (!GetTimeouts(args, &read_timeout, &total_timeout)) return v8::Undefined();
|
| + Handle<Array> command_args;
|
| + if (args.Length() > 1) {
|
| + if (!args[1]->IsArray()) {
|
| + return ThrowException(String::New("system: Argument 2 must be an array"));
|
| + }
|
| + command_args = Handle<Array>::Cast(args[1]);
|
| + } else {
|
| + command_args = Array::New(0);
|
| + }
|
| + if (command_args->Length() > ExecArgs::kMaxArgs) {
|
| + return ThrowException(String::New("Too many arguments to system()"));
|
| + }
|
| + if (args.Length() < 1) {
|
| + return ThrowException(String::New("Too few arguments to system()"));
|
| + }
|
| +
|
| + struct timeval start_time;
|
| + gettimeofday(&start_time, NULL);
|
| +
|
| + ExecArgs exec_args(args[0], command_args);
|
| + int exec_error_fds[2];
|
| + int stdout_fds[2];
|
| +
|
| + if (pipe(exec_error_fds) != 0) {
|
| + return ThrowException(String::New("pipe syscall failed."));
|
| + }
|
| + if (pipe(stdout_fds) != 0) {
|
| + return ThrowException(String::New("pipe syscall failed."));
|
| + }
|
| +
|
| + pid_t pid = fork();
|
| + if (pid == 0) { // Child process.
|
| + ExecSubprocess(exec_error_fds, stdout_fds, exec_args);
|
| + exit(1);
|
| + }
|
| +
|
| + // Parent process. Ensure that we clean up if we exit this function early.
|
| + ZombieProtector child_waiter(pid);
|
| + close(exec_error_fds[kWriteFD]);
|
| + close(stdout_fds[kWriteFD]);
|
| + OpenFDCloser error_read_closer(exec_error_fds[kReadFD]);
|
| + OpenFDCloser stdout_read_closer(stdout_fds[kReadFD]);
|
| +
|
| + if (!ChildLaunchedOK(exec_error_fds)) return v8::Undefined();
|
| +
|
| + Handle<Value> accumulator = GetStdout(stdout_fds[kReadFD],
|
| + start_time,
|
| + read_timeout,
|
| + &total_timeout);
|
| + if (accumulator->IsUndefined()) {
|
| + kill(pid, SIGINT); // On timeout, kill the subprocess.
|
| + return accumulator;
|
| + }
|
| +
|
| + if (!WaitForChild(pid,
|
| + child_waiter,
|
| + start_time,
|
| + read_timeout,
|
| + total_timeout)) {
|
| + return v8::Undefined();
|
| + }
|
| +
|
| + return scope.Close(accumulator);
|
| +}
|
| +
|
| +
|
| +} // namespace v8
|
|
|