| Index: base/metrics/histogram.cc
|
| ===================================================================
|
| --- base/metrics/histogram.cc (revision 64486)
|
| +++ base/metrics/histogram.cc (working copy)
|
| @@ -61,6 +61,7 @@
|
| bucket_count_(bucket_count),
|
| flags_(kNoFlags),
|
| ranges_(bucket_count + 1, 0),
|
| + range_checksum_(0),
|
| sample_() {
|
| Initialize();
|
| }
|
| @@ -73,6 +74,7 @@
|
| bucket_count_(bucket_count),
|
| flags_(kNoFlags),
|
| ranges_(bucket_count + 1, 0),
|
| + range_checksum_(0),
|
| sample_() {
|
| Initialize();
|
| }
|
| @@ -86,6 +88,7 @@
|
|
|
| // Just to make sure most derived class did this properly...
|
| DCHECK(ValidateBucketRanges());
|
| + DCHECK(HasValidRangeChecksum());
|
| }
|
|
|
| bool Histogram::PrintEmptyBucket(size_t index) const {
|
| @@ -218,7 +221,7 @@
|
| // We have to be careful that we don't pick a ratio between starting points in
|
| // consecutive buckets that is sooo small, that the integer bounds are the same
|
| // (effectively making one bucket get no values). We need to avoid:
|
| -// (ranges_[i] == ranges_[i + 1]
|
| +// ranges_[i] == ranges_[i + 1]
|
| // To avoid that, we just do a fine-grained bucket width as far as we need to
|
| // until we get a ratio that moves us along at least 2 units at a time. From
|
| // that bucket onward we do use the exponential growth of buckets.
|
| @@ -244,6 +247,7 @@
|
| ++current; // Just do a narrow bucket, and keep trying.
|
| SetBucketRange(bucket_index, current);
|
| }
|
| + ResetRangeChecksum();
|
|
|
| DCHECK_EQ(bucket_count(), bucket_index);
|
| }
|
| @@ -287,6 +291,23 @@
|
| return current/denominator;
|
| }
|
|
|
| +void Histogram::ResetRangeChecksum() {
|
| + range_checksum_ = CalculateRangeChecksum();
|
| +}
|
| +
|
| +bool Histogram::HasValidRangeChecksum() const {
|
| + return CalculateRangeChecksum() == range_checksum_;
|
| +}
|
| +
|
| +Histogram::Sample Histogram::CalculateRangeChecksum() const {
|
| + DCHECK_EQ(ranges_.size(), bucket_count() + 1);
|
| + Sample checksum = 0;
|
| + for (size_t index = 0; index < bucket_count(); ++index) {
|
| + checksum += ranges(index);
|
| + }
|
| + return checksum;
|
| +}
|
| +
|
| //------------------------------------------------------------------------------
|
| // The following two methods can be overridden to provide a thread safe
|
| // version of this class. The cost of locking is low... but an error in each
|
| @@ -417,6 +438,7 @@
|
| pickle.WriteInt(histogram.declared_min());
|
| pickle.WriteInt(histogram.declared_max());
|
| pickle.WriteSize(histogram.bucket_count());
|
| + pickle.WriteInt(histogram.range_checksum());
|
| pickle.WriteInt(histogram.histogram_type());
|
| pickle.WriteInt(histogram.flags());
|
|
|
| @@ -432,19 +454,21 @@
|
|
|
| Pickle pickle(histogram_info.data(),
|
| static_cast<int>(histogram_info.size()));
|
| - void* iter = NULL;
|
| - size_t bucket_count;
|
| + std::string histogram_name;
|
| int declared_min;
|
| int declared_max;
|
| + size_t bucket_count;
|
| + int range_checksum;
|
| int histogram_type;
|
| int pickle_flags;
|
| - std::string histogram_name;
|
| SampleSet sample;
|
|
|
| + void* iter = NULL;
|
| if (!pickle.ReadString(&iter, &histogram_name) ||
|
| !pickle.ReadInt(&iter, &declared_min) ||
|
| !pickle.ReadInt(&iter, &declared_max) ||
|
| !pickle.ReadSize(&iter, &bucket_count) ||
|
| + !pickle.ReadInt(&iter, &range_checksum) ||
|
| !pickle.ReadInt(&iter, &histogram_type) ||
|
| !pickle.ReadInt(&iter, &pickle_flags) ||
|
| !sample.Histogram::SampleSet::Deserialize(&iter, pickle)) {
|
| @@ -483,6 +507,7 @@
|
| DCHECK_EQ(render_histogram->declared_min(), declared_min);
|
| DCHECK_EQ(render_histogram->declared_max(), declared_max);
|
| DCHECK_EQ(render_histogram->bucket_count(), bucket_count);
|
| + DCHECK_EQ(render_histogram->range_checksum(), range_checksum);
|
| DCHECK_EQ(render_histogram->histogram_type(), histogram_type);
|
|
|
| if (render_histogram->flags() & kIPCSerializationSourceFlag) {
|
| @@ -497,13 +522,64 @@
|
| }
|
|
|
| //------------------------------------------------------------------------------
|
| +// Methods for the validating a sample and a related histogram.
|
| +//------------------------------------------------------------------------------
|
| +
|
| +Histogram::Inconsistencies Histogram::FindCorruption(
|
| + const SampleSet& snapshot) const {
|
| + int inconsistencies = NO_INCONSISTENCIES;
|
| + Sample previous_range = -1; // Bottom range is always 0.
|
| + Sample checksum = 0;
|
| + int64 count = 0;
|
| + for (size_t index = 0; index < bucket_count(); ++index) {
|
| + count += snapshot.counts(index);
|
| + int new_range = ranges(index);
|
| + checksum += new_range;
|
| + if (previous_range >= new_range)
|
| + inconsistencies |= BUCKET_ORDER_ERROR;
|
| + previous_range = new_range;
|
| + }
|
| +
|
| + if (checksum != range_checksum_)
|
| + inconsistencies |= RANGE_CHECKSUM_ERROR;
|
| +
|
| + int64 delta64 = snapshot.redundant_count() - count;
|
| + if (delta64 != 0) {
|
| + int delta = static_cast<int>(delta64);
|
| + if (delta != delta64)
|
| + delta = INT_MAX; // Flag all giant errors as INT_MAX.
|
| + // Since snapshots of histograms are taken asynchronously relative to
|
| + // sampling (and snapped from different threads), it is pretty likely that
|
| + // we'll catch a redundant count that doesn't match the sample count. We
|
| + // allow for a certain amount of slop before flagging this as an
|
| + // inconsistency. Even with an inconsistency, we'll snapshot it again (for
|
| + // UMA in about a half hour, so we'll eventually get the data, if it was
|
| + // not the result of a corruption. If histograms show that 1 is "too tight"
|
| + // then we may try to use 2 or 3 for this slop value.
|
| + const int kCommonRaceBasedCountMismatch = 1;
|
| + if (delta > 0) {
|
| + UMA_HISTOGRAM_COUNTS("Histogram.InconsistentCountHigh", delta);
|
| + if (delta > kCommonRaceBasedCountMismatch)
|
| + inconsistencies |= COUNT_HIGH_ERROR;
|
| + } else {
|
| + DCHECK_GT(0, delta);
|
| + UMA_HISTOGRAM_COUNTS("Histogram.InconsistentCountLow", -delta);
|
| + if (-delta > kCommonRaceBasedCountMismatch)
|
| + inconsistencies |= COUNT_LOW_ERROR;
|
| + }
|
| + }
|
| + return static_cast<Inconsistencies>(inconsistencies);
|
| +}
|
| +
|
| +//------------------------------------------------------------------------------
|
| // Methods for the Histogram::SampleSet class
|
| //------------------------------------------------------------------------------
|
|
|
| Histogram::SampleSet::SampleSet()
|
| : counts_(),
|
| sum_(0),
|
| - square_sum_(0) {
|
| + square_sum_(0),
|
| + redundant_count_(0) {
|
| }
|
|
|
| Histogram::SampleSet::~SampleSet() {
|
| @@ -524,9 +600,11 @@
|
| counts_[index] += count;
|
| sum_ += count * value;
|
| square_sum_ += (count * value) * static_cast<int64>(value);
|
| + redundant_count_ += count;
|
| DCHECK_GE(counts_[index], 0);
|
| DCHECK_GE(sum_, 0);
|
| DCHECK_GE(square_sum_, 0);
|
| + DCHECK_GE(redundant_count_, 0);
|
| }
|
|
|
| Count Histogram::SampleSet::TotalCount() const {
|
| @@ -536,6 +614,7 @@
|
| ++it) {
|
| total += *it;
|
| }
|
| + DCHECK_EQ(total, redundant_count_);
|
| return total;
|
| }
|
|
|
| @@ -543,6 +622,7 @@
|
| DCHECK_EQ(counts_.size(), other.counts_.size());
|
| sum_ += other.sum_;
|
| square_sum_ += other.square_sum_;
|
| + redundant_count_ += other.redundant_count_;
|
| for (size_t index = 0; index < counts_.size(); ++index)
|
| counts_[index] += other.counts_[index];
|
| }
|
| @@ -554,6 +634,7 @@
|
| // calculated). As a result, we don't currently CHCEK() for positive values.
|
| sum_ -= other.sum_;
|
| square_sum_ -= other.square_sum_;
|
| + redundant_count_ -= other.redundant_count_;
|
| for (size_t index = 0; index < counts_.size(); ++index) {
|
| counts_[index] -= other.counts_[index];
|
| DCHECK_GE(counts_[index], 0);
|
| @@ -563,6 +644,7 @@
|
| bool Histogram::SampleSet::Serialize(Pickle* pickle) const {
|
| pickle->WriteInt64(sum_);
|
| pickle->WriteInt64(square_sum_);
|
| + pickle->WriteInt64(redundant_count_);
|
| pickle->WriteSize(counts_.size());
|
|
|
| for (size_t index = 0; index < counts_.size(); ++index) {
|
| @@ -576,11 +658,13 @@
|
| DCHECK_EQ(counts_.size(), 0u);
|
| DCHECK_EQ(sum_, 0);
|
| DCHECK_EQ(square_sum_, 0);
|
| + DCHECK_EQ(redundant_count_, 0);
|
|
|
| size_t counts_size;
|
|
|
| if (!pickle.ReadInt64(iter, &sum_) ||
|
| !pickle.ReadInt64(iter, &square_sum_) ||
|
| + !pickle.ReadInt64(iter, &redundant_count_) ||
|
| !pickle.ReadSize(iter, &counts_size)) {
|
| return false;
|
| }
|
| @@ -588,14 +672,16 @@
|
| if (counts_size == 0)
|
| return false;
|
|
|
| + int count = 0;
|
| for (size_t index = 0; index < counts_size; ++index) {
|
| int i;
|
| if (!pickle.ReadInt(iter, &i))
|
| return false;
|
| counts_.push_back(i);
|
| + count += i;
|
| }
|
| -
|
| - return true;
|
| + DCHECK_EQ(count, redundant_count_);
|
| + return count == redundant_count_;
|
| }
|
|
|
| //------------------------------------------------------------------------------
|
| @@ -694,6 +780,7 @@
|
| (bucket_count() - 2);
|
| SetBucketRange(i, static_cast<int> (linear_range + 0.5));
|
| }
|
| + ResetRangeChecksum();
|
| }
|
|
|
| double LinearHistogram::GetBucketSize(Count current, size_t i) const {
|
| @@ -740,7 +827,7 @@
|
|
|
| scoped_refptr<Histogram> CustomHistogram::FactoryGet(
|
| const std::string& name,
|
| - const std::vector<int>& custom_ranges,
|
| + const std::vector<Sample>& custom_ranges,
|
| Flags flags) {
|
| scoped_refptr<Histogram> histogram(NULL);
|
|
|
| @@ -774,7 +861,7 @@
|
| }
|
|
|
| CustomHistogram::CustomHistogram(const std::string& name,
|
| - const std::vector<int>& custom_ranges)
|
| + const std::vector<Sample>& custom_ranges)
|
| : Histogram(name, custom_ranges[1], custom_ranges.back(),
|
| custom_ranges.size()) {
|
| DCHECK_GT(custom_ranges.size(), 1u);
|
| @@ -789,6 +876,7 @@
|
| DCHECK_LE(ranges_vector_->size(), bucket_count());
|
| for (size_t index = 0; index < ranges_vector_->size(); ++index)
|
| SetBucketRange(index, (*ranges_vector_)[index]);
|
| + ResetRangeChecksum();
|
| }
|
|
|
| double CustomHistogram::GetBucketSize(Count current, size_t i) const {
|
|
|