Index: third_party/libjpeg_turbo/jidctred.c |
=================================================================== |
--- third_party/libjpeg_turbo/jidctred.c (revision 0) |
+++ third_party/libjpeg_turbo/jidctred.c (revision 0) |
@@ -0,0 +1,398 @@ |
+/* |
+ * jidctred.c |
+ * |
+ * Copyright (C) 1994-1998, Thomas G. Lane. |
+ * This file is part of the Independent JPEG Group's software. |
+ * For conditions of distribution and use, see the accompanying README file. |
+ * |
+ * This file contains inverse-DCT routines that produce reduced-size output: |
+ * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block. |
+ * |
+ * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M) |
+ * algorithm used in jidctint.c. We simply replace each 8-to-8 1-D IDCT step |
+ * with an 8-to-4 step that produces the four averages of two adjacent outputs |
+ * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output). |
+ * These steps were derived by computing the corresponding values at the end |
+ * of the normal LL&M code, then simplifying as much as possible. |
+ * |
+ * 1x1 is trivial: just take the DC coefficient divided by 8. |
+ * |
+ * See jidctint.c for additional comments. |
+ */ |
+ |
+#define JPEG_INTERNALS |
+#include "jinclude.h" |
+#include "jpeglib.h" |
+#include "jdct.h" /* Private declarations for DCT subsystem */ |
+ |
+#ifdef IDCT_SCALING_SUPPORTED |
+ |
+ |
+/* |
+ * This module is specialized to the case DCTSIZE = 8. |
+ */ |
+ |
+#if DCTSIZE != 8 |
+ Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
+#endif |
+ |
+ |
+/* Scaling is the same as in jidctint.c. */ |
+ |
+#if BITS_IN_JSAMPLE == 8 |
+#define CONST_BITS 13 |
+#define PASS1_BITS 2 |
+#else |
+#define CONST_BITS 13 |
+#define PASS1_BITS 1 /* lose a little precision to avoid overflow */ |
+#endif |
+ |
+/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus |
+ * causing a lot of useless floating-point operations at run time. |
+ * To get around this we use the following pre-calculated constants. |
+ * If you change CONST_BITS you may want to add appropriate values. |
+ * (With a reasonable C compiler, you can just rely on the FIX() macro...) |
+ */ |
+ |
+#if CONST_BITS == 13 |
+#define FIX_0_211164243 ((INT32) 1730) /* FIX(0.211164243) */ |
+#define FIX_0_509795579 ((INT32) 4176) /* FIX(0.509795579) */ |
+#define FIX_0_601344887 ((INT32) 4926) /* FIX(0.601344887) */ |
+#define FIX_0_720959822 ((INT32) 5906) /* FIX(0.720959822) */ |
+#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ |
+#define FIX_0_850430095 ((INT32) 6967) /* FIX(0.850430095) */ |
+#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ |
+#define FIX_1_061594337 ((INT32) 8697) /* FIX(1.061594337) */ |
+#define FIX_1_272758580 ((INT32) 10426) /* FIX(1.272758580) */ |
+#define FIX_1_451774981 ((INT32) 11893) /* FIX(1.451774981) */ |
+#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ |
+#define FIX_2_172734803 ((INT32) 17799) /* FIX(2.172734803) */ |
+#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ |
+#define FIX_3_624509785 ((INT32) 29692) /* FIX(3.624509785) */ |
+#else |
+#define FIX_0_211164243 FIX(0.211164243) |
+#define FIX_0_509795579 FIX(0.509795579) |
+#define FIX_0_601344887 FIX(0.601344887) |
+#define FIX_0_720959822 FIX(0.720959822) |
+#define FIX_0_765366865 FIX(0.765366865) |
+#define FIX_0_850430095 FIX(0.850430095) |
+#define FIX_0_899976223 FIX(0.899976223) |
+#define FIX_1_061594337 FIX(1.061594337) |
+#define FIX_1_272758580 FIX(1.272758580) |
+#define FIX_1_451774981 FIX(1.451774981) |
+#define FIX_1_847759065 FIX(1.847759065) |
+#define FIX_2_172734803 FIX(2.172734803) |
+#define FIX_2_562915447 FIX(2.562915447) |
+#define FIX_3_624509785 FIX(3.624509785) |
+#endif |
+ |
+ |
+/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. |
+ * For 8-bit samples with the recommended scaling, all the variable |
+ * and constant values involved are no more than 16 bits wide, so a |
+ * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. |
+ * For 12-bit samples, a full 32-bit multiplication will be needed. |
+ */ |
+ |
+#if BITS_IN_JSAMPLE == 8 |
+#define MULTIPLY(var,const) MULTIPLY16C16(var,const) |
+#else |
+#define MULTIPLY(var,const) ((var) * (const)) |
+#endif |
+ |
+ |
+/* Dequantize a coefficient by multiplying it by the multiplier-table |
+ * entry; produce an int result. In this module, both inputs and result |
+ * are 16 bits or less, so either int or short multiply will work. |
+ */ |
+ |
+#define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval)) |
+ |
+ |
+/* |
+ * Perform dequantization and inverse DCT on one block of coefficients, |
+ * producing a reduced-size 4x4 output block. |
+ */ |
+ |
+GLOBAL(void) |
+jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
+ JCOEFPTR coef_block, |
+ JSAMPARRAY output_buf, JDIMENSION output_col) |
+{ |
+ INT32 tmp0, tmp2, tmp10, tmp12; |
+ INT32 z1, z2, z3, z4; |
+ JCOEFPTR inptr; |
+ ISLOW_MULT_TYPE * quantptr; |
+ int * wsptr; |
+ JSAMPROW outptr; |
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
+ int ctr; |
+ int workspace[DCTSIZE*4]; /* buffers data between passes */ |
+ SHIFT_TEMPS |
+ |
+ /* Pass 1: process columns from input, store into work array. */ |
+ |
+ inptr = coef_block; |
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
+ wsptr = workspace; |
+ for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { |
+ /* Don't bother to process column 4, because second pass won't use it */ |
+ if (ctr == DCTSIZE-4) |
+ continue; |
+ if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && |
+ inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 && |
+ inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) { |
+ /* AC terms all zero; we need not examine term 4 for 4x4 output */ |
+ int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS; |
+ |
+ wsptr[DCTSIZE*0] = dcval; |
+ wsptr[DCTSIZE*1] = dcval; |
+ wsptr[DCTSIZE*2] = dcval; |
+ wsptr[DCTSIZE*3] = dcval; |
+ |
+ continue; |
+ } |
+ |
+ /* Even part */ |
+ |
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
+ tmp0 <<= (CONST_BITS+1); |
+ |
+ z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
+ z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
+ |
+ tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865); |
+ |
+ tmp10 = tmp0 + tmp2; |
+ tmp12 = tmp0 - tmp2; |
+ |
+ /* Odd part */ |
+ |
+ z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
+ z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
+ z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
+ z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
+ |
+ tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */ |
+ + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */ |
+ + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */ |
+ + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */ |
+ |
+ tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */ |
+ + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */ |
+ + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */ |
+ + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ |
+ |
+ /* Final output stage */ |
+ |
+ wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1); |
+ wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1); |
+ wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1); |
+ wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1); |
+ } |
+ |
+ /* Pass 2: process 4 rows from work array, store into output array. */ |
+ |
+ wsptr = workspace; |
+ for (ctr = 0; ctr < 4; ctr++) { |
+ outptr = output_buf[ctr] + output_col; |
+ /* It's not clear whether a zero row test is worthwhile here ... */ |
+ |
+#ifndef NO_ZERO_ROW_TEST |
+ if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && |
+ wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { |
+ /* AC terms all zero */ |
+ JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) |
+ & RANGE_MASK]; |
+ |
+ outptr[0] = dcval; |
+ outptr[1] = dcval; |
+ outptr[2] = dcval; |
+ outptr[3] = dcval; |
+ |
+ wsptr += DCTSIZE; /* advance pointer to next row */ |
+ continue; |
+ } |
+#endif |
+ |
+ /* Even part */ |
+ |
+ tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1); |
+ |
+ tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065) |
+ + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865); |
+ |
+ tmp10 = tmp0 + tmp2; |
+ tmp12 = tmp0 - tmp2; |
+ |
+ /* Odd part */ |
+ |
+ z1 = (INT32) wsptr[7]; |
+ z2 = (INT32) wsptr[5]; |
+ z3 = (INT32) wsptr[3]; |
+ z4 = (INT32) wsptr[1]; |
+ |
+ tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */ |
+ + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */ |
+ + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */ |
+ + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */ |
+ |
+ tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */ |
+ + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */ |
+ + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */ |
+ + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ |
+ |
+ /* Final output stage */ |
+ |
+ outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2, |
+ CONST_BITS+PASS1_BITS+3+1) |
+ & RANGE_MASK]; |
+ outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2, |
+ CONST_BITS+PASS1_BITS+3+1) |
+ & RANGE_MASK]; |
+ outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0, |
+ CONST_BITS+PASS1_BITS+3+1) |
+ & RANGE_MASK]; |
+ outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0, |
+ CONST_BITS+PASS1_BITS+3+1) |
+ & RANGE_MASK]; |
+ |
+ wsptr += DCTSIZE; /* advance pointer to next row */ |
+ } |
+} |
+ |
+ |
+/* |
+ * Perform dequantization and inverse DCT on one block of coefficients, |
+ * producing a reduced-size 2x2 output block. |
+ */ |
+ |
+GLOBAL(void) |
+jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
+ JCOEFPTR coef_block, |
+ JSAMPARRAY output_buf, JDIMENSION output_col) |
+{ |
+ INT32 tmp0, tmp10, z1; |
+ JCOEFPTR inptr; |
+ ISLOW_MULT_TYPE * quantptr; |
+ int * wsptr; |
+ JSAMPROW outptr; |
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
+ int ctr; |
+ int workspace[DCTSIZE*2]; /* buffers data between passes */ |
+ SHIFT_TEMPS |
+ |
+ /* Pass 1: process columns from input, store into work array. */ |
+ |
+ inptr = coef_block; |
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
+ wsptr = workspace; |
+ for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { |
+ /* Don't bother to process columns 2,4,6 */ |
+ if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6) |
+ continue; |
+ if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 && |
+ inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) { |
+ /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */ |
+ int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS; |
+ |
+ wsptr[DCTSIZE*0] = dcval; |
+ wsptr[DCTSIZE*1] = dcval; |
+ |
+ continue; |
+ } |
+ |
+ /* Even part */ |
+ |
+ z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
+ tmp10 = z1 << (CONST_BITS+2); |
+ |
+ /* Odd part */ |
+ |
+ z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
+ tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */ |
+ z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
+ tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */ |
+ z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
+ tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */ |
+ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
+ tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */ |
+ |
+ /* Final output stage */ |
+ |
+ wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2); |
+ wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2); |
+ } |
+ |
+ /* Pass 2: process 2 rows from work array, store into output array. */ |
+ |
+ wsptr = workspace; |
+ for (ctr = 0; ctr < 2; ctr++) { |
+ outptr = output_buf[ctr] + output_col; |
+ /* It's not clear whether a zero row test is worthwhile here ... */ |
+ |
+#ifndef NO_ZERO_ROW_TEST |
+ if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) { |
+ /* AC terms all zero */ |
+ JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) |
+ & RANGE_MASK]; |
+ |
+ outptr[0] = dcval; |
+ outptr[1] = dcval; |
+ |
+ wsptr += DCTSIZE; /* advance pointer to next row */ |
+ continue; |
+ } |
+#endif |
+ |
+ /* Even part */ |
+ |
+ tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2); |
+ |
+ /* Odd part */ |
+ |
+ tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */ |
+ + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */ |
+ + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */ |
+ + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */ |
+ |
+ /* Final output stage */ |
+ |
+ outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0, |
+ CONST_BITS+PASS1_BITS+3+2) |
+ & RANGE_MASK]; |
+ outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0, |
+ CONST_BITS+PASS1_BITS+3+2) |
+ & RANGE_MASK]; |
+ |
+ wsptr += DCTSIZE; /* advance pointer to next row */ |
+ } |
+} |
+ |
+ |
+/* |
+ * Perform dequantization and inverse DCT on one block of coefficients, |
+ * producing a reduced-size 1x1 output block. |
+ */ |
+ |
+GLOBAL(void) |
+jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
+ JCOEFPTR coef_block, |
+ JSAMPARRAY output_buf, JDIMENSION output_col) |
+{ |
+ int dcval; |
+ ISLOW_MULT_TYPE * quantptr; |
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
+ SHIFT_TEMPS |
+ |
+ /* We hardly need an inverse DCT routine for this: just take the |
+ * average pixel value, which is one-eighth of the DC coefficient. |
+ */ |
+ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
+ dcval = DEQUANTIZE(coef_block[0], quantptr[0]); |
+ dcval = (int) DESCALE((INT32) dcval, 3); |
+ |
+ output_buf[0][output_col] = range_limit[dcval & RANGE_MASK]; |
+} |
+ |
+#endif /* IDCT_SCALING_SUPPORTED */ |