Index: third_party/libjpeg_turbo/jfdctflt.c |
=================================================================== |
--- third_party/libjpeg_turbo/jfdctflt.c (revision 0) |
+++ third_party/libjpeg_turbo/jfdctflt.c (revision 0) |
@@ -0,0 +1,168 @@ |
+/* |
+ * jfdctflt.c |
+ * |
+ * Copyright (C) 1994-1996, Thomas G. Lane. |
+ * This file is part of the Independent JPEG Group's software. |
+ * For conditions of distribution and use, see the accompanying README file. |
+ * |
+ * This file contains a floating-point implementation of the |
+ * forward DCT (Discrete Cosine Transform). |
+ * |
+ * This implementation should be more accurate than either of the integer |
+ * DCT implementations. However, it may not give the same results on all |
+ * machines because of differences in roundoff behavior. Speed will depend |
+ * on the hardware's floating point capacity. |
+ * |
+ * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT |
+ * on each column. Direct algorithms are also available, but they are |
+ * much more complex and seem not to be any faster when reduced to code. |
+ * |
+ * This implementation is based on Arai, Agui, and Nakajima's algorithm for |
+ * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
+ * Japanese, but the algorithm is described in the Pennebaker & Mitchell |
+ * JPEG textbook (see REFERENCES section in file README). The following code |
+ * is based directly on figure 4-8 in P&M. |
+ * While an 8-point DCT cannot be done in less than 11 multiplies, it is |
+ * possible to arrange the computation so that many of the multiplies are |
+ * simple scalings of the final outputs. These multiplies can then be |
+ * folded into the multiplications or divisions by the JPEG quantization |
+ * table entries. The AA&N method leaves only 5 multiplies and 29 adds |
+ * to be done in the DCT itself. |
+ * The primary disadvantage of this method is that with a fixed-point |
+ * implementation, accuracy is lost due to imprecise representation of the |
+ * scaled quantization values. However, that problem does not arise if |
+ * we use floating point arithmetic. |
+ */ |
+ |
+#define JPEG_INTERNALS |
+#include "jinclude.h" |
+#include "jpeglib.h" |
+#include "jdct.h" /* Private declarations for DCT subsystem */ |
+ |
+#ifdef DCT_FLOAT_SUPPORTED |
+ |
+ |
+/* |
+ * This module is specialized to the case DCTSIZE = 8. |
+ */ |
+ |
+#if DCTSIZE != 8 |
+ Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
+#endif |
+ |
+ |
+/* |
+ * Perform the forward DCT on one block of samples. |
+ */ |
+ |
+GLOBAL(void) |
+jpeg_fdct_float (FAST_FLOAT * data) |
+{ |
+ FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
+ FAST_FLOAT tmp10, tmp11, tmp12, tmp13; |
+ FAST_FLOAT z1, z2, z3, z4, z5, z11, z13; |
+ FAST_FLOAT *dataptr; |
+ int ctr; |
+ |
+ /* Pass 1: process rows. */ |
+ |
+ dataptr = data; |
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
+ tmp0 = dataptr[0] + dataptr[7]; |
+ tmp7 = dataptr[0] - dataptr[7]; |
+ tmp1 = dataptr[1] + dataptr[6]; |
+ tmp6 = dataptr[1] - dataptr[6]; |
+ tmp2 = dataptr[2] + dataptr[5]; |
+ tmp5 = dataptr[2] - dataptr[5]; |
+ tmp3 = dataptr[3] + dataptr[4]; |
+ tmp4 = dataptr[3] - dataptr[4]; |
+ |
+ /* Even part */ |
+ |
+ tmp10 = tmp0 + tmp3; /* phase 2 */ |
+ tmp13 = tmp0 - tmp3; |
+ tmp11 = tmp1 + tmp2; |
+ tmp12 = tmp1 - tmp2; |
+ |
+ dataptr[0] = tmp10 + tmp11; /* phase 3 */ |
+ dataptr[4] = tmp10 - tmp11; |
+ |
+ z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ |
+ dataptr[2] = tmp13 + z1; /* phase 5 */ |
+ dataptr[6] = tmp13 - z1; |
+ |
+ /* Odd part */ |
+ |
+ tmp10 = tmp4 + tmp5; /* phase 2 */ |
+ tmp11 = tmp5 + tmp6; |
+ tmp12 = tmp6 + tmp7; |
+ |
+ /* The rotator is modified from fig 4-8 to avoid extra negations. */ |
+ z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ |
+ z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ |
+ z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ |
+ z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ |
+ |
+ z11 = tmp7 + z3; /* phase 5 */ |
+ z13 = tmp7 - z3; |
+ |
+ dataptr[5] = z13 + z2; /* phase 6 */ |
+ dataptr[3] = z13 - z2; |
+ dataptr[1] = z11 + z4; |
+ dataptr[7] = z11 - z4; |
+ |
+ dataptr += DCTSIZE; /* advance pointer to next row */ |
+ } |
+ |
+ /* Pass 2: process columns. */ |
+ |
+ dataptr = data; |
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; |
+ tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; |
+ tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; |
+ tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; |
+ tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; |
+ tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; |
+ tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; |
+ tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; |
+ |
+ /* Even part */ |
+ |
+ tmp10 = tmp0 + tmp3; /* phase 2 */ |
+ tmp13 = tmp0 - tmp3; |
+ tmp11 = tmp1 + tmp2; |
+ tmp12 = tmp1 - tmp2; |
+ |
+ dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ |
+ dataptr[DCTSIZE*4] = tmp10 - tmp11; |
+ |
+ z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ |
+ dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ |
+ dataptr[DCTSIZE*6] = tmp13 - z1; |
+ |
+ /* Odd part */ |
+ |
+ tmp10 = tmp4 + tmp5; /* phase 2 */ |
+ tmp11 = tmp5 + tmp6; |
+ tmp12 = tmp6 + tmp7; |
+ |
+ /* The rotator is modified from fig 4-8 to avoid extra negations. */ |
+ z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ |
+ z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ |
+ z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ |
+ z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ |
+ |
+ z11 = tmp7 + z3; /* phase 5 */ |
+ z13 = tmp7 - z3; |
+ |
+ dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ |
+ dataptr[DCTSIZE*3] = z13 - z2; |
+ dataptr[DCTSIZE*1] = z11 + z4; |
+ dataptr[DCTSIZE*7] = z11 - z4; |
+ |
+ dataptr++; /* advance pointer to next column */ |
+ } |
+} |
+ |
+#endif /* DCT_FLOAT_SUPPORTED */ |