Index: third_party/libjpeg_turbo/jdhuff.c |
=================================================================== |
--- third_party/libjpeg_turbo/jdhuff.c (revision 0) |
+++ third_party/libjpeg_turbo/jdhuff.c (revision 0) |
@@ -0,0 +1,824 @@ |
+/* |
+ * jdhuff.c |
+ * |
+ * Copyright (C) 1991-1997, Thomas G. Lane. |
+ * This file is part of the Independent JPEG Group's software. |
+ * For conditions of distribution and use, see the accompanying README file. |
+ * |
+ * This file contains Huffman entropy decoding routines. |
+ * |
+ * Much of the complexity here has to do with supporting input suspension. |
+ * If the data source module demands suspension, we want to be able to back |
+ * up to the start of the current MCU. To do this, we copy state variables |
+ * into local working storage, and update them back to the permanent |
+ * storage only upon successful completion of an MCU. |
+ */ |
+ |
+/* Modifications: |
+ * Copyright (C)2007 Sun Microsystems, Inc. |
+ * Copyright (C)2009-2010 D. R. Commander |
+ * |
+ * This library is free software and may be redistributed and/or modified under |
+ * the terms of the wxWindows Library License, Version 3.1 or (at your option) |
+ * any later version. The full license is in the LICENSE.txt file included |
+ * with this distribution. |
+ * |
+ * This library is distributed in the hope that it will be useful, |
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of |
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
+ * wxWindows Library License for more details. |
+ */ |
+ |
+#define JPEG_INTERNALS |
+#include "jinclude.h" |
+#include "jpeglib.h" |
+#include "jdhuff.h" /* Declarations shared with jdphuff.c */ |
+ |
+ |
+/* |
+ * Expanded entropy decoder object for Huffman decoding. |
+ * |
+ * The savable_state subrecord contains fields that change within an MCU, |
+ * but must not be updated permanently until we complete the MCU. |
+ */ |
+ |
+typedef struct { |
+ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
+} savable_state; |
+ |
+/* This macro is to work around compilers with missing or broken |
+ * structure assignment. You'll need to fix this code if you have |
+ * such a compiler and you change MAX_COMPS_IN_SCAN. |
+ */ |
+ |
+#ifndef NO_STRUCT_ASSIGN |
+#define ASSIGN_STATE(dest,src) ((dest) = (src)) |
+#else |
+#if MAX_COMPS_IN_SCAN == 4 |
+#define ASSIGN_STATE(dest,src) \ |
+ ((dest).last_dc_val[0] = (src).last_dc_val[0], \ |
+ (dest).last_dc_val[1] = (src).last_dc_val[1], \ |
+ (dest).last_dc_val[2] = (src).last_dc_val[2], \ |
+ (dest).last_dc_val[3] = (src).last_dc_val[3]) |
+#endif |
+#endif |
+ |
+ |
+typedef struct { |
+ struct jpeg_entropy_decoder pub; /* public fields */ |
+ |
+ /* These fields are loaded into local variables at start of each MCU. |
+ * In case of suspension, we exit WITHOUT updating them. |
+ */ |
+ bitread_perm_state bitstate; /* Bit buffer at start of MCU */ |
+ savable_state saved; /* Other state at start of MCU */ |
+ |
+ /* These fields are NOT loaded into local working state. */ |
+ unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
+ |
+ /* Pointers to derived tables (these workspaces have image lifespan) */ |
+ d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; |
+ d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; |
+ |
+ /* Precalculated info set up by start_pass for use in decode_mcu: */ |
+ |
+ /* Pointers to derived tables to be used for each block within an MCU */ |
+ d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU]; |
+ d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU]; |
+ /* Whether we care about the DC and AC coefficient values for each block */ |
+ boolean dc_needed[D_MAX_BLOCKS_IN_MCU]; |
+ boolean ac_needed[D_MAX_BLOCKS_IN_MCU]; |
+} huff_entropy_decoder; |
+ |
+typedef huff_entropy_decoder * huff_entropy_ptr; |
+ |
+ |
+/* |
+ * Initialize for a Huffman-compressed scan. |
+ */ |
+ |
+METHODDEF(void) |
+start_pass_huff_decoder (j_decompress_ptr cinfo) |
+{ |
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
+ int ci, blkn, dctbl, actbl; |
+ jpeg_component_info * compptr; |
+ |
+ /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. |
+ * This ought to be an error condition, but we make it a warning because |
+ * there are some baseline files out there with all zeroes in these bytes. |
+ */ |
+ if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 || |
+ cinfo->Ah != 0 || cinfo->Al != 0) |
+ WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); |
+ |
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
+ compptr = cinfo->cur_comp_info[ci]; |
+ dctbl = compptr->dc_tbl_no; |
+ actbl = compptr->ac_tbl_no; |
+ /* Compute derived values for Huffman tables */ |
+ /* We may do this more than once for a table, but it's not expensive */ |
+ jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, |
+ & entropy->dc_derived_tbls[dctbl]); |
+ jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, |
+ & entropy->ac_derived_tbls[actbl]); |
+ /* Initialize DC predictions to 0 */ |
+ entropy->saved.last_dc_val[ci] = 0; |
+ } |
+ |
+ /* Precalculate decoding info for each block in an MCU of this scan */ |
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
+ ci = cinfo->MCU_membership[blkn]; |
+ compptr = cinfo->cur_comp_info[ci]; |
+ /* Precalculate which table to use for each block */ |
+ entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no]; |
+ entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no]; |
+ /* Decide whether we really care about the coefficient values */ |
+ if (compptr->component_needed) { |
+ entropy->dc_needed[blkn] = TRUE; |
+ /* we don't need the ACs if producing a 1/8th-size image */ |
+ entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1); |
+ } else { |
+ entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE; |
+ } |
+ } |
+ |
+ /* Initialize bitread state variables */ |
+ entropy->bitstate.bits_left = 0; |
+ entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ |
+ entropy->pub.insufficient_data = FALSE; |
+ |
+ /* Initialize restart counter */ |
+ entropy->restarts_to_go = cinfo->restart_interval; |
+} |
+ |
+ |
+/* |
+ * Compute the derived values for a Huffman table. |
+ * This routine also performs some validation checks on the table. |
+ * |
+ * Note this is also used by jdphuff.c. |
+ */ |
+ |
+GLOBAL(void) |
+jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno, |
+ d_derived_tbl ** pdtbl) |
+{ |
+ JHUFF_TBL *htbl; |
+ d_derived_tbl *dtbl; |
+ int p, i, l, si, numsymbols; |
+ int lookbits, ctr; |
+ char huffsize[257]; |
+ unsigned int huffcode[257]; |
+ unsigned int code; |
+ |
+ /* Note that huffsize[] and huffcode[] are filled in code-length order, |
+ * paralleling the order of the symbols themselves in htbl->huffval[]. |
+ */ |
+ |
+ /* Find the input Huffman table */ |
+ if (tblno < 0 || tblno >= NUM_HUFF_TBLS) |
+ ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
+ htbl = |
+ isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; |
+ if (htbl == NULL) |
+ ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
+ |
+ /* Allocate a workspace if we haven't already done so. */ |
+ if (*pdtbl == NULL) |
+ *pdtbl = (d_derived_tbl *) |
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
+ SIZEOF(d_derived_tbl)); |
+ dtbl = *pdtbl; |
+ dtbl->pub = htbl; /* fill in back link */ |
+ |
+ /* Figure C.1: make table of Huffman code length for each symbol */ |
+ |
+ p = 0; |
+ for (l = 1; l <= 16; l++) { |
+ i = (int) htbl->bits[l]; |
+ if (i < 0 || p + i > 256) /* protect against table overrun */ |
+ ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
+ while (i--) |
+ huffsize[p++] = (char) l; |
+ } |
+ huffsize[p] = 0; |
+ numsymbols = p; |
+ |
+ /* Figure C.2: generate the codes themselves */ |
+ /* We also validate that the counts represent a legal Huffman code tree. */ |
+ |
+ code = 0; |
+ si = huffsize[0]; |
+ p = 0; |
+ while (huffsize[p]) { |
+ while (((int) huffsize[p]) == si) { |
+ huffcode[p++] = code; |
+ code++; |
+ } |
+ /* code is now 1 more than the last code used for codelength si; but |
+ * it must still fit in si bits, since no code is allowed to be all ones. |
+ */ |
+ if (((INT32) code) >= (((INT32) 1) << si)) |
+ ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
+ code <<= 1; |
+ si++; |
+ } |
+ |
+ /* Figure F.15: generate decoding tables for bit-sequential decoding */ |
+ |
+ p = 0; |
+ for (l = 1; l <= 16; l++) { |
+ if (htbl->bits[l]) { |
+ /* valoffset[l] = huffval[] index of 1st symbol of code length l, |
+ * minus the minimum code of length l |
+ */ |
+ dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p]; |
+ p += htbl->bits[l]; |
+ dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */ |
+ } else { |
+ dtbl->maxcode[l] = -1; /* -1 if no codes of this length */ |
+ } |
+ } |
+ dtbl->valoffset[17] = 0; |
+ dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */ |
+ |
+ /* Compute lookahead tables to speed up decoding. |
+ * First we set all the table entries to 0, indicating "too long"; |
+ * then we iterate through the Huffman codes that are short enough and |
+ * fill in all the entries that correspond to bit sequences starting |
+ * with that code. |
+ */ |
+ |
+ for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++) |
+ dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD; |
+ |
+ p = 0; |
+ for (l = 1; l <= HUFF_LOOKAHEAD; l++) { |
+ for (i = 1; i <= (int) htbl->bits[l]; i++, p++) { |
+ /* l = current code's length, p = its index in huffcode[] & huffval[]. */ |
+ /* Generate left-justified code followed by all possible bit sequences */ |
+ lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l); |
+ for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) { |
+ dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p]; |
+ lookbits++; |
+ } |
+ } |
+ } |
+ |
+ /* Validate symbols as being reasonable. |
+ * For AC tables, we make no check, but accept all byte values 0..255. |
+ * For DC tables, we require the symbols to be in range 0..15. |
+ * (Tighter bounds could be applied depending on the data depth and mode, |
+ * but this is sufficient to ensure safe decoding.) |
+ */ |
+ if (isDC) { |
+ for (i = 0; i < numsymbols; i++) { |
+ int sym = htbl->huffval[i]; |
+ if (sym < 0 || sym > 15) |
+ ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
+ } |
+ } |
+} |
+ |
+ |
+/* |
+ * Out-of-line code for bit fetching (shared with jdphuff.c). |
+ * See jdhuff.h for info about usage. |
+ * Note: current values of get_buffer and bits_left are passed as parameters, |
+ * but are returned in the corresponding fields of the state struct. |
+ * |
+ * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width |
+ * of get_buffer to be used. (On machines with wider words, an even larger |
+ * buffer could be used.) However, on some machines 32-bit shifts are |
+ * quite slow and take time proportional to the number of places shifted. |
+ * (This is true with most PC compilers, for instance.) In this case it may |
+ * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the |
+ * average shift distance at the cost of more calls to jpeg_fill_bit_buffer. |
+ */ |
+ |
+#ifdef SLOW_SHIFT_32 |
+#define MIN_GET_BITS 15 /* minimum allowable value */ |
+#else |
+#define MIN_GET_BITS (BIT_BUF_SIZE-7) |
+#endif |
+ |
+ |
+GLOBAL(boolean) |
+jpeg_fill_bit_buffer (bitread_working_state * state, |
+ register bit_buf_type get_buffer, register int bits_left, |
+ int nbits) |
+/* Load up the bit buffer to a depth of at least nbits */ |
+{ |
+ /* Copy heavily used state fields into locals (hopefully registers) */ |
+ register const JOCTET * next_input_byte = state->next_input_byte; |
+ register size_t bytes_in_buffer = state->bytes_in_buffer; |
+ j_decompress_ptr cinfo = state->cinfo; |
+ |
+ /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ |
+ /* (It is assumed that no request will be for more than that many bits.) */ |
+ /* We fail to do so only if we hit a marker or are forced to suspend. */ |
+ |
+ if (cinfo->unread_marker == 0) { /* cannot advance past a marker */ |
+ while (bits_left < MIN_GET_BITS) { |
+ register int c; |
+ |
+ /* Attempt to read a byte */ |
+ if (bytes_in_buffer == 0) { |
+ if (! (*cinfo->src->fill_input_buffer) (cinfo)) |
+ return FALSE; |
+ next_input_byte = cinfo->src->next_input_byte; |
+ bytes_in_buffer = cinfo->src->bytes_in_buffer; |
+ } |
+ bytes_in_buffer--; |
+ c = GETJOCTET(*next_input_byte++); |
+ |
+ /* If it's 0xFF, check and discard stuffed zero byte */ |
+ if (c == 0xFF) { |
+ /* Loop here to discard any padding FF's on terminating marker, |
+ * so that we can save a valid unread_marker value. NOTE: we will |
+ * accept multiple FF's followed by a 0 as meaning a single FF data |
+ * byte. This data pattern is not valid according to the standard. |
+ */ |
+ do { |
+ if (bytes_in_buffer == 0) { |
+ if (! (*cinfo->src->fill_input_buffer) (cinfo)) |
+ return FALSE; |
+ next_input_byte = cinfo->src->next_input_byte; |
+ bytes_in_buffer = cinfo->src->bytes_in_buffer; |
+ } |
+ bytes_in_buffer--; |
+ c = GETJOCTET(*next_input_byte++); |
+ } while (c == 0xFF); |
+ |
+ if (c == 0) { |
+ /* Found FF/00, which represents an FF data byte */ |
+ c = 0xFF; |
+ } else { |
+ /* Oops, it's actually a marker indicating end of compressed data. |
+ * Save the marker code for later use. |
+ * Fine point: it might appear that we should save the marker into |
+ * bitread working state, not straight into permanent state. But |
+ * once we have hit a marker, we cannot need to suspend within the |
+ * current MCU, because we will read no more bytes from the data |
+ * source. So it is OK to update permanent state right away. |
+ */ |
+ cinfo->unread_marker = c; |
+ /* See if we need to insert some fake zero bits. */ |
+ goto no_more_bytes; |
+ } |
+ } |
+ |
+ /* OK, load c into get_buffer */ |
+ get_buffer = (get_buffer << 8) | c; |
+ bits_left += 8; |
+ } /* end while */ |
+ } else { |
+ no_more_bytes: |
+ /* We get here if we've read the marker that terminates the compressed |
+ * data segment. There should be enough bits in the buffer register |
+ * to satisfy the request; if so, no problem. |
+ */ |
+ if (nbits > bits_left) { |
+ /* Uh-oh. Report corrupted data to user and stuff zeroes into |
+ * the data stream, so that we can produce some kind of image. |
+ * We use a nonvolatile flag to ensure that only one warning message |
+ * appears per data segment. |
+ */ |
+ if (! cinfo->entropy->insufficient_data) { |
+ WARNMS(cinfo, JWRN_HIT_MARKER); |
+ cinfo->entropy->insufficient_data = TRUE; |
+ } |
+ /* Fill the buffer with zero bits */ |
+ get_buffer <<= MIN_GET_BITS - bits_left; |
+ bits_left = MIN_GET_BITS; |
+ } |
+ } |
+ |
+ /* Unload the local registers */ |
+ state->next_input_byte = next_input_byte; |
+ state->bytes_in_buffer = bytes_in_buffer; |
+ state->get_buffer = get_buffer; |
+ state->bits_left = bits_left; |
+ |
+ return TRUE; |
+} |
+ |
+ |
+/* |
+ * Out-of-line code for Huffman code decoding. |
+ * See jdhuff.h for info about usage. |
+ */ |
+ |
+GLOBAL(int) |
+jpeg_huff_decode (bitread_working_state * state, |
+ register bit_buf_type get_buffer, register int bits_left, |
+ d_derived_tbl * htbl, int min_bits) |
+{ |
+ register int l = min_bits; |
+ register INT32 code; |
+ |
+ /* HUFF_DECODE has determined that the code is at least min_bits */ |
+ /* bits long, so fetch that many bits in one swoop. */ |
+ |
+ CHECK_BIT_BUFFER(*state, l, return -1); |
+ code = GET_BITS(l); |
+ |
+ /* Collect the rest of the Huffman code one bit at a time. */ |
+ /* This is per Figure F.16 in the JPEG spec. */ |
+ |
+ while (code > htbl->maxcode[l]) { |
+ code <<= 1; |
+ CHECK_BIT_BUFFER(*state, 1, return -1); |
+ code |= GET_BITS(1); |
+ l++; |
+ } |
+ |
+ /* Unload the local registers */ |
+ state->get_buffer = get_buffer; |
+ state->bits_left = bits_left; |
+ |
+ /* With garbage input we may reach the sentinel value l = 17. */ |
+ |
+ if (l > 16) { |
+ WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); |
+ return 0; /* fake a zero as the safest result */ |
+ } |
+ |
+ return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ]; |
+} |
+ |
+ |
+/* |
+ * Figure F.12: extend sign bit. |
+ * On some machines, a shift and add will be faster than a table lookup. |
+ */ |
+ |
+#define AVOID_TABLES |
+#ifdef AVOID_TABLES |
+ |
+#define HUFF_EXTEND(x,s) ((x) + ((((x) - (1<<((s)-1))) >> 31) & (((-1)<<(s)) + 1))) |
+ |
+#else |
+ |
+#define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) |
+ |
+static const int extend_test[16] = /* entry n is 2**(n-1) */ |
+ { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, |
+ 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; |
+ |
+static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ |
+ { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1, |
+ ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1, |
+ ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1, |
+ ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 }; |
+ |
+#endif /* AVOID_TABLES */ |
+ |
+ |
+/* |
+ * Check for a restart marker & resynchronize decoder. |
+ * Returns FALSE if must suspend. |
+ */ |
+ |
+LOCAL(boolean) |
+process_restart (j_decompress_ptr cinfo) |
+{ |
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
+ int ci; |
+ |
+ /* Throw away any unused bits remaining in bit buffer; */ |
+ /* include any full bytes in next_marker's count of discarded bytes */ |
+ cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; |
+ entropy->bitstate.bits_left = 0; |
+ |
+ /* Advance past the RSTn marker */ |
+ if (! (*cinfo->marker->read_restart_marker) (cinfo)) |
+ return FALSE; |
+ |
+ /* Re-initialize DC predictions to 0 */ |
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) |
+ entropy->saved.last_dc_val[ci] = 0; |
+ |
+ /* Reset restart counter */ |
+ entropy->restarts_to_go = cinfo->restart_interval; |
+ |
+ /* Reset out-of-data flag, unless read_restart_marker left us smack up |
+ * against a marker. In that case we will end up treating the next data |
+ * segment as empty, and we can avoid producing bogus output pixels by |
+ * leaving the flag set. |
+ */ |
+ if (cinfo->unread_marker == 0) |
+ entropy->pub.insufficient_data = FALSE; |
+ |
+ return TRUE; |
+} |
+ |
+ |
+LOCAL(boolean) |
+decode_mcu_slow (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
+{ |
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
+ BITREAD_STATE_VARS; |
+ int blkn; |
+ savable_state state; |
+ /* Outer loop handles each block in the MCU */ |
+ |
+ /* Load up working state */ |
+ BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
+ ASSIGN_STATE(state, entropy->saved); |
+ |
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
+ JBLOCKROW block = MCU_data[blkn]; |
+ d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn]; |
+ d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn]; |
+ register int s, k, r; |
+ |
+ /* Decode a single block's worth of coefficients */ |
+ |
+ /* Section F.2.2.1: decode the DC coefficient difference */ |
+ HUFF_DECODE(s, br_state, dctbl, return FALSE, label1); |
+ if (s) { |
+ CHECK_BIT_BUFFER(br_state, s, return FALSE); |
+ r = GET_BITS(s); |
+ s = HUFF_EXTEND(r, s); |
+ } |
+ |
+ if (entropy->dc_needed[blkn]) { |
+ /* Convert DC difference to actual value, update last_dc_val */ |
+ int ci = cinfo->MCU_membership[blkn]; |
+ s += state.last_dc_val[ci]; |
+ state.last_dc_val[ci] = s; |
+ /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */ |
+ (*block)[0] = (JCOEF) s; |
+ } |
+ |
+ if (entropy->ac_needed[blkn]) { |
+ |
+ /* Section F.2.2.2: decode the AC coefficients */ |
+ /* Since zeroes are skipped, output area must be cleared beforehand */ |
+ for (k = 1; k < DCTSIZE2; k++) { |
+ HUFF_DECODE(s, br_state, actbl, return FALSE, label2); |
+ |
+ r = s >> 4; |
+ s &= 15; |
+ |
+ if (s) { |
+ k += r; |
+ CHECK_BIT_BUFFER(br_state, s, return FALSE); |
+ r = GET_BITS(s); |
+ s = HUFF_EXTEND(r, s); |
+ /* Output coefficient in natural (dezigzagged) order. |
+ * Note: the extra entries in jpeg_natural_order[] will save us |
+ * if k >= DCTSIZE2, which could happen if the data is corrupted. |
+ */ |
+ (*block)[jpeg_natural_order[k]] = (JCOEF) s; |
+ } else { |
+ if (r != 15) |
+ break; |
+ k += 15; |
+ } |
+ } |
+ |
+ } else { |
+ |
+ /* Section F.2.2.2: decode the AC coefficients */ |
+ /* In this path we just discard the values */ |
+ for (k = 1; k < DCTSIZE2; k++) { |
+ HUFF_DECODE(s, br_state, actbl, return FALSE, label3); |
+ |
+ r = s >> 4; |
+ s &= 15; |
+ |
+ if (s) { |
+ k += r; |
+ CHECK_BIT_BUFFER(br_state, s, return FALSE); |
+ DROP_BITS(s); |
+ } else { |
+ if (r != 15) |
+ break; |
+ k += 15; |
+ } |
+ } |
+ } |
+ } |
+ |
+ /* Completed MCU, so update state */ |
+ BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
+ ASSIGN_STATE(entropy->saved, state); |
+ return TRUE; |
+} |
+ |
+ |
+/***************************************************************/ |
+ |
+#define ADD_BYTE { \ |
+ int val0 = *(buffer++); \ |
+ int val1 = *(buffer); \ |
+ \ |
+ bits_left += 8; \ |
+ get_buffer = (get_buffer << 8) | (val0); \ |
+ if (val0 == 0xFF) { \ |
+ buffer++; \ |
+ if (val1 != 0) { \ |
+ buffer -= 2; \ |
+ get_buffer &= ~0xFF; \ |
+ } \ |
+ } \ |
+} |
+ |
+/***************************************************************/ |
+ |
+#if __WORDSIZE == 64 || defined(_WIN64) |
+ |
+#define ENSURE_SHORT \ |
+ if (bits_left < 16) { \ |
+ ADD_BYTE ADD_BYTE ADD_BYTE ADD_BYTE ADD_BYTE ADD_BYTE \ |
+ } |
+ |
+#else |
+ |
+#define ENSURE_SHORT if (bits_left < 16) { ADD_BYTE ADD_BYTE } |
+ |
+#endif |
+ |
+/***************************************************************/ |
+ |
+#define HUFF_DECODE_FAST(symbol, size, htbl) { \ |
+ ENSURE_SHORT \ |
+ symbol = PEEK_BITS(HUFF_LOOKAHEAD); \ |
+ symbol = htbl->lookup[symbol]; \ |
+ size = symbol >> 8; \ |
+ bits_left -= size; \ |
+ symbol = symbol & ((1 << HUFF_LOOKAHEAD) - 1); \ |
+ if (size == HUFF_LOOKAHEAD + 1) { \ |
+ symbol = (get_buffer >> bits_left) & ((1 << (size)) - 1); \ |
+ while (symbol > htbl->maxcode[size]) { \ |
+ symbol <<= 1; \ |
+ symbol |= GET_BITS(1); \ |
+ size++; \ |
+ } \ |
+ symbol = htbl->pub->huffval[ (int) (symbol + htbl->valoffset[size]) ]; \ |
+ } \ |
+} |
+ |
+/***************************************************************/ |
+ |
+LOCAL(boolean) |
+decode_mcu_fast (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
+{ |
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
+ BITREAD_STATE_VARS; |
+ JOCTET *buffer; |
+ int blkn; |
+ savable_state state; |
+ /* Outer loop handles each block in the MCU */ |
+ |
+ /* Load up working state */ |
+ BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
+ buffer = (JOCTET *) br_state.next_input_byte; |
+ ASSIGN_STATE(state, entropy->saved); |
+ |
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
+ JBLOCKROW block = MCU_data[blkn]; |
+ d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn]; |
+ d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn]; |
+ register int s, k, r, l; |
+ |
+ HUFF_DECODE_FAST(s, l, dctbl); |
+ if (s) { |
+ ENSURE_SHORT |
+ r = GET_BITS(s); |
+ s = HUFF_EXTEND(r, s); |
+ } |
+ |
+ if (entropy->dc_needed[blkn]) { |
+ int ci = cinfo->MCU_membership[blkn]; |
+ s += state.last_dc_val[ci]; |
+ state.last_dc_val[ci] = s; |
+ (*block)[0] = (JCOEF) s; |
+ } |
+ |
+ if (entropy->ac_needed[blkn]) { |
+ |
+ for (k = 1; k < DCTSIZE2; k++) { |
+ HUFF_DECODE_FAST(s, l, actbl); |
+ r = s >> 4; |
+ s &= 15; |
+ |
+ if (s) { |
+ k += r; |
+ ENSURE_SHORT |
+ r = GET_BITS(s); |
+ s = HUFF_EXTEND(r, s); |
+ (*block)[jpeg_natural_order[k]] = (JCOEF) s; |
+ } else { |
+ if (r != 15) break; |
+ k += 15; |
+ } |
+ } |
+ |
+ } else { |
+ |
+ for (k = 1; k < DCTSIZE2; k++) { |
+ HUFF_DECODE_FAST(s, l, actbl); |
+ r = s >> 4; |
+ s &= 15; |
+ |
+ if (s) { |
+ k += r; |
+ ENSURE_SHORT |
+ DROP_BITS(s); |
+ } else { |
+ if (r != 15) break; |
+ k += 15; |
+ } |
+ } |
+ } |
+ } |
+ |
+ br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte); |
+ br_state.next_input_byte = buffer; |
+ BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
+ ASSIGN_STATE(entropy->saved, state); |
+ return TRUE; |
+} |
+ |
+ |
+/* |
+ * Decode and return one MCU's worth of Huffman-compressed coefficients. |
+ * The coefficients are reordered from zigzag order into natural array order, |
+ * but are not dequantized. |
+ * |
+ * The i'th block of the MCU is stored into the block pointed to by |
+ * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER. |
+ * (Wholesale zeroing is usually a little faster than retail...) |
+ * |
+ * Returns FALSE if data source requested suspension. In that case no |
+ * changes have been made to permanent state. (Exception: some output |
+ * coefficients may already have been assigned. This is harmless for |
+ * this module, since we'll just re-assign them on the next call.) |
+ */ |
+ |
+#define BUFSIZE (DCTSIZE2 * 2) |
+ |
+METHODDEF(boolean) |
+decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
+{ |
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
+ int usefast = 1; |
+ |
+ /* Process restart marker if needed; may have to suspend */ |
+ if (cinfo->restart_interval) { |
+ if (entropy->restarts_to_go == 0) |
+ if (! process_restart(cinfo)) |
+ return FALSE; |
+ usefast = 0; |
+ } |
+ |
+ if (cinfo->src->bytes_in_buffer < BUFSIZE * cinfo->blocks_in_MCU) |
+ usefast = 0; |
+ |
+ /* If we've run out of data, just leave the MCU set to zeroes. |
+ * This way, we return uniform gray for the remainder of the segment. |
+ */ |
+ if (! entropy->pub.insufficient_data) { |
+ |
+ if (usefast) { |
+ if (!decode_mcu_fast(cinfo, MCU_data)) return FALSE; |
+ } |
+ else { |
+ if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE; |
+ } |
+ |
+ } |
+ |
+ /* Account for restart interval (no-op if not using restarts) */ |
+ entropy->restarts_to_go--; |
+ |
+ return TRUE; |
+} |
+ |
+ |
+/* |
+ * Module initialization routine for Huffman entropy decoding. |
+ */ |
+ |
+GLOBAL(void) |
+jinit_huff_decoder (j_decompress_ptr cinfo) |
+{ |
+ huff_entropy_ptr entropy; |
+ int i; |
+ |
+ entropy = (huff_entropy_ptr) |
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
+ SIZEOF(huff_entropy_decoder)); |
+ cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; |
+ entropy->pub.start_pass = start_pass_huff_decoder; |
+ entropy->pub.decode_mcu = decode_mcu; |
+ |
+ /* Mark tables unallocated */ |
+ for (i = 0; i < NUM_HUFF_TBLS; i++) { |
+ entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; |
+ } |
+} |