| Index: third_party/libjpeg_turbo/jdhuff.c
 | 
| ===================================================================
 | 
| --- third_party/libjpeg_turbo/jdhuff.c	(revision 0)
 | 
| +++ third_party/libjpeg_turbo/jdhuff.c	(revision 0)
 | 
| @@ -0,0 +1,824 @@
 | 
| +/*
 | 
| + * jdhuff.c
 | 
| + *
 | 
| + * Copyright (C) 1991-1997, Thomas G. Lane.
 | 
| + * This file is part of the Independent JPEG Group's software.
 | 
| + * For conditions of distribution and use, see the accompanying README file.
 | 
| + *
 | 
| + * This file contains Huffman entropy decoding routines.
 | 
| + *
 | 
| + * Much of the complexity here has to do with supporting input suspension.
 | 
| + * If the data source module demands suspension, we want to be able to back
 | 
| + * up to the start of the current MCU.  To do this, we copy state variables
 | 
| + * into local working storage, and update them back to the permanent
 | 
| + * storage only upon successful completion of an MCU.
 | 
| + */
 | 
| +
 | 
| +/* Modifications:
 | 
| + * Copyright (C)2007 Sun Microsystems, Inc.
 | 
| + * Copyright (C)2009-2010 D. R. Commander
 | 
| + *
 | 
| + * This library is free software and may be redistributed and/or modified under
 | 
| + * the terms of the wxWindows Library License, Version 3.1 or (at your option)
 | 
| + * any later version.  The full license is in the LICENSE.txt file included
 | 
| + * with this distribution.
 | 
| + *
 | 
| + * This library is distributed in the hope that it will be useful,
 | 
| + * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
| + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
| + * wxWindows Library License for more details.
 | 
| + */
 | 
| +
 | 
| +#define JPEG_INTERNALS
 | 
| +#include "jinclude.h"
 | 
| +#include "jpeglib.h"
 | 
| +#include "jdhuff.h"		/* Declarations shared with jdphuff.c */
 | 
| +
 | 
| +
 | 
| +/*
 | 
| + * Expanded entropy decoder object for Huffman decoding.
 | 
| + *
 | 
| + * The savable_state subrecord contains fields that change within an MCU,
 | 
| + * but must not be updated permanently until we complete the MCU.
 | 
| + */
 | 
| +
 | 
| +typedef struct {
 | 
| +  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
 | 
| +} savable_state;
 | 
| +
 | 
| +/* This macro is to work around compilers with missing or broken
 | 
| + * structure assignment.  You'll need to fix this code if you have
 | 
| + * such a compiler and you change MAX_COMPS_IN_SCAN.
 | 
| + */
 | 
| +
 | 
| +#ifndef NO_STRUCT_ASSIGN
 | 
| +#define ASSIGN_STATE(dest,src)  ((dest) = (src))
 | 
| +#else
 | 
| +#if MAX_COMPS_IN_SCAN == 4
 | 
| +#define ASSIGN_STATE(dest,src)  \
 | 
| +	((dest).last_dc_val[0] = (src).last_dc_val[0], \
 | 
| +	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
 | 
| +	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
 | 
| +	 (dest).last_dc_val[3] = (src).last_dc_val[3])
 | 
| +#endif
 | 
| +#endif
 | 
| +
 | 
| +
 | 
| +typedef struct {
 | 
| +  struct jpeg_entropy_decoder pub; /* public fields */
 | 
| +
 | 
| +  /* These fields are loaded into local variables at start of each MCU.
 | 
| +   * In case of suspension, we exit WITHOUT updating them.
 | 
| +   */
 | 
| +  bitread_perm_state bitstate;	/* Bit buffer at start of MCU */
 | 
| +  savable_state saved;		/* Other state at start of MCU */
 | 
| +
 | 
| +  /* These fields are NOT loaded into local working state. */
 | 
| +  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
 | 
| +
 | 
| +  /* Pointers to derived tables (these workspaces have image lifespan) */
 | 
| +  d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
 | 
| +  d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
 | 
| +
 | 
| +  /* Precalculated info set up by start_pass for use in decode_mcu: */
 | 
| +
 | 
| +  /* Pointers to derived tables to be used for each block within an MCU */
 | 
| +  d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
 | 
| +  d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
 | 
| +  /* Whether we care about the DC and AC coefficient values for each block */
 | 
| +  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
 | 
| +  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
 | 
| +} huff_entropy_decoder;
 | 
| +
 | 
| +typedef huff_entropy_decoder * huff_entropy_ptr;
 | 
| +
 | 
| +
 | 
| +/*
 | 
| + * Initialize for a Huffman-compressed scan.
 | 
| + */
 | 
| +
 | 
| +METHODDEF(void)
 | 
| +start_pass_huff_decoder (j_decompress_ptr cinfo)
 | 
| +{
 | 
| +  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 | 
| +  int ci, blkn, dctbl, actbl;
 | 
| +  jpeg_component_info * compptr;
 | 
| +
 | 
| +  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
 | 
| +   * This ought to be an error condition, but we make it a warning because
 | 
| +   * there are some baseline files out there with all zeroes in these bytes.
 | 
| +   */
 | 
| +  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
 | 
| +      cinfo->Ah != 0 || cinfo->Al != 0)
 | 
| +    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
 | 
| +
 | 
| +  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
 | 
| +    compptr = cinfo->cur_comp_info[ci];
 | 
| +    dctbl = compptr->dc_tbl_no;
 | 
| +    actbl = compptr->ac_tbl_no;
 | 
| +    /* Compute derived values for Huffman tables */
 | 
| +    /* We may do this more than once for a table, but it's not expensive */
 | 
| +    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
 | 
| +			    & entropy->dc_derived_tbls[dctbl]);
 | 
| +    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
 | 
| +			    & entropy->ac_derived_tbls[actbl]);
 | 
| +    /* Initialize DC predictions to 0 */
 | 
| +    entropy->saved.last_dc_val[ci] = 0;
 | 
| +  }
 | 
| +
 | 
| +  /* Precalculate decoding info for each block in an MCU of this scan */
 | 
| +  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
 | 
| +    ci = cinfo->MCU_membership[blkn];
 | 
| +    compptr = cinfo->cur_comp_info[ci];
 | 
| +    /* Precalculate which table to use for each block */
 | 
| +    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
 | 
| +    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
 | 
| +    /* Decide whether we really care about the coefficient values */
 | 
| +    if (compptr->component_needed) {
 | 
| +      entropy->dc_needed[blkn] = TRUE;
 | 
| +      /* we don't need the ACs if producing a 1/8th-size image */
 | 
| +      entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1);
 | 
| +    } else {
 | 
| +      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  /* Initialize bitread state variables */
 | 
| +  entropy->bitstate.bits_left = 0;
 | 
| +  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
 | 
| +  entropy->pub.insufficient_data = FALSE;
 | 
| +
 | 
| +  /* Initialize restart counter */
 | 
| +  entropy->restarts_to_go = cinfo->restart_interval;
 | 
| +}
 | 
| +
 | 
| +
 | 
| +/*
 | 
| + * Compute the derived values for a Huffman table.
 | 
| + * This routine also performs some validation checks on the table.
 | 
| + *
 | 
| + * Note this is also used by jdphuff.c.
 | 
| + */
 | 
| +
 | 
| +GLOBAL(void)
 | 
| +jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
 | 
| +			 d_derived_tbl ** pdtbl)
 | 
| +{
 | 
| +  JHUFF_TBL *htbl;
 | 
| +  d_derived_tbl *dtbl;
 | 
| +  int p, i, l, si, numsymbols;
 | 
| +  int lookbits, ctr;
 | 
| +  char huffsize[257];
 | 
| +  unsigned int huffcode[257];
 | 
| +  unsigned int code;
 | 
| +
 | 
| +  /* Note that huffsize[] and huffcode[] are filled in code-length order,
 | 
| +   * paralleling the order of the symbols themselves in htbl->huffval[].
 | 
| +   */
 | 
| +
 | 
| +  /* Find the input Huffman table */
 | 
| +  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
 | 
| +    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
 | 
| +  htbl =
 | 
| +    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
 | 
| +  if (htbl == NULL)
 | 
| +    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
 | 
| +
 | 
| +  /* Allocate a workspace if we haven't already done so. */
 | 
| +  if (*pdtbl == NULL)
 | 
| +    *pdtbl = (d_derived_tbl *)
 | 
| +      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 | 
| +				  SIZEOF(d_derived_tbl));
 | 
| +  dtbl = *pdtbl;
 | 
| +  dtbl->pub = htbl;		/* fill in back link */
 | 
| +  
 | 
| +  /* Figure C.1: make table of Huffman code length for each symbol */
 | 
| +
 | 
| +  p = 0;
 | 
| +  for (l = 1; l <= 16; l++) {
 | 
| +    i = (int) htbl->bits[l];
 | 
| +    if (i < 0 || p + i > 256)	/* protect against table overrun */
 | 
| +      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
 | 
| +    while (i--)
 | 
| +      huffsize[p++] = (char) l;
 | 
| +  }
 | 
| +  huffsize[p] = 0;
 | 
| +  numsymbols = p;
 | 
| +  
 | 
| +  /* Figure C.2: generate the codes themselves */
 | 
| +  /* We also validate that the counts represent a legal Huffman code tree. */
 | 
| +  
 | 
| +  code = 0;
 | 
| +  si = huffsize[0];
 | 
| +  p = 0;
 | 
| +  while (huffsize[p]) {
 | 
| +    while (((int) huffsize[p]) == si) {
 | 
| +      huffcode[p++] = code;
 | 
| +      code++;
 | 
| +    }
 | 
| +    /* code is now 1 more than the last code used for codelength si; but
 | 
| +     * it must still fit in si bits, since no code is allowed to be all ones.
 | 
| +     */
 | 
| +    if (((INT32) code) >= (((INT32) 1) << si))
 | 
| +      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
 | 
| +    code <<= 1;
 | 
| +    si++;
 | 
| +  }
 | 
| +
 | 
| +  /* Figure F.15: generate decoding tables for bit-sequential decoding */
 | 
| +
 | 
| +  p = 0;
 | 
| +  for (l = 1; l <= 16; l++) {
 | 
| +    if (htbl->bits[l]) {
 | 
| +      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
 | 
| +       * minus the minimum code of length l
 | 
| +       */
 | 
| +      dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
 | 
| +      p += htbl->bits[l];
 | 
| +      dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
 | 
| +    } else {
 | 
| +      dtbl->maxcode[l] = -1;	/* -1 if no codes of this length */
 | 
| +    }
 | 
| +  }
 | 
| +  dtbl->valoffset[17] = 0;
 | 
| +  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
 | 
| +
 | 
| +  /* Compute lookahead tables to speed up decoding.
 | 
| +   * First we set all the table entries to 0, indicating "too long";
 | 
| +   * then we iterate through the Huffman codes that are short enough and
 | 
| +   * fill in all the entries that correspond to bit sequences starting
 | 
| +   * with that code.
 | 
| +   */
 | 
| +
 | 
| +   for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
 | 
| +     dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
 | 
| +
 | 
| +  p = 0;
 | 
| +  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
 | 
| +    for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
 | 
| +      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
 | 
| +      /* Generate left-justified code followed by all possible bit sequences */
 | 
| +      lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
 | 
| +      for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
 | 
| +	dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
 | 
| +	lookbits++;
 | 
| +      }
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  /* Validate symbols as being reasonable.
 | 
| +   * For AC tables, we make no check, but accept all byte values 0..255.
 | 
| +   * For DC tables, we require the symbols to be in range 0..15.
 | 
| +   * (Tighter bounds could be applied depending on the data depth and mode,
 | 
| +   * but this is sufficient to ensure safe decoding.)
 | 
| +   */
 | 
| +  if (isDC) {
 | 
| +    for (i = 0; i < numsymbols; i++) {
 | 
| +      int sym = htbl->huffval[i];
 | 
| +      if (sym < 0 || sym > 15)
 | 
| +	ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
 | 
| +    }
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +/*
 | 
| + * Out-of-line code for bit fetching (shared with jdphuff.c).
 | 
| + * See jdhuff.h for info about usage.
 | 
| + * Note: current values of get_buffer and bits_left are passed as parameters,
 | 
| + * but are returned in the corresponding fields of the state struct.
 | 
| + *
 | 
| + * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
 | 
| + * of get_buffer to be used.  (On machines with wider words, an even larger
 | 
| + * buffer could be used.)  However, on some machines 32-bit shifts are
 | 
| + * quite slow and take time proportional to the number of places shifted.
 | 
| + * (This is true with most PC compilers, for instance.)  In this case it may
 | 
| + * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
 | 
| + * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
 | 
| + */
 | 
| +
 | 
| +#ifdef SLOW_SHIFT_32
 | 
| +#define MIN_GET_BITS  15	/* minimum allowable value */
 | 
| +#else
 | 
| +#define MIN_GET_BITS  (BIT_BUF_SIZE-7)
 | 
| +#endif
 | 
| +
 | 
| +
 | 
| +GLOBAL(boolean)
 | 
| +jpeg_fill_bit_buffer (bitread_working_state * state,
 | 
| +		      register bit_buf_type get_buffer, register int bits_left,
 | 
| +		      int nbits)
 | 
| +/* Load up the bit buffer to a depth of at least nbits */
 | 
| +{
 | 
| +  /* Copy heavily used state fields into locals (hopefully registers) */
 | 
| +  register const JOCTET * next_input_byte = state->next_input_byte;
 | 
| +  register size_t bytes_in_buffer = state->bytes_in_buffer;
 | 
| +  j_decompress_ptr cinfo = state->cinfo;
 | 
| +
 | 
| +  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
 | 
| +  /* (It is assumed that no request will be for more than that many bits.) */
 | 
| +  /* We fail to do so only if we hit a marker or are forced to suspend. */
 | 
| +
 | 
| +  if (cinfo->unread_marker == 0) {	/* cannot advance past a marker */
 | 
| +    while (bits_left < MIN_GET_BITS) {
 | 
| +      register int c;
 | 
| +
 | 
| +      /* Attempt to read a byte */
 | 
| +      if (bytes_in_buffer == 0) {
 | 
| +	if (! (*cinfo->src->fill_input_buffer) (cinfo))
 | 
| +	  return FALSE;
 | 
| +	next_input_byte = cinfo->src->next_input_byte;
 | 
| +	bytes_in_buffer = cinfo->src->bytes_in_buffer;
 | 
| +      }
 | 
| +      bytes_in_buffer--;
 | 
| +      c = GETJOCTET(*next_input_byte++);
 | 
| +
 | 
| +      /* If it's 0xFF, check and discard stuffed zero byte */
 | 
| +      if (c == 0xFF) {
 | 
| +	/* Loop here to discard any padding FF's on terminating marker,
 | 
| +	 * so that we can save a valid unread_marker value.  NOTE: we will
 | 
| +	 * accept multiple FF's followed by a 0 as meaning a single FF data
 | 
| +	 * byte.  This data pattern is not valid according to the standard.
 | 
| +	 */
 | 
| +	do {
 | 
| +	  if (bytes_in_buffer == 0) {
 | 
| +	    if (! (*cinfo->src->fill_input_buffer) (cinfo))
 | 
| +	      return FALSE;
 | 
| +	    next_input_byte = cinfo->src->next_input_byte;
 | 
| +	    bytes_in_buffer = cinfo->src->bytes_in_buffer;
 | 
| +	  }
 | 
| +	  bytes_in_buffer--;
 | 
| +	  c = GETJOCTET(*next_input_byte++);
 | 
| +	} while (c == 0xFF);
 | 
| +
 | 
| +	if (c == 0) {
 | 
| +	  /* Found FF/00, which represents an FF data byte */
 | 
| +	  c = 0xFF;
 | 
| +	} else {
 | 
| +	  /* Oops, it's actually a marker indicating end of compressed data.
 | 
| +	   * Save the marker code for later use.
 | 
| +	   * Fine point: it might appear that we should save the marker into
 | 
| +	   * bitread working state, not straight into permanent state.  But
 | 
| +	   * once we have hit a marker, we cannot need to suspend within the
 | 
| +	   * current MCU, because we will read no more bytes from the data
 | 
| +	   * source.  So it is OK to update permanent state right away.
 | 
| +	   */
 | 
| +	  cinfo->unread_marker = c;
 | 
| +	  /* See if we need to insert some fake zero bits. */
 | 
| +	  goto no_more_bytes;
 | 
| +	}
 | 
| +      }
 | 
| +
 | 
| +      /* OK, load c into get_buffer */
 | 
| +      get_buffer = (get_buffer << 8) | c;
 | 
| +      bits_left += 8;
 | 
| +    } /* end while */
 | 
| +  } else {
 | 
| +  no_more_bytes:
 | 
| +    /* We get here if we've read the marker that terminates the compressed
 | 
| +     * data segment.  There should be enough bits in the buffer register
 | 
| +     * to satisfy the request; if so, no problem.
 | 
| +     */
 | 
| +    if (nbits > bits_left) {
 | 
| +      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
 | 
| +       * the data stream, so that we can produce some kind of image.
 | 
| +       * We use a nonvolatile flag to ensure that only one warning message
 | 
| +       * appears per data segment.
 | 
| +       */
 | 
| +      if (! cinfo->entropy->insufficient_data) {
 | 
| +	WARNMS(cinfo, JWRN_HIT_MARKER);
 | 
| +	cinfo->entropy->insufficient_data = TRUE;
 | 
| +      }
 | 
| +      /* Fill the buffer with zero bits */
 | 
| +      get_buffer <<= MIN_GET_BITS - bits_left;
 | 
| +      bits_left = MIN_GET_BITS;
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  /* Unload the local registers */
 | 
| +  state->next_input_byte = next_input_byte;
 | 
| +  state->bytes_in_buffer = bytes_in_buffer;
 | 
| +  state->get_buffer = get_buffer;
 | 
| +  state->bits_left = bits_left;
 | 
| +
 | 
| +  return TRUE;
 | 
| +}
 | 
| +
 | 
| +
 | 
| +/*
 | 
| + * Out-of-line code for Huffman code decoding.
 | 
| + * See jdhuff.h for info about usage.
 | 
| + */
 | 
| +
 | 
| +GLOBAL(int)
 | 
| +jpeg_huff_decode (bitread_working_state * state,
 | 
| +		  register bit_buf_type get_buffer, register int bits_left,
 | 
| +		  d_derived_tbl * htbl, int min_bits)
 | 
| +{
 | 
| +  register int l = min_bits;
 | 
| +  register INT32 code;
 | 
| +
 | 
| +  /* HUFF_DECODE has determined that the code is at least min_bits */
 | 
| +  /* bits long, so fetch that many bits in one swoop. */
 | 
| +
 | 
| +  CHECK_BIT_BUFFER(*state, l, return -1);
 | 
| +  code = GET_BITS(l);
 | 
| +
 | 
| +  /* Collect the rest of the Huffman code one bit at a time. */
 | 
| +  /* This is per Figure F.16 in the JPEG spec. */
 | 
| +
 | 
| +  while (code > htbl->maxcode[l]) {
 | 
| +    code <<= 1;
 | 
| +    CHECK_BIT_BUFFER(*state, 1, return -1);
 | 
| +    code |= GET_BITS(1);
 | 
| +    l++;
 | 
| +  }
 | 
| +
 | 
| +  /* Unload the local registers */
 | 
| +  state->get_buffer = get_buffer;
 | 
| +  state->bits_left = bits_left;
 | 
| +
 | 
| +  /* With garbage input we may reach the sentinel value l = 17. */
 | 
| +
 | 
| +  if (l > 16) {
 | 
| +    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
 | 
| +    return 0;			/* fake a zero as the safest result */
 | 
| +  }
 | 
| +
 | 
| +  return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
 | 
| +}
 | 
| +
 | 
| +
 | 
| +/*
 | 
| + * Figure F.12: extend sign bit.
 | 
| + * On some machines, a shift and add will be faster than a table lookup.
 | 
| + */
 | 
| +
 | 
| +#define AVOID_TABLES
 | 
| +#ifdef AVOID_TABLES
 | 
| +
 | 
| +#define HUFF_EXTEND(x,s)  ((x) + ((((x) - (1<<((s)-1))) >> 31) & (((-1)<<(s)) + 1)))
 | 
| +
 | 
| +#else
 | 
| +
 | 
| +#define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
 | 
| +
 | 
| +static const int extend_test[16] =   /* entry n is 2**(n-1) */
 | 
| +  { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
 | 
| +    0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
 | 
| +
 | 
| +static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
 | 
| +  { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
 | 
| +    ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
 | 
| +    ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
 | 
| +    ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
 | 
| +
 | 
| +#endif /* AVOID_TABLES */
 | 
| +
 | 
| +
 | 
| +/*
 | 
| + * Check for a restart marker & resynchronize decoder.
 | 
| + * Returns FALSE if must suspend.
 | 
| + */
 | 
| +
 | 
| +LOCAL(boolean)
 | 
| +process_restart (j_decompress_ptr cinfo)
 | 
| +{
 | 
| +  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 | 
| +  int ci;
 | 
| +
 | 
| +  /* Throw away any unused bits remaining in bit buffer; */
 | 
| +  /* include any full bytes in next_marker's count of discarded bytes */
 | 
| +  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
 | 
| +  entropy->bitstate.bits_left = 0;
 | 
| +
 | 
| +  /* Advance past the RSTn marker */
 | 
| +  if (! (*cinfo->marker->read_restart_marker) (cinfo))
 | 
| +    return FALSE;
 | 
| +
 | 
| +  /* Re-initialize DC predictions to 0 */
 | 
| +  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
 | 
| +    entropy->saved.last_dc_val[ci] = 0;
 | 
| +
 | 
| +  /* Reset restart counter */
 | 
| +  entropy->restarts_to_go = cinfo->restart_interval;
 | 
| +
 | 
| +  /* Reset out-of-data flag, unless read_restart_marker left us smack up
 | 
| +   * against a marker.  In that case we will end up treating the next data
 | 
| +   * segment as empty, and we can avoid producing bogus output pixels by
 | 
| +   * leaving the flag set.
 | 
| +   */
 | 
| +  if (cinfo->unread_marker == 0)
 | 
| +    entropy->pub.insufficient_data = FALSE;
 | 
| +
 | 
| +  return TRUE;
 | 
| +}
 | 
| +
 | 
| +
 | 
| +LOCAL(boolean)
 | 
| +decode_mcu_slow (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
 | 
| +{
 | 
| +  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 | 
| +  BITREAD_STATE_VARS;
 | 
| +  int blkn;
 | 
| +  savable_state state;
 | 
| +  /* Outer loop handles each block in the MCU */
 | 
| +
 | 
| +  /* Load up working state */
 | 
| +  BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
 | 
| +  ASSIGN_STATE(state, entropy->saved);
 | 
| +
 | 
| +  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
 | 
| +    JBLOCKROW block = MCU_data[blkn];
 | 
| +    d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
 | 
| +    d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
 | 
| +    register int s, k, r;
 | 
| +
 | 
| +    /* Decode a single block's worth of coefficients */
 | 
| +
 | 
| +    /* Section F.2.2.1: decode the DC coefficient difference */
 | 
| +    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
 | 
| +    if (s) {
 | 
| +      CHECK_BIT_BUFFER(br_state, s, return FALSE);
 | 
| +      r = GET_BITS(s);
 | 
| +      s = HUFF_EXTEND(r, s);
 | 
| +    }
 | 
| +
 | 
| +    if (entropy->dc_needed[blkn]) {
 | 
| +      /* Convert DC difference to actual value, update last_dc_val */
 | 
| +      int ci = cinfo->MCU_membership[blkn];
 | 
| +      s += state.last_dc_val[ci];
 | 
| +      state.last_dc_val[ci] = s;
 | 
| +      /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
 | 
| +      (*block)[0] = (JCOEF) s;
 | 
| +    }
 | 
| +
 | 
| +    if (entropy->ac_needed[blkn]) {
 | 
| +
 | 
| +      /* Section F.2.2.2: decode the AC coefficients */
 | 
| +      /* Since zeroes are skipped, output area must be cleared beforehand */
 | 
| +      for (k = 1; k < DCTSIZE2; k++) {
 | 
| +        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
 | 
| +
 | 
| +        r = s >> 4;
 | 
| +        s &= 15;
 | 
| +      
 | 
| +        if (s) {
 | 
| +          k += r;
 | 
| +          CHECK_BIT_BUFFER(br_state, s, return FALSE);
 | 
| +          r = GET_BITS(s);
 | 
| +          s = HUFF_EXTEND(r, s);
 | 
| +          /* Output coefficient in natural (dezigzagged) order.
 | 
| +           * Note: the extra entries in jpeg_natural_order[] will save us
 | 
| +           * if k >= DCTSIZE2, which could happen if the data is corrupted.
 | 
| +           */
 | 
| +          (*block)[jpeg_natural_order[k]] = (JCOEF) s;
 | 
| +        } else {
 | 
| +          if (r != 15)
 | 
| +            break;
 | 
| +          k += 15;
 | 
| +        }
 | 
| +      }
 | 
| +
 | 
| +    } else {
 | 
| +
 | 
| +      /* Section F.2.2.2: decode the AC coefficients */
 | 
| +      /* In this path we just discard the values */
 | 
| +      for (k = 1; k < DCTSIZE2; k++) {
 | 
| +        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
 | 
| +
 | 
| +        r = s >> 4;
 | 
| +        s &= 15;
 | 
| +
 | 
| +        if (s) {
 | 
| +          k += r;
 | 
| +          CHECK_BIT_BUFFER(br_state, s, return FALSE);
 | 
| +          DROP_BITS(s);
 | 
| +        } else {
 | 
| +          if (r != 15)
 | 
| +            break;
 | 
| +          k += 15;
 | 
| +        }
 | 
| +      }
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  /* Completed MCU, so update state */
 | 
| +  BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
 | 
| +  ASSIGN_STATE(entropy->saved, state);
 | 
| +  return TRUE;
 | 
| +}
 | 
| +
 | 
| +
 | 
| +/***************************************************************/
 | 
| +
 | 
| +#define ADD_BYTE  {                                     \
 | 
| +  int val0 = *(buffer++);                               \
 | 
| +  int val1 = *(buffer);                                 \
 | 
| +                                                        \
 | 
| +  bits_left += 8;                                       \
 | 
| +  get_buffer = (get_buffer << 8) | (val0);              \
 | 
| +  if (val0 == 0xFF) {                                   \
 | 
| +    buffer++;                                           \
 | 
| +    if (val1 != 0) {                                    \
 | 
| +      buffer   -= 2;                                    \
 | 
| +      get_buffer      &= ~0xFF;                         \
 | 
| +    }                                                   \
 | 
| +  }                                                     \
 | 
| +}
 | 
| +
 | 
| +/***************************************************************/
 | 
| +
 | 
| +#if __WORDSIZE == 64 || defined(_WIN64)
 | 
| +
 | 
| +#define ENSURE_SHORT \
 | 
| +  if (bits_left < 16) { \
 | 
| +    ADD_BYTE ADD_BYTE ADD_BYTE ADD_BYTE ADD_BYTE ADD_BYTE \
 | 
| +  }
 | 
| +
 | 
| +#else
 | 
| +
 | 
| +#define ENSURE_SHORT  if (bits_left < 16) { ADD_BYTE ADD_BYTE }
 | 
| +
 | 
| +#endif
 | 
| +
 | 
| +/***************************************************************/
 | 
| +
 | 
| +#define HUFF_DECODE_FAST(symbol, size, htbl) { \
 | 
| +  ENSURE_SHORT \
 | 
| +  symbol = PEEK_BITS(HUFF_LOOKAHEAD); \
 | 
| +  symbol = htbl->lookup[symbol]; \
 | 
| +  size = symbol >> 8; \
 | 
| +  bits_left -= size; \
 | 
| +  symbol = symbol & ((1 << HUFF_LOOKAHEAD) - 1); \
 | 
| +  if (size == HUFF_LOOKAHEAD + 1) { \
 | 
| +    symbol = (get_buffer >> bits_left) & ((1 << (size)) - 1); \
 | 
| +    while (symbol > htbl->maxcode[size]) { \
 | 
| +      symbol <<= 1; \
 | 
| +      symbol |= GET_BITS(1); \
 | 
| +      size++; \
 | 
| +    } \
 | 
| +    symbol = htbl->pub->huffval[ (int) (symbol + htbl->valoffset[size]) ]; \
 | 
| +  } \
 | 
| +}
 | 
| +
 | 
| +/***************************************************************/
 | 
| +
 | 
| +LOCAL(boolean)
 | 
| +decode_mcu_fast (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
 | 
| +{
 | 
| +  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 | 
| +  BITREAD_STATE_VARS;
 | 
| +  JOCTET *buffer;
 | 
| +  int blkn;
 | 
| +  savable_state state;
 | 
| +  /* Outer loop handles each block in the MCU */
 | 
| +
 | 
| +  /* Load up working state */
 | 
| +  BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
 | 
| +  buffer = (JOCTET *) br_state.next_input_byte;
 | 
| +  ASSIGN_STATE(state, entropy->saved);
 | 
| +
 | 
| +  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
 | 
| +    JBLOCKROW block = MCU_data[blkn];
 | 
| +    d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
 | 
| +    d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
 | 
| +    register int s, k, r, l;
 | 
| +
 | 
| +    HUFF_DECODE_FAST(s, l, dctbl);
 | 
| +    if (s) {
 | 
| +      ENSURE_SHORT
 | 
| +      r = GET_BITS(s);
 | 
| +      s = HUFF_EXTEND(r, s);
 | 
| +    }
 | 
| +
 | 
| +    if (entropy->dc_needed[blkn]) {
 | 
| +      int ci = cinfo->MCU_membership[blkn];
 | 
| +      s += state.last_dc_val[ci];
 | 
| +      state.last_dc_val[ci] = s;
 | 
| +      (*block)[0] = (JCOEF) s;
 | 
| +    }
 | 
| +
 | 
| +    if (entropy->ac_needed[blkn]) {
 | 
| +
 | 
| +      for (k = 1; k < DCTSIZE2; k++) {
 | 
| +        HUFF_DECODE_FAST(s, l, actbl);
 | 
| +        r = s >> 4;
 | 
| +        s &= 15;
 | 
| +      
 | 
| +        if (s) {
 | 
| +          k += r;
 | 
| +          ENSURE_SHORT
 | 
| +          r = GET_BITS(s);
 | 
| +          s = HUFF_EXTEND(r, s);
 | 
| +          (*block)[jpeg_natural_order[k]] = (JCOEF) s;
 | 
| +        } else {
 | 
| +          if (r != 15) break;
 | 
| +          k += 15;
 | 
| +        }
 | 
| +      }
 | 
| +
 | 
| +    } else {
 | 
| +
 | 
| +      for (k = 1; k < DCTSIZE2; k++) {
 | 
| +        HUFF_DECODE_FAST(s, l, actbl);
 | 
| +        r = s >> 4;
 | 
| +        s &= 15;
 | 
| +
 | 
| +        if (s) {
 | 
| +          k += r;
 | 
| +          ENSURE_SHORT
 | 
| +          DROP_BITS(s);
 | 
| +        } else {
 | 
| +          if (r != 15) break;
 | 
| +          k += 15;
 | 
| +        }
 | 
| +      }
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
 | 
| +  br_state.next_input_byte = buffer;
 | 
| +  BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
 | 
| +  ASSIGN_STATE(entropy->saved, state);
 | 
| +  return TRUE;
 | 
| +}
 | 
| +
 | 
| +
 | 
| +/*
 | 
| + * Decode and return one MCU's worth of Huffman-compressed coefficients.
 | 
| + * The coefficients are reordered from zigzag order into natural array order,
 | 
| + * but are not dequantized.
 | 
| + *
 | 
| + * The i'th block of the MCU is stored into the block pointed to by
 | 
| + * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
 | 
| + * (Wholesale zeroing is usually a little faster than retail...)
 | 
| + *
 | 
| + * Returns FALSE if data source requested suspension.  In that case no
 | 
| + * changes have been made to permanent state.  (Exception: some output
 | 
| + * coefficients may already have been assigned.  This is harmless for
 | 
| + * this module, since we'll just re-assign them on the next call.)
 | 
| + */
 | 
| +
 | 
| +#define BUFSIZE (DCTSIZE2 * 2)
 | 
| +
 | 
| +METHODDEF(boolean)
 | 
| +decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
 | 
| +{
 | 
| +  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 | 
| +  int usefast = 1;
 | 
| +
 | 
| +  /* Process restart marker if needed; may have to suspend */
 | 
| +  if (cinfo->restart_interval) {
 | 
| +    if (entropy->restarts_to_go == 0)
 | 
| +      if (! process_restart(cinfo))
 | 
| +	return FALSE;
 | 
| +    usefast = 0;
 | 
| +  }
 | 
| +
 | 
| +  if (cinfo->src->bytes_in_buffer < BUFSIZE * cinfo->blocks_in_MCU)
 | 
| +    usefast = 0;
 | 
| +
 | 
| +  /* If we've run out of data, just leave the MCU set to zeroes.
 | 
| +   * This way, we return uniform gray for the remainder of the segment.
 | 
| +   */
 | 
| +  if (! entropy->pub.insufficient_data) {
 | 
| +
 | 
| +    if (usefast) {
 | 
| +      if (!decode_mcu_fast(cinfo, MCU_data)) return FALSE;
 | 
| +    }
 | 
| +    else {
 | 
| +      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
 | 
| +    }
 | 
| +
 | 
| +  }
 | 
| +
 | 
| +  /* Account for restart interval (no-op if not using restarts) */
 | 
| +  entropy->restarts_to_go--;
 | 
| +
 | 
| +  return TRUE;
 | 
| +}
 | 
| +
 | 
| +
 | 
| +/*
 | 
| + * Module initialization routine for Huffman entropy decoding.
 | 
| + */
 | 
| +
 | 
| +GLOBAL(void)
 | 
| +jinit_huff_decoder (j_decompress_ptr cinfo)
 | 
| +{
 | 
| +  huff_entropy_ptr entropy;
 | 
| +  int i;
 | 
| +
 | 
| +  entropy = (huff_entropy_ptr)
 | 
| +    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 | 
| +				SIZEOF(huff_entropy_decoder));
 | 
| +  cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
 | 
| +  entropy->pub.start_pass = start_pass_huff_decoder;
 | 
| +  entropy->pub.decode_mcu = decode_mcu;
 | 
| +
 | 
| +  /* Mark tables unallocated */
 | 
| +  for (i = 0; i < NUM_HUFF_TBLS; i++) {
 | 
| +    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
 | 
| +  }
 | 
| +}
 | 
| 
 |