OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * transupp.c |
| 3 * |
| 4 * Copyright (C) 1997, Thomas G. Lane. |
| 5 * This file is part of the Independent JPEG Group's software. |
| 6 * For conditions of distribution and use, see the accompanying README file. |
| 7 * |
| 8 * This file contains image transformation routines and other utility code |
| 9 * used by the jpegtran sample application. These are NOT part of the core |
| 10 * JPEG library. But we keep these routines separate from jpegtran.c to |
| 11 * ease the task of maintaining jpegtran-like programs that have other user |
| 12 * interfaces. |
| 13 */ |
| 14 |
| 15 /* Although this file really shouldn't have access to the library internals, |
| 16 * it's helpful to let it call jround_up() and jcopy_block_row(). |
| 17 */ |
| 18 #define JPEG_INTERNALS |
| 19 |
| 20 #include "jinclude.h" |
| 21 #include "jpeglib.h" |
| 22 #include "transupp.h" /* My own external interface */ |
| 23 |
| 24 |
| 25 #if TRANSFORMS_SUPPORTED |
| 26 |
| 27 /* |
| 28 * Lossless image transformation routines. These routines work on DCT |
| 29 * coefficient arrays and thus do not require any lossy decompression |
| 30 * or recompression of the image. |
| 31 * Thanks to Guido Vollbeding for the initial design and code of this feature. |
| 32 * |
| 33 * Horizontal flipping is done in-place, using a single top-to-bottom |
| 34 * pass through the virtual source array. It will thus be much the |
| 35 * fastest option for images larger than main memory. |
| 36 * |
| 37 * The other routines require a set of destination virtual arrays, so they |
| 38 * need twice as much memory as jpegtran normally does. The destination |
| 39 * arrays are always written in normal scan order (top to bottom) because |
| 40 * the virtual array manager expects this. The source arrays will be scanned |
| 41 * in the corresponding order, which means multiple passes through the source |
| 42 * arrays for most of the transforms. That could result in much thrashing |
| 43 * if the image is larger than main memory. |
| 44 * |
| 45 * Some notes about the operating environment of the individual transform |
| 46 * routines: |
| 47 * 1. Both the source and destination virtual arrays are allocated from the |
| 48 * source JPEG object, and therefore should be manipulated by calling the |
| 49 * source's memory manager. |
| 50 * 2. The destination's component count should be used. It may be smaller |
| 51 * than the source's when forcing to grayscale. |
| 52 * 3. Likewise the destination's sampling factors should be used. When |
| 53 * forcing to grayscale the destination's sampling factors will be all 1, |
| 54 * and we may as well take that as the effective iMCU size. |
| 55 * 4. When "trim" is in effect, the destination's dimensions will be the |
| 56 * trimmed values but the source's will be untrimmed. |
| 57 * 5. All the routines assume that the source and destination buffers are |
| 58 * padded out to a full iMCU boundary. This is true, although for the |
| 59 * source buffer it is an undocumented property of jdcoefct.c. |
| 60 * Notes 2,3,4 boil down to this: generally we should use the destination's |
| 61 * dimensions and ignore the source's. |
| 62 */ |
| 63 |
| 64 |
| 65 LOCAL(void) |
| 66 do_flip_h (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 67 jvirt_barray_ptr *src_coef_arrays) |
| 68 /* Horizontal flip; done in-place, so no separate dest array is required */ |
| 69 { |
| 70 JDIMENSION MCU_cols, comp_width, blk_x, blk_y; |
| 71 int ci, k, offset_y; |
| 72 JBLOCKARRAY buffer; |
| 73 JCOEFPTR ptr1, ptr2; |
| 74 JCOEF temp1, temp2; |
| 75 jpeg_component_info *compptr; |
| 76 |
| 77 /* Horizontal mirroring of DCT blocks is accomplished by swapping |
| 78 * pairs of blocks in-place. Within a DCT block, we perform horizontal |
| 79 * mirroring by changing the signs of odd-numbered columns. |
| 80 * Partial iMCUs at the right edge are left untouched. |
| 81 */ |
| 82 MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE); |
| 83 |
| 84 for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 85 compptr = dstinfo->comp_info + ci; |
| 86 comp_width = MCU_cols * compptr->h_samp_factor; |
| 87 for (blk_y = 0; blk_y < compptr->height_in_blocks; |
| 88 blk_y += compptr->v_samp_factor) { |
| 89 buffer = (*srcinfo->mem->access_virt_barray) |
| 90 ((j_common_ptr) srcinfo, src_coef_arrays[ci], blk_y, |
| 91 (JDIMENSION) compptr->v_samp_factor, TRUE); |
| 92 for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 93 for (blk_x = 0; blk_x * 2 < comp_width; blk_x++) { |
| 94 ptr1 = buffer[offset_y][blk_x]; |
| 95 ptr2 = buffer[offset_y][comp_width - blk_x - 1]; |
| 96 /* this unrolled loop doesn't need to know which row it's on... */ |
| 97 for (k = 0; k < DCTSIZE2; k += 2) { |
| 98 temp1 = *ptr1; /* swap even column */ |
| 99 temp2 = *ptr2; |
| 100 *ptr1++ = temp2; |
| 101 *ptr2++ = temp1; |
| 102 temp1 = *ptr1; /* swap odd column with sign change */ |
| 103 temp2 = *ptr2; |
| 104 *ptr1++ = -temp2; |
| 105 *ptr2++ = -temp1; |
| 106 } |
| 107 } |
| 108 } |
| 109 } |
| 110 } |
| 111 } |
| 112 |
| 113 |
| 114 LOCAL(void) |
| 115 do_flip_v (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 116 jvirt_barray_ptr *src_coef_arrays, |
| 117 jvirt_barray_ptr *dst_coef_arrays) |
| 118 /* Vertical flip */ |
| 119 { |
| 120 JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y; |
| 121 int ci, i, j, offset_y; |
| 122 JBLOCKARRAY src_buffer, dst_buffer; |
| 123 JBLOCKROW src_row_ptr, dst_row_ptr; |
| 124 JCOEFPTR src_ptr, dst_ptr; |
| 125 jpeg_component_info *compptr; |
| 126 |
| 127 /* We output into a separate array because we can't touch different |
| 128 * rows of the source virtual array simultaneously. Otherwise, this |
| 129 * is a pretty straightforward analog of horizontal flip. |
| 130 * Within a DCT block, vertical mirroring is done by changing the signs |
| 131 * of odd-numbered rows. |
| 132 * Partial iMCUs at the bottom edge are copied verbatim. |
| 133 */ |
| 134 MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE); |
| 135 |
| 136 for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 137 compptr = dstinfo->comp_info + ci; |
| 138 comp_height = MCU_rows * compptr->v_samp_factor; |
| 139 for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| 140 dst_blk_y += compptr->v_samp_factor) { |
| 141 dst_buffer = (*srcinfo->mem->access_virt_barray) |
| 142 ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| 143 (JDIMENSION) compptr->v_samp_factor, TRUE); |
| 144 if (dst_blk_y < comp_height) { |
| 145 /* Row is within the mirrorable area. */ |
| 146 src_buffer = (*srcinfo->mem->access_virt_barray) |
| 147 ((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| 148 comp_height - dst_blk_y - (JDIMENSION) compptr->v_samp_factor, |
| 149 (JDIMENSION) compptr->v_samp_factor, FALSE); |
| 150 } else { |
| 151 /* Bottom-edge blocks will be copied verbatim. */ |
| 152 src_buffer = (*srcinfo->mem->access_virt_barray) |
| 153 ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_y, |
| 154 (JDIMENSION) compptr->v_samp_factor, FALSE); |
| 155 } |
| 156 for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 157 if (dst_blk_y < comp_height) { |
| 158 /* Row is within the mirrorable area. */ |
| 159 dst_row_ptr = dst_buffer[offset_y]; |
| 160 src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1]; |
| 161 for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; |
| 162 dst_blk_x++) { |
| 163 dst_ptr = dst_row_ptr[dst_blk_x]; |
| 164 src_ptr = src_row_ptr[dst_blk_x]; |
| 165 for (i = 0; i < DCTSIZE; i += 2) { |
| 166 /* copy even row */ |
| 167 for (j = 0; j < DCTSIZE; j++) |
| 168 *dst_ptr++ = *src_ptr++; |
| 169 /* copy odd row with sign change */ |
| 170 for (j = 0; j < DCTSIZE; j++) |
| 171 *dst_ptr++ = - *src_ptr++; |
| 172 } |
| 173 } |
| 174 } else { |
| 175 /* Just copy row verbatim. */ |
| 176 jcopy_block_row(src_buffer[offset_y], dst_buffer[offset_y], |
| 177 compptr->width_in_blocks); |
| 178 } |
| 179 } |
| 180 } |
| 181 } |
| 182 } |
| 183 |
| 184 |
| 185 LOCAL(void) |
| 186 do_transpose (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 187 jvirt_barray_ptr *src_coef_arrays, |
| 188 jvirt_barray_ptr *dst_coef_arrays) |
| 189 /* Transpose source into destination */ |
| 190 { |
| 191 JDIMENSION dst_blk_x, dst_blk_y; |
| 192 int ci, i, j, offset_x, offset_y; |
| 193 JBLOCKARRAY src_buffer, dst_buffer; |
| 194 JCOEFPTR src_ptr, dst_ptr; |
| 195 jpeg_component_info *compptr; |
| 196 |
| 197 /* Transposing pixels within a block just requires transposing the |
| 198 * DCT coefficients. |
| 199 * Partial iMCUs at the edges require no special treatment; we simply |
| 200 * process all the available DCT blocks for every component. |
| 201 */ |
| 202 for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 203 compptr = dstinfo->comp_info + ci; |
| 204 for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| 205 dst_blk_y += compptr->v_samp_factor) { |
| 206 dst_buffer = (*srcinfo->mem->access_virt_barray) |
| 207 ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| 208 (JDIMENSION) compptr->v_samp_factor, TRUE); |
| 209 for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 210 for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; |
| 211 dst_blk_x += compptr->h_samp_factor) { |
| 212 src_buffer = (*srcinfo->mem->access_virt_barray) |
| 213 ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x, |
| 214 (JDIMENSION) compptr->h_samp_factor, FALSE); |
| 215 for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { |
| 216 src_ptr = src_buffer[offset_x][dst_blk_y + offset_y]; |
| 217 dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; |
| 218 for (i = 0; i < DCTSIZE; i++) |
| 219 for (j = 0; j < DCTSIZE; j++) |
| 220 dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 221 } |
| 222 } |
| 223 } |
| 224 } |
| 225 } |
| 226 } |
| 227 |
| 228 |
| 229 LOCAL(void) |
| 230 do_rot_90 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 231 jvirt_barray_ptr *src_coef_arrays, |
| 232 jvirt_barray_ptr *dst_coef_arrays) |
| 233 /* 90 degree rotation is equivalent to |
| 234 * 1. Transposing the image; |
| 235 * 2. Horizontal mirroring. |
| 236 * These two steps are merged into a single processing routine. |
| 237 */ |
| 238 { |
| 239 JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y; |
| 240 int ci, i, j, offset_x, offset_y; |
| 241 JBLOCKARRAY src_buffer, dst_buffer; |
| 242 JCOEFPTR src_ptr, dst_ptr; |
| 243 jpeg_component_info *compptr; |
| 244 |
| 245 /* Because of the horizontal mirror step, we can't process partial iMCUs |
| 246 * at the (output) right edge properly. They just get transposed and |
| 247 * not mirrored. |
| 248 */ |
| 249 MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE); |
| 250 |
| 251 for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 252 compptr = dstinfo->comp_info + ci; |
| 253 comp_width = MCU_cols * compptr->h_samp_factor; |
| 254 for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| 255 dst_blk_y += compptr->v_samp_factor) { |
| 256 dst_buffer = (*srcinfo->mem->access_virt_barray) |
| 257 ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| 258 (JDIMENSION) compptr->v_samp_factor, TRUE); |
| 259 for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 260 for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; |
| 261 dst_blk_x += compptr->h_samp_factor) { |
| 262 src_buffer = (*srcinfo->mem->access_virt_barray) |
| 263 ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x, |
| 264 (JDIMENSION) compptr->h_samp_factor, FALSE); |
| 265 for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { |
| 266 src_ptr = src_buffer[offset_x][dst_blk_y + offset_y]; |
| 267 if (dst_blk_x < comp_width) { |
| 268 /* Block is within the mirrorable area. */ |
| 269 dst_ptr = dst_buffer[offset_y] |
| 270 [comp_width - dst_blk_x - offset_x - 1]; |
| 271 for (i = 0; i < DCTSIZE; i++) { |
| 272 for (j = 0; j < DCTSIZE; j++) |
| 273 dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 274 i++; |
| 275 for (j = 0; j < DCTSIZE; j++) |
| 276 dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
| 277 } |
| 278 } else { |
| 279 /* Edge blocks are transposed but not mirrored. */ |
| 280 dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; |
| 281 for (i = 0; i < DCTSIZE; i++) |
| 282 for (j = 0; j < DCTSIZE; j++) |
| 283 dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 284 } |
| 285 } |
| 286 } |
| 287 } |
| 288 } |
| 289 } |
| 290 } |
| 291 |
| 292 |
| 293 LOCAL(void) |
| 294 do_rot_270 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 295 jvirt_barray_ptr *src_coef_arrays, |
| 296 jvirt_barray_ptr *dst_coef_arrays) |
| 297 /* 270 degree rotation is equivalent to |
| 298 * 1. Horizontal mirroring; |
| 299 * 2. Transposing the image. |
| 300 * These two steps are merged into a single processing routine. |
| 301 */ |
| 302 { |
| 303 JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y; |
| 304 int ci, i, j, offset_x, offset_y; |
| 305 JBLOCKARRAY src_buffer, dst_buffer; |
| 306 JCOEFPTR src_ptr, dst_ptr; |
| 307 jpeg_component_info *compptr; |
| 308 |
| 309 /* Because of the horizontal mirror step, we can't process partial iMCUs |
| 310 * at the (output) bottom edge properly. They just get transposed and |
| 311 * not mirrored. |
| 312 */ |
| 313 MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE); |
| 314 |
| 315 for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 316 compptr = dstinfo->comp_info + ci; |
| 317 comp_height = MCU_rows * compptr->v_samp_factor; |
| 318 for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| 319 dst_blk_y += compptr->v_samp_factor) { |
| 320 dst_buffer = (*srcinfo->mem->access_virt_barray) |
| 321 ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| 322 (JDIMENSION) compptr->v_samp_factor, TRUE); |
| 323 for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 324 for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; |
| 325 dst_blk_x += compptr->h_samp_factor) { |
| 326 src_buffer = (*srcinfo->mem->access_virt_barray) |
| 327 ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x, |
| 328 (JDIMENSION) compptr->h_samp_factor, FALSE); |
| 329 for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { |
| 330 dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; |
| 331 if (dst_blk_y < comp_height) { |
| 332 /* Block is within the mirrorable area. */ |
| 333 src_ptr = src_buffer[offset_x] |
| 334 [comp_height - dst_blk_y - offset_y - 1]; |
| 335 for (i = 0; i < DCTSIZE; i++) { |
| 336 for (j = 0; j < DCTSIZE; j++) { |
| 337 dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 338 j++; |
| 339 dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
| 340 } |
| 341 } |
| 342 } else { |
| 343 /* Edge blocks are transposed but not mirrored. */ |
| 344 src_ptr = src_buffer[offset_x][dst_blk_y + offset_y]; |
| 345 for (i = 0; i < DCTSIZE; i++) |
| 346 for (j = 0; j < DCTSIZE; j++) |
| 347 dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 348 } |
| 349 } |
| 350 } |
| 351 } |
| 352 } |
| 353 } |
| 354 } |
| 355 |
| 356 |
| 357 LOCAL(void) |
| 358 do_rot_180 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 359 jvirt_barray_ptr *src_coef_arrays, |
| 360 jvirt_barray_ptr *dst_coef_arrays) |
| 361 /* 180 degree rotation is equivalent to |
| 362 * 1. Vertical mirroring; |
| 363 * 2. Horizontal mirroring. |
| 364 * These two steps are merged into a single processing routine. |
| 365 */ |
| 366 { |
| 367 JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y; |
| 368 int ci, i, j, offset_y; |
| 369 JBLOCKARRAY src_buffer, dst_buffer; |
| 370 JBLOCKROW src_row_ptr, dst_row_ptr; |
| 371 JCOEFPTR src_ptr, dst_ptr; |
| 372 jpeg_component_info *compptr; |
| 373 |
| 374 MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE); |
| 375 MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE); |
| 376 |
| 377 for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 378 compptr = dstinfo->comp_info + ci; |
| 379 comp_width = MCU_cols * compptr->h_samp_factor; |
| 380 comp_height = MCU_rows * compptr->v_samp_factor; |
| 381 for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| 382 dst_blk_y += compptr->v_samp_factor) { |
| 383 dst_buffer = (*srcinfo->mem->access_virt_barray) |
| 384 ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| 385 (JDIMENSION) compptr->v_samp_factor, TRUE); |
| 386 if (dst_blk_y < comp_height) { |
| 387 /* Row is within the vertically mirrorable area. */ |
| 388 src_buffer = (*srcinfo->mem->access_virt_barray) |
| 389 ((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| 390 comp_height - dst_blk_y - (JDIMENSION) compptr->v_samp_factor, |
| 391 (JDIMENSION) compptr->v_samp_factor, FALSE); |
| 392 } else { |
| 393 /* Bottom-edge rows are only mirrored horizontally. */ |
| 394 src_buffer = (*srcinfo->mem->access_virt_barray) |
| 395 ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_y, |
| 396 (JDIMENSION) compptr->v_samp_factor, FALSE); |
| 397 } |
| 398 for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 399 if (dst_blk_y < comp_height) { |
| 400 /* Row is within the mirrorable area. */ |
| 401 dst_row_ptr = dst_buffer[offset_y]; |
| 402 src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1]; |
| 403 /* Process the blocks that can be mirrored both ways. */ |
| 404 for (dst_blk_x = 0; dst_blk_x < comp_width; dst_blk_x++) { |
| 405 dst_ptr = dst_row_ptr[dst_blk_x]; |
| 406 src_ptr = src_row_ptr[comp_width - dst_blk_x - 1]; |
| 407 for (i = 0; i < DCTSIZE; i += 2) { |
| 408 /* For even row, negate every odd column. */ |
| 409 for (j = 0; j < DCTSIZE; j += 2) { |
| 410 *dst_ptr++ = *src_ptr++; |
| 411 *dst_ptr++ = - *src_ptr++; |
| 412 } |
| 413 /* For odd row, negate every even column. */ |
| 414 for (j = 0; j < DCTSIZE; j += 2) { |
| 415 *dst_ptr++ = - *src_ptr++; |
| 416 *dst_ptr++ = *src_ptr++; |
| 417 } |
| 418 } |
| 419 } |
| 420 /* Any remaining right-edge blocks are only mirrored vertically. */ |
| 421 for (; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { |
| 422 dst_ptr = dst_row_ptr[dst_blk_x]; |
| 423 src_ptr = src_row_ptr[dst_blk_x]; |
| 424 for (i = 0; i < DCTSIZE; i += 2) { |
| 425 for (j = 0; j < DCTSIZE; j++) |
| 426 *dst_ptr++ = *src_ptr++; |
| 427 for (j = 0; j < DCTSIZE; j++) |
| 428 *dst_ptr++ = - *src_ptr++; |
| 429 } |
| 430 } |
| 431 } else { |
| 432 /* Remaining rows are just mirrored horizontally. */ |
| 433 dst_row_ptr = dst_buffer[offset_y]; |
| 434 src_row_ptr = src_buffer[offset_y]; |
| 435 /* Process the blocks that can be mirrored. */ |
| 436 for (dst_blk_x = 0; dst_blk_x < comp_width; dst_blk_x++) { |
| 437 dst_ptr = dst_row_ptr[dst_blk_x]; |
| 438 src_ptr = src_row_ptr[comp_width - dst_blk_x - 1]; |
| 439 for (i = 0; i < DCTSIZE2; i += 2) { |
| 440 *dst_ptr++ = *src_ptr++; |
| 441 *dst_ptr++ = - *src_ptr++; |
| 442 } |
| 443 } |
| 444 /* Any remaining right-edge blocks are only copied. */ |
| 445 for (; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { |
| 446 dst_ptr = dst_row_ptr[dst_blk_x]; |
| 447 src_ptr = src_row_ptr[dst_blk_x]; |
| 448 for (i = 0; i < DCTSIZE2; i++) |
| 449 *dst_ptr++ = *src_ptr++; |
| 450 } |
| 451 } |
| 452 } |
| 453 } |
| 454 } |
| 455 } |
| 456 |
| 457 |
| 458 LOCAL(void) |
| 459 do_transverse (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 460 jvirt_barray_ptr *src_coef_arrays, |
| 461 jvirt_barray_ptr *dst_coef_arrays) |
| 462 /* Transverse transpose is equivalent to |
| 463 * 1. 180 degree rotation; |
| 464 * 2. Transposition; |
| 465 * or |
| 466 * 1. Horizontal mirroring; |
| 467 * 2. Transposition; |
| 468 * 3. Horizontal mirroring. |
| 469 * These steps are merged into a single processing routine. |
| 470 */ |
| 471 { |
| 472 JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y; |
| 473 int ci, i, j, offset_x, offset_y; |
| 474 JBLOCKARRAY src_buffer, dst_buffer; |
| 475 JCOEFPTR src_ptr, dst_ptr; |
| 476 jpeg_component_info *compptr; |
| 477 |
| 478 MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE); |
| 479 MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE); |
| 480 |
| 481 for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 482 compptr = dstinfo->comp_info + ci; |
| 483 comp_width = MCU_cols * compptr->h_samp_factor; |
| 484 comp_height = MCU_rows * compptr->v_samp_factor; |
| 485 for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| 486 dst_blk_y += compptr->v_samp_factor) { |
| 487 dst_buffer = (*srcinfo->mem->access_virt_barray) |
| 488 ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| 489 (JDIMENSION) compptr->v_samp_factor, TRUE); |
| 490 for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 491 for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; |
| 492 dst_blk_x += compptr->h_samp_factor) { |
| 493 src_buffer = (*srcinfo->mem->access_virt_barray) |
| 494 ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x, |
| 495 (JDIMENSION) compptr->h_samp_factor, FALSE); |
| 496 for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { |
| 497 if (dst_blk_y < comp_height) { |
| 498 src_ptr = src_buffer[offset_x] |
| 499 [comp_height - dst_blk_y - offset_y - 1]; |
| 500 if (dst_blk_x < comp_width) { |
| 501 /* Block is within the mirrorable area. */ |
| 502 dst_ptr = dst_buffer[offset_y] |
| 503 [comp_width - dst_blk_x - offset_x - 1]; |
| 504 for (i = 0; i < DCTSIZE; i++) { |
| 505 for (j = 0; j < DCTSIZE; j++) { |
| 506 dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 507 j++; |
| 508 dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
| 509 } |
| 510 i++; |
| 511 for (j = 0; j < DCTSIZE; j++) { |
| 512 dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
| 513 j++; |
| 514 dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 515 } |
| 516 } |
| 517 } else { |
| 518 /* Right-edge blocks are mirrored in y only */ |
| 519 dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; |
| 520 for (i = 0; i < DCTSIZE; i++) { |
| 521 for (j = 0; j < DCTSIZE; j++) { |
| 522 dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 523 j++; |
| 524 dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
| 525 } |
| 526 } |
| 527 } |
| 528 } else { |
| 529 src_ptr = src_buffer[offset_x][dst_blk_y + offset_y]; |
| 530 if (dst_blk_x < comp_width) { |
| 531 /* Bottom-edge blocks are mirrored in x only */ |
| 532 dst_ptr = dst_buffer[offset_y] |
| 533 [comp_width - dst_blk_x - offset_x - 1]; |
| 534 for (i = 0; i < DCTSIZE; i++) { |
| 535 for (j = 0; j < DCTSIZE; j++) |
| 536 dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 537 i++; |
| 538 for (j = 0; j < DCTSIZE; j++) |
| 539 dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
| 540 } |
| 541 } else { |
| 542 /* At lower right corner, just transpose, no mirroring */ |
| 543 dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; |
| 544 for (i = 0; i < DCTSIZE; i++) |
| 545 for (j = 0; j < DCTSIZE; j++) |
| 546 dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 547 } |
| 548 } |
| 549 } |
| 550 } |
| 551 } |
| 552 } |
| 553 } |
| 554 } |
| 555 |
| 556 |
| 557 /* Request any required workspace. |
| 558 * |
| 559 * We allocate the workspace virtual arrays from the source decompression |
| 560 * object, so that all the arrays (both the original data and the workspace) |
| 561 * will be taken into account while making memory management decisions. |
| 562 * Hence, this routine must be called after jpeg_read_header (which reads |
| 563 * the image dimensions) and before jpeg_read_coefficients (which realizes |
| 564 * the source's virtual arrays). |
| 565 */ |
| 566 |
| 567 GLOBAL(void) |
| 568 jtransform_request_workspace (j_decompress_ptr srcinfo, |
| 569 jpeg_transform_info *info) |
| 570 { |
| 571 jvirt_barray_ptr *coef_arrays = NULL; |
| 572 jpeg_component_info *compptr; |
| 573 int ci; |
| 574 |
| 575 if (info->force_grayscale && |
| 576 srcinfo->jpeg_color_space == JCS_YCbCr && |
| 577 srcinfo->num_components == 3) { |
| 578 /* We'll only process the first component */ |
| 579 info->num_components = 1; |
| 580 } else { |
| 581 /* Process all the components */ |
| 582 info->num_components = srcinfo->num_components; |
| 583 } |
| 584 |
| 585 switch (info->transform) { |
| 586 case JXFORM_NONE: |
| 587 case JXFORM_FLIP_H: |
| 588 /* Don't need a workspace array */ |
| 589 break; |
| 590 case JXFORM_FLIP_V: |
| 591 case JXFORM_ROT_180: |
| 592 /* Need workspace arrays having same dimensions as source image. |
| 593 * Note that we allocate arrays padded out to the next iMCU boundary, |
| 594 * so that transform routines need not worry about missing edge blocks. |
| 595 */ |
| 596 coef_arrays = (jvirt_barray_ptr *) |
| 597 (*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE, |
| 598 SIZEOF(jvirt_barray_ptr) * info->num_components); |
| 599 for (ci = 0; ci < info->num_components; ci++) { |
| 600 compptr = srcinfo->comp_info + ci; |
| 601 coef_arrays[ci] = (*srcinfo->mem->request_virt_barray) |
| 602 ((j_common_ptr) srcinfo, JPOOL_IMAGE, FALSE, |
| 603 (JDIMENSION) jround_up((long) compptr->width_in_blocks, |
| 604 (long) compptr->h_samp_factor), |
| 605 (JDIMENSION) jround_up((long) compptr->height_in_blocks, |
| 606 (long) compptr->v_samp_factor), |
| 607 (JDIMENSION) compptr->v_samp_factor); |
| 608 } |
| 609 break; |
| 610 case JXFORM_TRANSPOSE: |
| 611 case JXFORM_TRANSVERSE: |
| 612 case JXFORM_ROT_90: |
| 613 case JXFORM_ROT_270: |
| 614 /* Need workspace arrays having transposed dimensions. |
| 615 * Note that we allocate arrays padded out to the next iMCU boundary, |
| 616 * so that transform routines need not worry about missing edge blocks. |
| 617 */ |
| 618 coef_arrays = (jvirt_barray_ptr *) |
| 619 (*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE, |
| 620 SIZEOF(jvirt_barray_ptr) * info->num_components); |
| 621 for (ci = 0; ci < info->num_components; ci++) { |
| 622 compptr = srcinfo->comp_info + ci; |
| 623 coef_arrays[ci] = (*srcinfo->mem->request_virt_barray) |
| 624 ((j_common_ptr) srcinfo, JPOOL_IMAGE, FALSE, |
| 625 (JDIMENSION) jround_up((long) compptr->height_in_blocks, |
| 626 (long) compptr->v_samp_factor), |
| 627 (JDIMENSION) jround_up((long) compptr->width_in_blocks, |
| 628 (long) compptr->h_samp_factor), |
| 629 (JDIMENSION) compptr->h_samp_factor); |
| 630 } |
| 631 break; |
| 632 } |
| 633 info->workspace_coef_arrays = coef_arrays; |
| 634 } |
| 635 |
| 636 |
| 637 /* Transpose destination image parameters */ |
| 638 |
| 639 LOCAL(void) |
| 640 transpose_critical_parameters (j_compress_ptr dstinfo) |
| 641 { |
| 642 int tblno, i, j, ci, itemp; |
| 643 jpeg_component_info *compptr; |
| 644 JQUANT_TBL *qtblptr; |
| 645 JDIMENSION dtemp; |
| 646 UINT16 qtemp; |
| 647 |
| 648 /* Transpose basic image dimensions */ |
| 649 dtemp = dstinfo->image_width; |
| 650 dstinfo->image_width = dstinfo->image_height; |
| 651 dstinfo->image_height = dtemp; |
| 652 |
| 653 /* Transpose sampling factors */ |
| 654 for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 655 compptr = dstinfo->comp_info + ci; |
| 656 itemp = compptr->h_samp_factor; |
| 657 compptr->h_samp_factor = compptr->v_samp_factor; |
| 658 compptr->v_samp_factor = itemp; |
| 659 } |
| 660 |
| 661 /* Transpose quantization tables */ |
| 662 for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) { |
| 663 qtblptr = dstinfo->quant_tbl_ptrs[tblno]; |
| 664 if (qtblptr != NULL) { |
| 665 for (i = 0; i < DCTSIZE; i++) { |
| 666 for (j = 0; j < i; j++) { |
| 667 qtemp = qtblptr->quantval[i*DCTSIZE+j]; |
| 668 qtblptr->quantval[i*DCTSIZE+j] = qtblptr->quantval[j*DCTSIZE+i]; |
| 669 qtblptr->quantval[j*DCTSIZE+i] = qtemp; |
| 670 } |
| 671 } |
| 672 } |
| 673 } |
| 674 } |
| 675 |
| 676 |
| 677 /* Trim off any partial iMCUs on the indicated destination edge */ |
| 678 |
| 679 LOCAL(void) |
| 680 trim_right_edge (j_compress_ptr dstinfo) |
| 681 { |
| 682 int ci, max_h_samp_factor; |
| 683 JDIMENSION MCU_cols; |
| 684 |
| 685 /* We have to compute max_h_samp_factor ourselves, |
| 686 * because it hasn't been set yet in the destination |
| 687 * (and we don't want to use the source's value). |
| 688 */ |
| 689 max_h_samp_factor = 1; |
| 690 for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 691 int h_samp_factor = dstinfo->comp_info[ci].h_samp_factor; |
| 692 max_h_samp_factor = MAX(max_h_samp_factor, h_samp_factor); |
| 693 } |
| 694 MCU_cols = dstinfo->image_width / (max_h_samp_factor * DCTSIZE); |
| 695 if (MCU_cols > 0) /* can't trim to 0 pixels */ |
| 696 dstinfo->image_width = MCU_cols * (max_h_samp_factor * DCTSIZE); |
| 697 } |
| 698 |
| 699 LOCAL(void) |
| 700 trim_bottom_edge (j_compress_ptr dstinfo) |
| 701 { |
| 702 int ci, max_v_samp_factor; |
| 703 JDIMENSION MCU_rows; |
| 704 |
| 705 /* We have to compute max_v_samp_factor ourselves, |
| 706 * because it hasn't been set yet in the destination |
| 707 * (and we don't want to use the source's value). |
| 708 */ |
| 709 max_v_samp_factor = 1; |
| 710 for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 711 int v_samp_factor = dstinfo->comp_info[ci].v_samp_factor; |
| 712 max_v_samp_factor = MAX(max_v_samp_factor, v_samp_factor); |
| 713 } |
| 714 MCU_rows = dstinfo->image_height / (max_v_samp_factor * DCTSIZE); |
| 715 if (MCU_rows > 0) /* can't trim to 0 pixels */ |
| 716 dstinfo->image_height = MCU_rows * (max_v_samp_factor * DCTSIZE); |
| 717 } |
| 718 |
| 719 |
| 720 /* Adjust output image parameters as needed. |
| 721 * |
| 722 * This must be called after jpeg_copy_critical_parameters() |
| 723 * and before jpeg_write_coefficients(). |
| 724 * |
| 725 * The return value is the set of virtual coefficient arrays to be written |
| 726 * (either the ones allocated by jtransform_request_workspace, or the |
| 727 * original source data arrays). The caller will need to pass this value |
| 728 * to jpeg_write_coefficients(). |
| 729 */ |
| 730 |
| 731 GLOBAL(jvirt_barray_ptr *) |
| 732 jtransform_adjust_parameters (j_decompress_ptr srcinfo, |
| 733 j_compress_ptr dstinfo, |
| 734 jvirt_barray_ptr *src_coef_arrays, |
| 735 jpeg_transform_info *info) |
| 736 { |
| 737 /* If force-to-grayscale is requested, adjust destination parameters */ |
| 738 if (info->force_grayscale) { |
| 739 /* We use jpeg_set_colorspace to make sure subsidiary settings get fixed |
| 740 * properly. Among other things, the target h_samp_factor & v_samp_factor |
| 741 * will get set to 1, which typically won't match the source. |
| 742 * In fact we do this even if the source is already grayscale; that |
| 743 * provides an easy way of coercing a grayscale JPEG with funny sampling |
| 744 * factors to the customary 1,1. (Some decoders fail on other factors.) |
| 745 */ |
| 746 if ((dstinfo->jpeg_color_space == JCS_YCbCr && |
| 747 dstinfo->num_components == 3) || |
| 748 (dstinfo->jpeg_color_space == JCS_GRAYSCALE && |
| 749 dstinfo->num_components == 1)) { |
| 750 /* We have to preserve the source's quantization table number. */ |
| 751 int sv_quant_tbl_no = dstinfo->comp_info[0].quant_tbl_no; |
| 752 jpeg_set_colorspace(dstinfo, JCS_GRAYSCALE); |
| 753 dstinfo->comp_info[0].quant_tbl_no = sv_quant_tbl_no; |
| 754 } else { |
| 755 /* Sorry, can't do it */ |
| 756 ERREXIT(dstinfo, JERR_CONVERSION_NOTIMPL); |
| 757 } |
| 758 } |
| 759 |
| 760 /* Correct the destination's image dimensions etc if necessary */ |
| 761 switch (info->transform) { |
| 762 case JXFORM_NONE: |
| 763 /* Nothing to do */ |
| 764 break; |
| 765 case JXFORM_FLIP_H: |
| 766 if (info->trim) |
| 767 trim_right_edge(dstinfo); |
| 768 break; |
| 769 case JXFORM_FLIP_V: |
| 770 if (info->trim) |
| 771 trim_bottom_edge(dstinfo); |
| 772 break; |
| 773 case JXFORM_TRANSPOSE: |
| 774 transpose_critical_parameters(dstinfo); |
| 775 /* transpose does NOT have to trim anything */ |
| 776 break; |
| 777 case JXFORM_TRANSVERSE: |
| 778 transpose_critical_parameters(dstinfo); |
| 779 if (info->trim) { |
| 780 trim_right_edge(dstinfo); |
| 781 trim_bottom_edge(dstinfo); |
| 782 } |
| 783 break; |
| 784 case JXFORM_ROT_90: |
| 785 transpose_critical_parameters(dstinfo); |
| 786 if (info->trim) |
| 787 trim_right_edge(dstinfo); |
| 788 break; |
| 789 case JXFORM_ROT_180: |
| 790 if (info->trim) { |
| 791 trim_right_edge(dstinfo); |
| 792 trim_bottom_edge(dstinfo); |
| 793 } |
| 794 break; |
| 795 case JXFORM_ROT_270: |
| 796 transpose_critical_parameters(dstinfo); |
| 797 if (info->trim) |
| 798 trim_bottom_edge(dstinfo); |
| 799 break; |
| 800 } |
| 801 |
| 802 /* Return the appropriate output data set */ |
| 803 if (info->workspace_coef_arrays != NULL) |
| 804 return info->workspace_coef_arrays; |
| 805 return src_coef_arrays; |
| 806 } |
| 807 |
| 808 |
| 809 /* Execute the actual transformation, if any. |
| 810 * |
| 811 * This must be called *after* jpeg_write_coefficients, because it depends |
| 812 * on jpeg_write_coefficients to have computed subsidiary values such as |
| 813 * the per-component width and height fields in the destination object. |
| 814 * |
| 815 * Note that some transformations will modify the source data arrays! |
| 816 */ |
| 817 |
| 818 GLOBAL(void) |
| 819 jtransform_execute_transformation (j_decompress_ptr srcinfo, |
| 820 j_compress_ptr dstinfo, |
| 821 jvirt_barray_ptr *src_coef_arrays, |
| 822 jpeg_transform_info *info) |
| 823 { |
| 824 jvirt_barray_ptr *dst_coef_arrays = info->workspace_coef_arrays; |
| 825 |
| 826 switch (info->transform) { |
| 827 case JXFORM_NONE: |
| 828 break; |
| 829 case JXFORM_FLIP_H: |
| 830 do_flip_h(srcinfo, dstinfo, src_coef_arrays); |
| 831 break; |
| 832 case JXFORM_FLIP_V: |
| 833 do_flip_v(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays); |
| 834 break; |
| 835 case JXFORM_TRANSPOSE: |
| 836 do_transpose(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays); |
| 837 break; |
| 838 case JXFORM_TRANSVERSE: |
| 839 do_transverse(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays); |
| 840 break; |
| 841 case JXFORM_ROT_90: |
| 842 do_rot_90(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays); |
| 843 break; |
| 844 case JXFORM_ROT_180: |
| 845 do_rot_180(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays); |
| 846 break; |
| 847 case JXFORM_ROT_270: |
| 848 do_rot_270(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays); |
| 849 break; |
| 850 } |
| 851 } |
| 852 |
| 853 #endif /* TRANSFORMS_SUPPORTED */ |
| 854 |
| 855 |
| 856 /* Setup decompression object to save desired markers in memory. |
| 857 * This must be called before jpeg_read_header() to have the desired effect. |
| 858 */ |
| 859 |
| 860 GLOBAL(void) |
| 861 jcopy_markers_setup (j_decompress_ptr srcinfo, JCOPY_OPTION option) |
| 862 { |
| 863 #ifdef SAVE_MARKERS_SUPPORTED |
| 864 int m; |
| 865 |
| 866 /* Save comments except under NONE option */ |
| 867 if (option != JCOPYOPT_NONE) { |
| 868 jpeg_save_markers(srcinfo, JPEG_COM, 0xFFFF); |
| 869 } |
| 870 /* Save all types of APPn markers iff ALL option */ |
| 871 if (option == JCOPYOPT_ALL) { |
| 872 for (m = 0; m < 16; m++) |
| 873 jpeg_save_markers(srcinfo, JPEG_APP0 + m, 0xFFFF); |
| 874 } |
| 875 #endif /* SAVE_MARKERS_SUPPORTED */ |
| 876 } |
| 877 |
| 878 /* Copy markers saved in the given source object to the destination object. |
| 879 * This should be called just after jpeg_start_compress() or |
| 880 * jpeg_write_coefficients(). |
| 881 * Note that those routines will have written the SOI, and also the |
| 882 * JFIF APP0 or Adobe APP14 markers if selected. |
| 883 */ |
| 884 |
| 885 GLOBAL(void) |
| 886 jcopy_markers_execute (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 887 JCOPY_OPTION option) |
| 888 { |
| 889 jpeg_saved_marker_ptr marker; |
| 890 |
| 891 /* In the current implementation, we don't actually need to examine the |
| 892 * option flag here; we just copy everything that got saved. |
| 893 * But to avoid confusion, we do not output JFIF and Adobe APP14 markers |
| 894 * if the encoder library already wrote one. |
| 895 */ |
| 896 for (marker = srcinfo->marker_list; marker != NULL; marker = marker->next) { |
| 897 if (dstinfo->write_JFIF_header && |
| 898 marker->marker == JPEG_APP0 && |
| 899 marker->data_length >= 5 && |
| 900 GETJOCTET(marker->data[0]) == 0x4A && |
| 901 GETJOCTET(marker->data[1]) == 0x46 && |
| 902 GETJOCTET(marker->data[2]) == 0x49 && |
| 903 GETJOCTET(marker->data[3]) == 0x46 && |
| 904 GETJOCTET(marker->data[4]) == 0) |
| 905 continue; /* reject duplicate JFIF */ |
| 906 if (dstinfo->write_Adobe_marker && |
| 907 marker->marker == JPEG_APP0+14 && |
| 908 marker->data_length >= 5 && |
| 909 GETJOCTET(marker->data[0]) == 0x41 && |
| 910 GETJOCTET(marker->data[1]) == 0x64 && |
| 911 GETJOCTET(marker->data[2]) == 0x6F && |
| 912 GETJOCTET(marker->data[3]) == 0x62 && |
| 913 GETJOCTET(marker->data[4]) == 0x65) |
| 914 continue; /* reject duplicate Adobe */ |
| 915 #ifdef NEED_FAR_POINTERS |
| 916 /* We could use jpeg_write_marker if the data weren't FAR... */ |
| 917 { |
| 918 unsigned int i; |
| 919 jpeg_write_m_header(dstinfo, marker->marker, marker->data_length); |
| 920 for (i = 0; i < marker->data_length; i++) |
| 921 jpeg_write_m_byte(dstinfo, marker->data[i]); |
| 922 } |
| 923 #else |
| 924 jpeg_write_marker(dstinfo, marker->marker, |
| 925 marker->data, marker->data_length); |
| 926 #endif |
| 927 } |
| 928 } |
OLD | NEW |