OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * jdhuff.c |
| 3 * |
| 4 * Copyright (C) 1991-1997, Thomas G. Lane. |
| 5 * This file is part of the Independent JPEG Group's software. |
| 6 * For conditions of distribution and use, see the accompanying README file. |
| 7 * |
| 8 * This file contains Huffman entropy decoding routines. |
| 9 * |
| 10 * Much of the complexity here has to do with supporting input suspension. |
| 11 * If the data source module demands suspension, we want to be able to back |
| 12 * up to the start of the current MCU. To do this, we copy state variables |
| 13 * into local working storage, and update them back to the permanent |
| 14 * storage only upon successful completion of an MCU. |
| 15 */ |
| 16 |
| 17 /* Modifications: |
| 18 * Copyright (C)2007 Sun Microsystems, Inc. |
| 19 * Copyright (C)2009-2010 D. R. Commander |
| 20 * |
| 21 * This library is free software and may be redistributed and/or modified under |
| 22 * the terms of the wxWindows Library License, Version 3.1 or (at your option) |
| 23 * any later version. The full license is in the LICENSE.txt file included |
| 24 * with this distribution. |
| 25 * |
| 26 * This library is distributed in the hope that it will be useful, |
| 27 * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 28 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 29 * wxWindows Library License for more details. |
| 30 */ |
| 31 |
| 32 #define JPEG_INTERNALS |
| 33 #include "jinclude.h" |
| 34 #include "jpeglib.h" |
| 35 #include "jdhuff.h" /* Declarations shared with jdphuff.c */ |
| 36 |
| 37 |
| 38 /* |
| 39 * Expanded entropy decoder object for Huffman decoding. |
| 40 * |
| 41 * The savable_state subrecord contains fields that change within an MCU, |
| 42 * but must not be updated permanently until we complete the MCU. |
| 43 */ |
| 44 |
| 45 typedef struct { |
| 46 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
| 47 } savable_state; |
| 48 |
| 49 /* This macro is to work around compilers with missing or broken |
| 50 * structure assignment. You'll need to fix this code if you have |
| 51 * such a compiler and you change MAX_COMPS_IN_SCAN. |
| 52 */ |
| 53 |
| 54 #ifndef NO_STRUCT_ASSIGN |
| 55 #define ASSIGN_STATE(dest,src) ((dest) = (src)) |
| 56 #else |
| 57 #if MAX_COMPS_IN_SCAN == 4 |
| 58 #define ASSIGN_STATE(dest,src) \ |
| 59 ((dest).last_dc_val[0] = (src).last_dc_val[0], \ |
| 60 (dest).last_dc_val[1] = (src).last_dc_val[1], \ |
| 61 (dest).last_dc_val[2] = (src).last_dc_val[2], \ |
| 62 (dest).last_dc_val[3] = (src).last_dc_val[3]) |
| 63 #endif |
| 64 #endif |
| 65 |
| 66 |
| 67 typedef struct { |
| 68 struct jpeg_entropy_decoder pub; /* public fields */ |
| 69 |
| 70 /* These fields are loaded into local variables at start of each MCU. |
| 71 * In case of suspension, we exit WITHOUT updating them. |
| 72 */ |
| 73 bitread_perm_state bitstate; /* Bit buffer at start of MCU */ |
| 74 savable_state saved; /* Other state at start of MCU */ |
| 75 |
| 76 /* These fields are NOT loaded into local working state. */ |
| 77 unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
| 78 |
| 79 /* Pointers to derived tables (these workspaces have image lifespan) */ |
| 80 d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; |
| 81 d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; |
| 82 |
| 83 /* Precalculated info set up by start_pass for use in decode_mcu: */ |
| 84 |
| 85 /* Pointers to derived tables to be used for each block within an MCU */ |
| 86 d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU]; |
| 87 d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU]; |
| 88 /* Whether we care about the DC and AC coefficient values for each block */ |
| 89 boolean dc_needed[D_MAX_BLOCKS_IN_MCU]; |
| 90 boolean ac_needed[D_MAX_BLOCKS_IN_MCU]; |
| 91 } huff_entropy_decoder; |
| 92 |
| 93 typedef huff_entropy_decoder * huff_entropy_ptr; |
| 94 |
| 95 |
| 96 /* |
| 97 * Initialize for a Huffman-compressed scan. |
| 98 */ |
| 99 |
| 100 METHODDEF(void) |
| 101 start_pass_huff_decoder (j_decompress_ptr cinfo) |
| 102 { |
| 103 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
| 104 int ci, blkn, dctbl, actbl; |
| 105 jpeg_component_info * compptr; |
| 106 |
| 107 /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. |
| 108 * This ought to be an error condition, but we make it a warning because |
| 109 * there are some baseline files out there with all zeroes in these bytes. |
| 110 */ |
| 111 if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 || |
| 112 cinfo->Ah != 0 || cinfo->Al != 0) |
| 113 WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); |
| 114 |
| 115 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
| 116 compptr = cinfo->cur_comp_info[ci]; |
| 117 dctbl = compptr->dc_tbl_no; |
| 118 actbl = compptr->ac_tbl_no; |
| 119 /* Compute derived values for Huffman tables */ |
| 120 /* We may do this more than once for a table, but it's not expensive */ |
| 121 jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, |
| 122 & entropy->dc_derived_tbls[dctbl]); |
| 123 jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, |
| 124 & entropy->ac_derived_tbls[actbl]); |
| 125 /* Initialize DC predictions to 0 */ |
| 126 entropy->saved.last_dc_val[ci] = 0; |
| 127 } |
| 128 |
| 129 /* Precalculate decoding info for each block in an MCU of this scan */ |
| 130 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
| 131 ci = cinfo->MCU_membership[blkn]; |
| 132 compptr = cinfo->cur_comp_info[ci]; |
| 133 /* Precalculate which table to use for each block */ |
| 134 entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no]; |
| 135 entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no]; |
| 136 /* Decide whether we really care about the coefficient values */ |
| 137 if (compptr->component_needed) { |
| 138 entropy->dc_needed[blkn] = TRUE; |
| 139 /* we don't need the ACs if producing a 1/8th-size image */ |
| 140 entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1); |
| 141 } else { |
| 142 entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE; |
| 143 } |
| 144 } |
| 145 |
| 146 /* Initialize bitread state variables */ |
| 147 entropy->bitstate.bits_left = 0; |
| 148 entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ |
| 149 entropy->pub.insufficient_data = FALSE; |
| 150 |
| 151 /* Initialize restart counter */ |
| 152 entropy->restarts_to_go = cinfo->restart_interval; |
| 153 } |
| 154 |
| 155 |
| 156 /* |
| 157 * Compute the derived values for a Huffman table. |
| 158 * This routine also performs some validation checks on the table. |
| 159 * |
| 160 * Note this is also used by jdphuff.c. |
| 161 */ |
| 162 |
| 163 GLOBAL(void) |
| 164 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno, |
| 165 d_derived_tbl ** pdtbl) |
| 166 { |
| 167 JHUFF_TBL *htbl; |
| 168 d_derived_tbl *dtbl; |
| 169 int p, i, l, si, numsymbols; |
| 170 int lookbits, ctr; |
| 171 char huffsize[257]; |
| 172 unsigned int huffcode[257]; |
| 173 unsigned int code; |
| 174 |
| 175 /* Note that huffsize[] and huffcode[] are filled in code-length order, |
| 176 * paralleling the order of the symbols themselves in htbl->huffval[]. |
| 177 */ |
| 178 |
| 179 /* Find the input Huffman table */ |
| 180 if (tblno < 0 || tblno >= NUM_HUFF_TBLS) |
| 181 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
| 182 htbl = |
| 183 isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; |
| 184 if (htbl == NULL) |
| 185 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
| 186 |
| 187 /* Allocate a workspace if we haven't already done so. */ |
| 188 if (*pdtbl == NULL) |
| 189 *pdtbl = (d_derived_tbl *) |
| 190 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 191 SIZEOF(d_derived_tbl)); |
| 192 dtbl = *pdtbl; |
| 193 dtbl->pub = htbl; /* fill in back link */ |
| 194 |
| 195 /* Figure C.1: make table of Huffman code length for each symbol */ |
| 196 |
| 197 p = 0; |
| 198 for (l = 1; l <= 16; l++) { |
| 199 i = (int) htbl->bits[l]; |
| 200 if (i < 0 || p + i > 256) /* protect against table overrun */ |
| 201 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
| 202 while (i--) |
| 203 huffsize[p++] = (char) l; |
| 204 } |
| 205 huffsize[p] = 0; |
| 206 numsymbols = p; |
| 207 |
| 208 /* Figure C.2: generate the codes themselves */ |
| 209 /* We also validate that the counts represent a legal Huffman code tree. */ |
| 210 |
| 211 code = 0; |
| 212 si = huffsize[0]; |
| 213 p = 0; |
| 214 while (huffsize[p]) { |
| 215 while (((int) huffsize[p]) == si) { |
| 216 huffcode[p++] = code; |
| 217 code++; |
| 218 } |
| 219 /* code is now 1 more than the last code used for codelength si; but |
| 220 * it must still fit in si bits, since no code is allowed to be all ones. |
| 221 */ |
| 222 if (((INT32) code) >= (((INT32) 1) << si)) |
| 223 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
| 224 code <<= 1; |
| 225 si++; |
| 226 } |
| 227 |
| 228 /* Figure F.15: generate decoding tables for bit-sequential decoding */ |
| 229 |
| 230 p = 0; |
| 231 for (l = 1; l <= 16; l++) { |
| 232 if (htbl->bits[l]) { |
| 233 /* valoffset[l] = huffval[] index of 1st symbol of code length l, |
| 234 * minus the minimum code of length l |
| 235 */ |
| 236 dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p]; |
| 237 p += htbl->bits[l]; |
| 238 dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */ |
| 239 } else { |
| 240 dtbl->maxcode[l] = -1; /* -1 if no codes of this length */ |
| 241 } |
| 242 } |
| 243 dtbl->valoffset[17] = 0; |
| 244 dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */ |
| 245 |
| 246 /* Compute lookahead tables to speed up decoding. |
| 247 * First we set all the table entries to 0, indicating "too long"; |
| 248 * then we iterate through the Huffman codes that are short enough and |
| 249 * fill in all the entries that correspond to bit sequences starting |
| 250 * with that code. |
| 251 */ |
| 252 |
| 253 for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++) |
| 254 dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD; |
| 255 |
| 256 p = 0; |
| 257 for (l = 1; l <= HUFF_LOOKAHEAD; l++) { |
| 258 for (i = 1; i <= (int) htbl->bits[l]; i++, p++) { |
| 259 /* l = current code's length, p = its index in huffcode[] & huffval[]. */ |
| 260 /* Generate left-justified code followed by all possible bit sequences */ |
| 261 lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l); |
| 262 for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) { |
| 263 dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p]; |
| 264 lookbits++; |
| 265 } |
| 266 } |
| 267 } |
| 268 |
| 269 /* Validate symbols as being reasonable. |
| 270 * For AC tables, we make no check, but accept all byte values 0..255. |
| 271 * For DC tables, we require the symbols to be in range 0..15. |
| 272 * (Tighter bounds could be applied depending on the data depth and mode, |
| 273 * but this is sufficient to ensure safe decoding.) |
| 274 */ |
| 275 if (isDC) { |
| 276 for (i = 0; i < numsymbols; i++) { |
| 277 int sym = htbl->huffval[i]; |
| 278 if (sym < 0 || sym > 15) |
| 279 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
| 280 } |
| 281 } |
| 282 } |
| 283 |
| 284 |
| 285 /* |
| 286 * Out-of-line code for bit fetching (shared with jdphuff.c). |
| 287 * See jdhuff.h for info about usage. |
| 288 * Note: current values of get_buffer and bits_left are passed as parameters, |
| 289 * but are returned in the corresponding fields of the state struct. |
| 290 * |
| 291 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width |
| 292 * of get_buffer to be used. (On machines with wider words, an even larger |
| 293 * buffer could be used.) However, on some machines 32-bit shifts are |
| 294 * quite slow and take time proportional to the number of places shifted. |
| 295 * (This is true with most PC compilers, for instance.) In this case it may |
| 296 * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the |
| 297 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer. |
| 298 */ |
| 299 |
| 300 #ifdef SLOW_SHIFT_32 |
| 301 #define MIN_GET_BITS 15 /* minimum allowable value */ |
| 302 #else |
| 303 #define MIN_GET_BITS (BIT_BUF_SIZE-7) |
| 304 #endif |
| 305 |
| 306 |
| 307 GLOBAL(boolean) |
| 308 jpeg_fill_bit_buffer (bitread_working_state * state, |
| 309 register bit_buf_type get_buffer, register int bits_left, |
| 310 int nbits) |
| 311 /* Load up the bit buffer to a depth of at least nbits */ |
| 312 { |
| 313 /* Copy heavily used state fields into locals (hopefully registers) */ |
| 314 register const JOCTET * next_input_byte = state->next_input_byte; |
| 315 register size_t bytes_in_buffer = state->bytes_in_buffer; |
| 316 j_decompress_ptr cinfo = state->cinfo; |
| 317 |
| 318 /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ |
| 319 /* (It is assumed that no request will be for more than that many bits.) */ |
| 320 /* We fail to do so only if we hit a marker or are forced to suspend. */ |
| 321 |
| 322 if (cinfo->unread_marker == 0) { /* cannot advance past a marker */ |
| 323 while (bits_left < MIN_GET_BITS) { |
| 324 register int c; |
| 325 |
| 326 /* Attempt to read a byte */ |
| 327 if (bytes_in_buffer == 0) { |
| 328 if (! (*cinfo->src->fill_input_buffer) (cinfo)) |
| 329 return FALSE; |
| 330 next_input_byte = cinfo->src->next_input_byte; |
| 331 bytes_in_buffer = cinfo->src->bytes_in_buffer; |
| 332 } |
| 333 bytes_in_buffer--; |
| 334 c = GETJOCTET(*next_input_byte++); |
| 335 |
| 336 /* If it's 0xFF, check and discard stuffed zero byte */ |
| 337 if (c == 0xFF) { |
| 338 /* Loop here to discard any padding FF's on terminating marker, |
| 339 * so that we can save a valid unread_marker value. NOTE: we will |
| 340 * accept multiple FF's followed by a 0 as meaning a single FF data |
| 341 * byte. This data pattern is not valid according to the standard. |
| 342 */ |
| 343 do { |
| 344 if (bytes_in_buffer == 0) { |
| 345 if (! (*cinfo->src->fill_input_buffer) (cinfo)) |
| 346 return FALSE; |
| 347 next_input_byte = cinfo->src->next_input_byte; |
| 348 bytes_in_buffer = cinfo->src->bytes_in_buffer; |
| 349 } |
| 350 bytes_in_buffer--; |
| 351 c = GETJOCTET(*next_input_byte++); |
| 352 } while (c == 0xFF); |
| 353 |
| 354 if (c == 0) { |
| 355 /* Found FF/00, which represents an FF data byte */ |
| 356 c = 0xFF; |
| 357 } else { |
| 358 /* Oops, it's actually a marker indicating end of compressed data. |
| 359 * Save the marker code for later use. |
| 360 * Fine point: it might appear that we should save the marker into |
| 361 * bitread working state, not straight into permanent state. But |
| 362 * once we have hit a marker, we cannot need to suspend within the |
| 363 * current MCU, because we will read no more bytes from the data |
| 364 * source. So it is OK to update permanent state right away. |
| 365 */ |
| 366 cinfo->unread_marker = c; |
| 367 /* See if we need to insert some fake zero bits. */ |
| 368 goto no_more_bytes; |
| 369 } |
| 370 } |
| 371 |
| 372 /* OK, load c into get_buffer */ |
| 373 get_buffer = (get_buffer << 8) | c; |
| 374 bits_left += 8; |
| 375 } /* end while */ |
| 376 } else { |
| 377 no_more_bytes: |
| 378 /* We get here if we've read the marker that terminates the compressed |
| 379 * data segment. There should be enough bits in the buffer register |
| 380 * to satisfy the request; if so, no problem. |
| 381 */ |
| 382 if (nbits > bits_left) { |
| 383 /* Uh-oh. Report corrupted data to user and stuff zeroes into |
| 384 * the data stream, so that we can produce some kind of image. |
| 385 * We use a nonvolatile flag to ensure that only one warning message |
| 386 * appears per data segment. |
| 387 */ |
| 388 if (! cinfo->entropy->insufficient_data) { |
| 389 WARNMS(cinfo, JWRN_HIT_MARKER); |
| 390 cinfo->entropy->insufficient_data = TRUE; |
| 391 } |
| 392 /* Fill the buffer with zero bits */ |
| 393 get_buffer <<= MIN_GET_BITS - bits_left; |
| 394 bits_left = MIN_GET_BITS; |
| 395 } |
| 396 } |
| 397 |
| 398 /* Unload the local registers */ |
| 399 state->next_input_byte = next_input_byte; |
| 400 state->bytes_in_buffer = bytes_in_buffer; |
| 401 state->get_buffer = get_buffer; |
| 402 state->bits_left = bits_left; |
| 403 |
| 404 return TRUE; |
| 405 } |
| 406 |
| 407 |
| 408 /* |
| 409 * Out-of-line code for Huffman code decoding. |
| 410 * See jdhuff.h for info about usage. |
| 411 */ |
| 412 |
| 413 GLOBAL(int) |
| 414 jpeg_huff_decode (bitread_working_state * state, |
| 415 register bit_buf_type get_buffer, register int bits_left, |
| 416 d_derived_tbl * htbl, int min_bits) |
| 417 { |
| 418 register int l = min_bits; |
| 419 register INT32 code; |
| 420 |
| 421 /* HUFF_DECODE has determined that the code is at least min_bits */ |
| 422 /* bits long, so fetch that many bits in one swoop. */ |
| 423 |
| 424 CHECK_BIT_BUFFER(*state, l, return -1); |
| 425 code = GET_BITS(l); |
| 426 |
| 427 /* Collect the rest of the Huffman code one bit at a time. */ |
| 428 /* This is per Figure F.16 in the JPEG spec. */ |
| 429 |
| 430 while (code > htbl->maxcode[l]) { |
| 431 code <<= 1; |
| 432 CHECK_BIT_BUFFER(*state, 1, return -1); |
| 433 code |= GET_BITS(1); |
| 434 l++; |
| 435 } |
| 436 |
| 437 /* Unload the local registers */ |
| 438 state->get_buffer = get_buffer; |
| 439 state->bits_left = bits_left; |
| 440 |
| 441 /* With garbage input we may reach the sentinel value l = 17. */ |
| 442 |
| 443 if (l > 16) { |
| 444 WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); |
| 445 return 0; /* fake a zero as the safest result */ |
| 446 } |
| 447 |
| 448 return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ]; |
| 449 } |
| 450 |
| 451 |
| 452 /* |
| 453 * Figure F.12: extend sign bit. |
| 454 * On some machines, a shift and add will be faster than a table lookup. |
| 455 */ |
| 456 |
| 457 #define AVOID_TABLES |
| 458 #ifdef AVOID_TABLES |
| 459 |
| 460 #define HUFF_EXTEND(x,s) ((x) + ((((x) - (1<<((s)-1))) >> 31) & (((-1)<<(s)) +
1))) |
| 461 |
| 462 #else |
| 463 |
| 464 #define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) |
| 465 |
| 466 static const int extend_test[16] = /* entry n is 2**(n-1) */ |
| 467 { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, |
| 468 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; |
| 469 |
| 470 static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ |
| 471 { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1, |
| 472 ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1, |
| 473 ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1, |
| 474 ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 }; |
| 475 |
| 476 #endif /* AVOID_TABLES */ |
| 477 |
| 478 |
| 479 /* |
| 480 * Check for a restart marker & resynchronize decoder. |
| 481 * Returns FALSE if must suspend. |
| 482 */ |
| 483 |
| 484 LOCAL(boolean) |
| 485 process_restart (j_decompress_ptr cinfo) |
| 486 { |
| 487 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
| 488 int ci; |
| 489 |
| 490 /* Throw away any unused bits remaining in bit buffer; */ |
| 491 /* include any full bytes in next_marker's count of discarded bytes */ |
| 492 cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; |
| 493 entropy->bitstate.bits_left = 0; |
| 494 |
| 495 /* Advance past the RSTn marker */ |
| 496 if (! (*cinfo->marker->read_restart_marker) (cinfo)) |
| 497 return FALSE; |
| 498 |
| 499 /* Re-initialize DC predictions to 0 */ |
| 500 for (ci = 0; ci < cinfo->comps_in_scan; ci++) |
| 501 entropy->saved.last_dc_val[ci] = 0; |
| 502 |
| 503 /* Reset restart counter */ |
| 504 entropy->restarts_to_go = cinfo->restart_interval; |
| 505 |
| 506 /* Reset out-of-data flag, unless read_restart_marker left us smack up |
| 507 * against a marker. In that case we will end up treating the next data |
| 508 * segment as empty, and we can avoid producing bogus output pixels by |
| 509 * leaving the flag set. |
| 510 */ |
| 511 if (cinfo->unread_marker == 0) |
| 512 entropy->pub.insufficient_data = FALSE; |
| 513 |
| 514 return TRUE; |
| 515 } |
| 516 |
| 517 |
| 518 LOCAL(boolean) |
| 519 decode_mcu_slow (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
| 520 { |
| 521 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
| 522 BITREAD_STATE_VARS; |
| 523 int blkn; |
| 524 savable_state state; |
| 525 /* Outer loop handles each block in the MCU */ |
| 526 |
| 527 /* Load up working state */ |
| 528 BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
| 529 ASSIGN_STATE(state, entropy->saved); |
| 530 |
| 531 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
| 532 JBLOCKROW block = MCU_data[blkn]; |
| 533 d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn]; |
| 534 d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn]; |
| 535 register int s, k, r; |
| 536 |
| 537 /* Decode a single block's worth of coefficients */ |
| 538 |
| 539 /* Section F.2.2.1: decode the DC coefficient difference */ |
| 540 HUFF_DECODE(s, br_state, dctbl, return FALSE, label1); |
| 541 if (s) { |
| 542 CHECK_BIT_BUFFER(br_state, s, return FALSE); |
| 543 r = GET_BITS(s); |
| 544 s = HUFF_EXTEND(r, s); |
| 545 } |
| 546 |
| 547 if (entropy->dc_needed[blkn]) { |
| 548 /* Convert DC difference to actual value, update last_dc_val */ |
| 549 int ci = cinfo->MCU_membership[blkn]; |
| 550 s += state.last_dc_val[ci]; |
| 551 state.last_dc_val[ci] = s; |
| 552 /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */ |
| 553 (*block)[0] = (JCOEF) s; |
| 554 } |
| 555 |
| 556 if (entropy->ac_needed[blkn]) { |
| 557 |
| 558 /* Section F.2.2.2: decode the AC coefficients */ |
| 559 /* Since zeroes are skipped, output area must be cleared beforehand */ |
| 560 for (k = 1; k < DCTSIZE2; k++) { |
| 561 HUFF_DECODE(s, br_state, actbl, return FALSE, label2); |
| 562 |
| 563 r = s >> 4; |
| 564 s &= 15; |
| 565 |
| 566 if (s) { |
| 567 k += r; |
| 568 CHECK_BIT_BUFFER(br_state, s, return FALSE); |
| 569 r = GET_BITS(s); |
| 570 s = HUFF_EXTEND(r, s); |
| 571 /* Output coefficient in natural (dezigzagged) order. |
| 572 * Note: the extra entries in jpeg_natural_order[] will save us |
| 573 * if k >= DCTSIZE2, which could happen if the data is corrupted. |
| 574 */ |
| 575 (*block)[jpeg_natural_order[k]] = (JCOEF) s; |
| 576 } else { |
| 577 if (r != 15) |
| 578 break; |
| 579 k += 15; |
| 580 } |
| 581 } |
| 582 |
| 583 } else { |
| 584 |
| 585 /* Section F.2.2.2: decode the AC coefficients */ |
| 586 /* In this path we just discard the values */ |
| 587 for (k = 1; k < DCTSIZE2; k++) { |
| 588 HUFF_DECODE(s, br_state, actbl, return FALSE, label3); |
| 589 |
| 590 r = s >> 4; |
| 591 s &= 15; |
| 592 |
| 593 if (s) { |
| 594 k += r; |
| 595 CHECK_BIT_BUFFER(br_state, s, return FALSE); |
| 596 DROP_BITS(s); |
| 597 } else { |
| 598 if (r != 15) |
| 599 break; |
| 600 k += 15; |
| 601 } |
| 602 } |
| 603 } |
| 604 } |
| 605 |
| 606 /* Completed MCU, so update state */ |
| 607 BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
| 608 ASSIGN_STATE(entropy->saved, state); |
| 609 return TRUE; |
| 610 } |
| 611 |
| 612 |
| 613 /***************************************************************/ |
| 614 |
| 615 #define ADD_BYTE { \ |
| 616 int val0 = *(buffer++); \ |
| 617 int val1 = *(buffer); \ |
| 618 \ |
| 619 bits_left += 8; \ |
| 620 get_buffer = (get_buffer << 8) | (val0); \ |
| 621 if (val0 == 0xFF) { \ |
| 622 buffer++; \ |
| 623 if (val1 != 0) { \ |
| 624 buffer -= 2; \ |
| 625 get_buffer &= ~0xFF; \ |
| 626 } \ |
| 627 } \ |
| 628 } |
| 629 |
| 630 /***************************************************************/ |
| 631 |
| 632 #if __WORDSIZE == 64 || defined(_WIN64) |
| 633 |
| 634 #define ENSURE_SHORT \ |
| 635 if (bits_left < 16) { \ |
| 636 ADD_BYTE ADD_BYTE ADD_BYTE ADD_BYTE ADD_BYTE ADD_BYTE \ |
| 637 } |
| 638 |
| 639 #else |
| 640 |
| 641 #define ENSURE_SHORT if (bits_left < 16) { ADD_BYTE ADD_BYTE } |
| 642 |
| 643 #endif |
| 644 |
| 645 /***************************************************************/ |
| 646 |
| 647 #define HUFF_DECODE_FAST(symbol, size, htbl) { \ |
| 648 ENSURE_SHORT \ |
| 649 symbol = PEEK_BITS(HUFF_LOOKAHEAD); \ |
| 650 symbol = htbl->lookup[symbol]; \ |
| 651 size = symbol >> 8; \ |
| 652 bits_left -= size; \ |
| 653 symbol = symbol & ((1 << HUFF_LOOKAHEAD) - 1); \ |
| 654 if (size == HUFF_LOOKAHEAD + 1) { \ |
| 655 symbol = (get_buffer >> bits_left) & ((1 << (size)) - 1); \ |
| 656 while (symbol > htbl->maxcode[size]) { \ |
| 657 symbol <<= 1; \ |
| 658 symbol |= GET_BITS(1); \ |
| 659 size++; \ |
| 660 } \ |
| 661 symbol = htbl->pub->huffval[ (int) (symbol + htbl->valoffset[size]) ]; \ |
| 662 } \ |
| 663 } |
| 664 |
| 665 /***************************************************************/ |
| 666 |
| 667 LOCAL(boolean) |
| 668 decode_mcu_fast (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
| 669 { |
| 670 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
| 671 BITREAD_STATE_VARS; |
| 672 JOCTET *buffer; |
| 673 int blkn; |
| 674 savable_state state; |
| 675 /* Outer loop handles each block in the MCU */ |
| 676 |
| 677 /* Load up working state */ |
| 678 BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
| 679 buffer = (JOCTET *) br_state.next_input_byte; |
| 680 ASSIGN_STATE(state, entropy->saved); |
| 681 |
| 682 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
| 683 JBLOCKROW block = MCU_data[blkn]; |
| 684 d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn]; |
| 685 d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn]; |
| 686 register int s, k, r, l; |
| 687 |
| 688 HUFF_DECODE_FAST(s, l, dctbl); |
| 689 if (s) { |
| 690 ENSURE_SHORT |
| 691 r = GET_BITS(s); |
| 692 s = HUFF_EXTEND(r, s); |
| 693 } |
| 694 |
| 695 if (entropy->dc_needed[blkn]) { |
| 696 int ci = cinfo->MCU_membership[blkn]; |
| 697 s += state.last_dc_val[ci]; |
| 698 state.last_dc_val[ci] = s; |
| 699 (*block)[0] = (JCOEF) s; |
| 700 } |
| 701 |
| 702 if (entropy->ac_needed[blkn]) { |
| 703 |
| 704 for (k = 1; k < DCTSIZE2; k++) { |
| 705 HUFF_DECODE_FAST(s, l, actbl); |
| 706 r = s >> 4; |
| 707 s &= 15; |
| 708 |
| 709 if (s) { |
| 710 k += r; |
| 711 ENSURE_SHORT |
| 712 r = GET_BITS(s); |
| 713 s = HUFF_EXTEND(r, s); |
| 714 (*block)[jpeg_natural_order[k]] = (JCOEF) s; |
| 715 } else { |
| 716 if (r != 15) break; |
| 717 k += 15; |
| 718 } |
| 719 } |
| 720 |
| 721 } else { |
| 722 |
| 723 for (k = 1; k < DCTSIZE2; k++) { |
| 724 HUFF_DECODE_FAST(s, l, actbl); |
| 725 r = s >> 4; |
| 726 s &= 15; |
| 727 |
| 728 if (s) { |
| 729 k += r; |
| 730 ENSURE_SHORT |
| 731 DROP_BITS(s); |
| 732 } else { |
| 733 if (r != 15) break; |
| 734 k += 15; |
| 735 } |
| 736 } |
| 737 } |
| 738 } |
| 739 |
| 740 br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte); |
| 741 br_state.next_input_byte = buffer; |
| 742 BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
| 743 ASSIGN_STATE(entropy->saved, state); |
| 744 return TRUE; |
| 745 } |
| 746 |
| 747 |
| 748 /* |
| 749 * Decode and return one MCU's worth of Huffman-compressed coefficients. |
| 750 * The coefficients are reordered from zigzag order into natural array order, |
| 751 * but are not dequantized. |
| 752 * |
| 753 * The i'th block of the MCU is stored into the block pointed to by |
| 754 * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER. |
| 755 * (Wholesale zeroing is usually a little faster than retail...) |
| 756 * |
| 757 * Returns FALSE if data source requested suspension. In that case no |
| 758 * changes have been made to permanent state. (Exception: some output |
| 759 * coefficients may already have been assigned. This is harmless for |
| 760 * this module, since we'll just re-assign them on the next call.) |
| 761 */ |
| 762 |
| 763 #define BUFSIZE (DCTSIZE2 * 2) |
| 764 |
| 765 METHODDEF(boolean) |
| 766 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
| 767 { |
| 768 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
| 769 int usefast = 1; |
| 770 |
| 771 /* Process restart marker if needed; may have to suspend */ |
| 772 if (cinfo->restart_interval) { |
| 773 if (entropy->restarts_to_go == 0) |
| 774 if (! process_restart(cinfo)) |
| 775 return FALSE; |
| 776 usefast = 0; |
| 777 } |
| 778 |
| 779 if (cinfo->src->bytes_in_buffer < BUFSIZE * cinfo->blocks_in_MCU) |
| 780 usefast = 0; |
| 781 |
| 782 /* If we've run out of data, just leave the MCU set to zeroes. |
| 783 * This way, we return uniform gray for the remainder of the segment. |
| 784 */ |
| 785 if (! entropy->pub.insufficient_data) { |
| 786 |
| 787 if (usefast) { |
| 788 if (!decode_mcu_fast(cinfo, MCU_data)) return FALSE; |
| 789 } |
| 790 else { |
| 791 if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE; |
| 792 } |
| 793 |
| 794 } |
| 795 |
| 796 /* Account for restart interval (no-op if not using restarts) */ |
| 797 entropy->restarts_to_go--; |
| 798 |
| 799 return TRUE; |
| 800 } |
| 801 |
| 802 |
| 803 /* |
| 804 * Module initialization routine for Huffman entropy decoding. |
| 805 */ |
| 806 |
| 807 GLOBAL(void) |
| 808 jinit_huff_decoder (j_decompress_ptr cinfo) |
| 809 { |
| 810 huff_entropy_ptr entropy; |
| 811 int i; |
| 812 |
| 813 entropy = (huff_entropy_ptr) |
| 814 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 815 SIZEOF(huff_entropy_decoder)); |
| 816 cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; |
| 817 entropy->pub.start_pass = start_pass_huff_decoder; |
| 818 entropy->pub.decode_mcu = decode_mcu; |
| 819 |
| 820 /* Mark tables unallocated */ |
| 821 for (i = 0; i < NUM_HUFF_TBLS; i++) { |
| 822 entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; |
| 823 } |
| 824 } |
OLD | NEW |