Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(2024)

Side by Side Diff: third_party/libjpeg_turbo/jddctmgr.c

Issue 4134011: Adds libjpeg-turbo to deps... (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/deps/
Patch Set: Created 10 years, 1 month ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « third_party/libjpeg_turbo/jdct.h ('k') | third_party/libjpeg_turbo/jdhuff.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /*
2 * jddctmgr.c
3 *
4 * Copyright (C) 1994-1996, Thomas G. Lane.
5 * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
6 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file.
8 *
9 * This file contains the inverse-DCT management logic.
10 * This code selects a particular IDCT implementation to be used,
11 * and it performs related housekeeping chores. No code in this file
12 * is executed per IDCT step, only during output pass setup.
13 *
14 * Note that the IDCT routines are responsible for performing coefficient
15 * dequantization as well as the IDCT proper. This module sets up the
16 * dequantization multiplier table needed by the IDCT routine.
17 */
18
19 #define JPEG_INTERNALS
20 #include "jinclude.h"
21 #include "jpeglib.h"
22 #include "jdct.h" /* Private declarations for DCT subsystem */
23 #include "jsimddct.h"
24
25
26 /*
27 * The decompressor input side (jdinput.c) saves away the appropriate
28 * quantization table for each component at the start of the first scan
29 * involving that component. (This is necessary in order to correctly
30 * decode files that reuse Q-table slots.)
31 * When we are ready to make an output pass, the saved Q-table is converted
32 * to a multiplier table that will actually be used by the IDCT routine.
33 * The multiplier table contents are IDCT-method-dependent. To support
34 * application changes in IDCT method between scans, we can remake the
35 * multiplier tables if necessary.
36 * In buffered-image mode, the first output pass may occur before any data
37 * has been seen for some components, and thus before their Q-tables have
38 * been saved away. To handle this case, multiplier tables are preset
39 * to zeroes; the result of the IDCT will be a neutral gray level.
40 */
41
42
43 /* Private subobject for this module */
44
45 typedef struct {
46 struct jpeg_inverse_dct pub; /* public fields */
47
48 /* This array contains the IDCT method code that each multiplier table
49 * is currently set up for, or -1 if it's not yet set up.
50 * The actual multiplier tables are pointed to by dct_table in the
51 * per-component comp_info structures.
52 */
53 int cur_method[MAX_COMPONENTS];
54 } my_idct_controller;
55
56 typedef my_idct_controller * my_idct_ptr;
57
58
59 /* Allocated multiplier tables: big enough for any supported variant */
60
61 typedef union {
62 ISLOW_MULT_TYPE islow_array[DCTSIZE2];
63 #ifdef DCT_IFAST_SUPPORTED
64 IFAST_MULT_TYPE ifast_array[DCTSIZE2];
65 #endif
66 #ifdef DCT_FLOAT_SUPPORTED
67 FLOAT_MULT_TYPE float_array[DCTSIZE2];
68 #endif
69 } multiplier_table;
70
71
72 /* The current scaled-IDCT routines require ISLOW-style multiplier tables,
73 * so be sure to compile that code if either ISLOW or SCALING is requested.
74 */
75 #ifdef DCT_ISLOW_SUPPORTED
76 #define PROVIDE_ISLOW_TABLES
77 #else
78 #ifdef IDCT_SCALING_SUPPORTED
79 #define PROVIDE_ISLOW_TABLES
80 #endif
81 #endif
82
83
84 /*
85 * Prepare for an output pass.
86 * Here we select the proper IDCT routine for each component and build
87 * a matching multiplier table.
88 */
89
90 METHODDEF(void)
91 start_pass (j_decompress_ptr cinfo)
92 {
93 my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
94 int ci, i;
95 jpeg_component_info *compptr;
96 int method = 0;
97 inverse_DCT_method_ptr method_ptr = NULL;
98 JQUANT_TBL * qtbl;
99
100 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
101 ci++, compptr++) {
102 /* Select the proper IDCT routine for this component's scaling */
103 switch (compptr->DCT_scaled_size) {
104 #ifdef IDCT_SCALING_SUPPORTED
105 case 1:
106 method_ptr = jpeg_idct_1x1;
107 method = JDCT_ISLOW; /* jidctred uses islow-style table */
108 break;
109 case 2:
110 if (jsimd_can_idct_2x2())
111 method_ptr = jsimd_idct_2x2;
112 else
113 method_ptr = jpeg_idct_2x2;
114 method = JDCT_ISLOW; /* jidctred uses islow-style table */
115 break;
116 case 4:
117 if (jsimd_can_idct_4x4())
118 method_ptr = jsimd_idct_4x4;
119 else
120 method_ptr = jpeg_idct_4x4;
121 method = JDCT_ISLOW; /* jidctred uses islow-style table */
122 break;
123 #endif
124 case DCTSIZE:
125 switch (cinfo->dct_method) {
126 #ifdef DCT_ISLOW_SUPPORTED
127 case JDCT_ISLOW:
128 if (jsimd_can_idct_islow())
129 method_ptr = jsimd_idct_islow;
130 else
131 method_ptr = jpeg_idct_islow;
132 method = JDCT_ISLOW;
133 break;
134 #endif
135 #ifdef DCT_IFAST_SUPPORTED
136 case JDCT_IFAST:
137 if (jsimd_can_idct_ifast())
138 method_ptr = jsimd_idct_ifast;
139 else
140 method_ptr = jpeg_idct_ifast;
141 method = JDCT_IFAST;
142 break;
143 #endif
144 #ifdef DCT_FLOAT_SUPPORTED
145 case JDCT_FLOAT:
146 if (jsimd_can_idct_float())
147 method_ptr = jsimd_idct_float;
148 else
149 method_ptr = jpeg_idct_float;
150 method = JDCT_FLOAT;
151 break;
152 #endif
153 default:
154 ERREXIT(cinfo, JERR_NOT_COMPILED);
155 break;
156 }
157 break;
158 default:
159 ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size);
160 break;
161 }
162 idct->pub.inverse_DCT[ci] = method_ptr;
163 /* Create multiplier table from quant table.
164 * However, we can skip this if the component is uninteresting
165 * or if we already built the table. Also, if no quant table
166 * has yet been saved for the component, we leave the
167 * multiplier table all-zero; we'll be reading zeroes from the
168 * coefficient controller's buffer anyway.
169 */
170 if (! compptr->component_needed || idct->cur_method[ci] == method)
171 continue;
172 qtbl = compptr->quant_table;
173 if (qtbl == NULL) /* happens if no data yet for component */
174 continue;
175 idct->cur_method[ci] = method;
176 switch (method) {
177 #ifdef PROVIDE_ISLOW_TABLES
178 case JDCT_ISLOW:
179 {
180 /* For LL&M IDCT method, multipliers are equal to raw quantization
181 * coefficients, but are stored as ints to ensure access efficiency.
182 */
183 ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
184 for (i = 0; i < DCTSIZE2; i++) {
185 ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
186 }
187 }
188 break;
189 #endif
190 #ifdef DCT_IFAST_SUPPORTED
191 case JDCT_IFAST:
192 {
193 /* For AA&N IDCT method, multipliers are equal to quantization
194 * coefficients scaled by scalefactor[row]*scalefactor[col], where
195 * scalefactor[0] = 1
196 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
197 * For integer operation, the multiplier table is to be scaled by
198 * IFAST_SCALE_BITS.
199 */
200 IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
201 #define CONST_BITS 14
202 static const INT16 aanscales[DCTSIZE2] = {
203 /* precomputed values scaled up by 14 bits */
204 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
205 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
206 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
207 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
208 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
209 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
210 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
211 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
212 };
213 SHIFT_TEMPS
214
215 for (i = 0; i < DCTSIZE2; i++) {
216 ifmtbl[i] = (IFAST_MULT_TYPE)
217 DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
218 (INT32) aanscales[i]),
219 CONST_BITS-IFAST_SCALE_BITS);
220 }
221 }
222 break;
223 #endif
224 #ifdef DCT_FLOAT_SUPPORTED
225 case JDCT_FLOAT:
226 {
227 /* For float AA&N IDCT method, multipliers are equal to quantization
228 * coefficients scaled by scalefactor[row]*scalefactor[col], where
229 * scalefactor[0] = 1
230 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
231 */
232 FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
233 int row, col;
234 static const double aanscalefactor[DCTSIZE] = {
235 1.0, 1.387039845, 1.306562965, 1.175875602,
236 1.0, 0.785694958, 0.541196100, 0.275899379
237 };
238
239 i = 0;
240 for (row = 0; row < DCTSIZE; row++) {
241 for (col = 0; col < DCTSIZE; col++) {
242 fmtbl[i] = (FLOAT_MULT_TYPE)
243 ((double) qtbl->quantval[i] *
244 aanscalefactor[row] * aanscalefactor[col]);
245 i++;
246 }
247 }
248 }
249 break;
250 #endif
251 default:
252 ERREXIT(cinfo, JERR_NOT_COMPILED);
253 break;
254 }
255 }
256 }
257
258
259 /*
260 * Initialize IDCT manager.
261 */
262
263 GLOBAL(void)
264 jinit_inverse_dct (j_decompress_ptr cinfo)
265 {
266 my_idct_ptr idct;
267 int ci;
268 jpeg_component_info *compptr;
269
270 idct = (my_idct_ptr)
271 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
272 SIZEOF(my_idct_controller));
273 cinfo->idct = (struct jpeg_inverse_dct *) idct;
274 idct->pub.start_pass = start_pass;
275
276 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
277 ci++, compptr++) {
278 /* Allocate and pre-zero a multiplier table for each component */
279 compptr->dct_table =
280 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
281 SIZEOF(multiplier_table));
282 MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
283 /* Mark multiplier table not yet set up for any method */
284 idct->cur_method[ci] = -1;
285 }
286 }
OLDNEW
« no previous file with comments | « third_party/libjpeg_turbo/jdct.h ('k') | third_party/libjpeg_turbo/jdhuff.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698