OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * jcphuff.c |
| 3 * |
| 4 * Copyright (C) 1995-1997, Thomas G. Lane. |
| 5 * This file is part of the Independent JPEG Group's software. |
| 6 * For conditions of distribution and use, see the accompanying README file. |
| 7 * |
| 8 * This file contains Huffman entropy encoding routines for progressive JPEG. |
| 9 * |
| 10 * We do not support output suspension in this module, since the library |
| 11 * currently does not allow multiple-scan files to be written with output |
| 12 * suspension. |
| 13 */ |
| 14 |
| 15 #define JPEG_INTERNALS |
| 16 #include "jinclude.h" |
| 17 #include "jpeglib.h" |
| 18 #include "jchuff.h" /* Declarations shared with jchuff.c */ |
| 19 |
| 20 #ifdef C_PROGRESSIVE_SUPPORTED |
| 21 |
| 22 /* Expanded entropy encoder object for progressive Huffman encoding. */ |
| 23 |
| 24 typedef struct { |
| 25 struct jpeg_entropy_encoder pub; /* public fields */ |
| 26 |
| 27 /* Mode flag: TRUE for optimization, FALSE for actual data output */ |
| 28 boolean gather_statistics; |
| 29 |
| 30 /* Bit-level coding status. |
| 31 * next_output_byte/free_in_buffer are local copies of cinfo->dest fields. |
| 32 */ |
| 33 JOCTET * next_output_byte; /* => next byte to write in buffer */ |
| 34 size_t free_in_buffer; /* # of byte spaces remaining in buffer */ |
| 35 INT32 put_buffer; /* current bit-accumulation buffer */ |
| 36 int put_bits; /* # of bits now in it */ |
| 37 j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */ |
| 38 |
| 39 /* Coding status for DC components */ |
| 40 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
| 41 |
| 42 /* Coding status for AC components */ |
| 43 int ac_tbl_no; /* the table number of the single component */ |
| 44 unsigned int EOBRUN; /* run length of EOBs */ |
| 45 unsigned int BE; /* # of buffered correction bits before MCU */ |
| 46 char * bit_buffer; /* buffer for correction bits (1 per char) */ |
| 47 /* packing correction bits tightly would save some space but cost time... */ |
| 48 |
| 49 unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
| 50 int next_restart_num; /* next restart number to write (0-7) */ |
| 51 |
| 52 /* Pointers to derived tables (these workspaces have image lifespan). |
| 53 * Since any one scan codes only DC or only AC, we only need one set |
| 54 * of tables, not one for DC and one for AC. |
| 55 */ |
| 56 c_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; |
| 57 |
| 58 /* Statistics tables for optimization; again, one set is enough */ |
| 59 long * count_ptrs[NUM_HUFF_TBLS]; |
| 60 } phuff_entropy_encoder; |
| 61 |
| 62 typedef phuff_entropy_encoder * phuff_entropy_ptr; |
| 63 |
| 64 /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit |
| 65 * buffer can hold. Larger sizes may slightly improve compression, but |
| 66 * 1000 is already well into the realm of overkill. |
| 67 * The minimum safe size is 64 bits. |
| 68 */ |
| 69 |
| 70 #define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */ |
| 71 |
| 72 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. |
| 73 * We assume that int right shift is unsigned if INT32 right shift is, |
| 74 * which should be safe. |
| 75 */ |
| 76 |
| 77 #ifdef RIGHT_SHIFT_IS_UNSIGNED |
| 78 #define ISHIFT_TEMPS int ishift_temp; |
| 79 #define IRIGHT_SHIFT(x,shft) \ |
| 80 ((ishift_temp = (x)) < 0 ? \ |
| 81 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ |
| 82 (ishift_temp >> (shft))) |
| 83 #else |
| 84 #define ISHIFT_TEMPS |
| 85 #define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) |
| 86 #endif |
| 87 |
| 88 /* Forward declarations */ |
| 89 METHODDEF(boolean) encode_mcu_DC_first JPP((j_compress_ptr cinfo, |
| 90 JBLOCKROW *MCU_data)); |
| 91 METHODDEF(boolean) encode_mcu_AC_first JPP((j_compress_ptr cinfo, |
| 92 JBLOCKROW *MCU_data)); |
| 93 METHODDEF(boolean) encode_mcu_DC_refine JPP((j_compress_ptr cinfo, |
| 94 JBLOCKROW *MCU_data)); |
| 95 METHODDEF(boolean) encode_mcu_AC_refine JPP((j_compress_ptr cinfo, |
| 96 JBLOCKROW *MCU_data)); |
| 97 METHODDEF(void) finish_pass_phuff JPP((j_compress_ptr cinfo)); |
| 98 METHODDEF(void) finish_pass_gather_phuff JPP((j_compress_ptr cinfo)); |
| 99 |
| 100 |
| 101 /* |
| 102 * Initialize for a Huffman-compressed scan using progressive JPEG. |
| 103 */ |
| 104 |
| 105 METHODDEF(void) |
| 106 start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics) |
| 107 { |
| 108 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
| 109 boolean is_DC_band; |
| 110 int ci, tbl; |
| 111 jpeg_component_info * compptr; |
| 112 |
| 113 entropy->cinfo = cinfo; |
| 114 entropy->gather_statistics = gather_statistics; |
| 115 |
| 116 is_DC_band = (cinfo->Ss == 0); |
| 117 |
| 118 /* We assume jcmaster.c already validated the scan parameters. */ |
| 119 |
| 120 /* Select execution routines */ |
| 121 if (cinfo->Ah == 0) { |
| 122 if (is_DC_band) |
| 123 entropy->pub.encode_mcu = encode_mcu_DC_first; |
| 124 else |
| 125 entropy->pub.encode_mcu = encode_mcu_AC_first; |
| 126 } else { |
| 127 if (is_DC_band) |
| 128 entropy->pub.encode_mcu = encode_mcu_DC_refine; |
| 129 else { |
| 130 entropy->pub.encode_mcu = encode_mcu_AC_refine; |
| 131 /* AC refinement needs a correction bit buffer */ |
| 132 if (entropy->bit_buffer == NULL) |
| 133 entropy->bit_buffer = (char *) |
| 134 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 135 MAX_CORR_BITS * SIZEOF(char)); |
| 136 } |
| 137 } |
| 138 if (gather_statistics) |
| 139 entropy->pub.finish_pass = finish_pass_gather_phuff; |
| 140 else |
| 141 entropy->pub.finish_pass = finish_pass_phuff; |
| 142 |
| 143 /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1 |
| 144 * for AC coefficients. |
| 145 */ |
| 146 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
| 147 compptr = cinfo->cur_comp_info[ci]; |
| 148 /* Initialize DC predictions to 0 */ |
| 149 entropy->last_dc_val[ci] = 0; |
| 150 /* Get table index */ |
| 151 if (is_DC_band) { |
| 152 if (cinfo->Ah != 0) /* DC refinement needs no table */ |
| 153 continue; |
| 154 tbl = compptr->dc_tbl_no; |
| 155 } else { |
| 156 entropy->ac_tbl_no = tbl = compptr->ac_tbl_no; |
| 157 } |
| 158 if (gather_statistics) { |
| 159 /* Check for invalid table index */ |
| 160 /* (make_c_derived_tbl does this in the other path) */ |
| 161 if (tbl < 0 || tbl >= NUM_HUFF_TBLS) |
| 162 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); |
| 163 /* Allocate and zero the statistics tables */ |
| 164 /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ |
| 165 if (entropy->count_ptrs[tbl] == NULL) |
| 166 entropy->count_ptrs[tbl] = (long *) |
| 167 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 168 257 * SIZEOF(long)); |
| 169 MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long)); |
| 170 } else { |
| 171 /* Compute derived values for Huffman table */ |
| 172 /* We may do this more than once for a table, but it's not expensive */ |
| 173 jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl, |
| 174 & entropy->derived_tbls[tbl]); |
| 175 } |
| 176 } |
| 177 |
| 178 /* Initialize AC stuff */ |
| 179 entropy->EOBRUN = 0; |
| 180 entropy->BE = 0; |
| 181 |
| 182 /* Initialize bit buffer to empty */ |
| 183 entropy->put_buffer = 0; |
| 184 entropy->put_bits = 0; |
| 185 |
| 186 /* Initialize restart stuff */ |
| 187 entropy->restarts_to_go = cinfo->restart_interval; |
| 188 entropy->next_restart_num = 0; |
| 189 } |
| 190 |
| 191 |
| 192 /* Outputting bytes to the file. |
| 193 * NB: these must be called only when actually outputting, |
| 194 * that is, entropy->gather_statistics == FALSE. |
| 195 */ |
| 196 |
| 197 /* Emit a byte */ |
| 198 #define emit_byte(entropy,val) \ |
| 199 { *(entropy)->next_output_byte++ = (JOCTET) (val); \ |
| 200 if (--(entropy)->free_in_buffer == 0) \ |
| 201 dump_buffer(entropy); } |
| 202 |
| 203 |
| 204 LOCAL(void) |
| 205 dump_buffer (phuff_entropy_ptr entropy) |
| 206 /* Empty the output buffer; we do not support suspension in this module. */ |
| 207 { |
| 208 struct jpeg_destination_mgr * dest = entropy->cinfo->dest; |
| 209 |
| 210 if (! (*dest->empty_output_buffer) (entropy->cinfo)) |
| 211 ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND); |
| 212 /* After a successful buffer dump, must reset buffer pointers */ |
| 213 entropy->next_output_byte = dest->next_output_byte; |
| 214 entropy->free_in_buffer = dest->free_in_buffer; |
| 215 } |
| 216 |
| 217 |
| 218 /* Outputting bits to the file */ |
| 219 |
| 220 /* Only the right 24 bits of put_buffer are used; the valid bits are |
| 221 * left-justified in this part. At most 16 bits can be passed to emit_bits |
| 222 * in one call, and we never retain more than 7 bits in put_buffer |
| 223 * between calls, so 24 bits are sufficient. |
| 224 */ |
| 225 |
| 226 LOCAL(void) |
| 227 emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size) |
| 228 /* Emit some bits, unless we are in gather mode */ |
| 229 { |
| 230 /* This routine is heavily used, so it's worth coding tightly. */ |
| 231 register INT32 put_buffer = (INT32) code; |
| 232 register int put_bits = entropy->put_bits; |
| 233 |
| 234 /* if size is 0, caller used an invalid Huffman table entry */ |
| 235 if (size == 0) |
| 236 ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); |
| 237 |
| 238 if (entropy->gather_statistics) |
| 239 return; /* do nothing if we're only getting stats */ |
| 240 |
| 241 put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ |
| 242 |
| 243 put_bits += size; /* new number of bits in buffer */ |
| 244 |
| 245 put_buffer <<= 24 - put_bits; /* align incoming bits */ |
| 246 |
| 247 put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */ |
| 248 |
| 249 while (put_bits >= 8) { |
| 250 int c = (int) ((put_buffer >> 16) & 0xFF); |
| 251 |
| 252 emit_byte(entropy, c); |
| 253 if (c == 0xFF) { /* need to stuff a zero byte? */ |
| 254 emit_byte(entropy, 0); |
| 255 } |
| 256 put_buffer <<= 8; |
| 257 put_bits -= 8; |
| 258 } |
| 259 |
| 260 entropy->put_buffer = put_buffer; /* update variables */ |
| 261 entropy->put_bits = put_bits; |
| 262 } |
| 263 |
| 264 |
| 265 LOCAL(void) |
| 266 flush_bits (phuff_entropy_ptr entropy) |
| 267 { |
| 268 emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */ |
| 269 entropy->put_buffer = 0; /* and reset bit-buffer to empty */ |
| 270 entropy->put_bits = 0; |
| 271 } |
| 272 |
| 273 |
| 274 /* |
| 275 * Emit (or just count) a Huffman symbol. |
| 276 */ |
| 277 |
| 278 LOCAL(void) |
| 279 emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol) |
| 280 { |
| 281 if (entropy->gather_statistics) |
| 282 entropy->count_ptrs[tbl_no][symbol]++; |
| 283 else { |
| 284 c_derived_tbl * tbl = entropy->derived_tbls[tbl_no]; |
| 285 emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); |
| 286 } |
| 287 } |
| 288 |
| 289 |
| 290 /* |
| 291 * Emit bits from a correction bit buffer. |
| 292 */ |
| 293 |
| 294 LOCAL(void) |
| 295 emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart, |
| 296 unsigned int nbits) |
| 297 { |
| 298 if (entropy->gather_statistics) |
| 299 return; /* no real work */ |
| 300 |
| 301 while (nbits > 0) { |
| 302 emit_bits(entropy, (unsigned int) (*bufstart), 1); |
| 303 bufstart++; |
| 304 nbits--; |
| 305 } |
| 306 } |
| 307 |
| 308 |
| 309 /* |
| 310 * Emit any pending EOBRUN symbol. |
| 311 */ |
| 312 |
| 313 LOCAL(void) |
| 314 emit_eobrun (phuff_entropy_ptr entropy) |
| 315 { |
| 316 register int temp, nbits; |
| 317 |
| 318 if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */ |
| 319 temp = entropy->EOBRUN; |
| 320 nbits = 0; |
| 321 while ((temp >>= 1)) |
| 322 nbits++; |
| 323 /* safety check: shouldn't happen given limited correction-bit buffer */ |
| 324 if (nbits > 14) |
| 325 ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); |
| 326 |
| 327 emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4); |
| 328 if (nbits) |
| 329 emit_bits(entropy, entropy->EOBRUN, nbits); |
| 330 |
| 331 entropy->EOBRUN = 0; |
| 332 |
| 333 /* Emit any buffered correction bits */ |
| 334 emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE); |
| 335 entropy->BE = 0; |
| 336 } |
| 337 } |
| 338 |
| 339 |
| 340 /* |
| 341 * Emit a restart marker & resynchronize predictions. |
| 342 */ |
| 343 |
| 344 LOCAL(void) |
| 345 emit_restart (phuff_entropy_ptr entropy, int restart_num) |
| 346 { |
| 347 int ci; |
| 348 |
| 349 emit_eobrun(entropy); |
| 350 |
| 351 if (! entropy->gather_statistics) { |
| 352 flush_bits(entropy); |
| 353 emit_byte(entropy, 0xFF); |
| 354 emit_byte(entropy, JPEG_RST0 + restart_num); |
| 355 } |
| 356 |
| 357 if (entropy->cinfo->Ss == 0) { |
| 358 /* Re-initialize DC predictions to 0 */ |
| 359 for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++) |
| 360 entropy->last_dc_val[ci] = 0; |
| 361 } else { |
| 362 /* Re-initialize all AC-related fields to 0 */ |
| 363 entropy->EOBRUN = 0; |
| 364 entropy->BE = 0; |
| 365 } |
| 366 } |
| 367 |
| 368 |
| 369 /* |
| 370 * MCU encoding for DC initial scan (either spectral selection, |
| 371 * or first pass of successive approximation). |
| 372 */ |
| 373 |
| 374 METHODDEF(boolean) |
| 375 encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| 376 { |
| 377 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
| 378 register int temp, temp2; |
| 379 register int nbits; |
| 380 int blkn, ci; |
| 381 int Al = cinfo->Al; |
| 382 JBLOCKROW block; |
| 383 jpeg_component_info * compptr; |
| 384 ISHIFT_TEMPS |
| 385 |
| 386 entropy->next_output_byte = cinfo->dest->next_output_byte; |
| 387 entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
| 388 |
| 389 /* Emit restart marker if needed */ |
| 390 if (cinfo->restart_interval) |
| 391 if (entropy->restarts_to_go == 0) |
| 392 emit_restart(entropy, entropy->next_restart_num); |
| 393 |
| 394 /* Encode the MCU data blocks */ |
| 395 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
| 396 block = MCU_data[blkn]; |
| 397 ci = cinfo->MCU_membership[blkn]; |
| 398 compptr = cinfo->cur_comp_info[ci]; |
| 399 |
| 400 /* Compute the DC value after the required point transform by Al. |
| 401 * This is simply an arithmetic right shift. |
| 402 */ |
| 403 temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al); |
| 404 |
| 405 /* DC differences are figured on the point-transformed values. */ |
| 406 temp = temp2 - entropy->last_dc_val[ci]; |
| 407 entropy->last_dc_val[ci] = temp2; |
| 408 |
| 409 /* Encode the DC coefficient difference per section G.1.2.1 */ |
| 410 temp2 = temp; |
| 411 if (temp < 0) { |
| 412 temp = -temp; /* temp is abs value of input */ |
| 413 /* For a negative input, want temp2 = bitwise complement of abs(input) */ |
| 414 /* This code assumes we are on a two's complement machine */ |
| 415 temp2--; |
| 416 } |
| 417 |
| 418 /* Find the number of bits needed for the magnitude of the coefficient */ |
| 419 nbits = 0; |
| 420 while (temp) { |
| 421 nbits++; |
| 422 temp >>= 1; |
| 423 } |
| 424 /* Check for out-of-range coefficient values. |
| 425 * Since we're encoding a difference, the range limit is twice as much. |
| 426 */ |
| 427 if (nbits > MAX_COEF_BITS+1) |
| 428 ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
| 429 |
| 430 /* Count/emit the Huffman-coded symbol for the number of bits */ |
| 431 emit_symbol(entropy, compptr->dc_tbl_no, nbits); |
| 432 |
| 433 /* Emit that number of bits of the value, if positive, */ |
| 434 /* or the complement of its magnitude, if negative. */ |
| 435 if (nbits) /* emit_bits rejects calls with size 0 */ |
| 436 emit_bits(entropy, (unsigned int) temp2, nbits); |
| 437 } |
| 438 |
| 439 cinfo->dest->next_output_byte = entropy->next_output_byte; |
| 440 cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
| 441 |
| 442 /* Update restart-interval state too */ |
| 443 if (cinfo->restart_interval) { |
| 444 if (entropy->restarts_to_go == 0) { |
| 445 entropy->restarts_to_go = cinfo->restart_interval; |
| 446 entropy->next_restart_num++; |
| 447 entropy->next_restart_num &= 7; |
| 448 } |
| 449 entropy->restarts_to_go--; |
| 450 } |
| 451 |
| 452 return TRUE; |
| 453 } |
| 454 |
| 455 |
| 456 /* |
| 457 * MCU encoding for AC initial scan (either spectral selection, |
| 458 * or first pass of successive approximation). |
| 459 */ |
| 460 |
| 461 METHODDEF(boolean) |
| 462 encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| 463 { |
| 464 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
| 465 register int temp, temp2; |
| 466 register int nbits; |
| 467 register int r, k; |
| 468 int Se = cinfo->Se; |
| 469 int Al = cinfo->Al; |
| 470 JBLOCKROW block; |
| 471 |
| 472 entropy->next_output_byte = cinfo->dest->next_output_byte; |
| 473 entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
| 474 |
| 475 /* Emit restart marker if needed */ |
| 476 if (cinfo->restart_interval) |
| 477 if (entropy->restarts_to_go == 0) |
| 478 emit_restart(entropy, entropy->next_restart_num); |
| 479 |
| 480 /* Encode the MCU data block */ |
| 481 block = MCU_data[0]; |
| 482 |
| 483 /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */ |
| 484 |
| 485 r = 0; /* r = run length of zeros */ |
| 486 |
| 487 for (k = cinfo->Ss; k <= Se; k++) { |
| 488 if ((temp = (*block)[jpeg_natural_order[k]]) == 0) { |
| 489 r++; |
| 490 continue; |
| 491 } |
| 492 /* We must apply the point transform by Al. For AC coefficients this |
| 493 * is an integer division with rounding towards 0. To do this portably |
| 494 * in C, we shift after obtaining the absolute value; so the code is |
| 495 * interwoven with finding the abs value (temp) and output bits (temp2). |
| 496 */ |
| 497 if (temp < 0) { |
| 498 temp = -temp; /* temp is abs value of input */ |
| 499 temp >>= Al; /* apply the point transform */ |
| 500 /* For a negative coef, want temp2 = bitwise complement of abs(coef) */ |
| 501 temp2 = ~temp; |
| 502 } else { |
| 503 temp >>= Al; /* apply the point transform */ |
| 504 temp2 = temp; |
| 505 } |
| 506 /* Watch out for case that nonzero coef is zero after point transform */ |
| 507 if (temp == 0) { |
| 508 r++; |
| 509 continue; |
| 510 } |
| 511 |
| 512 /* Emit any pending EOBRUN */ |
| 513 if (entropy->EOBRUN > 0) |
| 514 emit_eobrun(entropy); |
| 515 /* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
| 516 while (r > 15) { |
| 517 emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); |
| 518 r -= 16; |
| 519 } |
| 520 |
| 521 /* Find the number of bits needed for the magnitude of the coefficient */ |
| 522 nbits = 1; /* there must be at least one 1 bit */ |
| 523 while ((temp >>= 1)) |
| 524 nbits++; |
| 525 /* Check for out-of-range coefficient values */ |
| 526 if (nbits > MAX_COEF_BITS) |
| 527 ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
| 528 |
| 529 /* Count/emit Huffman symbol for run length / number of bits */ |
| 530 emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); |
| 531 |
| 532 /* Emit that number of bits of the value, if positive, */ |
| 533 /* or the complement of its magnitude, if negative. */ |
| 534 emit_bits(entropy, (unsigned int) temp2, nbits); |
| 535 |
| 536 r = 0; /* reset zero run length */ |
| 537 } |
| 538 |
| 539 if (r > 0) { /* If there are trailing zeroes, */ |
| 540 entropy->EOBRUN++; /* count an EOB */ |
| 541 if (entropy->EOBRUN == 0x7FFF) |
| 542 emit_eobrun(entropy); /* force it out to avoid overflow */ |
| 543 } |
| 544 |
| 545 cinfo->dest->next_output_byte = entropy->next_output_byte; |
| 546 cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
| 547 |
| 548 /* Update restart-interval state too */ |
| 549 if (cinfo->restart_interval) { |
| 550 if (entropy->restarts_to_go == 0) { |
| 551 entropy->restarts_to_go = cinfo->restart_interval; |
| 552 entropy->next_restart_num++; |
| 553 entropy->next_restart_num &= 7; |
| 554 } |
| 555 entropy->restarts_to_go--; |
| 556 } |
| 557 |
| 558 return TRUE; |
| 559 } |
| 560 |
| 561 |
| 562 /* |
| 563 * MCU encoding for DC successive approximation refinement scan. |
| 564 * Note: we assume such scans can be multi-component, although the spec |
| 565 * is not very clear on the point. |
| 566 */ |
| 567 |
| 568 METHODDEF(boolean) |
| 569 encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| 570 { |
| 571 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
| 572 register int temp; |
| 573 int blkn; |
| 574 int Al = cinfo->Al; |
| 575 JBLOCKROW block; |
| 576 |
| 577 entropy->next_output_byte = cinfo->dest->next_output_byte; |
| 578 entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
| 579 |
| 580 /* Emit restart marker if needed */ |
| 581 if (cinfo->restart_interval) |
| 582 if (entropy->restarts_to_go == 0) |
| 583 emit_restart(entropy, entropy->next_restart_num); |
| 584 |
| 585 /* Encode the MCU data blocks */ |
| 586 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
| 587 block = MCU_data[blkn]; |
| 588 |
| 589 /* We simply emit the Al'th bit of the DC coefficient value. */ |
| 590 temp = (*block)[0]; |
| 591 emit_bits(entropy, (unsigned int) (temp >> Al), 1); |
| 592 } |
| 593 |
| 594 cinfo->dest->next_output_byte = entropy->next_output_byte; |
| 595 cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
| 596 |
| 597 /* Update restart-interval state too */ |
| 598 if (cinfo->restart_interval) { |
| 599 if (entropy->restarts_to_go == 0) { |
| 600 entropy->restarts_to_go = cinfo->restart_interval; |
| 601 entropy->next_restart_num++; |
| 602 entropy->next_restart_num &= 7; |
| 603 } |
| 604 entropy->restarts_to_go--; |
| 605 } |
| 606 |
| 607 return TRUE; |
| 608 } |
| 609 |
| 610 |
| 611 /* |
| 612 * MCU encoding for AC successive approximation refinement scan. |
| 613 */ |
| 614 |
| 615 METHODDEF(boolean) |
| 616 encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| 617 { |
| 618 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
| 619 register int temp; |
| 620 register int r, k; |
| 621 int EOB; |
| 622 char *BR_buffer; |
| 623 unsigned int BR; |
| 624 int Se = cinfo->Se; |
| 625 int Al = cinfo->Al; |
| 626 JBLOCKROW block; |
| 627 int absvalues[DCTSIZE2]; |
| 628 |
| 629 entropy->next_output_byte = cinfo->dest->next_output_byte; |
| 630 entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
| 631 |
| 632 /* Emit restart marker if needed */ |
| 633 if (cinfo->restart_interval) |
| 634 if (entropy->restarts_to_go == 0) |
| 635 emit_restart(entropy, entropy->next_restart_num); |
| 636 |
| 637 /* Encode the MCU data block */ |
| 638 block = MCU_data[0]; |
| 639 |
| 640 /* It is convenient to make a pre-pass to determine the transformed |
| 641 * coefficients' absolute values and the EOB position. |
| 642 */ |
| 643 EOB = 0; |
| 644 for (k = cinfo->Ss; k <= Se; k++) { |
| 645 temp = (*block)[jpeg_natural_order[k]]; |
| 646 /* We must apply the point transform by Al. For AC coefficients this |
| 647 * is an integer division with rounding towards 0. To do this portably |
| 648 * in C, we shift after obtaining the absolute value. |
| 649 */ |
| 650 if (temp < 0) |
| 651 temp = -temp; /* temp is abs value of input */ |
| 652 temp >>= Al; /* apply the point transform */ |
| 653 absvalues[k] = temp; /* save abs value for main pass */ |
| 654 if (temp == 1) |
| 655 EOB = k; /* EOB = index of last newly-nonzero coef */ |
| 656 } |
| 657 |
| 658 /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */ |
| 659 |
| 660 r = 0; /* r = run length of zeros */ |
| 661 BR = 0; /* BR = count of buffered bits added now */ |
| 662 BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */ |
| 663 |
| 664 for (k = cinfo->Ss; k <= Se; k++) { |
| 665 if ((temp = absvalues[k]) == 0) { |
| 666 r++; |
| 667 continue; |
| 668 } |
| 669 |
| 670 /* Emit any required ZRLs, but not if they can be folded into EOB */ |
| 671 while (r > 15 && k <= EOB) { |
| 672 /* emit any pending EOBRUN and the BE correction bits */ |
| 673 emit_eobrun(entropy); |
| 674 /* Emit ZRL */ |
| 675 emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); |
| 676 r -= 16; |
| 677 /* Emit buffered correction bits that must be associated with ZRL */ |
| 678 emit_buffered_bits(entropy, BR_buffer, BR); |
| 679 BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ |
| 680 BR = 0; |
| 681 } |
| 682 |
| 683 /* If the coef was previously nonzero, it only needs a correction bit. |
| 684 * NOTE: a straight translation of the spec's figure G.7 would suggest |
| 685 * that we also need to test r > 15. But if r > 15, we can only get here |
| 686 * if k > EOB, which implies that this coefficient is not 1. |
| 687 */ |
| 688 if (temp > 1) { |
| 689 /* The correction bit is the next bit of the absolute value. */ |
| 690 BR_buffer[BR++] = (char) (temp & 1); |
| 691 continue; |
| 692 } |
| 693 |
| 694 /* Emit any pending EOBRUN and the BE correction bits */ |
| 695 emit_eobrun(entropy); |
| 696 |
| 697 /* Count/emit Huffman symbol for run length / number of bits */ |
| 698 emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); |
| 699 |
| 700 /* Emit output bit for newly-nonzero coef */ |
| 701 temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1; |
| 702 emit_bits(entropy, (unsigned int) temp, 1); |
| 703 |
| 704 /* Emit buffered correction bits that must be associated with this code */ |
| 705 emit_buffered_bits(entropy, BR_buffer, BR); |
| 706 BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ |
| 707 BR = 0; |
| 708 r = 0; /* reset zero run length */ |
| 709 } |
| 710 |
| 711 if (r > 0 || BR > 0) { /* If there are trailing zeroes, */ |
| 712 entropy->EOBRUN++; /* count an EOB */ |
| 713 entropy->BE += BR; /* concat my correction bits to older ones */ |
| 714 /* We force out the EOB if we risk either: |
| 715 * 1. overflow of the EOB counter; |
| 716 * 2. overflow of the correction bit buffer during the next MCU. |
| 717 */ |
| 718 if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1)) |
| 719 emit_eobrun(entropy); |
| 720 } |
| 721 |
| 722 cinfo->dest->next_output_byte = entropy->next_output_byte; |
| 723 cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
| 724 |
| 725 /* Update restart-interval state too */ |
| 726 if (cinfo->restart_interval) { |
| 727 if (entropy->restarts_to_go == 0) { |
| 728 entropy->restarts_to_go = cinfo->restart_interval; |
| 729 entropy->next_restart_num++; |
| 730 entropy->next_restart_num &= 7; |
| 731 } |
| 732 entropy->restarts_to_go--; |
| 733 } |
| 734 |
| 735 return TRUE; |
| 736 } |
| 737 |
| 738 |
| 739 /* |
| 740 * Finish up at the end of a Huffman-compressed progressive scan. |
| 741 */ |
| 742 |
| 743 METHODDEF(void) |
| 744 finish_pass_phuff (j_compress_ptr cinfo) |
| 745 { |
| 746 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
| 747 |
| 748 entropy->next_output_byte = cinfo->dest->next_output_byte; |
| 749 entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
| 750 |
| 751 /* Flush out any buffered data */ |
| 752 emit_eobrun(entropy); |
| 753 flush_bits(entropy); |
| 754 |
| 755 cinfo->dest->next_output_byte = entropy->next_output_byte; |
| 756 cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
| 757 } |
| 758 |
| 759 |
| 760 /* |
| 761 * Finish up a statistics-gathering pass and create the new Huffman tables. |
| 762 */ |
| 763 |
| 764 METHODDEF(void) |
| 765 finish_pass_gather_phuff (j_compress_ptr cinfo) |
| 766 { |
| 767 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
| 768 boolean is_DC_band; |
| 769 int ci, tbl; |
| 770 jpeg_component_info * compptr; |
| 771 JHUFF_TBL **htblptr; |
| 772 boolean did[NUM_HUFF_TBLS]; |
| 773 |
| 774 /* Flush out buffered data (all we care about is counting the EOB symbol) */ |
| 775 emit_eobrun(entropy); |
| 776 |
| 777 is_DC_band = (cinfo->Ss == 0); |
| 778 |
| 779 /* It's important not to apply jpeg_gen_optimal_table more than once |
| 780 * per table, because it clobbers the input frequency counts! |
| 781 */ |
| 782 MEMZERO(did, SIZEOF(did)); |
| 783 |
| 784 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
| 785 compptr = cinfo->cur_comp_info[ci]; |
| 786 if (is_DC_band) { |
| 787 if (cinfo->Ah != 0) /* DC refinement needs no table */ |
| 788 continue; |
| 789 tbl = compptr->dc_tbl_no; |
| 790 } else { |
| 791 tbl = compptr->ac_tbl_no; |
| 792 } |
| 793 if (! did[tbl]) { |
| 794 if (is_DC_band) |
| 795 htblptr = & cinfo->dc_huff_tbl_ptrs[tbl]; |
| 796 else |
| 797 htblptr = & cinfo->ac_huff_tbl_ptrs[tbl]; |
| 798 if (*htblptr == NULL) |
| 799 *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
| 800 jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]); |
| 801 did[tbl] = TRUE; |
| 802 } |
| 803 } |
| 804 } |
| 805 |
| 806 |
| 807 /* |
| 808 * Module initialization routine for progressive Huffman entropy encoding. |
| 809 */ |
| 810 |
| 811 GLOBAL(void) |
| 812 jinit_phuff_encoder (j_compress_ptr cinfo) |
| 813 { |
| 814 phuff_entropy_ptr entropy; |
| 815 int i; |
| 816 |
| 817 entropy = (phuff_entropy_ptr) |
| 818 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 819 SIZEOF(phuff_entropy_encoder)); |
| 820 cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; |
| 821 entropy->pub.start_pass = start_pass_phuff; |
| 822 |
| 823 /* Mark tables unallocated */ |
| 824 for (i = 0; i < NUM_HUFF_TBLS; i++) { |
| 825 entropy->derived_tbls[i] = NULL; |
| 826 entropy->count_ptrs[i] = NULL; |
| 827 } |
| 828 entropy->bit_buffer = NULL; /* needed only in AC refinement scan */ |
| 829 } |
| 830 |
| 831 #endif /* C_PROGRESSIVE_SUPPORTED */ |
OLD | NEW |