| Index: src/strtod.cc
|
| diff --git a/src/strtod.cc b/src/strtod.cc
|
| index ae278bd98cf657b6a5f92705e53d8e1df0c48779..0ed1b0d914791280dea19a54837ebc6673f164ec 100644
|
| --- a/src/strtod.cc
|
| +++ b/src/strtod.cc
|
| @@ -31,7 +31,8 @@
|
| #include "v8.h"
|
|
|
| #include "strtod.h"
|
| -// #include "cached-powers.h"
|
| +#include "cached-powers.h"
|
| +#include "double.h"
|
|
|
| namespace v8 {
|
| namespace internal {
|
| @@ -40,9 +41,9 @@ namespace internal {
|
| // Any integer with at most 15 decimal digits will hence fit into a double
|
| // (which has a 53bit significand) without loss of precision.
|
| static const int kMaxExactDoubleIntegerDecimalDigits = 15;
|
| -// 2^64 = 18446744073709551616
|
| -// Any integer with at most 19 digits will hence fit into a 64bit datatype.
|
| +// 2^64 = 18446744073709551616 > 10^19
|
| static const int kMaxUint64DecimalDigits = 19;
|
| +
|
| // Max double: 1.7976931348623157 x 10^308
|
| // Min non-zero double: 4.9406564584124654 x 10^-324
|
| // Any x >= 10^309 is interpreted as +infinity.
|
| @@ -52,6 +53,10 @@ static const int kMaxUint64DecimalDigits = 19;
|
| static const int kMaxDecimalPower = 309;
|
| static const int kMinDecimalPower = -324;
|
|
|
| +// 2^64 = 18446744073709551616
|
| +static const uint64_t kMaxUint64 = V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF);
|
| +
|
| +
|
| static const double exact_powers_of_ten[] = {
|
| 1.0, // 10^0
|
| 10.0,
|
| @@ -120,7 +125,7 @@ static double old_strtod(Vector<const char> buffer, int exponent) {
|
| static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
|
| for (int i = 0; i < buffer.length(); i++) {
|
| if (buffer[i] != '0') {
|
| - return Vector<const char>(buffer.start() + i, buffer.length() - i);
|
| + return buffer.SubVector(i, buffer.length());
|
| }
|
| }
|
| return Vector<const char>(buffer.start(), 0);
|
| @@ -130,25 +135,57 @@ static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
|
| static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
|
| for (int i = buffer.length() - 1; i >= 0; --i) {
|
| if (buffer[i] != '0') {
|
| - return Vector<const char>(buffer.start(), i + 1);
|
| + return buffer.SubVector(0, i + 1);
|
| }
|
| }
|
| return Vector<const char>(buffer.start(), 0);
|
| }
|
|
|
|
|
| -uint64_t ReadUint64(Vector<const char> buffer) {
|
| - ASSERT(buffer.length() <= kMaxUint64DecimalDigits);
|
| +// Reads digits from the buffer and converts them to a uint64.
|
| +// Reads in as many digits as fit into a uint64.
|
| +// When the string starts with "1844674407370955161" no further digit is read.
|
| +// Since 2^64 = 18446744073709551616 it would still be possible read another
|
| +// digit if it was less or equal than 6, but this would complicate the code.
|
| +static uint64_t ReadUint64(Vector<const char> buffer,
|
| + int* number_of_read_digits) {
|
| uint64_t result = 0;
|
| - for (int i = 0; i < buffer.length(); ++i) {
|
| - int digit = buffer[i] - '0';
|
| + int i = 0;
|
| + while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
|
| + int digit = buffer[i++] - '0';
|
| ASSERT(0 <= digit && digit <= 9);
|
| result = 10 * result + digit;
|
| }
|
| + *number_of_read_digits = i;
|
| return result;
|
| }
|
|
|
|
|
| +// Reads a DiyFp from the buffer.
|
| +// The returned DiyFp is not necessarily normalized.
|
| +// If remaining_decimals is zero then the returned DiyFp is accurate.
|
| +// Otherwise it has been rounded and has error of at most 1/2 ulp.
|
| +static void ReadDiyFp(Vector<const char> buffer,
|
| + DiyFp* result,
|
| + int* remaining_decimals) {
|
| + int read_digits;
|
| + uint64_t significand = ReadUint64(buffer, &read_digits);
|
| + if (buffer.length() == read_digits) {
|
| + *result = DiyFp(significand, 0);
|
| + *remaining_decimals = 0;
|
| + } else {
|
| + // Round the significand.
|
| + if (buffer[read_digits] >= '5') {
|
| + significand++;
|
| + }
|
| + // Compute the binary exponent.
|
| + int exponent = 0;
|
| + *result = DiyFp(significand, exponent);
|
| + *remaining_decimals = buffer.length() - read_digits;
|
| + }
|
| +}
|
| +
|
| +
|
| static bool DoubleStrtod(Vector<const char> trimmed,
|
| int exponent,
|
| double* result) {
|
| @@ -162,6 +199,7 @@ static bool DoubleStrtod(Vector<const char> trimmed,
|
| return false;
|
| #endif
|
| if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
|
| + int read_digits;
|
| // The trimmed input fits into a double.
|
| // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
|
| // can compute the result-double simply by multiplying (resp. dividing) the
|
| @@ -170,13 +208,15 @@ static bool DoubleStrtod(Vector<const char> trimmed,
|
| // return the best possible approximation.
|
| if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
|
| // 10^-exponent fits into a double.
|
| - *result = static_cast<double>(ReadUint64(trimmed));
|
| + *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
|
| + ASSERT(read_digits == trimmed.length());
|
| *result /= exact_powers_of_ten[-exponent];
|
| return true;
|
| }
|
| if (0 <= exponent && exponent < kExactPowersOfTenSize) {
|
| // 10^exponent fits into a double.
|
| - *result = static_cast<double>(ReadUint64(trimmed));
|
| + *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
|
| + ASSERT(read_digits == trimmed.length());
|
| *result *= exact_powers_of_ten[exponent];
|
| return true;
|
| }
|
| @@ -187,7 +227,8 @@ static bool DoubleStrtod(Vector<const char> trimmed,
|
| // The trimmed string was short and we can multiply it with
|
| // 10^remaining_digits. As a result the remaining exponent now fits
|
| // into a double too.
|
| - *result = static_cast<double>(ReadUint64(trimmed));
|
| + *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
|
| + ASSERT(read_digits == trimmed.length());
|
| *result *= exact_powers_of_ten[remaining_digits];
|
| *result *= exact_powers_of_ten[exponent - remaining_digits];
|
| return true;
|
| @@ -197,6 +238,142 @@ static bool DoubleStrtod(Vector<const char> trimmed,
|
| }
|
|
|
|
|
| +// Returns 10^exponent as an exact DiyFp.
|
| +// The given exponent must be in the range [1; kDecimalExponentDistance[.
|
| +static DiyFp AdjustmentPowerOfTen(int exponent) {
|
| + ASSERT(0 < exponent);
|
| + ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
|
| + // Simply hardcode the remaining powers for the given decimal exponent
|
| + // distance.
|
| + ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
|
| + switch (exponent) {
|
| + case 1: return DiyFp(V8_2PART_UINT64_C(0xa0000000, 00000000), -60);
|
| + case 2: return DiyFp(V8_2PART_UINT64_C(0xc8000000, 00000000), -57);
|
| + case 3: return DiyFp(V8_2PART_UINT64_C(0xfa000000, 00000000), -54);
|
| + case 4: return DiyFp(V8_2PART_UINT64_C(0x9c400000, 00000000), -50);
|
| + case 5: return DiyFp(V8_2PART_UINT64_C(0xc3500000, 00000000), -47);
|
| + case 6: return DiyFp(V8_2PART_UINT64_C(0xf4240000, 00000000), -44);
|
| + case 7: return DiyFp(V8_2PART_UINT64_C(0x98968000, 00000000), -40);
|
| + default:
|
| + UNREACHABLE();
|
| + return DiyFp(0, 0);
|
| + }
|
| +}
|
| +
|
| +
|
| +// If the function returns true then the result is the correct double.
|
| +// Otherwise it is either the correct double or the double that is just below
|
| +// the correct double.
|
| +static bool DiyFpStrtod(Vector<const char> buffer,
|
| + int exponent,
|
| + double* result) {
|
| + DiyFp input;
|
| + int remaining_decimals;
|
| + ReadDiyFp(buffer, &input, &remaining_decimals);
|
| + // Since we may have dropped some digits the input is not accurate.
|
| + // If remaining_decimals is different than 0 than the error is at most
|
| + // .5 ulp (unit in the last place).
|
| + // We don't want to deal with fractions and therefore keep a common
|
| + // denominator.
|
| + const int kDenominatorLog = 3;
|
| + const int kDenominator = 1 << kDenominatorLog;
|
| + // Move the remaining decimals into the exponent.
|
| + exponent += remaining_decimals;
|
| + int error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
|
| +
|
| + int old_e = input.e();
|
| + input.Normalize();
|
| + error <<= old_e - input.e();
|
| +
|
| + ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
|
| + if (exponent < PowersOfTenCache::kMinDecimalExponent) {
|
| + *result = 0.0;
|
| + return true;
|
| + }
|
| + DiyFp cached_power;
|
| + int cached_decimal_exponent;
|
| + PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
|
| + &cached_power,
|
| + &cached_decimal_exponent);
|
| +
|
| + if (cached_decimal_exponent != exponent) {
|
| + int adjustment_exponent = exponent - cached_decimal_exponent;
|
| + DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
|
| + input.Multiply(adjustment_power);
|
| + if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
|
| + // The product of input with the adjustment power fits into a 64 bit
|
| + // integer.
|
| + ASSERT(DiyFp::kSignificandSize == 64);
|
| + } else {
|
| + // The adjustment power is exact. There is hence only an error of 0.5.
|
| + error += kDenominator / 2;
|
| + }
|
| + }
|
| +
|
| + input.Multiply(cached_power);
|
| + // The error introduced by a multiplication of a*b equals
|
| + // error_a + error_b + error_a*error_b/2^64 + 0.5
|
| + // Substituting a with 'input' and b with 'cached_power' we have
|
| + // error_b = 0.5 (all cached powers have an error of less than 0.5 ulp),
|
| + // error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
|
| + int error_b = kDenominator / 2;
|
| + int error_ab = (error == 0 ? 0 : 1); // We round up to 1.
|
| + int fixed_error = kDenominator / 2;
|
| + error += error_b + error_ab + fixed_error;
|
| +
|
| + old_e = input.e();
|
| + input.Normalize();
|
| + error <<= old_e - input.e();
|
| +
|
| + // See if the double's significand changes if we add/subtract the error.
|
| + int order_of_magnitude = DiyFp::kSignificandSize + input.e();
|
| + int effective_significand_size =
|
| + Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
|
| + int precision_digits_count =
|
| + DiyFp::kSignificandSize - effective_significand_size;
|
| + if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
|
| + // This can only happen for very small denormals. In this case the
|
| + // half-way multiplied by the denominator exceeds the range of an uint64.
|
| + // Simply shift everything to the right.
|
| + int shift_amount = (precision_digits_count + kDenominatorLog) -
|
| + DiyFp::kSignificandSize + 1;
|
| + input.set_f(input.f() >> shift_amount);
|
| + input.set_e(input.e() + shift_amount);
|
| + // We add 1 for the lost precision of error, and kDenominator for
|
| + // the lost precision of input.f().
|
| + error = (error >> shift_amount) + 1 + kDenominator;
|
| + precision_digits_count -= shift_amount;
|
| + }
|
| + // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
|
| + ASSERT(DiyFp::kSignificandSize == 64);
|
| + ASSERT(precision_digits_count < 64);
|
| + uint64_t one64 = 1;
|
| + uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
|
| + uint64_t precision_bits = input.f() & precision_bits_mask;
|
| + uint64_t half_way = one64 << (precision_digits_count - 1);
|
| + precision_bits *= kDenominator;
|
| + half_way *= kDenominator;
|
| + DiyFp rounded_input(input.f() >> precision_digits_count,
|
| + input.e() + precision_digits_count);
|
| + if (precision_bits >= half_way + error) {
|
| + rounded_input.set_f(rounded_input.f() + 1);
|
| + }
|
| + // If the last_bits are too close to the half-way case than we are too
|
| + // inaccurate and round down. In this case we return false so that we can
|
| + // fall back to a more precise algorithm.
|
| +
|
| + *result = Double(rounded_input).value();
|
| + if (half_way - error < precision_bits && precision_bits < half_way + error) {
|
| + // Too imprecise. The caller will have to fall back to a slower version.
|
| + // However the returned number is guaranteed to be either the correct
|
| + // double, or the next-lower double.
|
| + return false;
|
| + } else {
|
| + return true;
|
| + }
|
| +}
|
| +
|
| +
|
| double Strtod(Vector<const char> buffer, int exponent) {
|
| Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
|
| Vector<const char> trimmed = TrimTrailingZeros(left_trimmed);
|
| @@ -204,8 +381,10 @@ double Strtod(Vector<const char> buffer, int exponent) {
|
| if (trimmed.length() == 0) return 0.0;
|
| if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) return V8_INFINITY;
|
| if (exponent + trimmed.length() <= kMinDecimalPower) return 0.0;
|
| +
|
| double result;
|
| - if (DoubleStrtod(trimmed, exponent, &result)) {
|
| + if (DoubleStrtod(trimmed, exponent, &result) ||
|
| + DiyFpStrtod(trimmed, exponent, &result)) {
|
| return result;
|
| }
|
| return old_strtod(trimmed, exponent);
|
|
|