Index: src/strtod.cc |
diff --git a/src/strtod.cc b/src/strtod.cc |
index 8809863a9e047cedf61df7d120b002a253a95865..ae278bd98cf657b6a5f92705e53d8e1df0c48779 100644 |
--- a/src/strtod.cc |
+++ b/src/strtod.cc |
@@ -31,8 +31,7 @@ |
#include "v8.h" |
#include "strtod.h" |
-#include "cached-powers.h" |
-#include "double.h" |
+// #include "cached-powers.h" |
namespace v8 { |
namespace internal { |
@@ -41,9 +40,9 @@ namespace internal { |
// Any integer with at most 15 decimal digits will hence fit into a double |
// (which has a 53bit significand) without loss of precision. |
static const int kMaxExactDoubleIntegerDecimalDigits = 15; |
-// 2^64 = 18446744073709551616 > 10^19 |
+// 2^64 = 18446744073709551616 |
+// Any integer with at most 19 digits will hence fit into a 64bit datatype. |
static const int kMaxUint64DecimalDigits = 19; |
- |
// Max double: 1.7976931348623157 x 10^308 |
// Min non-zero double: 4.9406564584124654 x 10^-324 |
// Any x >= 10^309 is interpreted as +infinity. |
@@ -53,10 +52,6 @@ static const int kMaxUint64DecimalDigits = 19; |
static const int kMaxDecimalPower = 309; |
static const int kMinDecimalPower = -324; |
-// 2^64 = 18446744073709551616 |
-static const uint64_t kMaxUint64 = V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF); |
- |
- |
static const double exact_powers_of_ten[] = { |
1.0, // 10^0 |
10.0, |
@@ -142,50 +137,18 @@ static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) { |
} |
-// Reads digits from the buffer and converts them to a uint64. |
-// Reads in as many digits as fit into a uint64. |
-// When the string starts with "1844674407370955161" no further digit is read. |
-// Since 2^64 = 18446744073709551616 it would still be possible read another |
-// digit if it was less or equal than 6, but this would complicate the code. |
-static uint64_t ReadUint64(Vector<const char> buffer, |
- int* number_of_read_digits) { |
+uint64_t ReadUint64(Vector<const char> buffer) { |
+ ASSERT(buffer.length() <= kMaxUint64DecimalDigits); |
uint64_t result = 0; |
- int i = 0; |
- while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) { |
- int digit = buffer[i++] - '0'; |
+ for (int i = 0; i < buffer.length(); ++i) { |
+ int digit = buffer[i] - '0'; |
ASSERT(0 <= digit && digit <= 9); |
result = 10 * result + digit; |
} |
- *number_of_read_digits = i; |
return result; |
} |
-// Reads a DiyFp from the buffer. |
-// The returned DiyFp is not necessarily normalized. |
-// If remaining_decimals is zero then the returned DiyFp is accurate. |
-// Otherwise it has been rounded and has error of at most 1/2 ulp. |
-static void ReadDiyFp(Vector<const char> buffer, |
- DiyFp* result, |
- int* remaining_decimals) { |
- int read_digits; |
- uint64_t significand = ReadUint64(buffer, &read_digits); |
- if (buffer.length() == read_digits) { |
- *result = DiyFp(significand, 0); |
- *remaining_decimals = 0; |
- } else { |
- // Round the significand. |
- if (buffer[read_digits] >= '5') { |
- significand++; |
- } |
- // Compute the binary exponent. |
- int exponent = 0; |
- *result = DiyFp(significand, exponent); |
- *remaining_decimals = buffer.length() - read_digits; |
- } |
-} |
- |
- |
static bool DoubleStrtod(Vector<const char> trimmed, |
int exponent, |
double* result) { |
@@ -199,7 +162,6 @@ static bool DoubleStrtod(Vector<const char> trimmed, |
return false; |
#endif |
if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) { |
- int read_digits; |
// The trimmed input fits into a double. |
// If the 10^exponent (resp. 10^-exponent) fits into a double too then we |
// can compute the result-double simply by multiplying (resp. dividing) the |
@@ -208,15 +170,13 @@ static bool DoubleStrtod(Vector<const char> trimmed, |
// return the best possible approximation. |
if (exponent < 0 && -exponent < kExactPowersOfTenSize) { |
// 10^-exponent fits into a double. |
- *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); |
- ASSERT(read_digits == trimmed.length()); |
+ *result = static_cast<double>(ReadUint64(trimmed)); |
*result /= exact_powers_of_ten[-exponent]; |
return true; |
} |
if (0 <= exponent && exponent < kExactPowersOfTenSize) { |
// 10^exponent fits into a double. |
- *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); |
- ASSERT(read_digits == trimmed.length()); |
+ *result = static_cast<double>(ReadUint64(trimmed)); |
*result *= exact_powers_of_ten[exponent]; |
return true; |
} |
@@ -227,8 +187,7 @@ static bool DoubleStrtod(Vector<const char> trimmed, |
// The trimmed string was short and we can multiply it with |
// 10^remaining_digits. As a result the remaining exponent now fits |
// into a double too. |
- *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); |
- ASSERT(read_digits == trimmed.length()); |
+ *result = static_cast<double>(ReadUint64(trimmed)); |
*result *= exact_powers_of_ten[remaining_digits]; |
*result *= exact_powers_of_ten[exponent - remaining_digits]; |
return true; |
@@ -238,145 +197,6 @@ static bool DoubleStrtod(Vector<const char> trimmed, |
} |
-// Returns 10^exponent as an exact DiyFp. |
-// The given exponent must be in the range [1; kDecimalExponentDistance[. |
-static DiyFp AdjustmentPowerOfTen(int exponent) { |
- ASSERT(0 < exponent); |
- ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance); |
- // Simply hardcode the remaining powers for the given decimal exponent |
- // distance. |
- ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8); |
- switch (exponent) { |
- case 1: return DiyFp(V8_2PART_UINT64_C(0xa0000000, 00000000), -60); |
- case 2: return DiyFp(V8_2PART_UINT64_C(0xc8000000, 00000000), -57); |
- case 3: return DiyFp(V8_2PART_UINT64_C(0xfa000000, 00000000), -54); |
- case 4: return DiyFp(V8_2PART_UINT64_C(0x9c400000, 00000000), -50); |
- case 5: return DiyFp(V8_2PART_UINT64_C(0xc3500000, 00000000), -47); |
- case 6: return DiyFp(V8_2PART_UINT64_C(0xf4240000, 00000000), -44); |
- case 7: return DiyFp(V8_2PART_UINT64_C(0x98968000, 00000000), -40); |
- default: |
- UNREACHABLE(); |
- return DiyFp(0, 0); |
- } |
-} |
- |
- |
-// If the function returns true then the result is the correct double. |
-// Otherwise it is either the correct double or the double that is just below |
-// the correct double. |
-static bool DiyFpStrtod(Vector<const char> buffer, |
- int exponent, |
- double* result) { |
- DiyFp input; |
- int remaining_decimals; |
- ReadDiyFp(buffer, &input, &remaining_decimals); |
- // Since we may have dropped some digits the input is not accurate. |
- // If remaining_decimals is different than 0 than the error is at most |
- // .5 ulp (unit in the last place). |
- // We don't want to deal with fractions and therefore keep a common |
- // denominator. |
- const int kDenominatorLog = 3; |
- const int kDenominator = 1 << kDenominatorLog; |
- // Move the remaining decimals into the exponent. |
- exponent += remaining_decimals; |
- int error = (remaining_decimals == 0 ? 0 : kDenominator / 2); |
- |
- int old_e = input.e(); |
- input.Normalize(); |
- error <<= old_e - input.e(); |
- |
- ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent); |
- if (exponent < PowersOfTenCache::kMinDecimalExponent) { |
- *result = 0.0; |
- return true; |
- } |
- DiyFp cached_power; |
- int cached_decimal_exponent; |
- PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent, |
- &cached_power, |
- &cached_decimal_exponent); |
- |
- if (cached_decimal_exponent != exponent) { |
- int adjustment_exponent = exponent - cached_decimal_exponent; |
- DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent); |
- input.Multiply(adjustment_power); |
- if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) { |
- // The product of input with the adjustment power fits into a 64 bit |
- // integer. |
- ASSERT(DiyFp::kSignificandSize == 64); |
- } else { |
- // The adjustment power is exact. There is hence only an error of 0.5. |
- error += kDenominator / 2; |
- } |
- } |
- |
- input.Multiply(cached_power); |
- // The error introduced by a multiplication of a*b equals |
- // error_a + error_b + error_a*error_b/2^64 + 0.5 |
- // Substituting a with 'input' and b with 'cached_power' we have |
- // error_b = 0.5 (all cached powers have an error of less than 0.5 ulp), |
- // error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64 |
- int error_b = kDenominator / 2; |
- int error_ab = (error == 0 ? 0 : 1); // We round up to 1. |
- int fixed_error = kDenominator / 2; |
- error += error_b + error_ab + fixed_error; |
- |
- old_e = input.e(); |
- input.Normalize(); |
- error <<= old_e - input.e(); |
- |
- // See if the double's significand changes if we add/subtract the error. |
- int order_of_magnitude = DiyFp::kSignificandSize + input.e(); |
- int effective_significand_size = |
- Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude); |
- int precision_digits_count = |
- DiyFp::kSignificandSize - effective_significand_size; |
- if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) { |
- // This can only happen for very small denormals. In this case the |
- // half-way multiplied by the denominator exceeds the range of an uint64. |
- // Simply shift everything to the right. |
- int shift_amount = (precision_digits_count + kDenominatorLog) - |
- DiyFp::kSignificandSize + 1; |
- input.set_f(input.f() >> shift_amount); |
- input.set_e(input.e() + shift_amount); |
- // We add 1 for the lost precision of error, and kDenominator for |
- // the lost precision of input.f(). |
- error = (error >> shift_amount) + 1 + kDenominator; |
- precision_digits_count -= shift_amount; |
- } |
- // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too. |
- ASSERT(DiyFp::kSignificandSize == 64); |
- ASSERT(precision_digits_count < 64); |
- uint64_t one64 = 1; |
- uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1; |
- uint64_t precision_bits = input.f() & precision_bits_mask; |
- uint64_t half_way = one64 << (precision_digits_count - 1); |
- precision_bits *= kDenominator; |
- half_way *= kDenominator; |
- // If the last_bits are too close to the half-way case than we are too |
- // inaccurate and round down. In this case we return false so that we can |
- // fall back to a more precise algorithm. |
- uint64_t significand = input.f(); |
- if (precision_bits >= half_way + error) { |
- significand = (significand >> precision_digits_count) + 1; |
- exponent = input.e() + precision_digits_count; |
- } else { |
- significand = (significand >> precision_digits_count); |
- exponent = input.e() + precision_digits_count; |
- } |
- Double d = Double(significand, exponent); |
- *result = d.value(); |
- if (half_way - error < precision_bits && precision_bits < half_way + error) { |
- // Too imprecise. The caller will have to fall back to a slower version. |
- // However the returned number is guaranteed to be either the correct |
- // double, or the next-lower double. |
- return false; |
- } else { |
- return true; |
- } |
-} |
- |
- |
double Strtod(Vector<const char> buffer, int exponent) { |
Vector<const char> left_trimmed = TrimLeadingZeros(buffer); |
Vector<const char> trimmed = TrimTrailingZeros(left_trimmed); |
@@ -384,10 +204,8 @@ double Strtod(Vector<const char> buffer, int exponent) { |
if (trimmed.length() == 0) return 0.0; |
if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) return V8_INFINITY; |
if (exponent + trimmed.length() <= kMinDecimalPower) return 0.0; |
- |
double result; |
- if (DoubleStrtod(trimmed, exponent, &result) || |
- DiyFpStrtod(trimmed, exponent, &result)) { |
+ if (DoubleStrtod(trimmed, exponent, &result)) { |
return result; |
} |
return old_strtod(trimmed, exponent); |