| Index: src/strtod.cc | 
| diff --git a/src/strtod.cc b/src/strtod.cc | 
| index 8809863a9e047cedf61df7d120b002a253a95865..ae278bd98cf657b6a5f92705e53d8e1df0c48779 100644 | 
| --- a/src/strtod.cc | 
| +++ b/src/strtod.cc | 
| @@ -31,8 +31,7 @@ | 
| #include "v8.h" | 
|  | 
| #include "strtod.h" | 
| -#include "cached-powers.h" | 
| -#include "double.h" | 
| +// #include "cached-powers.h" | 
|  | 
| namespace v8 { | 
| namespace internal { | 
| @@ -41,9 +40,9 @@ namespace internal { | 
| // Any integer with at most 15 decimal digits will hence fit into a double | 
| // (which has a 53bit significand) without loss of precision. | 
| static const int kMaxExactDoubleIntegerDecimalDigits = 15; | 
| -// 2^64 = 18446744073709551616 > 10^19 | 
| +// 2^64 = 18446744073709551616 | 
| +// Any integer with at most 19 digits will hence fit into a 64bit datatype. | 
| static const int kMaxUint64DecimalDigits = 19; | 
| - | 
| // Max double: 1.7976931348623157 x 10^308 | 
| // Min non-zero double: 4.9406564584124654 x 10^-324 | 
| // Any x >= 10^309 is interpreted as +infinity. | 
| @@ -53,10 +52,6 @@ static const int kMaxUint64DecimalDigits = 19; | 
| static const int kMaxDecimalPower = 309; | 
| static const int kMinDecimalPower = -324; | 
|  | 
| -// 2^64 = 18446744073709551616 | 
| -static const uint64_t kMaxUint64 = V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF); | 
| - | 
| - | 
| static const double exact_powers_of_ten[] = { | 
| 1.0,  // 10^0 | 
| 10.0, | 
| @@ -142,50 +137,18 @@ static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) { | 
| } | 
|  | 
|  | 
| -// Reads digits from the buffer and converts them to a uint64. | 
| -// Reads in as many digits as fit into a uint64. | 
| -// When the string starts with "1844674407370955161" no further digit is read. | 
| -// Since 2^64 = 18446744073709551616 it would still be possible read another | 
| -// digit if it was less or equal than 6, but this would complicate the code. | 
| -static uint64_t ReadUint64(Vector<const char> buffer, | 
| -                           int* number_of_read_digits) { | 
| +uint64_t ReadUint64(Vector<const char> buffer) { | 
| +  ASSERT(buffer.length() <= kMaxUint64DecimalDigits); | 
| uint64_t result = 0; | 
| -  int i = 0; | 
| -  while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) { | 
| -    int digit = buffer[i++] - '0'; | 
| +  for (int i = 0; i < buffer.length(); ++i) { | 
| +    int digit = buffer[i] - '0'; | 
| ASSERT(0 <= digit && digit <= 9); | 
| result = 10 * result + digit; | 
| } | 
| -  *number_of_read_digits = i; | 
| return result; | 
| } | 
|  | 
|  | 
| -// Reads a DiyFp from the buffer. | 
| -// The returned DiyFp is not necessarily normalized. | 
| -// If remaining_decimals is zero then the returned DiyFp is accurate. | 
| -// Otherwise it has been rounded and has error of at most 1/2 ulp. | 
| -static void ReadDiyFp(Vector<const char> buffer, | 
| -                      DiyFp* result, | 
| -                      int* remaining_decimals) { | 
| -  int read_digits; | 
| -  uint64_t significand = ReadUint64(buffer, &read_digits); | 
| -  if (buffer.length() == read_digits) { | 
| -    *result = DiyFp(significand, 0); | 
| -    *remaining_decimals = 0; | 
| -  } else { | 
| -    // Round the significand. | 
| -    if (buffer[read_digits] >= '5') { | 
| -      significand++; | 
| -    } | 
| -    // Compute the binary exponent. | 
| -    int exponent = 0; | 
| -    *result = DiyFp(significand, exponent); | 
| -    *remaining_decimals = buffer.length() - read_digits; | 
| -  } | 
| -} | 
| - | 
| - | 
| static bool DoubleStrtod(Vector<const char> trimmed, | 
| int exponent, | 
| double* result) { | 
| @@ -199,7 +162,6 @@ static bool DoubleStrtod(Vector<const char> trimmed, | 
| return false; | 
| #endif | 
| if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) { | 
| -    int read_digits; | 
| // The trimmed input fits into a double. | 
| // If the 10^exponent (resp. 10^-exponent) fits into a double too then we | 
| // can compute the result-double simply by multiplying (resp. dividing) the | 
| @@ -208,15 +170,13 @@ static bool DoubleStrtod(Vector<const char> trimmed, | 
| // return the best possible approximation. | 
| if (exponent < 0 && -exponent < kExactPowersOfTenSize) { | 
| // 10^-exponent fits into a double. | 
| -      *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); | 
| -      ASSERT(read_digits == trimmed.length()); | 
| +      *result = static_cast<double>(ReadUint64(trimmed)); | 
| *result /= exact_powers_of_ten[-exponent]; | 
| return true; | 
| } | 
| if (0 <= exponent && exponent < kExactPowersOfTenSize) { | 
| // 10^exponent fits into a double. | 
| -      *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); | 
| -      ASSERT(read_digits == trimmed.length()); | 
| +      *result = static_cast<double>(ReadUint64(trimmed)); | 
| *result *= exact_powers_of_ten[exponent]; | 
| return true; | 
| } | 
| @@ -227,8 +187,7 @@ static bool DoubleStrtod(Vector<const char> trimmed, | 
| // The trimmed string was short and we can multiply it with | 
| // 10^remaining_digits. As a result the remaining exponent now fits | 
| // into a double too. | 
| -      *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); | 
| -      ASSERT(read_digits == trimmed.length()); | 
| +      *result = static_cast<double>(ReadUint64(trimmed)); | 
| *result *= exact_powers_of_ten[remaining_digits]; | 
| *result *= exact_powers_of_ten[exponent - remaining_digits]; | 
| return true; | 
| @@ -238,145 +197,6 @@ static bool DoubleStrtod(Vector<const char> trimmed, | 
| } | 
|  | 
|  | 
| -// Returns 10^exponent as an exact DiyFp. | 
| -// The given exponent must be in the range [1; kDecimalExponentDistance[. | 
| -static DiyFp AdjustmentPowerOfTen(int exponent) { | 
| -  ASSERT(0 < exponent); | 
| -  ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance); | 
| -  // Simply hardcode the remaining powers for the given decimal exponent | 
| -  // distance. | 
| -  ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8); | 
| -  switch (exponent) { | 
| -    case 1: return DiyFp(V8_2PART_UINT64_C(0xa0000000, 00000000), -60); | 
| -    case 2: return DiyFp(V8_2PART_UINT64_C(0xc8000000, 00000000), -57); | 
| -    case 3: return DiyFp(V8_2PART_UINT64_C(0xfa000000, 00000000), -54); | 
| -    case 4: return DiyFp(V8_2PART_UINT64_C(0x9c400000, 00000000), -50); | 
| -    case 5: return DiyFp(V8_2PART_UINT64_C(0xc3500000, 00000000), -47); | 
| -    case 6: return DiyFp(V8_2PART_UINT64_C(0xf4240000, 00000000), -44); | 
| -    case 7: return DiyFp(V8_2PART_UINT64_C(0x98968000, 00000000), -40); | 
| -    default: | 
| -      UNREACHABLE(); | 
| -      return DiyFp(0, 0); | 
| -  } | 
| -} | 
| - | 
| - | 
| -// If the function returns true then the result is the correct double. | 
| -// Otherwise it is either the correct double or the double that is just below | 
| -// the correct double. | 
| -static bool DiyFpStrtod(Vector<const char> buffer, | 
| -                        int exponent, | 
| -                        double* result) { | 
| -  DiyFp input; | 
| -  int remaining_decimals; | 
| -  ReadDiyFp(buffer, &input, &remaining_decimals); | 
| -  // Since we may have dropped some digits the input is not accurate. | 
| -  // If remaining_decimals is different than 0 than the error is at most | 
| -  // .5 ulp (unit in the last place). | 
| -  // We don't want to deal with fractions and therefore keep a common | 
| -  // denominator. | 
| -  const int kDenominatorLog = 3; | 
| -  const int kDenominator = 1 << kDenominatorLog; | 
| -  // Move the remaining decimals into the exponent. | 
| -  exponent += remaining_decimals; | 
| -  int error = (remaining_decimals == 0 ? 0 : kDenominator / 2); | 
| - | 
| -  int old_e = input.e(); | 
| -  input.Normalize(); | 
| -  error <<= old_e - input.e(); | 
| - | 
| -  ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent); | 
| -  if (exponent < PowersOfTenCache::kMinDecimalExponent) { | 
| -    *result = 0.0; | 
| -    return true; | 
| -  } | 
| -  DiyFp cached_power; | 
| -  int cached_decimal_exponent; | 
| -  PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent, | 
| -                                                     &cached_power, | 
| -                                                     &cached_decimal_exponent); | 
| - | 
| -  if (cached_decimal_exponent != exponent) { | 
| -    int adjustment_exponent = exponent - cached_decimal_exponent; | 
| -    DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent); | 
| -    input.Multiply(adjustment_power); | 
| -    if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) { | 
| -      // The product of input with the adjustment power fits into a 64 bit | 
| -      // integer. | 
| -      ASSERT(DiyFp::kSignificandSize == 64); | 
| -    } else { | 
| -      // The adjustment power is exact. There is hence only an error of 0.5. | 
| -      error += kDenominator / 2; | 
| -    } | 
| -  } | 
| - | 
| -  input.Multiply(cached_power); | 
| -  // The error introduced by a multiplication of a*b equals | 
| -  //   error_a + error_b + error_a*error_b/2^64 + 0.5 | 
| -  // Substituting a with 'input' and b with 'cached_power' we have | 
| -  //   error_b = 0.5  (all cached powers have an error of less than 0.5 ulp), | 
| -  //   error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64 | 
| -  int error_b = kDenominator / 2; | 
| -  int error_ab = (error == 0 ? 0 : 1);  // We round up to 1. | 
| -  int fixed_error = kDenominator / 2; | 
| -  error += error_b + error_ab + fixed_error; | 
| - | 
| -  old_e = input.e(); | 
| -  input.Normalize(); | 
| -  error <<= old_e - input.e(); | 
| - | 
| -  // See if the double's significand changes if we add/subtract the error. | 
| -  int order_of_magnitude = DiyFp::kSignificandSize + input.e(); | 
| -  int effective_significand_size = | 
| -      Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude); | 
| -  int precision_digits_count = | 
| -      DiyFp::kSignificandSize - effective_significand_size; | 
| -  if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) { | 
| -    // This can only happen for very small denormals. In this case the | 
| -    // half-way multiplied by the denominator exceeds the range of an uint64. | 
| -    // Simply shift everything to the right. | 
| -    int shift_amount = (precision_digits_count + kDenominatorLog) - | 
| -        DiyFp::kSignificandSize + 1; | 
| -    input.set_f(input.f() >> shift_amount); | 
| -    input.set_e(input.e() + shift_amount); | 
| -    // We add 1 for the lost precision of error, and kDenominator for | 
| -    // the lost precision of input.f(). | 
| -    error = (error >> shift_amount) + 1 + kDenominator; | 
| -    precision_digits_count -= shift_amount; | 
| -  } | 
| -  // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too. | 
| -  ASSERT(DiyFp::kSignificandSize == 64); | 
| -  ASSERT(precision_digits_count < 64); | 
| -  uint64_t one64 = 1; | 
| -  uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1; | 
| -  uint64_t precision_bits = input.f() & precision_bits_mask; | 
| -  uint64_t half_way = one64 << (precision_digits_count - 1); | 
| -  precision_bits *= kDenominator; | 
| -  half_way *= kDenominator; | 
| -  // If the last_bits are too close to the half-way case than we are too | 
| -  // inaccurate and round down. In this case we return false so that we can | 
| -  // fall back to a more precise algorithm. | 
| -  uint64_t significand = input.f(); | 
| -  if (precision_bits >= half_way + error) { | 
| -    significand = (significand >> precision_digits_count) + 1; | 
| -    exponent = input.e() + precision_digits_count; | 
| -  } else { | 
| -    significand = (significand >> precision_digits_count); | 
| -    exponent = input.e() + precision_digits_count; | 
| -  } | 
| -  Double d = Double(significand, exponent); | 
| -  *result = d.value(); | 
| -  if (half_way - error < precision_bits && precision_bits < half_way + error) { | 
| -    // Too imprecise. The caller will have to fall back to a slower version. | 
| -    // However the returned number is guaranteed to be either the correct | 
| -    // double, or the next-lower double. | 
| -    return false; | 
| -  } else { | 
| -    return true; | 
| -  } | 
| -} | 
| - | 
| - | 
| double Strtod(Vector<const char> buffer, int exponent) { | 
| Vector<const char> left_trimmed = TrimLeadingZeros(buffer); | 
| Vector<const char> trimmed = TrimTrailingZeros(left_trimmed); | 
| @@ -384,10 +204,8 @@ double Strtod(Vector<const char> buffer, int exponent) { | 
| if (trimmed.length() == 0) return 0.0; | 
| if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) return V8_INFINITY; | 
| if (exponent + trimmed.length() <= kMinDecimalPower) return 0.0; | 
| - | 
| double result; | 
| -  if (DoubleStrtod(trimmed, exponent, &result) || | 
| -      DiyFpStrtod(trimmed, exponent, &result)) { | 
| +  if (DoubleStrtod(trimmed, exponent, &result)) { | 
| return result; | 
| } | 
| return old_strtod(trimmed, exponent); | 
|  |