Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1109)

Unified Diff: src/strtod.cc

Issue 3870003: Revert "Strtod fast-case that uses DiyFps and cached powers of ten." (Closed)
Patch Set: Created 10 years, 2 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/fast-dtoa.cc ('k') | test/cctest/test-strtod.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/strtod.cc
diff --git a/src/strtod.cc b/src/strtod.cc
index 8809863a9e047cedf61df7d120b002a253a95865..ae278bd98cf657b6a5f92705e53d8e1df0c48779 100644
--- a/src/strtod.cc
+++ b/src/strtod.cc
@@ -31,8 +31,7 @@
#include "v8.h"
#include "strtod.h"
-#include "cached-powers.h"
-#include "double.h"
+// #include "cached-powers.h"
namespace v8 {
namespace internal {
@@ -41,9 +40,9 @@ namespace internal {
// Any integer with at most 15 decimal digits will hence fit into a double
// (which has a 53bit significand) without loss of precision.
static const int kMaxExactDoubleIntegerDecimalDigits = 15;
-// 2^64 = 18446744073709551616 > 10^19
+// 2^64 = 18446744073709551616
+// Any integer with at most 19 digits will hence fit into a 64bit datatype.
static const int kMaxUint64DecimalDigits = 19;
-
// Max double: 1.7976931348623157 x 10^308
// Min non-zero double: 4.9406564584124654 x 10^-324
// Any x >= 10^309 is interpreted as +infinity.
@@ -53,10 +52,6 @@ static const int kMaxUint64DecimalDigits = 19;
static const int kMaxDecimalPower = 309;
static const int kMinDecimalPower = -324;
-// 2^64 = 18446744073709551616
-static const uint64_t kMaxUint64 = V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF);
-
-
static const double exact_powers_of_ten[] = {
1.0, // 10^0
10.0,
@@ -142,50 +137,18 @@ static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
}
-// Reads digits from the buffer and converts them to a uint64.
-// Reads in as many digits as fit into a uint64.
-// When the string starts with "1844674407370955161" no further digit is read.
-// Since 2^64 = 18446744073709551616 it would still be possible read another
-// digit if it was less or equal than 6, but this would complicate the code.
-static uint64_t ReadUint64(Vector<const char> buffer,
- int* number_of_read_digits) {
+uint64_t ReadUint64(Vector<const char> buffer) {
+ ASSERT(buffer.length() <= kMaxUint64DecimalDigits);
uint64_t result = 0;
- int i = 0;
- while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
- int digit = buffer[i++] - '0';
+ for (int i = 0; i < buffer.length(); ++i) {
+ int digit = buffer[i] - '0';
ASSERT(0 <= digit && digit <= 9);
result = 10 * result + digit;
}
- *number_of_read_digits = i;
return result;
}
-// Reads a DiyFp from the buffer.
-// The returned DiyFp is not necessarily normalized.
-// If remaining_decimals is zero then the returned DiyFp is accurate.
-// Otherwise it has been rounded and has error of at most 1/2 ulp.
-static void ReadDiyFp(Vector<const char> buffer,
- DiyFp* result,
- int* remaining_decimals) {
- int read_digits;
- uint64_t significand = ReadUint64(buffer, &read_digits);
- if (buffer.length() == read_digits) {
- *result = DiyFp(significand, 0);
- *remaining_decimals = 0;
- } else {
- // Round the significand.
- if (buffer[read_digits] >= '5') {
- significand++;
- }
- // Compute the binary exponent.
- int exponent = 0;
- *result = DiyFp(significand, exponent);
- *remaining_decimals = buffer.length() - read_digits;
- }
-}
-
-
static bool DoubleStrtod(Vector<const char> trimmed,
int exponent,
double* result) {
@@ -199,7 +162,6 @@ static bool DoubleStrtod(Vector<const char> trimmed,
return false;
#endif
if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
- int read_digits;
// The trimmed input fits into a double.
// If the 10^exponent (resp. 10^-exponent) fits into a double too then we
// can compute the result-double simply by multiplying (resp. dividing) the
@@ -208,15 +170,13 @@ static bool DoubleStrtod(Vector<const char> trimmed,
// return the best possible approximation.
if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
// 10^-exponent fits into a double.
- *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
- ASSERT(read_digits == trimmed.length());
+ *result = static_cast<double>(ReadUint64(trimmed));
*result /= exact_powers_of_ten[-exponent];
return true;
}
if (0 <= exponent && exponent < kExactPowersOfTenSize) {
// 10^exponent fits into a double.
- *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
- ASSERT(read_digits == trimmed.length());
+ *result = static_cast<double>(ReadUint64(trimmed));
*result *= exact_powers_of_ten[exponent];
return true;
}
@@ -227,8 +187,7 @@ static bool DoubleStrtod(Vector<const char> trimmed,
// The trimmed string was short and we can multiply it with
// 10^remaining_digits. As a result the remaining exponent now fits
// into a double too.
- *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
- ASSERT(read_digits == trimmed.length());
+ *result = static_cast<double>(ReadUint64(trimmed));
*result *= exact_powers_of_ten[remaining_digits];
*result *= exact_powers_of_ten[exponent - remaining_digits];
return true;
@@ -238,145 +197,6 @@ static bool DoubleStrtod(Vector<const char> trimmed,
}
-// Returns 10^exponent as an exact DiyFp.
-// The given exponent must be in the range [1; kDecimalExponentDistance[.
-static DiyFp AdjustmentPowerOfTen(int exponent) {
- ASSERT(0 < exponent);
- ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
- // Simply hardcode the remaining powers for the given decimal exponent
- // distance.
- ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
- switch (exponent) {
- case 1: return DiyFp(V8_2PART_UINT64_C(0xa0000000, 00000000), -60);
- case 2: return DiyFp(V8_2PART_UINT64_C(0xc8000000, 00000000), -57);
- case 3: return DiyFp(V8_2PART_UINT64_C(0xfa000000, 00000000), -54);
- case 4: return DiyFp(V8_2PART_UINT64_C(0x9c400000, 00000000), -50);
- case 5: return DiyFp(V8_2PART_UINT64_C(0xc3500000, 00000000), -47);
- case 6: return DiyFp(V8_2PART_UINT64_C(0xf4240000, 00000000), -44);
- case 7: return DiyFp(V8_2PART_UINT64_C(0x98968000, 00000000), -40);
- default:
- UNREACHABLE();
- return DiyFp(0, 0);
- }
-}
-
-
-// If the function returns true then the result is the correct double.
-// Otherwise it is either the correct double or the double that is just below
-// the correct double.
-static bool DiyFpStrtod(Vector<const char> buffer,
- int exponent,
- double* result) {
- DiyFp input;
- int remaining_decimals;
- ReadDiyFp(buffer, &input, &remaining_decimals);
- // Since we may have dropped some digits the input is not accurate.
- // If remaining_decimals is different than 0 than the error is at most
- // .5 ulp (unit in the last place).
- // We don't want to deal with fractions and therefore keep a common
- // denominator.
- const int kDenominatorLog = 3;
- const int kDenominator = 1 << kDenominatorLog;
- // Move the remaining decimals into the exponent.
- exponent += remaining_decimals;
- int error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
-
- int old_e = input.e();
- input.Normalize();
- error <<= old_e - input.e();
-
- ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
- if (exponent < PowersOfTenCache::kMinDecimalExponent) {
- *result = 0.0;
- return true;
- }
- DiyFp cached_power;
- int cached_decimal_exponent;
- PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
- &cached_power,
- &cached_decimal_exponent);
-
- if (cached_decimal_exponent != exponent) {
- int adjustment_exponent = exponent - cached_decimal_exponent;
- DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
- input.Multiply(adjustment_power);
- if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
- // The product of input with the adjustment power fits into a 64 bit
- // integer.
- ASSERT(DiyFp::kSignificandSize == 64);
- } else {
- // The adjustment power is exact. There is hence only an error of 0.5.
- error += kDenominator / 2;
- }
- }
-
- input.Multiply(cached_power);
- // The error introduced by a multiplication of a*b equals
- // error_a + error_b + error_a*error_b/2^64 + 0.5
- // Substituting a with 'input' and b with 'cached_power' we have
- // error_b = 0.5 (all cached powers have an error of less than 0.5 ulp),
- // error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
- int error_b = kDenominator / 2;
- int error_ab = (error == 0 ? 0 : 1); // We round up to 1.
- int fixed_error = kDenominator / 2;
- error += error_b + error_ab + fixed_error;
-
- old_e = input.e();
- input.Normalize();
- error <<= old_e - input.e();
-
- // See if the double's significand changes if we add/subtract the error.
- int order_of_magnitude = DiyFp::kSignificandSize + input.e();
- int effective_significand_size =
- Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
- int precision_digits_count =
- DiyFp::kSignificandSize - effective_significand_size;
- if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
- // This can only happen for very small denormals. In this case the
- // half-way multiplied by the denominator exceeds the range of an uint64.
- // Simply shift everything to the right.
- int shift_amount = (precision_digits_count + kDenominatorLog) -
- DiyFp::kSignificandSize + 1;
- input.set_f(input.f() >> shift_amount);
- input.set_e(input.e() + shift_amount);
- // We add 1 for the lost precision of error, and kDenominator for
- // the lost precision of input.f().
- error = (error >> shift_amount) + 1 + kDenominator;
- precision_digits_count -= shift_amount;
- }
- // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
- ASSERT(DiyFp::kSignificandSize == 64);
- ASSERT(precision_digits_count < 64);
- uint64_t one64 = 1;
- uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
- uint64_t precision_bits = input.f() & precision_bits_mask;
- uint64_t half_way = one64 << (precision_digits_count - 1);
- precision_bits *= kDenominator;
- half_way *= kDenominator;
- // If the last_bits are too close to the half-way case than we are too
- // inaccurate and round down. In this case we return false so that we can
- // fall back to a more precise algorithm.
- uint64_t significand = input.f();
- if (precision_bits >= half_way + error) {
- significand = (significand >> precision_digits_count) + 1;
- exponent = input.e() + precision_digits_count;
- } else {
- significand = (significand >> precision_digits_count);
- exponent = input.e() + precision_digits_count;
- }
- Double d = Double(significand, exponent);
- *result = d.value();
- if (half_way - error < precision_bits && precision_bits < half_way + error) {
- // Too imprecise. The caller will have to fall back to a slower version.
- // However the returned number is guaranteed to be either the correct
- // double, or the next-lower double.
- return false;
- } else {
- return true;
- }
-}
-
-
double Strtod(Vector<const char> buffer, int exponent) {
Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
Vector<const char> trimmed = TrimTrailingZeros(left_trimmed);
@@ -384,10 +204,8 @@ double Strtod(Vector<const char> buffer, int exponent) {
if (trimmed.length() == 0) return 0.0;
if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) return V8_INFINITY;
if (exponent + trimmed.length() <= kMinDecimalPower) return 0.0;
-
double result;
- if (DoubleStrtod(trimmed, exponent, &result) ||
- DiyFpStrtod(trimmed, exponent, &result)) {
+ if (DoubleStrtod(trimmed, exponent, &result)) {
return result;
}
return old_strtod(trimmed, exponent);
« no previous file with comments | « src/fast-dtoa.cc ('k') | test/cctest/test-strtod.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698