| Index: third_party/libwebp/frame.c
|
| ===================================================================
|
| --- third_party/libwebp/frame.c (revision 0)
|
| +++ third_party/libwebp/frame.c (revision 0)
|
| @@ -0,0 +1,407 @@
|
| +// Copyright 2010 Google Inc.
|
| +//
|
| +// This code is licensed under the same terms as WebM:
|
| +// Software License Agreement: http://www.webmproject.org/license/software/
|
| +// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
| +// -----------------------------------------------------------------------------
|
| +//
|
| +// Frame-reconstruction function. Memory allocation.
|
| +//
|
| +// Author: Skal (pascal.massimino@gmail.com)
|
| +
|
| +#include <stdlib.h>
|
| +#include "vp8i.h"
|
| +
|
| +#if defined(__cplusplus) || defined(c_plusplus)
|
| +extern "C" {
|
| +#endif
|
| +
|
| +#define ALIGN_MASK (32 - 1)
|
| +
|
| +//-----------------------------------------------------------------------------
|
| +// Memory setup
|
| +
|
| +// how many extra luma lines are needed for caching, given a filtering level
|
| +static const uint8_t kFilterExtraRows[3] = { 0, 4, 8 };
|
| +
|
| +int VP8InitFrame(VP8Decoder* const dec, VP8Io* io) {
|
| + const int mb_w = dec->mb_w_;
|
| + const int intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t);
|
| + const int top_size = (16 + 8 + 8) * mb_w;
|
| + const int info_size = (mb_w + 1) * sizeof(VP8MB);
|
| + const int yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_);
|
| + const int coeffs_size = 384 * sizeof(*dec->coeffs_);
|
| + const int cache_height = (dec->filter_type_ == 0) ? 0 :
|
| + (16 + kFilterExtraRows[dec->filter_type_]) * 3 / 2;
|
| + const int cache_size = top_size * cache_height;
|
| + const int needed = intra_pred_mode_size
|
| + + top_size + info_size
|
| + + yuv_size + coeffs_size
|
| + + cache_size + ALIGN_MASK;
|
| + if (needed > dec->mem_size_) {
|
| + free(dec->mem_);
|
| + dec->mem_size_ = 0;
|
| + dec->mem_ = (uint8_t*)malloc(needed);
|
| + if (dec->mem_ == NULL) {
|
| + return VP8SetError(dec, 1, "no memory during frame initialization.");
|
| + }
|
| + dec->mem_size_ = needed;
|
| + }
|
| +
|
| + uint8_t* mem = (uint8_t*)dec->mem_;
|
| + dec->intra_t_ = (uint8_t*)mem;
|
| + mem += intra_pred_mode_size;
|
| +
|
| + dec->y_t_ = (uint8_t*)mem;
|
| + mem += 16 * mb_w;
|
| + dec->u_t_ = (uint8_t*)mem;
|
| + mem += 8 * mb_w;
|
| + dec->v_t_ = (uint8_t*)mem;
|
| + mem += 8 * mb_w;
|
| +
|
| + dec->mb_info_ = ((VP8MB*)mem) + 1;
|
| + mem += info_size;
|
| +
|
| + mem = (uint8_t*)((uint64_t)(mem + ALIGN_MASK) & ~ALIGN_MASK);
|
| + assert((yuv_size & ALIGN_MASK) == 0);
|
| + dec->yuv_b_ = (uint8_t*)mem;
|
| + mem += yuv_size;
|
| +
|
| + dec->coeffs_ = (int16_t*)mem;
|
| + mem += coeffs_size;
|
| +
|
| + dec->cache_y_stride_ = 16 * mb_w;
|
| + dec->cache_uv_stride_ = 8 * mb_w;
|
| + if (dec->filter_type_ == 0) {
|
| + dec->cache_y_ = NULL;
|
| + dec->cache_u_ = NULL;
|
| + dec->cache_v_ = NULL;
|
| + } else {
|
| + const int extra_rows = kFilterExtraRows[dec->filter_type_];
|
| + const int extra_y = extra_rows * dec->cache_y_stride_;
|
| + const int extra_uv =(extra_rows / 2) * dec->cache_uv_stride_;
|
| + dec->cache_y_ = ((uint8_t*)mem) + extra_y;
|
| + dec->cache_u_ = dec->cache_y_ + 16 * dec->cache_y_stride_ + extra_uv;
|
| + dec->cache_v_ = dec->cache_u_ + 8 * dec->cache_uv_stride_ + extra_uv;
|
| + }
|
| + mem += cache_size;
|
| +
|
| + // note: left-info is initialized once for all.
|
| + memset(dec->mb_info_ - 1, 0, (mb_w + 1) * sizeof(*dec->mb_info_));
|
| +
|
| + // initialize top
|
| + memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size);
|
| +
|
| + // prepare 'io'
|
| + io->width = dec->pic_hdr_.width_;
|
| + io->height = dec->pic_hdr_.height_;
|
| + io->mb_x = 0;
|
| + io->mb_y = 0;
|
| + if (dec->filter_type_ == 0) {
|
| + io->y = dec->yuv_b_ + Y_OFF;
|
| + io->u = dec->yuv_b_ + U_OFF;
|
| + io->v = dec->yuv_b_ + V_OFF;
|
| + io->y_stride = BPS;
|
| + io->uv_stride = BPS;
|
| + } else {
|
| + io->y = dec->cache_y_;
|
| + io->u = dec->cache_u_;
|
| + io->v = dec->cache_v_;
|
| + io->y_stride = dec->cache_y_stride_;
|
| + io->uv_stride = dec->cache_uv_stride_;
|
| + io->mb_w = io->width;
|
| + }
|
| +
|
| + // Init critical function pointers and look-up tables.
|
| + VP8DspInitTables();
|
| + VP8DspInit();
|
| +
|
| + return 1;
|
| +}
|
| +
|
| +//-----------------------------------------------------------------------------
|
| +// Filtering
|
| +
|
| +static inline int hev_thresh_from_level(int level, int keyframe) {
|
| + if (keyframe) {
|
| + return (level >= 40) ? 2 : (level >= 15) ? 1 : 0;
|
| + } else {
|
| + return (level >= 40) ? 3 : (level >= 20) ? 2 : (level >= 15) ? 1 : 0;
|
| + }
|
| +}
|
| +
|
| +static void DoFilter(VP8Decoder* const dec, int mb_x, int mb_y) {
|
| + VP8MB* const mb = dec->mb_info_ + mb_x;
|
| + uint8_t* const y_dst = dec->cache_y_ + mb_x * 16;
|
| + const int y_bps = dec->cache_y_stride_;
|
| + const int level = mb->f_level_;
|
| + const int ilevel = mb->f_ilevel_;
|
| + const int limit = 2 * level + ilevel;
|
| + if (dec->filter_type_ == 1) { // simple
|
| + if (mb_x > 0) {
|
| + VP8SimpleHFilter16(y_dst, y_bps, limit + 4);
|
| + }
|
| + if (mb->f_inner_) {
|
| + VP8SimpleHFilter16i(y_dst, y_bps, limit);
|
| + }
|
| + if (mb_y > 0) {
|
| + VP8SimpleVFilter16(y_dst, y_bps, limit + 4);
|
| + }
|
| + if (mb->f_inner_) {
|
| + VP8SimpleVFilter16i(y_dst, y_bps, limit);
|
| + }
|
| + } else { // complex
|
| + uint8_t* const u_dst = dec->cache_u_ + mb_x * 8;
|
| + uint8_t* const v_dst = dec->cache_v_ + mb_x * 8;
|
| + const int uv_bps = dec->cache_uv_stride_;
|
| + const int hev_thresh =
|
| + hev_thresh_from_level(level, dec->frm_hdr_.key_frame_);
|
| + if (mb_x > 0) {
|
| + VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
|
| + VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
|
| + }
|
| + if (mb->f_inner_) {
|
| + VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
|
| + VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
|
| + }
|
| + if (mb_y > 0) {
|
| + VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
|
| + VP8VFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
|
| + }
|
| + if (mb->f_inner_) {
|
| + VP8VFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
|
| + VP8VFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
|
| + }
|
| + }
|
| +}
|
| +
|
| +void VP8StoreBlock(VP8Decoder* const dec) {
|
| + VP8MB* const info = dec->mb_info_ + dec->mb_x_;
|
| + int level = dec->filter_levels_[dec->segment_];
|
| + if (dec->filter_hdr_.use_lf_delta_) {
|
| + // TODO(skal): only CURRENT is handled for now.
|
| + level += dec->filter_hdr_.ref_lf_delta_[0];
|
| + if (dec->is_i4x4_) {
|
| + level += dec->filter_hdr_.mode_lf_delta_[0];
|
| + }
|
| + }
|
| + level = (level < 0) ? 0 : (level > 63) ? 63 : level;
|
| + info->f_level_ = level;
|
| +
|
| + if (dec->filter_hdr_.sharpness_ > 0) {
|
| + if (dec->filter_hdr_.sharpness_ > 4) {
|
| + level >>= 2;
|
| + } else {
|
| + level >>= 1;
|
| + }
|
| + if (level > 9 - dec->filter_hdr_.sharpness_) {
|
| + level = 9 - dec->filter_hdr_.sharpness_;
|
| + }
|
| + }
|
| + info->f_ilevel_ = (level < 1) ? 1 : level;
|
| + info->f_inner_ = (!info->skip_ || dec->is_i4x4_);
|
| +
|
| + // Transfer samples to row cache
|
| + uint8_t* const ydst = dec->cache_y_ + dec->mb_x_ * 16;
|
| + uint8_t* const udst = dec->cache_u_ + dec->mb_x_ * 8;
|
| + uint8_t* const vdst = dec->cache_v_ + dec->mb_x_ * 8;
|
| + for (int y = 0; y < 16; ++y) {
|
| + memcpy(ydst + y * dec->cache_y_stride_,
|
| + dec->yuv_b_ + Y_OFF + y * BPS, 16);
|
| + }
|
| + for (int y = 0; y < 8; ++y) {
|
| + memcpy(udst + y * dec->cache_uv_stride_,
|
| + dec->yuv_b_ + U_OFF + y * BPS, 8);
|
| + memcpy(vdst + y * dec->cache_uv_stride_,
|
| + dec->yuv_b_ + V_OFF + y * BPS, 8);
|
| + }
|
| +}
|
| +
|
| +void VP8FilterRow(VP8Decoder* const dec, VP8Io* io) {
|
| + for (int mb_x = 0; mb_x < dec->mb_w_; ++mb_x) {
|
| + DoFilter(dec, mb_x, dec->mb_y_);
|
| + }
|
| + const int extra_y_rows = kFilterExtraRows[dec->filter_type_];
|
| + const int ysize = extra_y_rows * dec->cache_y_stride_;
|
| + const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_;
|
| + uint8_t* const ydst = dec->cache_y_ - ysize;
|
| + uint8_t* const udst = dec->cache_u_ - uvsize;
|
| + uint8_t* const vdst = dec->cache_v_ - uvsize;
|
| + if (io->put) {
|
| + int y_end;
|
| + if (dec->mb_y_ > 0) {
|
| + io->mb_y = dec->mb_y_ * 16 - extra_y_rows;
|
| + io->y = ydst;
|
| + io->u = udst;
|
| + io->v = vdst;
|
| + if (dec->mb_y_ < dec->mb_h_ - 1) {
|
| + y_end = io->mb_y + 16;
|
| + } else {
|
| + y_end = io->height; // last macroblock row.
|
| + }
|
| + } else { // first macroblock row.
|
| + io->mb_y = 0;
|
| + y_end = 16 - extra_y_rows;
|
| + io->y = dec->cache_y_;
|
| + io->u = dec->cache_u_;
|
| + io->v = dec->cache_v_;
|
| + }
|
| + if (y_end > io->height) {
|
| + y_end = io->height;
|
| + }
|
| + io->mb_h = y_end - io->mb_y;
|
| + io->put(io);
|
| + }
|
| + // rotate top samples
|
| + if (dec->mb_y_ < dec->mb_h_ - 1) {
|
| + memcpy(ydst, ydst + 16 * dec->cache_y_stride_, ysize);
|
| + memcpy(udst, udst + 8 * dec->cache_uv_stride_, uvsize);
|
| + memcpy(vdst, vdst + 8 * dec->cache_uv_stride_, uvsize);
|
| + }
|
| +}
|
| +
|
| +
|
| +//-----------------------------------------------------------------------------
|
| +// Main reconstruction function.
|
| +
|
| +static const int kScan[16] = {
|
| + 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS,
|
| + 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS,
|
| + 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS,
|
| + 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS
|
| +};
|
| +
|
| +static inline int CheckMode(VP8Decoder* const dec, int mode) {
|
| + if (mode == B_DC_PRED) {
|
| + if (dec->mb_x_ == 0) {
|
| + return (dec->mb_y_ == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT;
|
| + } else {
|
| + return (dec->mb_y_ == 0) ? B_DC_PRED_NOTOP : B_DC_PRED;
|
| + }
|
| + }
|
| + return mode;
|
| +}
|
| +
|
| +static inline void Copy32b(uint8_t* dst, uint8_t* src) {
|
| + *(uint32_t*)dst = *(uint32_t*)src;
|
| +}
|
| +
|
| +void VP8ReconstructBlock(VP8Decoder* const dec) {
|
| + uint8_t* const y_dst = dec->yuv_b_ + Y_OFF;
|
| + uint8_t* const u_dst = dec->yuv_b_ + U_OFF;
|
| + uint8_t* const v_dst = dec->yuv_b_ + V_OFF;
|
| +
|
| + // Rotate in the left samples from previously decoded block. We move four
|
| + // pixels at a time for alignment reason, and because of in-loop filter.
|
| + if (dec->mb_x_ > 0) {
|
| + for (int j = -1; j < 16; ++j) {
|
| + Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]);
|
| + }
|
| + for (int j = -1; j < 8; ++j) {
|
| + Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]);
|
| + Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]);
|
| + }
|
| + } else {
|
| + for (int j = 0; j < 16; ++j) {
|
| + y_dst[j * BPS - 1] = 129;
|
| + }
|
| + for (int j = 0; j < 8; ++j) {
|
| + u_dst[j * BPS - 1] = 129;
|
| + v_dst[j * BPS - 1] = 129;
|
| + }
|
| + // Init top-left sample on left column too
|
| + if (dec->mb_y_ > 0) {
|
| + y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129;
|
| + }
|
| + }
|
| +
|
| + // bring top samples into the cache
|
| + uint8_t* const top_y = dec->y_t_ + dec->mb_x_ * 16;
|
| + uint8_t* const top_u = dec->u_t_ + dec->mb_x_ * 8;
|
| + uint8_t* const top_v = dec->v_t_ + dec->mb_x_ * 8;
|
| + if (dec->mb_y_ > 0) {
|
| + memcpy(y_dst - BPS, top_y, 16);
|
| + memcpy(u_dst - BPS, top_u, 8);
|
| + memcpy(v_dst - BPS, top_v, 8);
|
| + } else if (dec->mb_x_ == 0) {
|
| + // we only need to do this init once at block (0,0).
|
| + // Afterward, it remains valid for the whole topmost row.
|
| + memset(y_dst - BPS - 1, 127, 16 + 4 + 1);
|
| + memset(u_dst - BPS - 1, 127, 8 + 1);
|
| + memset(v_dst - BPS - 1, 127, 8 + 1);
|
| + }
|
| +
|
| + // predict and add residuals
|
| + const int16_t* coeffs = dec->coeffs_;
|
| + if (dec->is_i4x4_) { // 4x4
|
| + uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16);
|
| + if (dec->mb_y_ > 0) {
|
| + if (dec->mb_x_ >= dec->mb_w_ - 1) { // on rightmost border
|
| + top_right[0] = top_y[15] * 0x01010101u;
|
| + } else {
|
| + memcpy(top_right, top_y + 16, sizeof(*top_right));
|
| + }
|
| + }
|
| + // replicate the top-right pixels below
|
| + top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0];
|
| +
|
| + // predict and add residues for all 4x4 blocks in turn.
|
| + for (int n = 0; n < 16; n++) {
|
| + uint8_t* const dst = y_dst + kScan[n];
|
| + VP8PredLuma4[dec->imodes_[n]](dst);
|
| + if (dec->non_zero_ & (1 << n)) {
|
| + VP8Transform(coeffs + n * 16, dst);
|
| + } else if (dec->non_zero_ & (1 << n)) { // only DC is present
|
| + VP8TransformDC(coeffs + n * 16, dst);
|
| + }
|
| + }
|
| + } else { // 16x16
|
| + const int pred_func = CheckMode(dec, dec->imodes_[0]);
|
| + VP8PredLuma16[pred_func](y_dst);
|
| + if (dec->non_zero_) {
|
| + for (int n = 0; n < 16; n++) {
|
| + uint8_t* const dst = y_dst + kScan[n];
|
| + if (dec->non_zero_ac_ & (1 << n)) {
|
| + VP8Transform(coeffs + n * 16, dst);
|
| + } else if (dec->non_zero_ & (1 << n)) { // only DC is present
|
| + VP8TransformDC(coeffs + n * 16, dst);
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + // Chroma
|
| + const int pred_func = CheckMode(dec, dec->uvmode_);
|
| + VP8PredChroma8[pred_func](u_dst);
|
| + VP8PredChroma8[pred_func](v_dst);
|
| +
|
| + if (dec->non_zero_ & 0x0f0000) { // chroma-U
|
| + const int16_t* const u_coeffs = dec->coeffs_ + 16 * 16;
|
| + if (dec->non_zero_ac_ & 0x0f0000) {
|
| + VP8TransformUV(u_coeffs, u_dst);
|
| + } else {
|
| + VP8TransformDCUV(u_coeffs, u_dst);
|
| + }
|
| + }
|
| + if (dec->non_zero_ & 0xf00000) { // chroma-V
|
| + const int16_t* const v_coeffs = dec->coeffs_ + 20 * 16;
|
| + if (dec->non_zero_ac_ & 0xf00000) {
|
| + VP8TransformUV(v_coeffs, v_dst);
|
| + } else {
|
| + VP8TransformDCUV(v_coeffs, v_dst);
|
| + }
|
| + }
|
| +
|
| + // stash away top samples for next block
|
| + if (dec->mb_y_ < dec->mb_h_ - 1) {
|
| + memcpy(top_y, y_dst + 15 * BPS, 16);
|
| + memcpy(top_u, u_dst + 7 * BPS, 8);
|
| + memcpy(top_v, v_dst + 7 * BPS, 8);
|
| + }
|
| +}
|
| +
|
| +//-----------------------------------------------------------------------------
|
| +
|
| +#if defined(__cplusplus) || defined(c_plusplus)
|
| +} // extern "C"
|
| +#endif
|
|
|