Index: src/strtod.cc |
=================================================================== |
--- src/strtod.cc (revision 5603) |
+++ src/strtod.cc (working copy) |
@@ -36,47 +36,9 @@ |
namespace v8 { |
namespace internal { |
-// 2^53 = 9007199254740992. |
-// Any integer with at most 15 decimal digits will hence fit into a double |
-// (which has a 53bit significand) without loss of precision. |
-static const int kMaxExactDoubleIntegerDecimalDigits = 15; |
-// 2^64 = 18446744073709551616 |
-// Any integer with at most 19 digits will hence fit into a 64bit datatype. |
-static const int kMaxUint64DecimalDigits = 19; |
- |
-static const double exact_powers_of_ten[] = { |
- 1.0, // 10^0 |
- 10.0, |
- 100.0, |
- 1000.0, |
- 10000.0, |
- 100000.0, |
- 1000000.0, |
- 10000000.0, |
- 100000000.0, |
- 1000000000.0, |
- 10000000000.0, // 10^10 |
- 100000000000.0, |
- 1000000000000.0, |
- 10000000000000.0, |
- 100000000000000.0, |
- 1000000000000000.0, |
- 10000000000000000.0, |
- 100000000000000000.0, |
- 1000000000000000000.0, |
- 10000000000000000000.0, |
- 100000000000000000000.0, // 10^20 |
- 1000000000000000000000.0, |
- // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22 |
- 10000000000000000000000.0 |
-}; |
- |
-static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten); |
- |
- |
extern "C" double gay_strtod(const char* s00, const char** se); |
-static double old_strtod(Vector<char> buffer, int exponent) { |
+double strtod(Vector<char> buffer, int exponent) { |
char gay_buffer[1024]; |
Vector<char> gay_buffer_vector(gay_buffer, sizeof(gay_buffer)); |
buffer.start()[buffer.length()] = '\0'; |
@@ -84,63 +46,4 @@ |
return gay_strtod(gay_buffer, NULL); |
} |
- |
-static Vector<char> TrimTrailingZeros(Vector<char> buffer) { |
- for (int i = buffer.length() - 1; i >= 0; --i) { |
- if (buffer[i] != '0') { |
- return Vector<char>(buffer.start(), i + 1); |
- } |
- } |
- return Vector<char>(buffer.start(), 0); |
-} |
- |
- |
-uint64_t ReadUint64(Vector<char> buffer) { |
- ASSERT(buffer.length() <= kMaxUint64DecimalDigits); |
- uint64_t result = 0; |
- for (int i = 0; i < buffer.length(); ++i) { |
- int digit = buffer[i] - '0'; |
- ASSERT(0 <= digit && digit <= 9); |
- result = 10 * result + digit; |
- } |
- return result; |
-} |
- |
- |
-double Strtod(Vector<char> buffer, int exponent) { |
- Vector<char> trimmed = TrimTrailingZeros(buffer); |
- if (trimmed.length() == 0) return 0.0; |
- exponent += buffer.length() - trimmed.length(); |
- if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) { |
- // The trimmed input fits into a double. |
- // If the 10^exponent (resp. 10^-exponent) fits into a double too then we |
- // can compute the result-double simply by multiplying (resp. dividing) the |
- // two numbers. |
- // This is possible because IEEE guarantees that floating-point operations |
- // return the best possible approximation. |
- if (exponent < 0 && -exponent < kExactPowersOfTenSize) { |
- // 10^-exponent fits into a double. |
- double buffer_d = static_cast<double>(ReadUint64(trimmed)); |
- return buffer_d / exact_powers_of_ten[-exponent]; |
- } |
- if (0 <= exponent && exponent < kExactPowersOfTenSize) { |
- // 10^exponent fits into a double. |
- double buffer_d = static_cast<double>(ReadUint64(trimmed)); |
- return buffer_d * exact_powers_of_ten[exponent]; |
- } |
- int remaining_digits = |
- kMaxExactDoubleIntegerDecimalDigits - trimmed.length(); |
- if ((0 <= exponent) && |
- (exponent - remaining_digits < kExactPowersOfTenSize)) { |
- // The trimmed string was short and we can multiply it with |
- // 10^remaining_digits. As a result the remaining exponent now fits |
- // into a double too. |
- double buffer_d = static_cast<double>(ReadUint64(trimmed)); |
- buffer_d *= exact_powers_of_ten[remaining_digits]; |
- return buffer_d * exact_powers_of_ten[exponent - remaining_digits]; |
- } |
- } |
- return old_strtod(trimmed, exponent); |
-} |
- |
} } // namespace v8::internal |