OLD | NEW |
(Empty) | |
| 1 // Copyright 2010 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are |
| 4 // met: |
| 5 // |
| 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided |
| 11 // with the distribution. |
| 12 // * Neither the name of Google Inc. nor the names of its |
| 13 // contributors may be used to endorse or promote products derived |
| 14 // from this software without specific prior written permission. |
| 15 // |
| 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 |
| 28 #include <math.h> |
| 29 |
| 30 #include "v8.h" |
| 31 #include "bignum-dtoa.h" |
| 32 |
| 33 #include "bignum.h" |
| 34 #include "double.h" |
| 35 |
| 36 namespace v8 { |
| 37 namespace internal { |
| 38 |
| 39 static int NormalizedExponent(uint64_t significand, int exponent) { |
| 40 ASSERT(significand != 0); |
| 41 while ((significand & Double::kHiddenBit) == 0) { |
| 42 significand = significand << 1; |
| 43 exponent = exponent - 1; |
| 44 } |
| 45 return exponent; |
| 46 } |
| 47 |
| 48 |
| 49 // Forward declarations: |
| 50 // Returns an estimation of k such that 10^(k-1) <= v < 10^k. |
| 51 static int EstimatePower(int); |
| 52 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator |
| 53 // and denominator. |
| 54 static void InitialScaledStartValues(double v, |
| 55 int estimated_power, |
| 56 bool need_boundary_deltas, |
| 57 Bignum* numerator, |
| 58 Bignum* denominator, |
| 59 Bignum* delta_minus, |
| 60 Bignum* delta_plus); |
| 61 // Multiplies numerator/denominator so that its values lies in the range 1-10. |
| 62 // Returns decimal_point s.t. |
| 63 // v = numerator'/denominator' * 10^(decimal_point-1) |
| 64 // where numerator' and denominator' are the values of numerator and |
| 65 // denominator after the call to this function. |
| 66 static void FixupMultiply10(int estimated_power, bool is_even, |
| 67 int* decimal_point, |
| 68 Bignum* numerator, Bignum* denominator, |
| 69 Bignum* delta_minus, Bignum* delta_plus); |
| 70 // Generates digits from the left to the right and stops when the generated |
| 71 // digits yield the shortest decimal representation of v. |
| 72 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, |
| 73 Bignum* delta_minus, Bignum* delta_plus, |
| 74 bool is_even, |
| 75 Vector<char> buffer, int* length); |
| 76 // Generates 'requested_digits' after the decimal point. |
| 77 static void BignumToFixed(int requested_digits, int* decimal_point, |
| 78 Bignum* numerator, Bignum* denominator, |
| 79 Vector<char>(buffer), int* length); |
| 80 // Generates 'count' digits of numerator/denominator. |
| 81 // Once 'count' digits have been produced rounds the result depending on the |
| 82 // remainder (remainders of exactly .5 round upwards). Might update the |
| 83 // decimal_point when rounding up (for example for 0.9999). |
| 84 static void GenerateCountedDigits(int count, int* decimal_point, |
| 85 Bignum* numerator, Bignum* denominator, |
| 86 Vector<char>(buffer), int* length); |
| 87 |
| 88 |
| 89 void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits, |
| 90 Vector<char> buffer, int* length, int* decimal_point) { |
| 91 ASSERT(v > 0); |
| 92 ASSERT(!Double(v).IsSpecial()); |
| 93 uint64_t significand = Double(v).Significand(); |
| 94 bool is_even = (significand & 1) == 0; |
| 95 int exponent = Double(v).Exponent(); |
| 96 int normalized_exponent = NormalizedExponent(significand, exponent); |
| 97 // estimated_power might be too low by 1. |
| 98 int estimated_power = EstimatePower(normalized_exponent); |
| 99 |
| 100 // Shortcut for Fixed. |
| 101 // The requested digits correspond to the digits after the point. If the |
| 102 // number is much too small, then there is no need in trying to get any |
| 103 // digits. |
| 104 if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) { |
| 105 buffer[0] = '\0'; |
| 106 *length = 0; |
| 107 // Set decimal-point to -requested_digits. This is what Gay does. |
| 108 // Note that it should not have any effect anyways since the string is |
| 109 // empty. |
| 110 *decimal_point = -requested_digits; |
| 111 return; |
| 112 } |
| 113 |
| 114 Bignum numerator; |
| 115 Bignum denominator; |
| 116 Bignum delta_minus; |
| 117 Bignum delta_plus; |
| 118 // Make sure the bignum can grow large enough. The smallest double equals |
| 119 // 4e-324. In this case the denominator needs fewer than 324*4 binary digits. |
| 120 // The maximum double is 1.7976931348623157e308 which needs fewer than |
| 121 // 308*4 binary digits. |
| 122 ASSERT(Bignum::kMaxSignificantBits >= 324*4); |
| 123 bool need_boundary_deltas = (mode == BIGNUM_DTOA_SHORTEST); |
| 124 InitialScaledStartValues(v, estimated_power, need_boundary_deltas, |
| 125 &numerator, &denominator, |
| 126 &delta_minus, &delta_plus); |
| 127 // We now have v = (numerator / denominator) * 10^estimated_power. |
| 128 FixupMultiply10(estimated_power, is_even, decimal_point, |
| 129 &numerator, &denominator, |
| 130 &delta_minus, &delta_plus); |
| 131 // We now have v = (numerator / denominator) * 10^(decimal_point-1), and |
| 132 // 1 <= (numerator + delta_plus) / denominator < 10 |
| 133 switch (mode) { |
| 134 case BIGNUM_DTOA_SHORTEST: |
| 135 GenerateShortestDigits(&numerator, &denominator, |
| 136 &delta_minus, &delta_plus, |
| 137 is_even, buffer, length); |
| 138 break; |
| 139 case BIGNUM_DTOA_FIXED: |
| 140 BignumToFixed(requested_digits, decimal_point, |
| 141 &numerator, &denominator, |
| 142 buffer, length); |
| 143 break; |
| 144 case BIGNUM_DTOA_PRECISION: |
| 145 GenerateCountedDigits(requested_digits, decimal_point, |
| 146 &numerator, &denominator, |
| 147 buffer, length); |
| 148 break; |
| 149 default: |
| 150 UNREACHABLE(); |
| 151 } |
| 152 buffer[*length] = '\0'; |
| 153 } |
| 154 |
| 155 |
| 156 // The procedure starts generating digits from the left to the right and stops |
| 157 // when the generated digits yield the shortest decimal representation of v. A |
| 158 // decimal representation of v is a number lying closer to v than to any other |
| 159 // double, so it converts to v when read. |
| 160 // |
| 161 // This is true if d, the decimal representation, is between m- and m+, the |
| 162 // upper and lower boundaries. d must be strictly between them if !is_even. |
| 163 // m- := (numerator - delta_minus) / denominator |
| 164 // m+ := (numerator + delta_plus) / denominator |
| 165 // |
| 166 // Precondition: 0 <= (numerator+delta_plus) / denominator < 10. |
| 167 // If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit |
| 168 // will be produced. This should be the standard precondition. |
| 169 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, |
| 170 Bignum* delta_minus, Bignum* delta_plus, |
| 171 bool is_even, |
| 172 Vector<char> buffer, int* length) { |
| 173 // Small optimization: if delta_minus and delta_plus are the same just reuse |
| 174 // one of the two bignums. |
| 175 if (Bignum::Equal(*delta_minus, *delta_plus)) { |
| 176 delta_plus = delta_minus; |
| 177 } |
| 178 *length = 0; |
| 179 while (true) { |
| 180 uint16_t digit; |
| 181 digit = numerator->DivideModuloIntBignum(*denominator); |
| 182 ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive. |
| 183 // digit = numerator / denominator (integer division). |
| 184 // numerator = numerator % denominator. |
| 185 buffer[(*length)++] = digit + '0'; |
| 186 |
| 187 // Can we stop already? |
| 188 // If the remainder of the division is less than the distance to the lower |
| 189 // boundary we can stop. In this case we simply round down (discarding the |
| 190 // remainder). |
| 191 // Similarly we test if we can round up (using the upper boundary). |
| 192 bool in_delta_room_minus; |
| 193 bool in_delta_room_plus; |
| 194 if (is_even) { |
| 195 in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus); |
| 196 } else { |
| 197 in_delta_room_minus = Bignum::Less(*numerator, *delta_minus); |
| 198 } |
| 199 if (is_even) { |
| 200 in_delta_room_plus = |
| 201 Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0; |
| 202 } else { |
| 203 in_delta_room_plus = |
| 204 Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0; |
| 205 } |
| 206 if (!in_delta_room_minus && !in_delta_room_plus) { |
| 207 // Prepare for next iteration. |
| 208 numerator->Times10(); |
| 209 delta_minus->Times10(); |
| 210 // We optimized delta_plus to be equal to delta_minus (if they share the |
| 211 // same value). So don't multiply delta_plus if they point to the same |
| 212 // object. |
| 213 if (delta_minus != delta_plus) { |
| 214 delta_plus->Times10(); |
| 215 } |
| 216 } else if (in_delta_room_minus && in_delta_room_plus) { |
| 217 // Let's see if 2*numerator < denominator. |
| 218 // If yes, then the next digit would be < 5 and we can round down. |
| 219 int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator); |
| 220 if (compare < 0) { |
| 221 // Remaining digits are less than .5. -> Round down (== do nothing). |
| 222 } else if (compare > 0) { |
| 223 // Remaining digits are more than .5 of denominator. -> Round up. |
| 224 // Note that the last digit could not be a '9' as otherwise the whole |
| 225 // loop would have stopped earlier. |
| 226 // We still have an assert here in case the preconditions were not |
| 227 // satisfied. |
| 228 ASSERT(buffer[(*length) - 1] != '9'); |
| 229 buffer[(*length) - 1]++; |
| 230 } else { |
| 231 // Halfway case. |
| 232 // TODO(floitsch): need a way to solve half-way cases. |
| 233 // For now let's round towards even (since this is what Gay seems to |
| 234 // do). |
| 235 |
| 236 if ((buffer[(*length) - 1] - '0') % 2 == 0) { |
| 237 // Round down => Do nothing. |
| 238 } else { |
| 239 ASSERT(buffer[(*length) - 1] != '9'); |
| 240 buffer[(*length) - 1]++; |
| 241 } |
| 242 } |
| 243 return; |
| 244 } else if (in_delta_room_minus) { |
| 245 // Round down (== do nothing). |
| 246 return; |
| 247 } else { // in_delta_room_plus |
| 248 // Round up. |
| 249 // Note again that the last digit could not be '9' since this would have |
| 250 // stopped the loop earlier. |
| 251 // We still have an ASSERT here, in case the preconditions were not |
| 252 // satisfied. |
| 253 ASSERT(buffer[(*length) -1] != '9'); |
| 254 buffer[(*length) - 1]++; |
| 255 return; |
| 256 } |
| 257 } |
| 258 } |
| 259 |
| 260 |
| 261 // Let v = numerator / denominator < 10. |
| 262 // Then we generate 'count' digits of d = x.xxxxx... (without the decimal point) |
| 263 // from left to right. Once 'count' digits have been produced we decide wether |
| 264 // to round up or down. Remainders of exactly .5 round upwards. Numbers such |
| 265 // as 9.999999 propagate a carry all the way, and change the |
| 266 // exponent (decimal_point), when rounding upwards. |
| 267 static void GenerateCountedDigits(int count, int* decimal_point, |
| 268 Bignum* numerator, Bignum* denominator, |
| 269 Vector<char>(buffer), int* length) { |
| 270 ASSERT(count >= 0); |
| 271 for (int i = 0; i < count - 1; ++i) { |
| 272 uint16_t digit; |
| 273 digit = numerator->DivideModuloIntBignum(*denominator); |
| 274 ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive. |
| 275 // digit = numerator / denominator (integer division). |
| 276 // numerator = numerator % denominator. |
| 277 buffer[i] = digit + '0'; |
| 278 // Prepare for next iteration. |
| 279 numerator->Times10(); |
| 280 } |
| 281 // Generate the last digit. |
| 282 uint16_t digit; |
| 283 digit = numerator->DivideModuloIntBignum(*denominator); |
| 284 if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { |
| 285 digit++; |
| 286 } |
| 287 buffer[count - 1] = digit + '0'; |
| 288 // Correct bad digits (in case we had a sequence of '9's). Propagate the |
| 289 // carry until we hat a non-'9' or til we reach the first digit. |
| 290 for (int i = count - 1; i > 0; --i) { |
| 291 if (buffer[i] != '0' + 10) break; |
| 292 buffer[i] = '0'; |
| 293 buffer[i - 1]++; |
| 294 } |
| 295 if (buffer[0] == '0' + 10) { |
| 296 // Propagate a carry past the top place. |
| 297 buffer[0] = '1'; |
| 298 (*decimal_point)++; |
| 299 } |
| 300 *length = count; |
| 301 } |
| 302 |
| 303 |
| 304 // Generates 'requested_digits' after the decimal point. It might omit |
| 305 // trailing '0's. If the input number is too small then no digits at all are |
| 306 // generated (ex.: 2 fixed digits for 0.00001). |
| 307 // |
| 308 // Input verifies: 1 <= (numerator + delta) / denominator < 10. |
| 309 static void BignumToFixed(int requested_digits, int* decimal_point, |
| 310 Bignum* numerator, Bignum* denominator, |
| 311 Vector<char>(buffer), int* length) { |
| 312 // Note that we have to look at more than just the requested_digits, since |
| 313 // a number could be rounded up. Example: v=0.5 with requested_digits=0. |
| 314 // Even though the power of v equals 0 we can't just stop here. |
| 315 if (-(*decimal_point) > requested_digits) { |
| 316 // The number is definitively too small. |
| 317 // Ex: 0.001 with requested_digits == 1. |
| 318 // Set decimal-point to -requested_digits. This is what Gay does. |
| 319 // Note that it should not have any effect anyways since the string is |
| 320 // empty. |
| 321 *decimal_point = -requested_digits; |
| 322 *length = 0; |
| 323 return; |
| 324 } else if (-(*decimal_point) == requested_digits) { |
| 325 // We only need to verify if the number rounds down or up. |
| 326 // Ex: 0.04 and 0.06 with requested_digits == 1. |
| 327 ASSERT(*decimal_point == -requested_digits); |
| 328 // Initially the fraction lies in range (1, 10]. Multiply the denominator |
| 329 // by 10 so that we can compare more easily. |
| 330 denominator->Times10(); |
| 331 if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { |
| 332 // If the fraction is >= 0.5 then we have to include the rounded |
| 333 // digit. |
| 334 buffer[0] = '1'; |
| 335 *length = 1; |
| 336 (*decimal_point)++; |
| 337 } else { |
| 338 // Note that we caught most of similar cases earlier. |
| 339 *length = 0; |
| 340 } |
| 341 return; |
| 342 } else { |
| 343 // The requested digits correspond to the digits after the point. |
| 344 // The variable 'needed_digits' includes the digits before the point. |
| 345 int needed_digits = (*decimal_point) + requested_digits; |
| 346 GenerateCountedDigits(needed_digits, decimal_point, |
| 347 numerator, denominator, |
| 348 buffer, length); |
| 349 } |
| 350 } |
| 351 |
| 352 |
| 353 // Returns an estimation of k such that 10^(k-1) <= v < 10^k where |
| 354 // v = f * 2^exponent and 2^52 <= f < 2^53. |
| 355 // v is hence a normalized double with the given exponent. The output is an |
| 356 // approximation for the exponent of the decimal approimation .digits * 10^k. |
| 357 // |
| 358 // The result might undershoot by 1 in which case 10^k <= v < 10^k+1. |
| 359 // Note: this property holds for v's upper boundary m+ too. |
| 360 // 10^k <= m+ < 10^k+1. |
| 361 // (see explanation below). |
| 362 // |
| 363 // Examples: |
| 364 // EstimatePower(0) => 16 |
| 365 // EstimatePower(-52) => 0 |
| 366 // |
| 367 // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0. |
| 368 static int EstimatePower(int exponent) { |
| 369 // This function estimates log10 of v where v = f*2^e (with e == exponent). |
| 370 // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)). |
| 371 // Note that f is bounded by its container size. Let p = 53 (the double's |
| 372 // significand size). Then 2^(p-1) <= f < 2^p. |
| 373 // |
| 374 // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close |
| 375 // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)). |
| 376 // The computed number undershoots by less than 0.631 (when we compute log3 |
| 377 // and not log10). |
| 378 // |
| 379 // Optimization: since we only need an approximated result this computation |
| 380 // can be performed on 64 bit integers. On x86/x64 architecture the speedup is |
| 381 // not really measurable, though. |
| 382 // |
| 383 // Since we want to avoid overshooting we decrement by 1e10 so that |
| 384 // floating-point imprecisions don't affect us. |
| 385 // |
| 386 // Explanation for v's boundary m+: the computation takes advantage of |
| 387 // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement |
| 388 // (even for denormals where the delta can be much more important). |
| 389 |
| 390 const double k1Log10 = 0.30102999566398114; // 1/lg(10) |
| 391 |
| 392 // For doubles len(f) == 53 (don't forget the hidden bit). |
| 393 const int kSignificandSize = 53; |
| 394 double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10); |
| 395 return static_cast<int>(estimate); |
| 396 } |
| 397 |
| 398 |
| 399 // See comments for InitialScaledStartValues. |
| 400 static void InitialScaledStartValuesPositiveExponent( |
| 401 double v, int estimated_power, bool need_boundary_deltas, |
| 402 Bignum* numerator, Bignum* denominator, |
| 403 Bignum* delta_minus, Bignum* delta_plus) { |
| 404 // A positive exponent implies a positive power. |
| 405 ASSERT(estimated_power >= 0); |
| 406 // Since the estimated_power is positive we simply multiply the denominator |
| 407 // by 10^estimated_power. |
| 408 |
| 409 // numerator = v. |
| 410 numerator->AssignUInt64(Double(v).Significand()); |
| 411 numerator->ShiftLeft(Double(v).Exponent()); |
| 412 // denominator = 10^estimated_power. |
| 413 denominator->AssignPowerUInt16(10, estimated_power); |
| 414 |
| 415 if (need_boundary_deltas) { |
| 416 // Introduce a common denominator so that the deltas to the boundaries are |
| 417 // integers. |
| 418 denominator->ShiftLeft(1); |
| 419 numerator->ShiftLeft(1); |
| 420 // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common |
| 421 // denominator (of 2) delta_plus equals 2^e. |
| 422 delta_plus->AssignUInt16(1); |
| 423 delta_plus->ShiftLeft(Double(v).Exponent()); |
| 424 // Same for delta_minus (with adjustments below if f == 2^p-1). |
| 425 delta_minus->AssignUInt16(1); |
| 426 delta_minus->ShiftLeft(Double(v).Exponent()); |
| 427 |
| 428 // If the significand (without the hidden bit) is 0, then the lower |
| 429 // boundary is closer than just half a ulp (unit in the last place). |
| 430 // There is only one exception: if the next lower number is a denormal then |
| 431 // the distance is 1 ulp. This cannot be the case for exponent >= 0 (but we |
| 432 // have to test it in the other function where exponent < 0). |
| 433 uint64_t v_bits = Double(v).AsUint64(); |
| 434 if ((v_bits & Double::kSignificandMask) == 0) { |
| 435 // The lower boundary is closer at half the distance of "normal" numbers. |
| 436 // Increase the common denominator and adapt all but the delta_minus. |
| 437 denominator->ShiftLeft(1); // *2 |
| 438 numerator->ShiftLeft(1); // *2 |
| 439 delta_plus->ShiftLeft(1); // *2 |
| 440 } |
| 441 } |
| 442 } |
| 443 |
| 444 |
| 445 // See comments for InitialScaledStartValues |
| 446 static void InitialScaledStartValuesNegativeExponentPositivePower( |
| 447 double v, int estimated_power, bool need_boundary_deltas, |
| 448 Bignum* numerator, Bignum* denominator, |
| 449 Bignum* delta_minus, Bignum* delta_plus) { |
| 450 uint64_t significand = Double(v).Significand(); |
| 451 int exponent = Double(v).Exponent(); |
| 452 // v = f * 2^e with e < 0, and with estimated_power >= 0. |
| 453 // This means that e is close to 0 (have a look at how estimated_power is |
| 454 // computed). |
| 455 |
| 456 // numerator = significand |
| 457 // since v = significand * 2^exponent this is equivalent to |
| 458 // numerator = v * / 2^-exponent |
| 459 numerator->AssignUInt64(significand); |
| 460 // denominator = 10^estimated_power * 2^-exponent (with exponent < 0) |
| 461 denominator->AssignPowerUInt16(10, estimated_power); |
| 462 denominator->ShiftLeft(-exponent); |
| 463 |
| 464 if (need_boundary_deltas) { |
| 465 // Introduce a common denominator so that the deltas to the boundaries are |
| 466 // integers. |
| 467 denominator->ShiftLeft(1); |
| 468 numerator->ShiftLeft(1); |
| 469 // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common |
| 470 // denominator (of 2) delta_plus equals 2^e. |
| 471 // Given that the denominator already includes v's exponent the distance |
| 472 // to the boundaries is simply 1. |
| 473 delta_plus->AssignUInt16(1); |
| 474 // Same for delta_minus (with adjustments below if f == 2^p-1). |
| 475 delta_minus->AssignUInt16(1); |
| 476 |
| 477 // If the significand (without the hidden bit) is 0, then the lower |
| 478 // boundary is closer than just one ulp (unit in the last place). |
| 479 // There is only one exception: if the next lower number is a denormal |
| 480 // then the distance is 1 ulp. Since the exponent is close to zero |
| 481 // (otherwise estimated_power would have been negative) this cannot happen |
| 482 // here either. |
| 483 uint64_t v_bits = Double(v).AsUint64(); |
| 484 if ((v_bits & Double::kSignificandMask) == 0) { |
| 485 // The lower boundary is closer at half the distance of "normal" numbers. |
| 486 // Increase the denominator and adapt all but the delta_minus. |
| 487 denominator->ShiftLeft(1); // *2 |
| 488 numerator->ShiftLeft(1); // *2 |
| 489 delta_plus->ShiftLeft(1); // *2 |
| 490 } |
| 491 } |
| 492 } |
| 493 |
| 494 |
| 495 // See comments for InitialScaledStartValues |
| 496 static void InitialScaledStartValuesNegativeExponentNegativePower( |
| 497 double v, int estimated_power, bool need_boundary_deltas, |
| 498 Bignum* numerator, Bignum* denominator, |
| 499 Bignum* delta_minus, Bignum* delta_plus) { |
| 500 const uint64_t kMinimalNormalizedExponent = |
| 501 V8_2PART_UINT64_C(0x00100000, 00000000); |
| 502 uint64_t significand = Double(v).Significand(); |
| 503 int exponent = Double(v).Exponent(); |
| 504 // Instead of multiplying the denominator with 10^estimated_power we |
| 505 // multiply all values (numerator and deltas) by 10^-estimated_power. |
| 506 |
| 507 // Use numerator as temporary container for power_ten. |
| 508 Bignum* power_ten = numerator; |
| 509 power_ten->AssignPowerUInt16(10, -estimated_power); |
| 510 |
| 511 if (need_boundary_deltas) { |
| 512 // Since power_ten == numerator we must make a copy of 10^estimated_power |
| 513 // before we complete the computation of the numerator. |
| 514 // delta_plus = delta_minus = 10^estimated_power |
| 515 delta_plus->AssignBignum(*power_ten); |
| 516 delta_minus->AssignBignum(*power_ten); |
| 517 } |
| 518 |
| 519 // numerator = significand * 2 * 10^-estimated_power |
| 520 // since v = significand * 2^exponent this is equivalent to |
| 521 // numerator = v * 10^-estimated_power * 2 * 2^-exponent. |
| 522 // Remember: numerator has been abused as power_ten. So no need to assign it |
| 523 // to itself. |
| 524 ASSERT(numerator == power_ten); |
| 525 numerator->MultiplyByUInt64(significand); |
| 526 |
| 527 // denominator = 2 * 2^-exponent with exponent < 0. |
| 528 denominator->AssignUInt16(1); |
| 529 denominator->ShiftLeft(-exponent); |
| 530 |
| 531 if (need_boundary_deltas) { |
| 532 // Introduce a common denominator so that the deltas to the boundaries are |
| 533 // integers. |
| 534 numerator->ShiftLeft(1); |
| 535 denominator->ShiftLeft(1); |
| 536 // With this shift the boundaries have their correct value, since |
| 537 // delta_plus = 10^-estimated_power, and |
| 538 // delta_minus = 10^-estimated_power. |
| 539 // These assignments have been done earlier. |
| 540 |
| 541 // The special case where the lower boundary is twice as close. |
| 542 // This time we have to look out for the exception too. |
| 543 uint64_t v_bits = Double(v).AsUint64(); |
| 544 if ((v_bits & Double::kSignificandMask) == 0 && |
| 545 // The only exception where a significand == 0 has its boundaries at |
| 546 // "normal" distances: |
| 547 (v_bits & Double::kExponentMask) != kMinimalNormalizedExponent) { |
| 548 numerator->ShiftLeft(1); // *2 |
| 549 denominator->ShiftLeft(1); // *2 |
| 550 delta_plus->ShiftLeft(1); // *2 |
| 551 } |
| 552 } |
| 553 } |
| 554 |
| 555 |
| 556 // Let v = significand * 2^exponent. |
| 557 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator |
| 558 // and denominator. The functions GenerateShortestDigits and |
| 559 // GenerateCountedDigits will then convert this ratio to its decimal |
| 560 // representation d, with the required accuracy. |
| 561 // Then d * 10^estimated_power is the representation of v. |
| 562 // (Note: the fraction and the estimated_power might get adjusted before |
| 563 // generating the decimal representation.) |
| 564 // |
| 565 // The initial start values consist of: |
| 566 // - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power. |
| 567 // - a scaled (common) denominator. |
| 568 // optionally (used by GenerateShortestDigits to decide if it has the shortest |
| 569 // decimal converting back to v): |
| 570 // - v - m-: the distance to the lower boundary. |
| 571 // - m+ - v: the distance to the upper boundary. |
| 572 // |
| 573 // v, m+, m-, and therefore v - m- and m+ - v all share the same denominator. |
| 574 // |
| 575 // Let ep == estimated_power, then the returned values will satisfy: |
| 576 // v / 10^ep = numerator / denominator. |
| 577 // v's boundarys m- and m+: |
| 578 // m- / 10^ep == v / 10^ep - delta_minus / denominator |
| 579 // m+ / 10^ep == v / 10^ep + delta_plus / denominator |
| 580 // Or in other words: |
| 581 // m- == v - delta_minus * 10^ep / denominator; |
| 582 // m+ == v + delta_plus * 10^ep / denominator; |
| 583 // |
| 584 // Since 10^(k-1) <= v < 10^k (with k == estimated_power) |
| 585 // or 10^k <= v < 10^(k+1) |
| 586 // we then have 0.1 <= numerator/denominator < 1 |
| 587 // or 1 <= numerator/denominator < 10 |
| 588 // |
| 589 // It is then easy to kickstart the digit-generation routine. |
| 590 // |
| 591 // The boundary-deltas are only filled if need_boundary_deltas is set. |
| 592 static void InitialScaledStartValues(double v, |
| 593 int estimated_power, |
| 594 bool need_boundary_deltas, |
| 595 Bignum* numerator, |
| 596 Bignum* denominator, |
| 597 Bignum* delta_minus, |
| 598 Bignum* delta_plus) { |
| 599 if (Double(v).Exponent() >= 0) { |
| 600 InitialScaledStartValuesPositiveExponent( |
| 601 v, estimated_power, need_boundary_deltas, |
| 602 numerator, denominator, delta_minus, delta_plus); |
| 603 } else if (estimated_power >= 0) { |
| 604 InitialScaledStartValuesNegativeExponentPositivePower( |
| 605 v, estimated_power, need_boundary_deltas, |
| 606 numerator, denominator, delta_minus, delta_plus); |
| 607 } else { |
| 608 InitialScaledStartValuesNegativeExponentNegativePower( |
| 609 v, estimated_power, need_boundary_deltas, |
| 610 numerator, denominator, delta_minus, delta_plus); |
| 611 } |
| 612 } |
| 613 |
| 614 |
| 615 // This routine multiplies numerator/denominator so that its values lies in the |
| 616 // range 1-10. That is after a call to this function we have: |
| 617 // 1 <= (numerator + delta_plus) /denominator < 10. |
| 618 // Let numerator the input before modification and numerator' the argument |
| 619 // after modification, then the output-parameter decimal_point is such that |
| 620 // numerator / denominator * 10^estimated_power == |
| 621 // numerator' / denominator' * 10^(decimal_point - 1) |
| 622 // In some cases estimated_power was too low, and this is already the case. We |
| 623 // then simply adjust the power so that 10^(k-1) <= v < 10^k (with k == |
| 624 // estimated_power) but do not touch the numerator or denominator. |
| 625 // Otherwise the routine multiplies the numerator and the deltas by 10. |
| 626 static void FixupMultiply10(int estimated_power, bool is_even, |
| 627 int* decimal_point, |
| 628 Bignum* numerator, Bignum* denominator, |
| 629 Bignum* delta_minus, Bignum* delta_plus) { |
| 630 bool in_range; |
| 631 if (is_even) { |
| 632 // For IEEE doubles half-way cases (in decimal system numbers ending with 5) |
| 633 // are rounded to the closest floating-point number with even significand. |
| 634 in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0; |
| 635 } else { |
| 636 in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0; |
| 637 } |
| 638 if (in_range) { |
| 639 // Since numerator + delta_plus >= denominator we already have |
| 640 // 1 <= numerator/denominator < 10. Simply update the estimated_power. |
| 641 *decimal_point = estimated_power + 1; |
| 642 } else { |
| 643 *decimal_point = estimated_power; |
| 644 numerator->Times10(); |
| 645 if (Bignum::Equal(*delta_minus, *delta_plus)) { |
| 646 delta_minus->Times10(); |
| 647 delta_plus->AssignBignum(*delta_minus); |
| 648 } else { |
| 649 delta_minus->Times10(); |
| 650 delta_plus->Times10(); |
| 651 } |
| 652 } |
| 653 } |
| 654 |
| 655 } } // namespace v8::internal |
OLD | NEW |