OLD | NEW |
---|---|
(Empty) | |
1 // Copyright 2010 the V8 project authors. All rights reserved. | |
2 // Redistribution and use in source and binary forms, with or without | |
3 // modification, are permitted provided that the following conditions are | |
4 // met: | |
5 // | |
6 // * Redistributions of source code must retain the above copyright | |
7 // notice, this list of conditions and the following disclaimer. | |
8 // * Redistributions in binary form must reproduce the above | |
9 // copyright notice, this list of conditions and the following | |
10 // disclaimer in the documentation and/or other materials provided | |
11 // with the distribution. | |
12 // * Neither the name of Google Inc. nor the names of its | |
13 // contributors may be used to endorse or promote products derived | |
14 // from this software without specific prior written permission. | |
15 // | |
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
27 | |
28 #include <math.h> | |
29 | |
30 #include "v8.h" | |
31 #include "bignum-dtoa.h" | |
32 | |
33 #include "bignum.h" | |
34 #include "double.h" | |
35 | |
36 namespace v8 { | |
37 namespace internal { | |
38 | |
39 // Returns an estimation of k such that 10^(k-1) <= v < 10^k where | |
40 // v = f * 2^exponent and 2^52 <= f < 2^53. | |
41 // v is hence a normalized double with the given exponent. The output is an | |
42 // approximation for the exponent of the decimal approimation .digits * 10^k. | |
43 // | |
44 // The result might undershoot by 1 in which case 10^k <= v < 10^k+1. | |
45 // Note: this property holds for v's upper boundary m+ too. | |
46 // 10^k <= m+ < 10^k+1. | |
47 // (see explanation below). | |
48 // | |
49 // Examples: | |
50 // EstimatePower(0) => 16 | |
51 // EstimatePower(-52) => 0 | |
52 // | |
53 // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0. | |
54 static int EstimatePower(int exponent) { | |
55 // This function estimates log10 of v where v = f*2^e (with e == exponent). | |
56 // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)). | |
57 // Note that f is bounded by its container size. Let p = 53 (the double's | |
58 // significand size). Then 2^(p-1) <= f < 2^p. | |
59 // | |
60 // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close | |
61 // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)). | |
62 // The computed number undershoots by less than 0.631 (when we compute log3 | |
63 // and not log10). | |
64 // | |
65 // Optimization: since we only need an approximated result this computation | |
66 // can be performed on 64 bit integers. On x86/x64 architecture the speedup is | |
67 // not really measurable, though. | |
68 // | |
69 // Since we want to avoid overshooting we decrement by 1e10 so that | |
70 // floating-point imprecisions don't affect us. | |
71 // | |
72 // Explanation for v's boundary m+: the computation takes advantage of | |
73 // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement | |
74 // (even for denormals where the delta can be much more important). | |
75 | |
76 const double k1Log10 = 0.30102999566398114; // 1/lg(10) | |
77 | |
78 // For doubles len(f) == 53 (don't forget the hidden bit). | |
79 const int kSignificandSize = 53; | |
80 double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10); | |
81 return static_cast<int>(estimate); | |
82 } | |
83 | |
84 | |
85 // See comments for InitialScaledStartValues. | |
86 static void InitialScaledStartValuesPositiveExponent( | |
87 double v, int estimated_power, bool need_boundary_deltas, | |
88 Bignum* numerator, Bignum* denominator, | |
89 Bignum* delta_minus, Bignum* delta_plus) { | |
90 // A positive exponent implies a positive power. | |
91 ASSERT(estimated_power >= 0); | |
92 // Since the estimated_power is positive we simply multiply the denominator | |
93 // by 10^estimated_power. | |
94 | |
95 // numerator = v. | |
96 numerator->AssignUInt64(Double(v).Significand()); | |
97 numerator->ShiftLeft(Double(v).Exponent()); | |
98 // denominator = 10^estimated_power. | |
99 denominator->AssignPowerUInt16(10, estimated_power); | |
100 | |
101 if (need_boundary_deltas) { | |
102 // Introduce a common denominator so that the deltas to the boundaries are | |
103 // integers. | |
104 denominator->ShiftLeft(1); | |
105 numerator->ShiftLeft(1); | |
106 // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common | |
107 // denominator (of 2) delta_plus equals 2^e. | |
108 delta_plus->AssignUInt16(1); | |
109 delta_plus->ShiftLeft(Double(v).Exponent()); | |
110 // Same for delta_minus (with adjustments below if f == 2^p-1). | |
111 delta_minus->AssignUInt16(1); | |
112 delta_minus->ShiftLeft(Double(v).Exponent()); | |
113 | |
114 // If the significand (without the hidden bit) is 0, then the lower | |
115 // boundary is closer than just half a ulp (unit in the last place). | |
116 // There is only one exception: if the next lower number is a denormal then | |
117 // the distance is 1 ulp. This cannot be the case for exponent >= 0 (but we | |
118 // have to test it in the other function where exponent < 0). | |
119 uint64_t v_bits = Double(v).AsUint64(); | |
120 if ((v_bits & Double::kSignificandMask) == 0) { | |
121 // The lower boundary is closer at half the distance of "normal" numbers. | |
122 // Increase the common denominator and adapt all but the delta_minus. | |
123 denominator->ShiftLeft(1); // *2 | |
124 numerator->ShiftLeft(1); // *2 | |
125 delta_plus->ShiftLeft(1); // *2 | |
126 } | |
127 } | |
128 } | |
129 | |
130 | |
131 // See comments for InitialScaledStartValues | |
132 static void InitialScaledStartValuesNegativeExponentPositivePower( | |
133 double v, int estimated_power, bool need_boundary_deltas, | |
134 Bignum* numerator, Bignum* denominator, | |
135 Bignum* delta_minus, Bignum* delta_plus) { | |
136 uint64_t significand = Double(v).Significand(); | |
137 int exponent = Double(v).Exponent(); | |
138 // v = f * 2^e with e < 0, and with estimated_power >= 0. | |
139 // This means that e is close to 0 (have a look at how estimated_power is | |
140 // computed). | |
141 | |
142 // numerator = significand | |
143 // since v = significand * 2^exponent this is equivalent to | |
144 // numerator = v * / 2^-exponent | |
145 numerator->AssignUInt64(significand); | |
146 // denominator = 10^estimated_power * 2^-exponent (with exponent < 0) | |
147 denominator->AssignPowerUInt16(10, estimated_power); | |
148 denominator->ShiftLeft(-exponent); | |
149 | |
150 if (need_boundary_deltas) { | |
151 // Introduce a common denominator so that the deltas to the boundaries are | |
152 // integers. | |
153 denominator->ShiftLeft(1); | |
154 numerator->ShiftLeft(1); | |
155 // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common | |
156 // denominator (of 2) delta_plus equals 2^e. | |
157 // Given that the denominator already includes v's exponent the distance | |
158 // to the boundaries is simply 1. | |
159 delta_plus->AssignUInt16(1); | |
160 // Same for delta_minus (with adjustments below if f == 2^p-1). | |
161 delta_minus->AssignUInt16(1); | |
162 | |
163 // If the significand (without the hidden bit) is 0, then the lower | |
164 // boundary is closer than just one ulp (unit in the last place). | |
165 // There is only one exception: if the next lower number is a denormal | |
166 // then the distance is 1 ulp. Since the exponent is close to zero | |
167 // (otherwise estimated_power would have been negative) this cannot happen | |
168 // here either. | |
169 uint64_t v_bits = Double(v).AsUint64(); | |
170 if ((v_bits & Double::kSignificandMask) == 0) { | |
171 // The lower boundary is closer at half the distance of "normal" numbers. | |
172 // Increase the denominator and adapt all but the delta_minus. | |
173 denominator->ShiftLeft(1); // *2 | |
174 numerator->ShiftLeft(1); // *2 | |
175 delta_plus->ShiftLeft(1); // *2 | |
176 } | |
177 } | |
178 } | |
179 | |
180 | |
181 // See comments for InitialScaledStartValues | |
182 static void InitialScaledStartValuesNegativeExponentNegativePower( | |
183 double v, int estimated_power, bool need_boundary_deltas, | |
184 Bignum* numerator, Bignum* denominator, | |
185 Bignum* delta_minus, Bignum* delta_plus) { | |
186 const uint64_t kMinimalNormalizedExponent = | |
187 V8_2PART_UINT64_C(0x00100000, 00000000); | |
188 uint64_t significand = Double(v).Significand(); | |
189 int exponent = Double(v).Exponent(); | |
190 // Instead of multiplying the denominator with 10^estimated_power we | |
191 // multiply all values (numerator and deltas) by 10^-estimated_power. | |
192 | |
193 // Use numerator as temporary container for power_ten. | |
194 Bignum* power_ten = numerator; | |
195 power_ten->AssignPowerUInt16(10, -estimated_power); | |
196 | |
197 if (need_boundary_deltas) { | |
198 // Since power_ten == numerator we must make a copy of 10^estimated_power | |
199 // before we complete the computation of the numerator. | |
200 // delta_plus = delta_minus = 10^estimated_power | |
201 delta_plus->AssignBignum(*power_ten); | |
202 delta_minus->AssignBignum(*power_ten); | |
203 } | |
204 | |
205 // numerator = significand * 2 * 10^-estimated_power | |
206 // since v = significand * 2^exponent this is equivalent to | |
207 // numerator = v * 10^-estimated_power * 2 * 2^-exponent. | |
208 // Remember: numerator has been abused as power_ten. So no need to assign it | |
209 // to itself. | |
210 ASSERT(numerator == power_ten); | |
211 numerator->MultiplyByUInt64(significand); | |
212 | |
213 // denominator = 2 * 2^-exponent with exponent < 0. | |
214 denominator->AssignUInt16(1); | |
215 denominator->ShiftLeft(-exponent); | |
216 | |
217 if (need_boundary_deltas) { | |
218 // Introduce a common denominator so that the deltas to the boundaries are | |
219 // integers. | |
220 numerator->ShiftLeft(1); | |
221 denominator->ShiftLeft(1); | |
222 // With this shift the boundaries have their correct value, since | |
223 // delta_plus = 10^-estimated_power, and | |
224 // delta_minus = 10^-estimated_power. | |
225 // These assignments have been done earlier. | |
226 | |
227 // The special case where the lower boundary is twice as close. | |
228 // This time we have to look out for the exception too. | |
229 uint64_t v_bits = Double(v).AsUint64(); | |
230 if ((v_bits & Double::kSignificandMask) == 0 && | |
231 // The only exception where a significand == 0 has its boundaries at | |
232 // "normal" distances: | |
233 (v_bits & Double::kExponentMask) != kMinimalNormalizedExponent) { | |
234 numerator->ShiftLeft(1); // *2 | |
235 denominator->ShiftLeft(1); // *2 | |
236 delta_plus->ShiftLeft(1); // *2 | |
237 } | |
238 } | |
239 } | |
240 | |
241 | |
242 // v = significand * 2^exponent | |
243 // The initial start values consist of: | |
William Hesse
2010/11/17 09:44:09
How about:
Computes v / 10^estimated_power exactly
Florian Loitsch
2010/11/17 12:47:59
Done.
| |
244 // - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power. | |
245 // - a scaled (common) denominator. | |
246 // optionally (depending on the flag need_boundary_deltas): | |
William Hesse
2010/11/17 09:44:09
Might as well say here: used by GenerateShortestDi
Florian Loitsch
2010/11/17 12:47:59
Done.
| |
247 // - v - m-: the distance to the lower boundary. | |
248 // - m+ - v: the distance to the upper boundary. | |
249 // The scaling consist of multiplying the numerator by 10^estimated_power, or | |
William Hesse
2010/11/17 09:44:09
Not needed. This will be obvious from the code, o
Florian Loitsch
2010/11/17 12:47:59
Done.
| |
250 // (if the estimated_power is negative) by multiplying the denominator | |
251 // by 10^-estimated_power. | |
252 // Note that the boundary-deltas are scaled too. If the common denominator has | |
William Hesse
2010/11/17 09:44:09
Not needed, except to say that v, m+, m-, and ther
Florian Loitsch
2010/11/17 12:47:59
Done.
| |
253 // been scaled, then the deltas are automatically scaled. Otherwise they are | |
254 // multiplied by the scaling factor, too. | |
255 // | |
256 // Let ep == estimated_power, then the returned values will satisfy: | |
257 // v / 10^ep = numerator / denominator. | |
258 // v's boundarys m- and m+: | |
259 // m- / 10^ep == v / 10^ep - delta_minus / denominator | |
260 // m+ / 10^ep == v / 10^ep + delta_plus / denominator | |
261 // Or in other words: | |
262 // m- == v - delta_minus * 10^ep / denominator; | |
263 // m+ == v + delta_plus * 10^ep / denominator; | |
264 // | |
265 // Since 10^(k-1) <= v < 10^k (with k == estimated_power) | |
266 // or 10^k <= v < 10^(k+1) | |
267 // we then have 0.1 <= numerator/denominator < 1 | |
268 // or 1 <= numerator/denominator < 10 | |
269 // | |
270 // It is then easy to kickstart the digit-generation routine. | |
271 // | |
272 // The boundary-deltas are only filled if need_boundary_deltas is set. | |
273 static void InitialScaledStartValues(double v, | |
274 int estimated_power, | |
275 bool need_boundary_deltas, | |
276 Bignum* numerator, | |
277 Bignum* denominator, | |
278 Bignum* delta_minus, | |
279 Bignum* delta_plus) { | |
280 if (Double(v).Exponent() >= 0) { | |
281 InitialScaledStartValuesPositiveExponent( | |
282 v, estimated_power, need_boundary_deltas, | |
283 numerator, denominator, delta_minus, delta_plus); | |
284 } else if (estimated_power >= 0) { | |
285 InitialScaledStartValuesNegativeExponentPositivePower( | |
286 v, estimated_power, need_boundary_deltas, | |
287 numerator, denominator, delta_minus, delta_plus); | |
288 } else { | |
289 InitialScaledStartValuesNegativeExponentNegativePower( | |
290 v, estimated_power, need_boundary_deltas, | |
291 numerator, denominator, delta_minus, delta_plus); | |
292 } | |
293 } | |
294 | |
295 | |
296 // This routine multiplies numerator/denominator so that its values lies in the | |
297 // range 1-10. That is after a call to this function we have: | |
298 // 1 <= (numerator + delta_plus) /denominator < 10. | |
299 // Let numerator the input before modification and numerator' the argument | |
300 // after modification, then the output-parameter decimal_point is such that | |
301 // numerator / denominator * 10^estimated_power == | |
302 // numerator' / denominator' * 10^(decimal_point - 1) | |
303 // In some cases estimated_power was too low, and this is already the case. We | |
304 // then simply adjust the power so that 10^(k-1) <= v < 10^k (with k == | |
305 // estimated_power) but do not touch the numerator or denominator. | |
306 // Otherwise the routine multiplies the numerator and the deltas by 10. | |
307 static void FixupMultiply10(int estimated_power, bool is_even, | |
308 int* decimal_point, | |
309 Bignum* numerator, Bignum* denominator, | |
310 Bignum* delta_minus, Bignum* delta_plus) { | |
311 bool in_range; | |
312 if (is_even) { | |
313 // For IEEE doubles half-way cases (in decimal system numbers ending with 5) | |
314 // are rounded to the closest floating-point number with even significand. | |
315 in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0; | |
316 } else { | |
317 in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0; | |
318 } | |
319 if (in_range) { | |
320 // Since numerator + delta_plus >= denominator we already have | |
321 // 1 <= numerator/denominator < 10. Simply update the estimated_power. | |
322 *decimal_point = estimated_power + 1; | |
323 } else { | |
324 *decimal_point = estimated_power; | |
325 numerator->Times10(); | |
326 if (Bignum::Equal(*delta_minus, *delta_plus)) { | |
327 delta_minus->Times10(); | |
328 delta_plus->AssignBignum(*delta_minus); | |
329 } else { | |
330 delta_minus->Times10(); | |
331 delta_plus->Times10(); | |
332 } | |
333 } | |
334 } | |
335 | |
336 | |
337 // The procedure starts generating digits from the left to the right and stops | |
338 // when the generated digits yield a number that is close enough. The number | |
William Hesse
2010/11/17 09:44:09
yield the shortest decimal representation of v. A
Florian Loitsch
2010/11/17 12:47:59
Done.
| |
339 // is close enough when it lies closer to the original V than to any other | |
340 // double. Note: V = numerator/denominator. | |
341 // | |
342 // Precondition: 0 <= (numerator+delta_plus) / denominator < 10. | |
343 // If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit | |
344 // will be produced. This should be the standard precondition. | |
345 // Produces the least amount of digits so that the result lies within the | |
346 // boundaries (defined by the deltas). Let V the value written in the buffer, | |
347 // and | |
348 // m- := (numerator - delta_minus) / denominator | |
349 // m+ := (numerator + delta_plus) / denominator | |
350 // <? := '<=' if is_even and '<' otherwise, then | |
351 // m- <? V <? m+ | |
352 // In other words the written buffer would read as the input number. | |
353 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, | |
354 Bignum* delta_minus, Bignum* delta_plus, | |
355 bool is_even, | |
356 Vector<char> buffer, int* length) { | |
357 // Small optimization: if delta_minus and delta_plus are the same just reuse | |
358 // one of the two bignums. | |
359 if (Bignum::Equal(*delta_minus, *delta_plus)) { | |
360 delta_plus = delta_minus; | |
361 } | |
362 *length = 0; | |
363 while (true) { | |
364 uint16_t digit; | |
365 digit = numerator->DivideModuloIntBignum(*denominator); | |
366 ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive. | |
367 // digit = numerator / denominator (integer division). | |
368 // numerator = numerator % denominator. | |
369 buffer[(*length)++] = digit + '0'; | |
370 | |
371 // Can we stop already? | |
372 // If the remainder of the division is less than the distance to the lower | |
373 // boundary we can stop. In this case we simply round down (discarding the | |
374 // remainder). | |
375 // Similarly we test if we can round up (using the upper boundary). | |
376 bool in_delta_room_minus; | |
377 bool in_delta_room_plus; | |
378 if (is_even) { | |
379 in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus); | |
380 } else { | |
381 in_delta_room_minus = Bignum::Less(*numerator, *delta_minus); | |
382 } | |
383 if (is_even) { | |
384 in_delta_room_plus = | |
385 Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0; | |
386 } else { | |
387 in_delta_room_plus = | |
388 Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0; | |
389 } | |
390 if (!in_delta_room_minus && !in_delta_room_plus) { | |
391 // Prepare for next iteration. | |
392 numerator->Times10(); | |
393 delta_minus->Times10(); | |
394 // We optimized delta_plus to be equal to delta_minus (if they share the | |
395 // same value). So don't multiply delta_plus if they point to the same | |
396 // object. | |
397 if (delta_minus != delta_plus) { | |
398 delta_plus->Times10(); | |
399 } | |
400 } else if (in_delta_room_minus && in_delta_room_plus) { | |
401 // Let's see if 2*numerator < denominator. | |
402 // If yes, then the next digit would be < 5 and we can round down. | |
403 int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator); | |
404 if (compare < 0) { | |
405 // Remaining digits are less than .5. -> Round down (== do nothing). | |
406 } else if (compare > 0) { | |
407 // Remaining digits are more than .5 of denominator. -> Round up. | |
408 // Note that the last digit could not be a '9' as otherwise the whole | |
409 // loop would have stopped earlier. | |
410 // We still have an assert here in case the preconditions were not | |
411 // satisfied. | |
412 ASSERT(buffer[(*length) - 1] != '9'); | |
413 buffer[(*length) - 1]++; | |
414 } else { | |
415 // Halfway case. | |
416 // TODO(floitsch): need a way to solve half-way cases. | |
417 // For now let's round towards even (since this is what Gay seems to | |
418 // do). | |
419 | |
420 if ((buffer[(*length) - 1] - '0') % 2 == 0) { | |
421 // Round down => Do nothing. | |
422 } else { | |
423 ASSERT(buffer[(*length) - 1] != '9'); | |
424 buffer[(*length) - 1]++; | |
425 } | |
426 } | |
427 return; | |
428 } else if (in_delta_room_minus) { | |
429 // Round down (== do nothing). | |
430 return; | |
431 } else { // in_delta_room_plus | |
432 // Round up. | |
433 // Note again that the last digit could not be '9' since this would have | |
434 // stopped the loop earlier. | |
435 // We still have an ASSERT here, in case the preconditions were not | |
436 // satisfied. | |
437 ASSERT(buffer[(*length) -1] != '9'); | |
438 buffer[(*length) - 1]++; | |
439 return; | |
440 } | |
441 } | |
442 } | |
443 | |
444 | |
445 static int NormalizedExponent(uint64_t significand, int exponent) { | |
446 ASSERT(significand != 0); | |
447 while ((significand & Double::kHiddenBit) == 0) { | |
448 significand = significand << 1; | |
449 exponent = exponent - 1; | |
450 } | |
451 return exponent; | |
452 } | |
453 | |
454 | |
455 // Let v = numerator / denominator. | |
William Hesse
2010/11/17 09:44:09
// Let v = numerator / denominator < 10.
// Then w
Florian Loitsch
2010/11/17 12:47:59
Done.
| |
456 // Then we generate 'count' digits from left to right. Once all digits have | |
457 // been produced the remainder is used to determine if the number should be | |
458 // round up or down. It can therefore happen that trailing '9's are replaced | |
459 // by '0's. | |
460 static void GenerateCountedDigits(int count, int* decimal_point, | |
461 Bignum* numerator, Bignum* denominator, | |
462 Vector<char>(buffer), int* length) { | |
463 ASSERT(count >= 0); | |
464 for (int i = 0; i < count - 1; ++i) { | |
465 uint16_t digit; | |
466 digit = numerator->DivideModuloIntBignum(*denominator); | |
467 ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive. | |
468 // digit = numerator / denominator (integer division). | |
469 // numerator = numerator % denominator. | |
470 buffer[i] = digit + '0'; | |
471 // Prepare for next iteration. | |
472 numerator->Times10(); | |
473 } | |
474 // Generate the last digit. | |
475 uint16_t digit; | |
476 digit = numerator->DivideModuloIntBignum(*denominator); | |
477 if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { | |
478 digit++; | |
479 } | |
480 buffer[count - 1] = digit + '0'; | |
481 // Correct bad digits (in case we had a sequence of '9's). Propagate the | |
482 // carry until we hat a non-'9' or til we reach the first digit. | |
483 for (int i = count - 1; i > 0; --i) { | |
484 if (buffer[i] != '0' + 10) break; | |
485 buffer[i] = '0'; | |
486 buffer[i - 1]++; | |
487 } | |
488 if (buffer[0] == '0' + 10) { | |
489 // Propagate a carry past the top place. | |
490 buffer[0] = '1'; | |
491 (*decimal_point)++; | |
492 } | |
493 *length = count; | |
494 } | |
495 | |
496 | |
497 // Generates 'requested_digits' after the decimal point. It might omit | |
498 // trailing '0's. If the input number is too small then no digits at all are | |
499 // generated (ex.: 2 fixed digits for 0.00001). | |
500 // | |
501 // Input verifies: 1 <= (numerator + delta) / denominator < 10. | |
502 static void BignumToFixed(int requested_digits, int* decimal_point, | |
503 Bignum* numerator, Bignum* denominator, | |
504 Vector<char>(buffer), int* length) { | |
505 // Note that we have to look at more than just the requested_digits, since | |
506 // a number could be rounded up. Example: v=0.5 with requested_digits=0. | |
507 // Even though the power of v equals 0 we can't just stop here. | |
508 if (-(*decimal_point) > requested_digits) { | |
509 // The number is definitively too small. | |
510 // Ex: 0.001 with requested_digits == 1. | |
511 // Set decimal-point to -requested_digits. This is what Gay does. | |
512 // Note that it should not have any effect anyways since the string is | |
513 // empty. | |
514 *decimal_point = -requested_digits; | |
515 *length = 0; | |
516 return; | |
517 } else if (-(*decimal_point) == requested_digits) { | |
518 // We only need to verify if the number rounds down or up. | |
519 // Ex: 0.04 and 0.06 with requested_digits == 1. | |
520 ASSERT(*decimal_point == -requested_digits); | |
521 // Initially the fraction lies in range (1, 10]. Multiply the denominator | |
522 // by 10 so that we can compare more easily. | |
523 denominator->Times10(); | |
524 if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { | |
525 // If the fraction is >= 0.5 then we have to include the rounded | |
526 // digit. | |
527 buffer[0] = '1'; | |
528 *length = 1; | |
529 (*decimal_point)++; | |
530 } else { | |
531 // Note that we caught most of similar cases earlier. | |
532 *length = 0; | |
533 } | |
534 return; | |
535 } else { | |
536 // The requested digits correspond to the digits after the point. | |
537 // The variable 'needed_digits' includes the digits before the point. | |
538 int needed_digits = (*decimal_point) + requested_digits; | |
539 GenerateCountedDigits(needed_digits, decimal_point, | |
540 numerator, denominator, | |
541 buffer, length); | |
542 } | |
543 } | |
544 | |
545 | |
546 void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits, | |
547 Vector<char> buffer, int* length, int* decimal_point) { | |
548 ASSERT(v > 0); | |
549 ASSERT(!Double(v).IsSpecial()); | |
550 uint64_t significand = Double(v).Significand(); | |
551 bool is_even = (significand & 1) == 0; | |
552 int exponent = Double(v).Exponent(); | |
553 int normalized_exponent = NormalizedExponent(significand, exponent); | |
554 // estimated_power might be too low by 1. | |
555 int estimated_power = EstimatePower(normalized_exponent); | |
556 | |
557 // Shortcut for Fixed. | |
558 // The requested digits correspond to the digits after the point. If the | |
559 // number is much too small, then there is no need in trying to get any | |
560 // digits. | |
561 if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) { | |
562 buffer[0] = '\0'; | |
563 *length = 0; | |
564 // Set decimal-point to -requested_digits. This is what Gay does. | |
565 // Note that it should not have any effect anyways since the string is | |
566 // empty. | |
567 *decimal_point = -requested_digits; | |
568 return; | |
569 } | |
570 | |
571 Bignum numerator; | |
William Hesse
2010/11/17 09:44:09
As long as there is a header file, could the order
| |
572 Bignum denominator; | |
573 Bignum delta_minus; | |
574 Bignum delta_plus; | |
575 // Make sure the bignum can grow large enough. The smallest double equals | |
576 // 4e-324. In this case the denominator needs fewer than 324*4 binary digits. | |
577 // The maximum double is 1.7976931348623157e308 which needs fewer than | |
578 // 308*4 binary digits. | |
579 ASSERT(Bignum::kMaxSignificantBits >= 324*4); | |
580 bool need_boundary_deltas = (mode == BIGNUM_DTOA_SHORTEST); | |
581 InitialScaledStartValues(v, estimated_power, need_boundary_deltas, | |
582 &numerator, &denominator, | |
583 &delta_minus, &delta_plus); | |
584 // We now have v = (numerator / denominator) * 10^estimated_power. | |
585 FixupMultiply10(estimated_power, is_even, decimal_point, | |
586 &numerator, &denominator, | |
587 &delta_minus, &delta_plus); | |
588 // We now have v = (numerator / denominator) * 10^(decimal_point-1), and | |
589 // 1 <= (numerator + delta_plus) / denominator < 10 | |
590 switch (mode) { | |
591 case BIGNUM_DTOA_SHORTEST: | |
592 GenerateShortestDigits(&numerator, &denominator, | |
593 &delta_minus, &delta_plus, | |
594 is_even, buffer, length); | |
595 break; | |
596 case BIGNUM_DTOA_FIXED: | |
597 BignumToFixed(requested_digits, decimal_point, | |
598 &numerator, &denominator, | |
599 buffer, length); | |
600 break; | |
601 case BIGNUM_DTOA_PRECISION: | |
602 GenerateCountedDigits(requested_digits, decimal_point, | |
603 &numerator, &denominator, | |
604 buffer, length); | |
605 break; | |
606 default: | |
607 UNREACHABLE(); | |
608 } | |
609 buffer[*length] = '\0'; | |
610 } | |
611 | |
612 } } // namespace v8::internal | |
OLD | NEW |