Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(482)

Side by Side Diff: src/bignum-dtoa.cc

Issue 3468003: Add bignum fall-back when the fast dtoa doesn't succeed. This removes Gay's d... (Closed) Base URL: http://v8.googlecode.com/svn/branches/bleeding_edge/
Patch Set: '' Created 10 years, 1 month ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « src/bignum-dtoa.h ('k') | src/conversions.cc » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include <math.h>
29
30 #include "v8.h"
31 #include "bignum-dtoa.h"
32
33 #include "bignum.h"
34 #include "double.h"
35
36 namespace v8 {
37 namespace internal {
38
39 // Returns an estimation of k such that 10^(k-1) <= v < 10^k where
40 // v = f * 2^exponent and 2^52 <= f < 2^53.
41 // v is hence a normalized double with the given exponent. The output is an
42 // approximation for the exponent of the decimal approimation .digits * 10^k.
43 //
44 // The result might undershoot by 1 in which case 10^k <= v < 10^k+1.
45 // Note: this property holds for v's upper boundary m+ too.
46 // 10^k <= m+ < 10^k+1.
47 // (see explanation below).
48 //
49 // Examples:
50 // EstimatePower(0) => 16
51 // EstimatePower(-52) => 0
52 //
53 // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0.
54 static int EstimatePower(int exponent) {
55 // This function estimates log10 of v where v = f*2^e (with e == exponent).
56 // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)).
57 // Note that f is bounded by its container size. Let p = 53 (the double's
58 // significand size). Then 2^(p-1) <= f < 2^p.
59 //
60 // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close
61 // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)).
62 // The computed number undershoots by less than 0.631 (when we compute log3
63 // and not log10).
64 //
65 // Optimization: since we only need an approximated result this computation
66 // can be performed on 64 bit integers. On x86/x64 architecture the speedup is
67 // not really measurable, though.
68 //
69 // Since we want to avoid overshooting we decrement by 1e10 so that
70 // floating-point imprecisions don't affect us.
71 //
72 // Explanation for v's boundary m+: the computation takes advantage of
73 // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement
74 // (even for denormals where the delta can be much more important).
75
76 const double k1Log10 = 0.30102999566398114; // 1/lg(10)
77
78 // For doubles len(f) == 53 (don't forget the hidden bit).
79 const int kSignificandSize = 53;
80 double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10);
81 return static_cast<int>(estimate);
82 }
83
84
85 // See comments for InitialScaledStartValues.
86 static void InitialScaledStartValuesPositiveExponent(
87 double v, int estimated_power, bool need_boundary_deltas,
88 Bignum* numerator, Bignum* denominator,
89 Bignum* delta_minus, Bignum* delta_plus) {
90 // A positive exponent implies a positive power.
91 ASSERT(estimated_power >= 0);
92 // Since the estimated_power is positive we simply multiply the denominator
93 // by 10^estimated_power.
94
95 // numerator = v.
96 numerator->AssignUInt64(Double(v).Significand());
97 numerator->ShiftLeft(Double(v).Exponent());
98 // denominator = 10^estimated_power.
99 denominator->AssignPowerUInt16(10, estimated_power);
100
101 if (need_boundary_deltas) {
102 // Introduce a common denominator so that the deltas to the boundaries are
103 // integers.
104 denominator->ShiftLeft(1);
105 numerator->ShiftLeft(1);
106 // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
107 // denominator (of 2) delta_plus equals 2^e.
108 delta_plus->AssignUInt16(1);
109 delta_plus->ShiftLeft(Double(v).Exponent());
110 // Same for delta_minus (with adjustments below if f == 2^p-1).
111 delta_minus->AssignUInt16(1);
112 delta_minus->ShiftLeft(Double(v).Exponent());
113
114 // If the significand (without the hidden bit) is 0, then the lower
115 // boundary is closer than just half a ulp (unit in the last place).
116 // There is only one exception: if the next lower number is a denormal then
117 // the distance is 1 ulp. This cannot be the case for exponent >= 0 (but we
118 // have to test it in the other function where exponent < 0).
119 uint64_t v_bits = Double(v).AsUint64();
120 if ((v_bits & Double::kSignificandMask) == 0) {
121 // The lower boundary is closer at half the distance of "normal" numbers.
122 // Increase the common denominator and adapt all but the delta_minus.
123 denominator->ShiftLeft(1); // *2
124 numerator->ShiftLeft(1); // *2
125 delta_plus->ShiftLeft(1); // *2
126 }
127 }
128 }
129
130
131 // See comments for InitialScaledStartValues
132 static void InitialScaledStartValuesNegativeExponentPositivePower(
133 double v, int estimated_power, bool need_boundary_deltas,
134 Bignum* numerator, Bignum* denominator,
135 Bignum* delta_minus, Bignum* delta_plus) {
136 uint64_t significand = Double(v).Significand();
137 int exponent = Double(v).Exponent();
138 // v = f * 2^e with e < 0, and with estimated_power >= 0.
139 // This means that e is close to 0 (have a look at how estimated_power is
140 // computed).
141
142 // numerator = significand
143 // since v = significand * 2^exponent this is equivalent to
144 // numerator = v * / 2^-exponent
145 numerator->AssignUInt64(significand);
146 // denominator = 10^estimated_power * 2^-exponent (with exponent < 0)
147 denominator->AssignPowerUInt16(10, estimated_power);
148 denominator->ShiftLeft(-exponent);
149
150 if (need_boundary_deltas) {
151 // Introduce a common denominator so that the deltas to the boundaries are
152 // integers.
153 denominator->ShiftLeft(1);
154 numerator->ShiftLeft(1);
155 // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
156 // denominator (of 2) delta_plus equals 2^e.
157 // Given that the denominator already includes v's exponent the distance
158 // to the boundaries is simply 1.
159 delta_plus->AssignUInt16(1);
160 // Same for delta_minus (with adjustments below if f == 2^p-1).
161 delta_minus->AssignUInt16(1);
162
163 // If the significand (without the hidden bit) is 0, then the lower
164 // boundary is closer than just one ulp (unit in the last place).
165 // There is only one exception: if the next lower number is a denormal
166 // then the distance is 1 ulp. Since the exponent is close to zero
167 // (otherwise estimated_power would have been negative) this cannot happen
168 // here either.
169 uint64_t v_bits = Double(v).AsUint64();
170 if ((v_bits & Double::kSignificandMask) == 0) {
171 // The lower boundary is closer at half the distance of "normal" numbers.
172 // Increase the denominator and adapt all but the delta_minus.
173 denominator->ShiftLeft(1); // *2
174 numerator->ShiftLeft(1); // *2
175 delta_plus->ShiftLeft(1); // *2
176 }
177 }
178 }
179
180
181 // See comments for InitialScaledStartValues
182 static void InitialScaledStartValuesNegativeExponentNegativePower(
183 double v, int estimated_power, bool need_boundary_deltas,
184 Bignum* numerator, Bignum* denominator,
185 Bignum* delta_minus, Bignum* delta_plus) {
186 const uint64_t kMinimalNormalizedExponent =
187 V8_2PART_UINT64_C(0x00100000, 00000000);
188 uint64_t significand = Double(v).Significand();
189 int exponent = Double(v).Exponent();
190 // Instead of multiplying the denominator with 10^estimated_power we
191 // multiply all values (numerator and deltas) by 10^-estimated_power.
192
193 // Use numerator as temporary container for power_ten.
194 Bignum* power_ten = numerator;
195 power_ten->AssignPowerUInt16(10, -estimated_power);
196
197 if (need_boundary_deltas) {
198 // Since power_ten == numerator we must make a copy of 10^estimated_power
199 // before we complete the computation of the numerator.
200 // delta_plus = delta_minus = 10^estimated_power
201 delta_plus->AssignBignum(*power_ten);
202 delta_minus->AssignBignum(*power_ten);
203 }
204
205 // numerator = significand * 2 * 10^-estimated_power
206 // since v = significand * 2^exponent this is equivalent to
207 // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
208 // Remember: numerator has been abused as power_ten. So no need to assign it
209 // to itself.
210 ASSERT(numerator == power_ten);
211 numerator->MultiplyByUInt64(significand);
212
213 // denominator = 2 * 2^-exponent with exponent < 0.
214 denominator->AssignUInt16(1);
215 denominator->ShiftLeft(-exponent);
216
217 if (need_boundary_deltas) {
218 // Introduce a common denominator so that the deltas to the boundaries are
219 // integers.
220 numerator->ShiftLeft(1);
221 denominator->ShiftLeft(1);
222 // With this shift the boundaries have their correct value, since
223 // delta_plus = 10^-estimated_power, and
224 // delta_minus = 10^-estimated_power.
225 // These assignments have been done earlier.
226
227 // The special case where the lower boundary is twice as close.
228 // This time we have to look out for the exception too.
229 uint64_t v_bits = Double(v).AsUint64();
230 if ((v_bits & Double::kSignificandMask) == 0 &&
231 // The only exception where a significand == 0 has its boundaries at
232 // "normal" distances:
233 (v_bits & Double::kExponentMask) != kMinimalNormalizedExponent) {
234 numerator->ShiftLeft(1); // *2
235 denominator->ShiftLeft(1); // *2
236 delta_plus->ShiftLeft(1); // *2
237 }
238 }
239 }
240
241
242 // v = significand * 2^exponent
243 // The initial start values consist of:
William Hesse 2010/11/17 09:44:09 How about: Computes v / 10^estimated_power exactly
Florian Loitsch 2010/11/17 12:47:59 Done.
244 // - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power.
245 // - a scaled (common) denominator.
246 // optionally (depending on the flag need_boundary_deltas):
William Hesse 2010/11/17 09:44:09 Might as well say here: used by GenerateShortestDi
Florian Loitsch 2010/11/17 12:47:59 Done.
247 // - v - m-: the distance to the lower boundary.
248 // - m+ - v: the distance to the upper boundary.
249 // The scaling consist of multiplying the numerator by 10^estimated_power, or
William Hesse 2010/11/17 09:44:09 Not needed. This will be obvious from the code, o
Florian Loitsch 2010/11/17 12:47:59 Done.
250 // (if the estimated_power is negative) by multiplying the denominator
251 // by 10^-estimated_power.
252 // Note that the boundary-deltas are scaled too. If the common denominator has
William Hesse 2010/11/17 09:44:09 Not needed, except to say that v, m+, m-, and ther
Florian Loitsch 2010/11/17 12:47:59 Done.
253 // been scaled, then the deltas are automatically scaled. Otherwise they are
254 // multiplied by the scaling factor, too.
255 //
256 // Let ep == estimated_power, then the returned values will satisfy:
257 // v / 10^ep = numerator / denominator.
258 // v's boundarys m- and m+:
259 // m- / 10^ep == v / 10^ep - delta_minus / denominator
260 // m+ / 10^ep == v / 10^ep + delta_plus / denominator
261 // Or in other words:
262 // m- == v - delta_minus * 10^ep / denominator;
263 // m+ == v + delta_plus * 10^ep / denominator;
264 //
265 // Since 10^(k-1) <= v < 10^k (with k == estimated_power)
266 // or 10^k <= v < 10^(k+1)
267 // we then have 0.1 <= numerator/denominator < 1
268 // or 1 <= numerator/denominator < 10
269 //
270 // It is then easy to kickstart the digit-generation routine.
271 //
272 // The boundary-deltas are only filled if need_boundary_deltas is set.
273 static void InitialScaledStartValues(double v,
274 int estimated_power,
275 bool need_boundary_deltas,
276 Bignum* numerator,
277 Bignum* denominator,
278 Bignum* delta_minus,
279 Bignum* delta_plus) {
280 if (Double(v).Exponent() >= 0) {
281 InitialScaledStartValuesPositiveExponent(
282 v, estimated_power, need_boundary_deltas,
283 numerator, denominator, delta_minus, delta_plus);
284 } else if (estimated_power >= 0) {
285 InitialScaledStartValuesNegativeExponentPositivePower(
286 v, estimated_power, need_boundary_deltas,
287 numerator, denominator, delta_minus, delta_plus);
288 } else {
289 InitialScaledStartValuesNegativeExponentNegativePower(
290 v, estimated_power, need_boundary_deltas,
291 numerator, denominator, delta_minus, delta_plus);
292 }
293 }
294
295
296 // This routine multiplies numerator/denominator so that its values lies in the
297 // range 1-10. That is after a call to this function we have:
298 // 1 <= (numerator + delta_plus) /denominator < 10.
299 // Let numerator the input before modification and numerator' the argument
300 // after modification, then the output-parameter decimal_point is such that
301 // numerator / denominator * 10^estimated_power ==
302 // numerator' / denominator' * 10^(decimal_point - 1)
303 // In some cases estimated_power was too low, and this is already the case. We
304 // then simply adjust the power so that 10^(k-1) <= v < 10^k (with k ==
305 // estimated_power) but do not touch the numerator or denominator.
306 // Otherwise the routine multiplies the numerator and the deltas by 10.
307 static void FixupMultiply10(int estimated_power, bool is_even,
308 int* decimal_point,
309 Bignum* numerator, Bignum* denominator,
310 Bignum* delta_minus, Bignum* delta_plus) {
311 bool in_range;
312 if (is_even) {
313 // For IEEE doubles half-way cases (in decimal system numbers ending with 5)
314 // are rounded to the closest floating-point number with even significand.
315 in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
316 } else {
317 in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
318 }
319 if (in_range) {
320 // Since numerator + delta_plus >= denominator we already have
321 // 1 <= numerator/denominator < 10. Simply update the estimated_power.
322 *decimal_point = estimated_power + 1;
323 } else {
324 *decimal_point = estimated_power;
325 numerator->Times10();
326 if (Bignum::Equal(*delta_minus, *delta_plus)) {
327 delta_minus->Times10();
328 delta_plus->AssignBignum(*delta_minus);
329 } else {
330 delta_minus->Times10();
331 delta_plus->Times10();
332 }
333 }
334 }
335
336
337 // The procedure starts generating digits from the left to the right and stops
338 // when the generated digits yield a number that is close enough. The number
William Hesse 2010/11/17 09:44:09 yield the shortest decimal representation of v. A
Florian Loitsch 2010/11/17 12:47:59 Done.
339 // is close enough when it lies closer to the original V than to any other
340 // double. Note: V = numerator/denominator.
341 //
342 // Precondition: 0 <= (numerator+delta_plus) / denominator < 10.
343 // If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit
344 // will be produced. This should be the standard precondition.
345 // Produces the least amount of digits so that the result lies within the
346 // boundaries (defined by the deltas). Let V the value written in the buffer,
347 // and
348 // m- := (numerator - delta_minus) / denominator
349 // m+ := (numerator + delta_plus) / denominator
350 // <? := '<=' if is_even and '<' otherwise, then
351 // m- <? V <? m+
352 // In other words the written buffer would read as the input number.
353 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
354 Bignum* delta_minus, Bignum* delta_plus,
355 bool is_even,
356 Vector<char> buffer, int* length) {
357 // Small optimization: if delta_minus and delta_plus are the same just reuse
358 // one of the two bignums.
359 if (Bignum::Equal(*delta_minus, *delta_plus)) {
360 delta_plus = delta_minus;
361 }
362 *length = 0;
363 while (true) {
364 uint16_t digit;
365 digit = numerator->DivideModuloIntBignum(*denominator);
366 ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive.
367 // digit = numerator / denominator (integer division).
368 // numerator = numerator % denominator.
369 buffer[(*length)++] = digit + '0';
370
371 // Can we stop already?
372 // If the remainder of the division is less than the distance to the lower
373 // boundary we can stop. In this case we simply round down (discarding the
374 // remainder).
375 // Similarly we test if we can round up (using the upper boundary).
376 bool in_delta_room_minus;
377 bool in_delta_room_plus;
378 if (is_even) {
379 in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus);
380 } else {
381 in_delta_room_minus = Bignum::Less(*numerator, *delta_minus);
382 }
383 if (is_even) {
384 in_delta_room_plus =
385 Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
386 } else {
387 in_delta_room_plus =
388 Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
389 }
390 if (!in_delta_room_minus && !in_delta_room_plus) {
391 // Prepare for next iteration.
392 numerator->Times10();
393 delta_minus->Times10();
394 // We optimized delta_plus to be equal to delta_minus (if they share the
395 // same value). So don't multiply delta_plus if they point to the same
396 // object.
397 if (delta_minus != delta_plus) {
398 delta_plus->Times10();
399 }
400 } else if (in_delta_room_minus && in_delta_room_plus) {
401 // Let's see if 2*numerator < denominator.
402 // If yes, then the next digit would be < 5 and we can round down.
403 int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator);
404 if (compare < 0) {
405 // Remaining digits are less than .5. -> Round down (== do nothing).
406 } else if (compare > 0) {
407 // Remaining digits are more than .5 of denominator. -> Round up.
408 // Note that the last digit could not be a '9' as otherwise the whole
409 // loop would have stopped earlier.
410 // We still have an assert here in case the preconditions were not
411 // satisfied.
412 ASSERT(buffer[(*length) - 1] != '9');
413 buffer[(*length) - 1]++;
414 } else {
415 // Halfway case.
416 // TODO(floitsch): need a way to solve half-way cases.
417 // For now let's round towards even (since this is what Gay seems to
418 // do).
419
420 if ((buffer[(*length) - 1] - '0') % 2 == 0) {
421 // Round down => Do nothing.
422 } else {
423 ASSERT(buffer[(*length) - 1] != '9');
424 buffer[(*length) - 1]++;
425 }
426 }
427 return;
428 } else if (in_delta_room_minus) {
429 // Round down (== do nothing).
430 return;
431 } else { // in_delta_room_plus
432 // Round up.
433 // Note again that the last digit could not be '9' since this would have
434 // stopped the loop earlier.
435 // We still have an ASSERT here, in case the preconditions were not
436 // satisfied.
437 ASSERT(buffer[(*length) -1] != '9');
438 buffer[(*length) - 1]++;
439 return;
440 }
441 }
442 }
443
444
445 static int NormalizedExponent(uint64_t significand, int exponent) {
446 ASSERT(significand != 0);
447 while ((significand & Double::kHiddenBit) == 0) {
448 significand = significand << 1;
449 exponent = exponent - 1;
450 }
451 return exponent;
452 }
453
454
455 // Let v = numerator / denominator.
William Hesse 2010/11/17 09:44:09 // Let v = numerator / denominator < 10. // Then w
Florian Loitsch 2010/11/17 12:47:59 Done.
456 // Then we generate 'count' digits from left to right. Once all digits have
457 // been produced the remainder is used to determine if the number should be
458 // round up or down. It can therefore happen that trailing '9's are replaced
459 // by '0's.
460 static void GenerateCountedDigits(int count, int* decimal_point,
461 Bignum* numerator, Bignum* denominator,
462 Vector<char>(buffer), int* length) {
463 ASSERT(count >= 0);
464 for (int i = 0; i < count - 1; ++i) {
465 uint16_t digit;
466 digit = numerator->DivideModuloIntBignum(*denominator);
467 ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive.
468 // digit = numerator / denominator (integer division).
469 // numerator = numerator % denominator.
470 buffer[i] = digit + '0';
471 // Prepare for next iteration.
472 numerator->Times10();
473 }
474 // Generate the last digit.
475 uint16_t digit;
476 digit = numerator->DivideModuloIntBignum(*denominator);
477 if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
478 digit++;
479 }
480 buffer[count - 1] = digit + '0';
481 // Correct bad digits (in case we had a sequence of '9's). Propagate the
482 // carry until we hat a non-'9' or til we reach the first digit.
483 for (int i = count - 1; i > 0; --i) {
484 if (buffer[i] != '0' + 10) break;
485 buffer[i] = '0';
486 buffer[i - 1]++;
487 }
488 if (buffer[0] == '0' + 10) {
489 // Propagate a carry past the top place.
490 buffer[0] = '1';
491 (*decimal_point)++;
492 }
493 *length = count;
494 }
495
496
497 // Generates 'requested_digits' after the decimal point. It might omit
498 // trailing '0's. If the input number is too small then no digits at all are
499 // generated (ex.: 2 fixed digits for 0.00001).
500 //
501 // Input verifies: 1 <= (numerator + delta) / denominator < 10.
502 static void BignumToFixed(int requested_digits, int* decimal_point,
503 Bignum* numerator, Bignum* denominator,
504 Vector<char>(buffer), int* length) {
505 // Note that we have to look at more than just the requested_digits, since
506 // a number could be rounded up. Example: v=0.5 with requested_digits=0.
507 // Even though the power of v equals 0 we can't just stop here.
508 if (-(*decimal_point) > requested_digits) {
509 // The number is definitively too small.
510 // Ex: 0.001 with requested_digits == 1.
511 // Set decimal-point to -requested_digits. This is what Gay does.
512 // Note that it should not have any effect anyways since the string is
513 // empty.
514 *decimal_point = -requested_digits;
515 *length = 0;
516 return;
517 } else if (-(*decimal_point) == requested_digits) {
518 // We only need to verify if the number rounds down or up.
519 // Ex: 0.04 and 0.06 with requested_digits == 1.
520 ASSERT(*decimal_point == -requested_digits);
521 // Initially the fraction lies in range (1, 10]. Multiply the denominator
522 // by 10 so that we can compare more easily.
523 denominator->Times10();
524 if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
525 // If the fraction is >= 0.5 then we have to include the rounded
526 // digit.
527 buffer[0] = '1';
528 *length = 1;
529 (*decimal_point)++;
530 } else {
531 // Note that we caught most of similar cases earlier.
532 *length = 0;
533 }
534 return;
535 } else {
536 // The requested digits correspond to the digits after the point.
537 // The variable 'needed_digits' includes the digits before the point.
538 int needed_digits = (*decimal_point) + requested_digits;
539 GenerateCountedDigits(needed_digits, decimal_point,
540 numerator, denominator,
541 buffer, length);
542 }
543 }
544
545
546 void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
547 Vector<char> buffer, int* length, int* decimal_point) {
548 ASSERT(v > 0);
549 ASSERT(!Double(v).IsSpecial());
550 uint64_t significand = Double(v).Significand();
551 bool is_even = (significand & 1) == 0;
552 int exponent = Double(v).Exponent();
553 int normalized_exponent = NormalizedExponent(significand, exponent);
554 // estimated_power might be too low by 1.
555 int estimated_power = EstimatePower(normalized_exponent);
556
557 // Shortcut for Fixed.
558 // The requested digits correspond to the digits after the point. If the
559 // number is much too small, then there is no need in trying to get any
560 // digits.
561 if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) {
562 buffer[0] = '\0';
563 *length = 0;
564 // Set decimal-point to -requested_digits. This is what Gay does.
565 // Note that it should not have any effect anyways since the string is
566 // empty.
567 *decimal_point = -requested_digits;
568 return;
569 }
570
571 Bignum numerator;
William Hesse 2010/11/17 09:44:09 As long as there is a header file, could the order
572 Bignum denominator;
573 Bignum delta_minus;
574 Bignum delta_plus;
575 // Make sure the bignum can grow large enough. The smallest double equals
576 // 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
577 // The maximum double is 1.7976931348623157e308 which needs fewer than
578 // 308*4 binary digits.
579 ASSERT(Bignum::kMaxSignificantBits >= 324*4);
580 bool need_boundary_deltas = (mode == BIGNUM_DTOA_SHORTEST);
581 InitialScaledStartValues(v, estimated_power, need_boundary_deltas,
582 &numerator, &denominator,
583 &delta_minus, &delta_plus);
584 // We now have v = (numerator / denominator) * 10^estimated_power.
585 FixupMultiply10(estimated_power, is_even, decimal_point,
586 &numerator, &denominator,
587 &delta_minus, &delta_plus);
588 // We now have v = (numerator / denominator) * 10^(decimal_point-1), and
589 // 1 <= (numerator + delta_plus) / denominator < 10
590 switch (mode) {
591 case BIGNUM_DTOA_SHORTEST:
592 GenerateShortestDigits(&numerator, &denominator,
593 &delta_minus, &delta_plus,
594 is_even, buffer, length);
595 break;
596 case BIGNUM_DTOA_FIXED:
597 BignumToFixed(requested_digits, decimal_point,
598 &numerator, &denominator,
599 buffer, length);
600 break;
601 case BIGNUM_DTOA_PRECISION:
602 GenerateCountedDigits(requested_digits, decimal_point,
603 &numerator, &denominator,
604 buffer, length);
605 break;
606 default:
607 UNREACHABLE();
608 }
609 buffer[*length] = '\0';
610 }
611
612 } } // namespace v8::internal
OLDNEW
« no previous file with comments | « src/bignum-dtoa.h ('k') | src/conversions.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698