Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 // Copyright 2010 the V8 project authors. All rights reserved. | |
| 2 // Redistribution and use in source and binary forms, with or without | |
| 3 // modification, are permitted provided that the following conditions are | |
| 4 // met: | |
| 5 // | |
| 6 // * Redistributions of source code must retain the above copyright | |
| 7 // notice, this list of conditions and the following disclaimer. | |
| 8 // * Redistributions in binary form must reproduce the above | |
| 9 // copyright notice, this list of conditions and the following | |
| 10 // disclaimer in the documentation and/or other materials provided | |
| 11 // with the distribution. | |
| 12 // * Neither the name of Google Inc. nor the names of its | |
| 13 // contributors may be used to endorse or promote products derived | |
| 14 // from this software without specific prior written permission. | |
| 15 // | |
| 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
| 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
| 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
| 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
| 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
| 27 | |
| 28 #include <math.h> | |
| 29 | |
| 30 #include "v8.h" | |
| 31 #include "bignum-dtoa.h" | |
| 32 | |
| 33 #include "bignum.h" | |
| 34 #include "double.h" | |
| 35 | |
| 36 namespace v8 { | |
| 37 namespace internal { | |
| 38 | |
| 39 // Returns an estimation of k such that 10^(k-1) <= v < 10^k. | |
|
William Hesse
2010/11/15 15:48:30
This is unclear. Explains that the input is the ex
Florian Loitsch
2010/11/16 14:32:06
Done.
| |
| 40 // The result might undershoot by 1 in which case 10^k <= v < 10^k+1. | |
| 41 // Note: the same is true for v + wiggle_plus (instead of simply v) (see | |
|
William Hesse
2010/11/15 15:48:30
What is wiggle_plus?
Florian Loitsch
2010/11/16 14:32:06
Changed to v+ (v's positive boundary).
| |
| 42 // explanation below). | |
| 43 // Examples: | |
| 44 // EstimatePower(0) => 16 | |
| 45 // EstimatePower(-52) => 0 | |
| 46 // | |
| 47 // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0. | |
| 48 static int EstimatePower(int exponent) { | |
| 49 // This function estimates log10 of v where v = f*2^e (with e == exponent). | |
| 50 // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)). | |
| 51 // Note that f is bounded by its container size. Let p = 53 (the double's | |
| 52 // significand size). Then 2^(p-1) <= f < 2^p. | |
| 53 // | |
| 54 // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close | |
| 55 // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)). | |
| 56 // The computed number undershoots by less than 0.631 (when we compute log3 | |
| 57 // and not log10). | |
| 58 // | |
| 59 // Optimization: since we only need an approximated result this computation | |
| 60 // can be performed on 64 bit integers. On x86/x64 architecture the speedup is | |
| 61 // not really measurable, though. | |
| 62 // | |
| 63 // Since we want to avoid overshooting we decrement by 1e10 so that | |
| 64 // floating-point imprecisions don't affect us. | |
| 65 // | |
| 66 // Explanation for (v + wiggle_plus): the computation takes advantage of the | |
|
William Hesse
2010/11/15 15:48:30
Can the wiggle stuff be put where wiggle is used?
Florian Loitsch
2010/11/16 14:32:06
Reworked comment.
| |
| 67 // fact that 2^(p-1) <= f < 2^p. However even after adding the wiggle this | |
| 68 // property is still true (even for denormals where the wiggle can be much | |
| 69 // more important). | |
| 70 | |
| 71 const double k1Log10 = 0.30102999566398114; // 1/lg(10) | |
| 72 | |
| 73 // For doubles len(f) == 53 (don't forget the hidden bit). | |
| 74 const int kSignificandSize = 53; | |
| 75 double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10); | |
| 76 return static_cast<int>(estimate); | |
| 77 } | |
| 78 | |
| 79 | |
| 80 // See comments for InitialScaledStartValues. | |
| 81 static void InitialScaledStartValuesPositiveExponent( | |
| 82 double v, int estimated_power, bool need_wiggles, | |
| 83 Bignum* numerator, Bignum* denominator, | |
| 84 Bignum* wiggle_minus, Bignum* wiggle_plus) { | |
| 85 // A positive exponent implies a positive power. | |
| 86 ASSERT(estimated_power >= 0); | |
| 87 // Since the estimated_power is positive we simply multiply the denominator | |
| 88 // by 10^estimated_power. | |
| 89 | |
| 90 // The common case first. We later (10 lines below) correct the values for | |
| 91 // the special case where the boundaries are different. | |
| 92 // denominator = 2 * 10^estimated_power; | |
| 93 denominator->AssignPowerUInt16(10, estimated_power); | |
| 94 denominator->ShiftLeft(1); | |
| 95 // numerator = v * 2 (2 for the common denominator). | |
| 96 numerator->AssignUInt64(Double(v).Significand()); | |
| 97 numerator->ShiftLeft(Double(v).Exponent() + 1); | |
| 98 | |
| 99 if (need_wiggles) { | |
|
William Hesse
2010/11/15 15:48:30
Call these delta_plus and delta_minus, or somethin
Florian Loitsch
2010/11/16 14:32:06
Refactored (slightly) method and comments.
| |
| 100 // Let v = f * 2^e, then wiggle_plus = 2^e; | |
| 101 wiggle_plus->AssignUInt16(1); | |
| 102 wiggle_plus->ShiftLeft(Double(v).Exponent()); | |
| 103 // Same for wiggle_minus. | |
| 104 wiggle_minus->AssignUInt16(1); | |
| 105 wiggle_minus->ShiftLeft(Double(v).Exponent()); | |
| 106 | |
| 107 // If the significand (without the hidden bit) is 0, then the lower | |
| 108 // boundary is closer than just one ulp (unit in the last place). | |
| 109 // There is only one exception: if the next lower number is a denormal then | |
| 110 // the distance is 1 ulp. This cannot be the case for exponent >= 0 (but we | |
| 111 // have to test it in the other function where exponent < 0). | |
| 112 uint64_t v_bits = Double(v).AsUint64(); | |
| 113 if ((v_bits & Double::kSignificandMask) == 0) { | |
| 114 // The lower boundary is closer at half the distance of "normal" numbers. | |
| 115 // Increase the denominator and adapt all but the wiggle_minus. | |
| 116 denominator->ShiftLeft(1); // *2 | |
| 117 numerator->ShiftLeft(1); // *2 | |
| 118 wiggle_plus->ShiftLeft(1); // *2 | |
| 119 } | |
| 120 } | |
| 121 } | |
| 122 | |
| 123 | |
| 124 // See comments for InitialScaledStartValues | |
| 125 static void InitialScaledStartValuesNegativeExponentPositivePower( | |
| 126 double v, int estimated_power, bool need_wiggles, | |
| 127 Bignum* numerator, Bignum* denominator, | |
| 128 Bignum* wiggle_minus, Bignum* wiggle_plus) { | |
| 129 uint64_t significand = Double(v).Significand(); | |
| 130 int exponent = Double(v).Exponent(); | |
| 131 // v = f * 2^e with e < 0, and with estimated_power >= 0. | |
| 132 // This means that e is close to 0 (have a look at how estimated_power is | |
| 133 // computed). | |
| 134 | |
| 135 // The common case first. We later (10 lines below) correct the values for | |
| 136 // the special case where the boundaries are different. | |
| 137 // denominator = 10^estimated_power * 2 * 2^-exponent (with exponent < 0) | |
| 138 denominator->AssignPowerUInt16(10, estimated_power); | |
| 139 denominator->ShiftLeft(1 - exponent); | |
| 140 // numerator = 2 * significand | |
| 141 // since v = significand * 2^exponent this is equivalent to | |
| 142 // numerator = v * 2 / 2^-exponent | |
| 143 numerator->AssignUInt64(significand); | |
| 144 numerator->ShiftLeft(1); | |
| 145 | |
| 146 if (need_wiggles) { | |
| 147 // Given that the denominator already includes v's exponent the wiggle | |
| 148 // room is simply 1. | |
| 149 wiggle_plus->AssignUInt16(1); | |
| 150 // Same for wiggle_minus. | |
| 151 wiggle_minus->AssignUInt16(1); | |
| 152 | |
| 153 // If the significand (without the hidden bit) is 0, then the lower | |
| 154 // boundary is closer than just one ulp (unit in the last place). | |
| 155 // There is only one exception: if the next lower number is a denormal | |
| 156 // then the distance is 1 ulp. Since the exponent is close to zero | |
| 157 // (otherwise estimated_power would have been negative) this cannot happen | |
| 158 // here either. | |
| 159 uint64_t v_bits = Double(v).AsUint64(); | |
| 160 if ((v_bits & Double::kSignificandMask) == 0) { | |
| 161 // The lower boundary is closer at half the distance of "normal" numbers. | |
| 162 // Increase the denominator and adapt all but the wiggle_minus. | |
| 163 denominator->ShiftLeft(1); // *2 | |
| 164 numerator->ShiftLeft(1); // *2 | |
| 165 wiggle_plus->ShiftLeft(1); // *2 | |
| 166 } | |
| 167 } | |
| 168 } | |
| 169 | |
| 170 | |
| 171 // See comments for InitialScaledStartValues | |
| 172 static void InitialScaledStartValuesNegativeExponentNegativePower( | |
| 173 double v, int estimated_power, bool need_wiggles, | |
| 174 Bignum* numerator, Bignum* denominator, | |
| 175 Bignum* wiggle_minus, Bignum* wiggle_plus) { | |
| 176 const uint64_t kMinimalNormalizedExponent = | |
| 177 V8_2PART_UINT64_C(0x00100000, 00000000); | |
| 178 uint64_t significand = Double(v).Significand(); | |
| 179 int exponent = Double(v).Exponent(); | |
| 180 // Instead of multiplying the denominator with 10^estimated_power we | |
| 181 // multiply all values (numerator and wiggles) by 10^-estimated_power. | |
| 182 | |
| 183 // Use numerator as temporary container for power_ten | |
| 184 Bignum* power_ten = numerator; | |
| 185 power_ten->AssignPowerUInt16(10, -estimated_power); | |
| 186 | |
| 187 // The common case first. The special case is handled soon. | |
| 188 | |
| 189 if (need_wiggles) { | |
| 190 // wiggle_plus = wiggle_minus = 10^estimated_power | |
| 191 wiggle_plus->AssignBignum(*power_ten); | |
| 192 wiggle_minus->AssignBignum(*power_ten); | |
| 193 } | |
| 194 // denominator = 2 * 2^-exponent with exponent < 0. | |
| 195 denominator->AssignUInt16(1); | |
| 196 denominator->ShiftLeft(1 - exponent); | |
| 197 // numerator = significand * 2 * 10^-estimated_power | |
| 198 // since v = significand * 2^exponent this is equivalent to | |
| 199 // numerator = v * 10^-estimated_power * 2 * 2^-exponent. | |
| 200 // Remember: numerator has been abused as power_ten. So no need to assign it | |
| 201 // to itself. | |
| 202 numerator->MultiplyByUInt64(significand); | |
| 203 numerator->ShiftLeft(1); | |
| 204 | |
| 205 if (need_wiggles) { | |
| 206 // The special case where the lower boundary is twice as close. | |
| 207 // This time we have to look out for the exception too. | |
| 208 uint64_t v_bits = Double(v).AsUint64(); | |
| 209 if ((v_bits & Double::kSignificandMask) == 0 && | |
| 210 // The only exception where a significand == 0 has its boundaries at | |
| 211 // "normal" distances: | |
| 212 (v_bits & Double::kExponentMask) != kMinimalNormalizedExponent) { | |
| 213 numerator->ShiftLeft(1); // *2 | |
| 214 denominator->ShiftLeft(1); // *2 | |
| 215 wiggle_plus->ShiftLeft(1); // *2 | |
| 216 } | |
| 217 } | |
| 218 } | |
| 219 | |
| 220 | |
| 221 // v = significand * 2^exponent | |
| 222 // The initial start values consist of: | |
| 223 // - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power. | |
| 224 // - a scaled (common) denominator. | |
| 225 // - the scaled range a double has towards -infinity while still being | |
| 226 // considered to be equal to v. In other words: the difference between v and | |
| 227 // its lower boundary. | |
| 228 // - the same room towards +infinity. | |
| 229 // The scaling consist of multiplying the numerator by 10^estimated_power, or | |
| 230 // (if the estimated_power is negative) by multiplying the denominator | |
| 231 // by 10^-estimated_power. | |
| 232 // Note that the wiggle-room is scaled too. If the common denominator has been | |
| 233 // scaled, then the wiggles are automatically scaled. Otherwise they are | |
| 234 // multiplied by the scaling factor, too. | |
| 235 // | |
| 236 // Let ep == estimated_power, then the returned values will satisfy: | |
| 237 // v / 10^ep = numerator / denominator. | |
| 238 // v's boundarys m- and m+: | |
| 239 // m- / 10^ep == v / 10^ep - wiggle_minus / denominator | |
| 240 // m+ / 10^ep == v / 10^ep + wiggle_plus / denominator | |
| 241 // Or in other words: | |
| 242 // m- == v - wiggle_minus * 10^ep / denominator; | |
| 243 // m+ == v + wiggle_plus * 10^ep / denominator; | |
| 244 // | |
| 245 // Since 10^(k-1) <= v < 10^k (with k == estimated_power) | |
| 246 // or 10^k <= v < 10^(k+1) | |
| 247 // we then have 0.1 <= numerator/denominator < 1 | |
| 248 // or 1 <= numerator/denominator < 10 | |
| 249 // | |
| 250 // It is then easy to kickstart the digit-generation routine. | |
| 251 static void InitialScaledStartValues(double v, int estimated_power, | |
| 252 bool need_wiggles, | |
| 253 Bignum* numerator, Bignum* denominator, | |
| 254 Bignum* wiggle_minus, | |
| 255 Bignum* wiggle_plus) { | |
| 256 if (Double(v).Exponent() >= 0) { | |
| 257 InitialScaledStartValuesPositiveExponent( | |
| 258 v, estimated_power, need_wiggles, | |
| 259 numerator, denominator, wiggle_minus, wiggle_plus); | |
| 260 } else if (estimated_power >= 0) { | |
| 261 InitialScaledStartValuesNegativeExponentPositivePower( | |
| 262 v, estimated_power, need_wiggles, | |
| 263 numerator, denominator, wiggle_minus, wiggle_plus); | |
| 264 } else { | |
| 265 InitialScaledStartValuesNegativeExponentNegativePower( | |
| 266 v, estimated_power, need_wiggles, | |
| 267 numerator, denominator, wiggle_minus, wiggle_plus); | |
| 268 } | |
| 269 } | |
| 270 | |
| 271 | |
| 272 // This routine multiplies numerator/denominator so that its values lies in the | |
| 273 // range 1-10. That is after a call to this function we have: | |
| 274 // 1 <= (numerator + wiggle_plus) /denominator < 10. | |
| 275 // In some cases estimated_power was too low, and this is already the case. We | |
| 276 // then simply adjust estimated_power so that 10^(k-1) <= v < 10^k (with k == | |
| 277 // estimated_power) but do not touch the numerator or denominator. | |
| 278 // Otherwise the routine multiplies the numerator and the wiggles by 10. | |
| 279 static void FixupMultiply10(int estimated_power, bool is_even, | |
| 280 int* power, | |
| 281 Bignum* numerator, Bignum* denominator, | |
| 282 Bignum* wiggle_minus, Bignum* wiggle_plus) { | |
| 283 bool in_range; | |
| 284 if (is_even) { | |
| 285 // For IEEE doubles half-way cases (in decimal system numbers ending with 5) | |
| 286 // are rounded to the closest floating-point number with even significand. | |
| 287 in_range = Bignum::PlusCompare(*numerator, *wiggle_plus, *denominator) >= 0; | |
| 288 } else { | |
| 289 in_range = Bignum::PlusCompare(*numerator, *wiggle_plus, *denominator) > 0; | |
| 290 } | |
| 291 if (in_range) { | |
| 292 // Since numerator + wiggle_plus >= denominator we already have | |
| 293 // 1 <= numerator/denominator < 10. Simply update the estimated_power. | |
| 294 *power = estimated_power + 1; | |
| 295 } else { | |
| 296 *power = estimated_power; | |
| 297 numerator->Times10(); | |
| 298 if (Bignum::Equal(*wiggle_minus, *wiggle_plus)) { | |
| 299 wiggle_minus->Times10(); | |
| 300 wiggle_plus->AssignBignum(*wiggle_minus); | |
| 301 } else { | |
| 302 wiggle_minus->Times10(); | |
| 303 wiggle_plus->Times10(); | |
| 304 } | |
| 305 } | |
| 306 } | |
| 307 | |
| 308 | |
| 309 // Precondition: 0 <= (numerator+wiggle_plus) / denominator < 10. | |
| 310 // If 1 <= (numerator+wiggle_plus) / denominator < 10 then no leading 0 digit | |
| 311 // will be produced. This should be the standard precondition. | |
| 312 // Produces the least amount of digits so that the result lies in the wiggle | |
|
William Hesse
2010/11/15 15:48:30
Give more big picture comments - result lying in t
Florian Loitsch
2010/11/16 14:32:06
Done.
| |
| 313 // room. Let V the value written in the buffer, and | |
| 314 // m- := (numerator - wiggle_minus) / denominator | |
| 315 // m+ := (numerator + wiggle_plus) / denominator | |
| 316 // <? := '<=' if is_even and '<' otherwise, then | |
| 317 // m- <? V <? m+ | |
| 318 // In other words the written buffer would read as the input number. | |
| 319 static void GenerateDigits(Bignum* numerator, Bignum* denominator, | |
|
William Hesse
2010/11/15 15:48:30
GenerateShortestDigits?
Florian Loitsch
2010/11/16 14:32:06
Done.
| |
| 320 Bignum* wiggle_minus, Bignum* wiggle_plus, | |
| 321 bool is_even, | |
| 322 Vector<char> buffer, int* length) { | |
| 323 // Small optimization: if wiggle_minus and wiggle_plus are the same just reuse | |
| 324 // one of the two bignums. | |
| 325 if (Bignum::Equal(*wiggle_minus, *wiggle_plus)) { | |
| 326 wiggle_plus = wiggle_minus; | |
| 327 } | |
| 328 *length = 0; | |
| 329 while (true) { | |
| 330 uint16_t digit; | |
| 331 digit = numerator->DivideModuloIntBignum(*denominator); | |
| 332 // digit = numerator / denominator (integer division). | |
| 333 // numerator = numerator % denominator. | |
| 334 buffer[(*length)++] = digit + '0'; | |
| 335 | |
| 336 // Can we stop already? | |
| 337 bool in_wiggle_room_minus; | |
| 338 bool in_wiggle_room_plus; | |
| 339 if (is_even) { | |
| 340 in_wiggle_room_minus = Bignum::LessEqual(*numerator, *wiggle_minus); | |
| 341 } else { | |
| 342 in_wiggle_room_minus = Bignum::Less(*numerator, *wiggle_minus); | |
| 343 } | |
| 344 if (is_even) { | |
| 345 in_wiggle_room_plus = | |
| 346 Bignum::PlusCompare(*numerator, *wiggle_plus, *denominator) >= 0; | |
| 347 } else { | |
| 348 in_wiggle_room_plus = | |
| 349 Bignum::PlusCompare(*numerator, *wiggle_plus, *denominator) > 0; | |
| 350 } | |
| 351 if (!in_wiggle_room_minus && !in_wiggle_room_plus) { | |
| 352 // Prepare for next iteration. | |
| 353 numerator->Times10(); | |
| 354 wiggle_minus->Times10(); | |
| 355 // We optimized wiggle_plus to be equal to wiggle_minus (if they share the | |
| 356 // same value). So don't multiply wiggle_plus if they point to the same | |
| 357 // object. | |
| 358 if (wiggle_minus != wiggle_plus) { | |
| 359 wiggle_plus->Times10(); | |
| 360 } | |
| 361 } else if (in_wiggle_room_minus && in_wiggle_room_plus) { | |
| 362 // Let's see if 2*numerator < denominator. | |
| 363 // If yes, then the next digit would be < 5 and we can round down. | |
| 364 int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator); | |
| 365 if (compare < 0) { | |
| 366 // Remaining digits are less than .5. -> Round down (== do nothing). | |
| 367 } else if (compare > 0) { | |
| 368 // Remaining digits are more than .5 of denominator. -> Round up. | |
| 369 // Note that the last digit could not be a '9' as otherwise the whole | |
| 370 // loop would have stopped earlier. | |
| 371 // We still have an assert here in case the preconditions were not | |
| 372 // satisfied. | |
| 373 ASSERT(buffer[(*length) - 1] != '9'); | |
| 374 buffer[(*length) - 1]++; | |
| 375 } else { | |
| 376 // Halfway case. | |
| 377 // TODO(floitsch): need a way to solve half-way cases. | |
| 378 // For now let's round towards even (since this is what Gay seems to | |
| 379 // do). | |
| 380 | |
| 381 if ((buffer[(*length) - 1] - '0') % 2 == 0) { | |
| 382 // Round down => Do nothing. | |
| 383 } else { | |
| 384 ASSERT(buffer[(*length) - 1] != '9'); | |
| 385 buffer[(*length) - 1]++; | |
| 386 } | |
| 387 } | |
| 388 return; | |
| 389 } else if (in_wiggle_room_minus) { | |
| 390 // Round down (== do nothing). | |
| 391 return; | |
| 392 } else { // in_wiggle_room_plus | |
| 393 // Round up. | |
| 394 // Note again that the last digit could not be '9' since this would have | |
| 395 // stopped the loop earlier. | |
| 396 // We still have an ASSERT here, in case the preconditions were not | |
| 397 // satisfied. | |
| 398 ASSERT(buffer[(*length) -1] != '9'); | |
| 399 buffer[(*length) - 1]++; | |
| 400 return; | |
| 401 } | |
| 402 } | |
| 403 } | |
| 404 | |
| 405 | |
| 406 static int NormalizedExponent(uint64_t significand, int exponent) { | |
| 407 ASSERT(significand != 0); | |
| 408 while ((significand & Double::kHiddenBit) == 0) { | |
| 409 significand = significand << 1; | |
| 410 exponent = exponent - 1; | |
| 411 } | |
| 412 return exponent; | |
| 413 } | |
| 414 | |
| 415 | |
| 416 static void GenerateCountedDigits(int count, int* decimal_point, | |
| 417 Bignum* numerator, Bignum* denominator, | |
| 418 Vector<char>(buffer), int* length) { | |
| 419 ASSERT(count >= 0); | |
| 420 for (int i = 0; i < count - 1; ++i) { | |
| 421 uint16_t digit; | |
| 422 digit = numerator->DivideModuloIntBignum(*denominator); | |
| 423 // digit = numerator / denominator (integer division). | |
|
William Hesse
2010/11/15 15:48:30
Include "Assumes numerator / denominator < 10" (or
Florian Loitsch
2010/11/16 14:32:06
added ASSERT.
| |
| 424 // numerator = numerator % denominator. | |
| 425 buffer[i] = digit + '0'; | |
| 426 // Prepare for next iteration. | |
| 427 numerator->Times10(); | |
| 428 } | |
| 429 // Generate the last digit. | |
| 430 uint16_t digit; | |
| 431 digit = numerator->DivideModuloIntBignum(*denominator); | |
| 432 if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { | |
| 433 digit++; | |
| 434 } | |
| 435 buffer[count - 1] = digit + '0'; | |
| 436 // Correct bad digits (in case we had a sequence of '9's). | |
|
William Hesse
2010/11/15 15:48:30
Propagate the carry until we hit a non-'9' or til
Florian Loitsch
2010/11/16 14:32:06
Done.
| |
| 437 for (int i = count - 1; i > 0; --i) { | |
| 438 if (buffer[i] != '0' + 10) break; | |
| 439 buffer[i] = '0'; | |
| 440 buffer[i - 1]++; | |
| 441 } | |
| 442 if (buffer[0] == '0' + 10) { | |
|
William Hesse
2010/11/15 15:48:30
Propagate a carry past the top place.
Florian Loitsch
2010/11/16 14:32:06
Done.
| |
| 443 buffer[0] = '1'; | |
| 444 (*decimal_point)++; | |
| 445 } | |
| 446 *length = count; | |
| 447 } | |
| 448 | |
| 449 | |
| 450 static void BignumToFixed(int requested_digits, int* decimal_point, | |
| 451 Bignum* numerator, Bignum* denominator, | |
| 452 Vector<char>(buffer), int* length) { | |
| 453 // The requested digits correspond to the digits after the point. | |
| 454 // The variable 'needed_digits' includes the digits before the point. | |
| 455 int needed_digits; | |
| 456 // Note that we have to look at more than just the requested_digits, since | |
| 457 // a number could be rounded up. Example: v=0.5 with requested_digits=0. | |
| 458 // Even though the power of v equals 0 we can't just stop here. | |
| 459 if (-(*decimal_point) > requested_digits) { | |
|
William Hesse
2010/11/15 15:48:30
Explain this. People don't know what all these qu
Florian Loitsch
2010/11/16 14:32:06
Done.
| |
| 460 *decimal_point = -requested_digits; | |
| 461 *length = 0; | |
| 462 return; | |
| 463 } else if (-(*decimal_point) == requested_digits) { | |
| 464 *decimal_point = -requested_digits; | |
| 465 denominator->Times10(); // Bring fraction back to range 0.1 - 1. | |
|
William Hesse
2010/11/15 15:48:30
Why does this bring the fraction to that range?
Florian Loitsch
2010/11/16 14:32:06
Done.
| |
| 466 if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { | |
| 467 // If the fraction is >= 0.5 then we have to include the rounded | |
| 468 // digit. | |
| 469 buffer[0] = '1'; | |
| 470 *length = 1; | |
| 471 (*decimal_point)++; | |
| 472 } else { | |
| 473 // Note that we caught most of similar cases earlier. | |
| 474 *length = 0; | |
| 475 } | |
| 476 return; | |
| 477 } else { | |
| 478 needed_digits = (*decimal_point) + requested_digits; | |
| 479 } | |
| 480 GenerateCountedDigits(needed_digits, decimal_point, | |
| 481 numerator, denominator, | |
| 482 buffer, length); | |
| 483 } | |
| 484 | |
| 485 | |
| 486 void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits, | |
| 487 Vector<char> buffer, int* length, int* decimal_point) { | |
| 488 ASSERT(v > 0); | |
| 489 ASSERT(!Double(v).IsSpecial()); | |
| 490 uint64_t significand = Double(v).Significand(); | |
| 491 bool is_even = (significand & 1) == 0; | |
| 492 int exponent = Double(v).Exponent(); | |
| 493 int normalized_exponent = NormalizedExponent(significand, exponent); | |
| 494 // estimated_power might be too low by 1. | |
| 495 int estimated_power = EstimatePower(normalized_exponent); | |
| 496 bool need_wiggles = (mode == BIGNUM_DTOA_SHORTEST); | |
|
William Hesse
2010/11/15 15:48:30
bool compute_shortest_approximation =, instead of
Florian Loitsch
2010/11/16 14:32:06
renamed to need_boundary_deltas.
| |
| 497 | |
| 498 // Shortcut for Fixed. | |
| 499 // The requested digits correspond to the digits after the point. If the | |
| 500 // number is much too small, then there is no need in trying to get any | |
| 501 // digits. | |
| 502 if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) { | |
| 503 buffer[0] = '\0'; | |
| 504 *length = 0; | |
| 505 // Set decimal-point to -requested_digits. This is what Gay does. | |
| 506 // Note that it should not have any effect anyways since the string is | |
| 507 // empty. | |
| 508 *decimal_point = -requested_digits; | |
| 509 return; | |
| 510 } | |
| 511 | |
| 512 Bignum numerator; | |
| 513 Bignum denominator; | |
| 514 Bignum wiggle_minus; | |
| 515 Bignum wiggle_plus; | |
| 516 // Make sure the bignum can grow large enough. The smallest double equals | |
| 517 // 4e-324. In this case the denominator needs less than 324*4 binary digits. | |
|
William Hesse
2010/11/15 15:48:30
fewer than
Florian Loitsch
2010/11/16 14:32:06
Done.
| |
| 518 // The maximum double is 1.7976931348623157e308 which needs less than | |
|
William Hesse
2010/11/15 15:48:30
fewer
Florian Loitsch
2010/11/16 14:32:06
Done.
| |
| 519 // 308*4 binary digits. | |
| 520 ASSERT(Bignum::kMaxSignificantBits >= 324*4); | |
| 521 InitialScaledStartValues(v, estimated_power, need_wiggles, | |
| 522 &numerator, &denominator, | |
| 523 &wiggle_minus, &wiggle_plus); | |
| 524 FixupMultiply10(estimated_power, is_even, decimal_point, | |
| 525 &numerator, &denominator, | |
| 526 &wiggle_minus, &wiggle_plus); | |
| 527 switch (mode) { | |
| 528 case BIGNUM_DTOA_SHORTEST: | |
| 529 GenerateDigits(&numerator, &denominator, | |
| 530 &wiggle_minus, &wiggle_plus, | |
| 531 is_even, buffer, length); | |
| 532 break; | |
| 533 case BIGNUM_DTOA_FIXED: | |
| 534 BignumToFixed(requested_digits, decimal_point, | |
| 535 &numerator, &denominator, | |
| 536 buffer, length); | |
| 537 break; | |
| 538 case BIGNUM_DTOA_PRECISION: | |
| 539 GenerateCountedDigits(requested_digits, decimal_point, | |
| 540 &numerator, &denominator, | |
| 541 buffer, length); | |
| 542 break; | |
| 543 default: | |
| 544 UNREACHABLE(); | |
| 545 } | |
| 546 buffer[*length] = '\0'; | |
| 547 } | |
| 548 | |
| 549 } } // namespace v8::internal | |
| OLD | NEW |