OLD | NEW |
---|---|
(Empty) | |
1 // Copyright 2010 the V8 project authors. All rights reserved. | |
2 // Redistribution and use in source and binary forms, with or without | |
3 // modification, are permitted provided that the following conditions are | |
4 // met: | |
5 // | |
6 // * Redistributions of source code must retain the above copyright | |
7 // notice, this list of conditions and the following disclaimer. | |
8 // * Redistributions in binary form must reproduce the above | |
9 // copyright notice, this list of conditions and the following | |
10 // disclaimer in the documentation and/or other materials provided | |
11 // with the distribution. | |
12 // * Neither the name of Google Inc. nor the names of its | |
13 // contributors may be used to endorse or promote products derived | |
14 // from this software without specific prior written permission. | |
15 // | |
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
27 | |
28 #include <math.h> | |
29 | |
30 #include "v8.h" | |
31 #include "bignum-dtoa.h" | |
32 | |
33 #include "bignum.h" | |
34 #include "double.h" | |
35 | |
36 namespace v8 { | |
37 namespace internal { | |
38 | |
39 // Returns an estimation of k such that 10^(k-1) <= v < 10^k. | |
William Hesse
2010/11/15 15:48:30
This is unclear. Explains that the input is the ex
Florian Loitsch
2010/11/16 14:32:06
Done.
| |
40 // The result might undershoot by 1 in which case 10^k <= v < 10^k+1. | |
41 // Note: the same is true for v + wiggle_plus (instead of simply v) (see | |
William Hesse
2010/11/15 15:48:30
What is wiggle_plus?
Florian Loitsch
2010/11/16 14:32:06
Changed to v+ (v's positive boundary).
| |
42 // explanation below). | |
43 // Examples: | |
44 // EstimatePower(0) => 16 | |
45 // EstimatePower(-52) => 0 | |
46 // | |
47 // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0. | |
48 static int EstimatePower(int exponent) { | |
49 // This function estimates log10 of v where v = f*2^e (with e == exponent). | |
50 // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)). | |
51 // Note that f is bounded by its container size. Let p = 53 (the double's | |
52 // significand size). Then 2^(p-1) <= f < 2^p. | |
53 // | |
54 // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close | |
55 // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)). | |
56 // The computed number undershoots by less than 0.631 (when we compute log3 | |
57 // and not log10). | |
58 // | |
59 // Optimization: since we only need an approximated result this computation | |
60 // can be performed on 64 bit integers. On x86/x64 architecture the speedup is | |
61 // not really measurable, though. | |
62 // | |
63 // Since we want to avoid overshooting we decrement by 1e10 so that | |
64 // floating-point imprecisions don't affect us. | |
65 // | |
66 // Explanation for (v + wiggle_plus): the computation takes advantage of the | |
William Hesse
2010/11/15 15:48:30
Can the wiggle stuff be put where wiggle is used?
Florian Loitsch
2010/11/16 14:32:06
Reworked comment.
| |
67 // fact that 2^(p-1) <= f < 2^p. However even after adding the wiggle this | |
68 // property is still true (even for denormals where the wiggle can be much | |
69 // more important). | |
70 | |
71 const double k1Log10 = 0.30102999566398114; // 1/lg(10) | |
72 | |
73 // For doubles len(f) == 53 (don't forget the hidden bit). | |
74 const int kSignificandSize = 53; | |
75 double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10); | |
76 return static_cast<int>(estimate); | |
77 } | |
78 | |
79 | |
80 // See comments for InitialScaledStartValues. | |
81 static void InitialScaledStartValuesPositiveExponent( | |
82 double v, int estimated_power, bool need_wiggles, | |
83 Bignum* numerator, Bignum* denominator, | |
84 Bignum* wiggle_minus, Bignum* wiggle_plus) { | |
85 // A positive exponent implies a positive power. | |
86 ASSERT(estimated_power >= 0); | |
87 // Since the estimated_power is positive we simply multiply the denominator | |
88 // by 10^estimated_power. | |
89 | |
90 // The common case first. We later (10 lines below) correct the values for | |
91 // the special case where the boundaries are different. | |
92 // denominator = 2 * 10^estimated_power; | |
93 denominator->AssignPowerUInt16(10, estimated_power); | |
94 denominator->ShiftLeft(1); | |
95 // numerator = v * 2 (2 for the common denominator). | |
96 numerator->AssignUInt64(Double(v).Significand()); | |
97 numerator->ShiftLeft(Double(v).Exponent() + 1); | |
98 | |
99 if (need_wiggles) { | |
William Hesse
2010/11/15 15:48:30
Call these delta_plus and delta_minus, or somethin
Florian Loitsch
2010/11/16 14:32:06
Refactored (slightly) method and comments.
| |
100 // Let v = f * 2^e, then wiggle_plus = 2^e; | |
101 wiggle_plus->AssignUInt16(1); | |
102 wiggle_plus->ShiftLeft(Double(v).Exponent()); | |
103 // Same for wiggle_minus. | |
104 wiggle_minus->AssignUInt16(1); | |
105 wiggle_minus->ShiftLeft(Double(v).Exponent()); | |
106 | |
107 // If the significand (without the hidden bit) is 0, then the lower | |
108 // boundary is closer than just one ulp (unit in the last place). | |
109 // There is only one exception: if the next lower number is a denormal then | |
110 // the distance is 1 ulp. This cannot be the case for exponent >= 0 (but we | |
111 // have to test it in the other function where exponent < 0). | |
112 uint64_t v_bits = Double(v).AsUint64(); | |
113 if ((v_bits & Double::kSignificandMask) == 0) { | |
114 // The lower boundary is closer at half the distance of "normal" numbers. | |
115 // Increase the denominator and adapt all but the wiggle_minus. | |
116 denominator->ShiftLeft(1); // *2 | |
117 numerator->ShiftLeft(1); // *2 | |
118 wiggle_plus->ShiftLeft(1); // *2 | |
119 } | |
120 } | |
121 } | |
122 | |
123 | |
124 // See comments for InitialScaledStartValues | |
125 static void InitialScaledStartValuesNegativeExponentPositivePower( | |
126 double v, int estimated_power, bool need_wiggles, | |
127 Bignum* numerator, Bignum* denominator, | |
128 Bignum* wiggle_minus, Bignum* wiggle_plus) { | |
129 uint64_t significand = Double(v).Significand(); | |
130 int exponent = Double(v).Exponent(); | |
131 // v = f * 2^e with e < 0, and with estimated_power >= 0. | |
132 // This means that e is close to 0 (have a look at how estimated_power is | |
133 // computed). | |
134 | |
135 // The common case first. We later (10 lines below) correct the values for | |
136 // the special case where the boundaries are different. | |
137 // denominator = 10^estimated_power * 2 * 2^-exponent (with exponent < 0) | |
138 denominator->AssignPowerUInt16(10, estimated_power); | |
139 denominator->ShiftLeft(1 - exponent); | |
140 // numerator = 2 * significand | |
141 // since v = significand * 2^exponent this is equivalent to | |
142 // numerator = v * 2 / 2^-exponent | |
143 numerator->AssignUInt64(significand); | |
144 numerator->ShiftLeft(1); | |
145 | |
146 if (need_wiggles) { | |
147 // Given that the denominator already includes v's exponent the wiggle | |
148 // room is simply 1. | |
149 wiggle_plus->AssignUInt16(1); | |
150 // Same for wiggle_minus. | |
151 wiggle_minus->AssignUInt16(1); | |
152 | |
153 // If the significand (without the hidden bit) is 0, then the lower | |
154 // boundary is closer than just one ulp (unit in the last place). | |
155 // There is only one exception: if the next lower number is a denormal | |
156 // then the distance is 1 ulp. Since the exponent is close to zero | |
157 // (otherwise estimated_power would have been negative) this cannot happen | |
158 // here either. | |
159 uint64_t v_bits = Double(v).AsUint64(); | |
160 if ((v_bits & Double::kSignificandMask) == 0) { | |
161 // The lower boundary is closer at half the distance of "normal" numbers. | |
162 // Increase the denominator and adapt all but the wiggle_minus. | |
163 denominator->ShiftLeft(1); // *2 | |
164 numerator->ShiftLeft(1); // *2 | |
165 wiggle_plus->ShiftLeft(1); // *2 | |
166 } | |
167 } | |
168 } | |
169 | |
170 | |
171 // See comments for InitialScaledStartValues | |
172 static void InitialScaledStartValuesNegativeExponentNegativePower( | |
173 double v, int estimated_power, bool need_wiggles, | |
174 Bignum* numerator, Bignum* denominator, | |
175 Bignum* wiggle_minus, Bignum* wiggle_plus) { | |
176 const uint64_t kMinimalNormalizedExponent = | |
177 V8_2PART_UINT64_C(0x00100000, 00000000); | |
178 uint64_t significand = Double(v).Significand(); | |
179 int exponent = Double(v).Exponent(); | |
180 // Instead of multiplying the denominator with 10^estimated_power we | |
181 // multiply all values (numerator and wiggles) by 10^-estimated_power. | |
182 | |
183 // Use numerator as temporary container for power_ten | |
184 Bignum* power_ten = numerator; | |
185 power_ten->AssignPowerUInt16(10, -estimated_power); | |
186 | |
187 // The common case first. The special case is handled soon. | |
188 | |
189 if (need_wiggles) { | |
190 // wiggle_plus = wiggle_minus = 10^estimated_power | |
191 wiggle_plus->AssignBignum(*power_ten); | |
192 wiggle_minus->AssignBignum(*power_ten); | |
193 } | |
194 // denominator = 2 * 2^-exponent with exponent < 0. | |
195 denominator->AssignUInt16(1); | |
196 denominator->ShiftLeft(1 - exponent); | |
197 // numerator = significand * 2 * 10^-estimated_power | |
198 // since v = significand * 2^exponent this is equivalent to | |
199 // numerator = v * 10^-estimated_power * 2 * 2^-exponent. | |
200 // Remember: numerator has been abused as power_ten. So no need to assign it | |
201 // to itself. | |
202 numerator->MultiplyByUInt64(significand); | |
203 numerator->ShiftLeft(1); | |
204 | |
205 if (need_wiggles) { | |
206 // The special case where the lower boundary is twice as close. | |
207 // This time we have to look out for the exception too. | |
208 uint64_t v_bits = Double(v).AsUint64(); | |
209 if ((v_bits & Double::kSignificandMask) == 0 && | |
210 // The only exception where a significand == 0 has its boundaries at | |
211 // "normal" distances: | |
212 (v_bits & Double::kExponentMask) != kMinimalNormalizedExponent) { | |
213 numerator->ShiftLeft(1); // *2 | |
214 denominator->ShiftLeft(1); // *2 | |
215 wiggle_plus->ShiftLeft(1); // *2 | |
216 } | |
217 } | |
218 } | |
219 | |
220 | |
221 // v = significand * 2^exponent | |
222 // The initial start values consist of: | |
223 // - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power. | |
224 // - a scaled (common) denominator. | |
225 // - the scaled range a double has towards -infinity while still being | |
226 // considered to be equal to v. In other words: the difference between v and | |
227 // its lower boundary. | |
228 // - the same room towards +infinity. | |
229 // The scaling consist of multiplying the numerator by 10^estimated_power, or | |
230 // (if the estimated_power is negative) by multiplying the denominator | |
231 // by 10^-estimated_power. | |
232 // Note that the wiggle-room is scaled too. If the common denominator has been | |
233 // scaled, then the wiggles are automatically scaled. Otherwise they are | |
234 // multiplied by the scaling factor, too. | |
235 // | |
236 // Let ep == estimated_power, then the returned values will satisfy: | |
237 // v / 10^ep = numerator / denominator. | |
238 // v's boundarys m- and m+: | |
239 // m- / 10^ep == v / 10^ep - wiggle_minus / denominator | |
240 // m+ / 10^ep == v / 10^ep + wiggle_plus / denominator | |
241 // Or in other words: | |
242 // m- == v - wiggle_minus * 10^ep / denominator; | |
243 // m+ == v + wiggle_plus * 10^ep / denominator; | |
244 // | |
245 // Since 10^(k-1) <= v < 10^k (with k == estimated_power) | |
246 // or 10^k <= v < 10^(k+1) | |
247 // we then have 0.1 <= numerator/denominator < 1 | |
248 // or 1 <= numerator/denominator < 10 | |
249 // | |
250 // It is then easy to kickstart the digit-generation routine. | |
251 static void InitialScaledStartValues(double v, int estimated_power, | |
252 bool need_wiggles, | |
253 Bignum* numerator, Bignum* denominator, | |
254 Bignum* wiggle_minus, | |
255 Bignum* wiggle_plus) { | |
256 if (Double(v).Exponent() >= 0) { | |
257 InitialScaledStartValuesPositiveExponent( | |
258 v, estimated_power, need_wiggles, | |
259 numerator, denominator, wiggle_minus, wiggle_plus); | |
260 } else if (estimated_power >= 0) { | |
261 InitialScaledStartValuesNegativeExponentPositivePower( | |
262 v, estimated_power, need_wiggles, | |
263 numerator, denominator, wiggle_minus, wiggle_plus); | |
264 } else { | |
265 InitialScaledStartValuesNegativeExponentNegativePower( | |
266 v, estimated_power, need_wiggles, | |
267 numerator, denominator, wiggle_minus, wiggle_plus); | |
268 } | |
269 } | |
270 | |
271 | |
272 // This routine multiplies numerator/denominator so that its values lies in the | |
273 // range 1-10. That is after a call to this function we have: | |
274 // 1 <= (numerator + wiggle_plus) /denominator < 10. | |
275 // In some cases estimated_power was too low, and this is already the case. We | |
276 // then simply adjust estimated_power so that 10^(k-1) <= v < 10^k (with k == | |
277 // estimated_power) but do not touch the numerator or denominator. | |
278 // Otherwise the routine multiplies the numerator and the wiggles by 10. | |
279 static void FixupMultiply10(int estimated_power, bool is_even, | |
280 int* power, | |
281 Bignum* numerator, Bignum* denominator, | |
282 Bignum* wiggle_minus, Bignum* wiggle_plus) { | |
283 bool in_range; | |
284 if (is_even) { | |
285 // For IEEE doubles half-way cases (in decimal system numbers ending with 5) | |
286 // are rounded to the closest floating-point number with even significand. | |
287 in_range = Bignum::PlusCompare(*numerator, *wiggle_plus, *denominator) >= 0; | |
288 } else { | |
289 in_range = Bignum::PlusCompare(*numerator, *wiggle_plus, *denominator) > 0; | |
290 } | |
291 if (in_range) { | |
292 // Since numerator + wiggle_plus >= denominator we already have | |
293 // 1 <= numerator/denominator < 10. Simply update the estimated_power. | |
294 *power = estimated_power + 1; | |
295 } else { | |
296 *power = estimated_power; | |
297 numerator->Times10(); | |
298 if (Bignum::Equal(*wiggle_minus, *wiggle_plus)) { | |
299 wiggle_minus->Times10(); | |
300 wiggle_plus->AssignBignum(*wiggle_minus); | |
301 } else { | |
302 wiggle_minus->Times10(); | |
303 wiggle_plus->Times10(); | |
304 } | |
305 } | |
306 } | |
307 | |
308 | |
309 // Precondition: 0 <= (numerator+wiggle_plus) / denominator < 10. | |
310 // If 1 <= (numerator+wiggle_plus) / denominator < 10 then no leading 0 digit | |
311 // will be produced. This should be the standard precondition. | |
312 // Produces the least amount of digits so that the result lies in the wiggle | |
William Hesse
2010/11/15 15:48:30
Give more big picture comments - result lying in t
Florian Loitsch
2010/11/16 14:32:06
Done.
| |
313 // room. Let V the value written in the buffer, and | |
314 // m- := (numerator - wiggle_minus) / denominator | |
315 // m+ := (numerator + wiggle_plus) / denominator | |
316 // <? := '<=' if is_even and '<' otherwise, then | |
317 // m- <? V <? m+ | |
318 // In other words the written buffer would read as the input number. | |
319 static void GenerateDigits(Bignum* numerator, Bignum* denominator, | |
William Hesse
2010/11/15 15:48:30
GenerateShortestDigits?
Florian Loitsch
2010/11/16 14:32:06
Done.
| |
320 Bignum* wiggle_minus, Bignum* wiggle_plus, | |
321 bool is_even, | |
322 Vector<char> buffer, int* length) { | |
323 // Small optimization: if wiggle_minus and wiggle_plus are the same just reuse | |
324 // one of the two bignums. | |
325 if (Bignum::Equal(*wiggle_minus, *wiggle_plus)) { | |
326 wiggle_plus = wiggle_minus; | |
327 } | |
328 *length = 0; | |
329 while (true) { | |
330 uint16_t digit; | |
331 digit = numerator->DivideModuloIntBignum(*denominator); | |
332 // digit = numerator / denominator (integer division). | |
333 // numerator = numerator % denominator. | |
334 buffer[(*length)++] = digit + '0'; | |
335 | |
336 // Can we stop already? | |
337 bool in_wiggle_room_minus; | |
338 bool in_wiggle_room_plus; | |
339 if (is_even) { | |
340 in_wiggle_room_minus = Bignum::LessEqual(*numerator, *wiggle_minus); | |
341 } else { | |
342 in_wiggle_room_minus = Bignum::Less(*numerator, *wiggle_minus); | |
343 } | |
344 if (is_even) { | |
345 in_wiggle_room_plus = | |
346 Bignum::PlusCompare(*numerator, *wiggle_plus, *denominator) >= 0; | |
347 } else { | |
348 in_wiggle_room_plus = | |
349 Bignum::PlusCompare(*numerator, *wiggle_plus, *denominator) > 0; | |
350 } | |
351 if (!in_wiggle_room_minus && !in_wiggle_room_plus) { | |
352 // Prepare for next iteration. | |
353 numerator->Times10(); | |
354 wiggle_minus->Times10(); | |
355 // We optimized wiggle_plus to be equal to wiggle_minus (if they share the | |
356 // same value). So don't multiply wiggle_plus if they point to the same | |
357 // object. | |
358 if (wiggle_minus != wiggle_plus) { | |
359 wiggle_plus->Times10(); | |
360 } | |
361 } else if (in_wiggle_room_minus && in_wiggle_room_plus) { | |
362 // Let's see if 2*numerator < denominator. | |
363 // If yes, then the next digit would be < 5 and we can round down. | |
364 int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator); | |
365 if (compare < 0) { | |
366 // Remaining digits are less than .5. -> Round down (== do nothing). | |
367 } else if (compare > 0) { | |
368 // Remaining digits are more than .5 of denominator. -> Round up. | |
369 // Note that the last digit could not be a '9' as otherwise the whole | |
370 // loop would have stopped earlier. | |
371 // We still have an assert here in case the preconditions were not | |
372 // satisfied. | |
373 ASSERT(buffer[(*length) - 1] != '9'); | |
374 buffer[(*length) - 1]++; | |
375 } else { | |
376 // Halfway case. | |
377 // TODO(floitsch): need a way to solve half-way cases. | |
378 // For now let's round towards even (since this is what Gay seems to | |
379 // do). | |
380 | |
381 if ((buffer[(*length) - 1] - '0') % 2 == 0) { | |
382 // Round down => Do nothing. | |
383 } else { | |
384 ASSERT(buffer[(*length) - 1] != '9'); | |
385 buffer[(*length) - 1]++; | |
386 } | |
387 } | |
388 return; | |
389 } else if (in_wiggle_room_minus) { | |
390 // Round down (== do nothing). | |
391 return; | |
392 } else { // in_wiggle_room_plus | |
393 // Round up. | |
394 // Note again that the last digit could not be '9' since this would have | |
395 // stopped the loop earlier. | |
396 // We still have an ASSERT here, in case the preconditions were not | |
397 // satisfied. | |
398 ASSERT(buffer[(*length) -1] != '9'); | |
399 buffer[(*length) - 1]++; | |
400 return; | |
401 } | |
402 } | |
403 } | |
404 | |
405 | |
406 static int NormalizedExponent(uint64_t significand, int exponent) { | |
407 ASSERT(significand != 0); | |
408 while ((significand & Double::kHiddenBit) == 0) { | |
409 significand = significand << 1; | |
410 exponent = exponent - 1; | |
411 } | |
412 return exponent; | |
413 } | |
414 | |
415 | |
416 static void GenerateCountedDigits(int count, int* decimal_point, | |
417 Bignum* numerator, Bignum* denominator, | |
418 Vector<char>(buffer), int* length) { | |
419 ASSERT(count >= 0); | |
420 for (int i = 0; i < count - 1; ++i) { | |
421 uint16_t digit; | |
422 digit = numerator->DivideModuloIntBignum(*denominator); | |
423 // digit = numerator / denominator (integer division). | |
William Hesse
2010/11/15 15:48:30
Include "Assumes numerator / denominator < 10" (or
Florian Loitsch
2010/11/16 14:32:06
added ASSERT.
| |
424 // numerator = numerator % denominator. | |
425 buffer[i] = digit + '0'; | |
426 // Prepare for next iteration. | |
427 numerator->Times10(); | |
428 } | |
429 // Generate the last digit. | |
430 uint16_t digit; | |
431 digit = numerator->DivideModuloIntBignum(*denominator); | |
432 if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { | |
433 digit++; | |
434 } | |
435 buffer[count - 1] = digit + '0'; | |
436 // Correct bad digits (in case we had a sequence of '9's). | |
William Hesse
2010/11/15 15:48:30
Propagate the carry until we hit a non-'9' or til
Florian Loitsch
2010/11/16 14:32:06
Done.
| |
437 for (int i = count - 1; i > 0; --i) { | |
438 if (buffer[i] != '0' + 10) break; | |
439 buffer[i] = '0'; | |
440 buffer[i - 1]++; | |
441 } | |
442 if (buffer[0] == '0' + 10) { | |
William Hesse
2010/11/15 15:48:30
Propagate a carry past the top place.
Florian Loitsch
2010/11/16 14:32:06
Done.
| |
443 buffer[0] = '1'; | |
444 (*decimal_point)++; | |
445 } | |
446 *length = count; | |
447 } | |
448 | |
449 | |
450 static void BignumToFixed(int requested_digits, int* decimal_point, | |
451 Bignum* numerator, Bignum* denominator, | |
452 Vector<char>(buffer), int* length) { | |
453 // The requested digits correspond to the digits after the point. | |
454 // The variable 'needed_digits' includes the digits before the point. | |
455 int needed_digits; | |
456 // Note that we have to look at more than just the requested_digits, since | |
457 // a number could be rounded up. Example: v=0.5 with requested_digits=0. | |
458 // Even though the power of v equals 0 we can't just stop here. | |
459 if (-(*decimal_point) > requested_digits) { | |
William Hesse
2010/11/15 15:48:30
Explain this. People don't know what all these qu
Florian Loitsch
2010/11/16 14:32:06
Done.
| |
460 *decimal_point = -requested_digits; | |
461 *length = 0; | |
462 return; | |
463 } else if (-(*decimal_point) == requested_digits) { | |
464 *decimal_point = -requested_digits; | |
465 denominator->Times10(); // Bring fraction back to range 0.1 - 1. | |
William Hesse
2010/11/15 15:48:30
Why does this bring the fraction to that range?
Florian Loitsch
2010/11/16 14:32:06
Done.
| |
466 if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { | |
467 // If the fraction is >= 0.5 then we have to include the rounded | |
468 // digit. | |
469 buffer[0] = '1'; | |
470 *length = 1; | |
471 (*decimal_point)++; | |
472 } else { | |
473 // Note that we caught most of similar cases earlier. | |
474 *length = 0; | |
475 } | |
476 return; | |
477 } else { | |
478 needed_digits = (*decimal_point) + requested_digits; | |
479 } | |
480 GenerateCountedDigits(needed_digits, decimal_point, | |
481 numerator, denominator, | |
482 buffer, length); | |
483 } | |
484 | |
485 | |
486 void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits, | |
487 Vector<char> buffer, int* length, int* decimal_point) { | |
488 ASSERT(v > 0); | |
489 ASSERT(!Double(v).IsSpecial()); | |
490 uint64_t significand = Double(v).Significand(); | |
491 bool is_even = (significand & 1) == 0; | |
492 int exponent = Double(v).Exponent(); | |
493 int normalized_exponent = NormalizedExponent(significand, exponent); | |
494 // estimated_power might be too low by 1. | |
495 int estimated_power = EstimatePower(normalized_exponent); | |
496 bool need_wiggles = (mode == BIGNUM_DTOA_SHORTEST); | |
William Hesse
2010/11/15 15:48:30
bool compute_shortest_approximation =, instead of
Florian Loitsch
2010/11/16 14:32:06
renamed to need_boundary_deltas.
| |
497 | |
498 // Shortcut for Fixed. | |
499 // The requested digits correspond to the digits after the point. If the | |
500 // number is much too small, then there is no need in trying to get any | |
501 // digits. | |
502 if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) { | |
503 buffer[0] = '\0'; | |
504 *length = 0; | |
505 // Set decimal-point to -requested_digits. This is what Gay does. | |
506 // Note that it should not have any effect anyways since the string is | |
507 // empty. | |
508 *decimal_point = -requested_digits; | |
509 return; | |
510 } | |
511 | |
512 Bignum numerator; | |
513 Bignum denominator; | |
514 Bignum wiggle_minus; | |
515 Bignum wiggle_plus; | |
516 // Make sure the bignum can grow large enough. The smallest double equals | |
517 // 4e-324. In this case the denominator needs less than 324*4 binary digits. | |
William Hesse
2010/11/15 15:48:30
fewer than
Florian Loitsch
2010/11/16 14:32:06
Done.
| |
518 // The maximum double is 1.7976931348623157e308 which needs less than | |
William Hesse
2010/11/15 15:48:30
fewer
Florian Loitsch
2010/11/16 14:32:06
Done.
| |
519 // 308*4 binary digits. | |
520 ASSERT(Bignum::kMaxSignificantBits >= 324*4); | |
521 InitialScaledStartValues(v, estimated_power, need_wiggles, | |
522 &numerator, &denominator, | |
523 &wiggle_minus, &wiggle_plus); | |
524 FixupMultiply10(estimated_power, is_even, decimal_point, | |
525 &numerator, &denominator, | |
526 &wiggle_minus, &wiggle_plus); | |
527 switch (mode) { | |
528 case BIGNUM_DTOA_SHORTEST: | |
529 GenerateDigits(&numerator, &denominator, | |
530 &wiggle_minus, &wiggle_plus, | |
531 is_even, buffer, length); | |
532 break; | |
533 case BIGNUM_DTOA_FIXED: | |
534 BignumToFixed(requested_digits, decimal_point, | |
535 &numerator, &denominator, | |
536 buffer, length); | |
537 break; | |
538 case BIGNUM_DTOA_PRECISION: | |
539 GenerateCountedDigits(requested_digits, decimal_point, | |
540 &numerator, &denominator, | |
541 buffer, length); | |
542 break; | |
543 default: | |
544 UNREACHABLE(); | |
545 } | |
546 buffer[*length] = '\0'; | |
547 } | |
548 | |
549 } } // namespace v8::internal | |
OLD | NEW |