OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * cipher_driver.c |
| 3 * |
| 4 * A driver for the generic cipher type |
| 5 * |
| 6 * David A. McGrew |
| 7 * Cisco Systems, Inc. |
| 8 */ |
| 9 |
| 10 /* |
| 11 * |
| 12 * Copyright (c) 2001-2006, Cisco Systems, Inc. |
| 13 * All rights reserved. |
| 14 * |
| 15 * Redistribution and use in source and binary forms, with or without |
| 16 * modification, are permitted provided that the following conditions |
| 17 * are met: |
| 18 * |
| 19 * Redistributions of source code must retain the above copyright |
| 20 * notice, this list of conditions and the following disclaimer. |
| 21 * |
| 22 * Redistributions in binary form must reproduce the above |
| 23 * copyright notice, this list of conditions and the following |
| 24 * disclaimer in the documentation and/or other materials provided |
| 25 * with the distribution. |
| 26 * |
| 27 * Neither the name of the Cisco Systems, Inc. nor the names of its |
| 28 * contributors may be used to endorse or promote products derived |
| 29 * from this software without specific prior written permission. |
| 30 * |
| 31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| 34 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| 35 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, |
| 36 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 37 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| 38 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| 40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 41 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| 42 * OF THE POSSIBILITY OF SUCH DAMAGE. |
| 43 * |
| 44 */ |
| 45 |
| 46 #include <stdio.h> /* for printf() */ |
| 47 #include <stdlib.h> /* for rand() */ |
| 48 #include <string.h> /* for memset() */ |
| 49 #include <unistd.h> /* for getopt() */ |
| 50 #include "cipher.h" |
| 51 #include "aes_icm.h" |
| 52 #include "null_cipher.h" |
| 53 |
| 54 #define PRINT_DEBUG 0 |
| 55 |
| 56 void |
| 57 cipher_driver_test_throughput(cipher_t *c); |
| 58 |
| 59 err_status_t |
| 60 cipher_driver_self_test(cipher_type_t *ct); |
| 61 |
| 62 |
| 63 /* |
| 64 * cipher_driver_test_buffering(ct) tests the cipher's output |
| 65 * buffering for correctness by checking the consistency of succesive |
| 66 * calls |
| 67 */ |
| 68 |
| 69 err_status_t |
| 70 cipher_driver_test_buffering(cipher_t *c); |
| 71 |
| 72 |
| 73 /* |
| 74 * functions for testing cipher cache thrash |
| 75 */ |
| 76 err_status_t |
| 77 cipher_driver_test_array_throughput(cipher_type_t *ct, |
| 78 int klen, int num_cipher); |
| 79 |
| 80 void |
| 81 cipher_array_test_throughput(cipher_t *ca[], int num_cipher); |
| 82 |
| 83 uint64_t |
| 84 cipher_array_bits_per_second(cipher_t *cipher_array[], int num_cipher, |
| 85 unsigned octets_in_buffer, int num_trials); |
| 86 |
| 87 err_status_t |
| 88 cipher_array_delete(cipher_t *cipher_array[], int num_cipher); |
| 89 |
| 90 err_status_t |
| 91 cipher_array_alloc_init(cipher_t ***cipher_array, int num_ciphers, |
| 92 cipher_type_t *ctype, int klen); |
| 93 |
| 94 void |
| 95 usage(char *prog_name) { |
| 96 printf("usage: %s [ -t | -v | -a ]\n", prog_name); |
| 97 exit(255); |
| 98 } |
| 99 |
| 100 void |
| 101 check_status(err_status_t s) { |
| 102 if (s) { |
| 103 printf("error (code %d)\n", s); |
| 104 exit(s); |
| 105 } |
| 106 return; |
| 107 } |
| 108 |
| 109 /* |
| 110 * null_cipher, aes_icm, and aes_cbc are the cipher meta-objects |
| 111 * defined in the files in crypto/cipher subdirectory. these are |
| 112 * declared external so that we can use these cipher types here |
| 113 */ |
| 114 |
| 115 extern cipher_type_t null_cipher; |
| 116 extern cipher_type_t aes_icm; |
| 117 extern cipher_type_t aes_cbc; |
| 118 |
| 119 int |
| 120 main(int argc, char *argv[]) { |
| 121 cipher_t *c = NULL; |
| 122 err_status_t status; |
| 123 unsigned char test_key[48] = { |
| 124 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, |
| 125 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, |
| 126 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, |
| 127 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, |
| 128 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, |
| 129 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, |
| 130 }; |
| 131 int q; |
| 132 unsigned do_timing_test = 0; |
| 133 unsigned do_validation = 0; |
| 134 unsigned do_array_timing_test = 0; |
| 135 |
| 136 /* process input arguments */ |
| 137 while (1) { |
| 138 q = getopt(argc, argv, "tva"); |
| 139 if (q == -1) |
| 140 break; |
| 141 switch (q) { |
| 142 case 't': |
| 143 do_timing_test = 1; |
| 144 break; |
| 145 case 'v': |
| 146 do_validation = 1; |
| 147 break; |
| 148 case 'a': |
| 149 do_array_timing_test = 1; |
| 150 break; |
| 151 default: |
| 152 usage(argv[0]); |
| 153 } |
| 154 } |
| 155 |
| 156 printf("cipher test driver\n" |
| 157 "David A. McGrew\n" |
| 158 "Cisco Systems, Inc.\n"); |
| 159 |
| 160 if (!do_validation && !do_timing_test && !do_array_timing_test) |
| 161 usage(argv[0]); |
| 162 |
| 163 /* arry timing (cache thrash) test */ |
| 164 if (do_array_timing_test) { |
| 165 int max_num_cipher = 1 << 16; /* number of ciphers in cipher_array */ |
| 166 int num_cipher; |
| 167 |
| 168 for (num_cipher=1; num_cipher < max_num_cipher; num_cipher *=8) |
| 169 cipher_driver_test_array_throughput(&null_cipher, 0, num_cipher); |
| 170 |
| 171 for (num_cipher=1; num_cipher < max_num_cipher; num_cipher *=8) |
| 172 cipher_driver_test_array_throughput(&aes_icm, 30, num_cipher); |
| 173 |
| 174 for (num_cipher=1; num_cipher < max_num_cipher; num_cipher *=8) |
| 175 cipher_driver_test_array_throughput(&aes_icm, 46, num_cipher); |
| 176 |
| 177 for (num_cipher=1; num_cipher < max_num_cipher; num_cipher *=8) |
| 178 cipher_driver_test_array_throughput(&aes_cbc, 16, num_cipher); |
| 179 |
| 180 for (num_cipher=1; num_cipher < max_num_cipher; num_cipher *=8) |
| 181 cipher_driver_test_array_throughput(&aes_cbc, 32, num_cipher); |
| 182 } |
| 183 |
| 184 if (do_validation) { |
| 185 cipher_driver_self_test(&null_cipher); |
| 186 cipher_driver_self_test(&aes_icm); |
| 187 cipher_driver_self_test(&aes_cbc); |
| 188 } |
| 189 |
| 190 /* do timing and/or buffer_test on null_cipher */ |
| 191 status = cipher_type_alloc(&null_cipher, &c, 0); |
| 192 check_status(status); |
| 193 |
| 194 status = cipher_init(c, NULL, direction_encrypt); |
| 195 check_status(status); |
| 196 |
| 197 if (do_timing_test) |
| 198 cipher_driver_test_throughput(c); |
| 199 if (do_validation) { |
| 200 status = cipher_driver_test_buffering(c); |
| 201 check_status(status); |
| 202 } |
| 203 status = cipher_dealloc(c); |
| 204 check_status(status); |
| 205 |
| 206 |
| 207 /* run the throughput test on the aes_icm cipher (128-bit key) */ |
| 208 status = cipher_type_alloc(&aes_icm, &c, 30); |
| 209 if (status) { |
| 210 fprintf(stderr, "error: can't allocate cipher\n"); |
| 211 exit(status); |
| 212 } |
| 213 |
| 214 status = cipher_init(c, test_key, direction_encrypt); |
| 215 check_status(status); |
| 216 |
| 217 if (do_timing_test) |
| 218 cipher_driver_test_throughput(c); |
| 219 |
| 220 if (do_validation) { |
| 221 status = cipher_driver_test_buffering(c); |
| 222 check_status(status); |
| 223 } |
| 224 |
| 225 status = cipher_dealloc(c); |
| 226 check_status(status); |
| 227 |
| 228 /* repeat the tests with 256-bit keys */ |
| 229 status = cipher_type_alloc(&aes_icm, &c, 46); |
| 230 if (status) { |
| 231 fprintf(stderr, "error: can't allocate cipher\n"); |
| 232 exit(status); |
| 233 } |
| 234 |
| 235 status = cipher_init(c, test_key, direction_encrypt); |
| 236 check_status(status); |
| 237 |
| 238 if (do_timing_test) |
| 239 cipher_driver_test_throughput(c); |
| 240 |
| 241 if (do_validation) { |
| 242 status = cipher_driver_test_buffering(c); |
| 243 check_status(status); |
| 244 } |
| 245 |
| 246 status = cipher_dealloc(c); |
| 247 check_status(status); |
| 248 |
| 249 return 0; |
| 250 } |
| 251 |
| 252 void |
| 253 cipher_driver_test_throughput(cipher_t *c) { |
| 254 int i; |
| 255 int min_enc_len = 32; |
| 256 int max_enc_len = 2048; /* should be a power of two */ |
| 257 int num_trials = 1000000; |
| 258 |
| 259 printf("timing %s throughput, key length %d:\n", c->type->description, c->key_
len); |
| 260 fflush(stdout); |
| 261 for (i=min_enc_len; i <= max_enc_len; i = i * 2) |
| 262 printf("msg len: %d\tgigabits per second: %f\n", |
| 263 i, cipher_bits_per_second(c, i, num_trials) / 1e9); |
| 264 |
| 265 } |
| 266 |
| 267 err_status_t |
| 268 cipher_driver_self_test(cipher_type_t *ct) { |
| 269 err_status_t status; |
| 270 |
| 271 printf("running cipher self-test for %s...", ct->description); |
| 272 status = cipher_type_self_test(ct); |
| 273 if (status) { |
| 274 printf("failed with error code %d\n", status); |
| 275 exit(status); |
| 276 } |
| 277 printf("passed\n"); |
| 278 |
| 279 return err_status_ok; |
| 280 } |
| 281 |
| 282 /* |
| 283 * cipher_driver_test_buffering(ct) tests the cipher's output |
| 284 * buffering for correctness by checking the consistency of succesive |
| 285 * calls |
| 286 */ |
| 287 |
| 288 err_status_t |
| 289 cipher_driver_test_buffering(cipher_t *c) { |
| 290 int i, j, num_trials = 1000; |
| 291 unsigned len, buflen = 1024; |
| 292 uint8_t buffer0[buflen], buffer1[buflen], *current, *end; |
| 293 uint8_t idx[16] = { |
| 294 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 295 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0x34 |
| 296 }; |
| 297 err_status_t status; |
| 298 |
| 299 printf("testing output buffering for cipher %s...", |
| 300 c->type->description); |
| 301 |
| 302 for (i=0; i < num_trials; i++) { |
| 303 |
| 304 /* set buffers to zero */ |
| 305 for (j=0; j < buflen; j++) |
| 306 buffer0[j] = buffer1[j] = 0; |
| 307 |
| 308 /* initialize cipher */ |
| 309 status = cipher_set_iv(c, idx); |
| 310 if (status) |
| 311 return status; |
| 312 |
| 313 /* generate 'reference' value by encrypting all at once */ |
| 314 status = cipher_encrypt(c, buffer0, &buflen); |
| 315 if (status) |
| 316 return status; |
| 317 |
| 318 /* re-initialize cipher */ |
| 319 status = cipher_set_iv(c, idx); |
| 320 if (status) |
| 321 return status; |
| 322 |
| 323 /* now loop over short lengths until buffer1 is encrypted */ |
| 324 current = buffer1; |
| 325 end = buffer1 + buflen; |
| 326 while (current < end) { |
| 327 |
| 328 /* choose a short length */ |
| 329 len = rand() & 0x01f; |
| 330 |
| 331 /* make sure that len doesn't cause us to overreach the buffer */ |
| 332 if (current + len > end) |
| 333 len = end - current; |
| 334 |
| 335 status = cipher_encrypt(c, current, &len); |
| 336 if (status) |
| 337 return status; |
| 338 |
| 339 /* advance pointer into buffer1 to reflect encryption */ |
| 340 current += len; |
| 341 |
| 342 /* if buffer1 is all encrypted, break out of loop */ |
| 343 if (current == end) |
| 344 break; |
| 345 } |
| 346 |
| 347 /* compare buffers */ |
| 348 for (j=0; j < buflen; j++) |
| 349 if (buffer0[j] != buffer1[j]) { |
| 350 #if PRINT_DEBUG |
| 351 printf("test case %d failed at byte %d\n", i, j); |
| 352 printf("computed: %s\n", octet_string_hex_string(buffer1, buflen)); |
| 353 printf("expected: %s\n", octet_string_hex_string(buffer0, buflen)); |
| 354 #endif |
| 355 return err_status_algo_fail; |
| 356 } |
| 357 } |
| 358 |
| 359 printf("passed\n"); |
| 360 |
| 361 return err_status_ok; |
| 362 } |
| 363 |
| 364 |
| 365 /* |
| 366 * The function cipher_test_throughput_array() tests the effect of CPU |
| 367 * cache thrash on cipher throughput. |
| 368 * |
| 369 * cipher_array_alloc_init(ctype, array, num_ciphers) creates an array |
| 370 * of cipher_t of type ctype |
| 371 */ |
| 372 |
| 373 err_status_t |
| 374 cipher_array_alloc_init(cipher_t ***ca, int num_ciphers, |
| 375 cipher_type_t *ctype, int klen) { |
| 376 int i, j; |
| 377 err_status_t status; |
| 378 uint8_t *key; |
| 379 cipher_t **cipher_array; |
| 380 /* pad klen allocation, to handle aes_icm reading 16 bytes for the |
| 381 14-byte salt */ |
| 382 int klen_pad = ((klen + 15) >> 4) << 4; |
| 383 |
| 384 /* allocate array of pointers to ciphers */ |
| 385 cipher_array = (cipher_t **) malloc(sizeof(cipher_t *) * num_ciphers); |
| 386 if (cipher_array == NULL) |
| 387 return err_status_alloc_fail; |
| 388 |
| 389 /* set ca to location of cipher_array */ |
| 390 *ca = cipher_array; |
| 391 |
| 392 /* allocate key */ |
| 393 key = crypto_alloc(klen_pad); |
| 394 if (key == NULL) { |
| 395 free(cipher_array); |
| 396 return err_status_alloc_fail; |
| 397 } |
| 398 |
| 399 /* allocate and initialize an array of ciphers */ |
| 400 for (i=0; i < num_ciphers; i++) { |
| 401 |
| 402 /* allocate cipher */ |
| 403 status = cipher_type_alloc(ctype, cipher_array, klen); |
| 404 if (status) |
| 405 return status; |
| 406 |
| 407 /* generate random key and initialize cipher */ |
| 408 for (j=0; j < klen; j++) |
| 409 key[j] = (uint8_t) rand(); |
| 410 for (; j < klen_pad; j++) |
| 411 key[j] = 0; |
| 412 status = cipher_init(*cipher_array, key, direction_encrypt); |
| 413 if (status) |
| 414 return status; |
| 415 |
| 416 /* printf("%dth cipher is at %p\n", i, *cipher_array); */ |
| 417 /* printf("%dth cipher description: %s\n", i, */ |
| 418 /* (*cipher_array)->type->description); */ |
| 419 |
| 420 /* advance cipher array pointer */ |
| 421 cipher_array++; |
| 422 } |
| 423 |
| 424 crypto_free(key); |
| 425 |
| 426 return err_status_ok; |
| 427 } |
| 428 |
| 429 err_status_t |
| 430 cipher_array_delete(cipher_t *cipher_array[], int num_cipher) { |
| 431 int i; |
| 432 |
| 433 for (i=0; i < num_cipher; i++) { |
| 434 cipher_dealloc(cipher_array[i]); |
| 435 } |
| 436 |
| 437 free(cipher_array); |
| 438 |
| 439 return err_status_ok; |
| 440 } |
| 441 |
| 442 |
| 443 /* |
| 444 * cipher_array_bits_per_second(c, l, t) computes (an estimate of) the |
| 445 * number of bits that a cipher implementation can encrypt in a second |
| 446 * when distinct keys are used to encrypt distinct messages |
| 447 * |
| 448 * c is a cipher (which MUST be allocated an initialized already), l |
| 449 * is the length in octets of the test data to be encrypted, and t is |
| 450 * the number of trials |
| 451 * |
| 452 * if an error is encountered, the value 0 is returned |
| 453 */ |
| 454 |
| 455 uint64_t |
| 456 cipher_array_bits_per_second(cipher_t *cipher_array[], int num_cipher, |
| 457 unsigned octets_in_buffer, int num_trials) { |
| 458 int i; |
| 459 v128_t nonce; |
| 460 clock_t timer; |
| 461 unsigned char *enc_buf; |
| 462 int cipher_index = rand() % num_cipher; |
| 463 |
| 464 /* Over-alloc, for NIST CBC padding */ |
| 465 enc_buf = crypto_alloc(octets_in_buffer+17); |
| 466 if (enc_buf == NULL) |
| 467 return 0; /* indicate bad parameters by returning null */ |
| 468 memset(enc_buf, 0, octets_in_buffer); |
| 469 |
| 470 /* time repeated trials */ |
| 471 v128_set_to_zero(&nonce); |
| 472 timer = clock(); |
| 473 for(i=0; i < num_trials; i++, nonce.v32[3] = i) { |
| 474 /* length parameter to cipher_encrypt is in/out -- out is total, padded |
| 475 * length -- so reset it each time. */ |
| 476 unsigned octets_to_encrypt = octets_in_buffer; |
| 477 |
| 478 /* encrypt buffer with cipher */ |
| 479 cipher_set_iv(cipher_array[cipher_index], &nonce); |
| 480 cipher_encrypt(cipher_array[cipher_index], enc_buf, &octets_to_encrypt); |
| 481 |
| 482 /* choose a cipher at random from the array*/ |
| 483 cipher_index = (*((uint32_t *)enc_buf)) % num_cipher; |
| 484 } |
| 485 timer = clock() - timer; |
| 486 |
| 487 free(enc_buf); |
| 488 |
| 489 if (timer == 0) { |
| 490 /* Too fast! */ |
| 491 return 0; |
| 492 } |
| 493 |
| 494 return (uint64_t)CLOCKS_PER_SEC * num_trials * 8 * octets_in_buffer / timer; |
| 495 } |
| 496 |
| 497 void |
| 498 cipher_array_test_throughput(cipher_t *ca[], int num_cipher) { |
| 499 int i; |
| 500 int min_enc_len = 16; |
| 501 int max_enc_len = 2048; /* should be a power of two */ |
| 502 int num_trials = 1000000; |
| 503 |
| 504 printf("timing %s throughput with key length %d, array size %d:\n", |
| 505 (ca[0])->type->description, (ca[0])->key_len, num_cipher); |
| 506 fflush(stdout); |
| 507 for (i=min_enc_len; i <= max_enc_len; i = i * 4) |
| 508 printf("msg len: %d\tgigabits per second: %f\n", i, |
| 509 cipher_array_bits_per_second(ca, num_cipher, i, num_trials) / 1e9); |
| 510 |
| 511 } |
| 512 |
| 513 err_status_t |
| 514 cipher_driver_test_array_throughput(cipher_type_t *ct, |
| 515 int klen, int num_cipher) { |
| 516 cipher_t **ca = NULL; |
| 517 err_status_t status; |
| 518 |
| 519 status = cipher_array_alloc_init(&ca, num_cipher, ct, klen); |
| 520 if (status) { |
| 521 printf("error: cipher_array_alloc_init() failed with error code %d\n", |
| 522 status); |
| 523 return status; |
| 524 } |
| 525 |
| 526 cipher_array_test_throughput(ca, num_cipher); |
| 527 |
| 528 cipher_array_delete(ca, num_cipher); |
| 529 |
| 530 return err_status_ok; |
| 531 } |
OLD | NEW |