OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * datatypes.h |
| 3 * |
| 4 * data types for bit vectors and finite fields |
| 5 * |
| 6 * David A. McGrew |
| 7 * Cisco Systems, Inc. |
| 8 */ |
| 9 |
| 10 /* |
| 11 * |
| 12 * Copyright (c) 2001-2006, Cisco Systems, Inc. |
| 13 * All rights reserved. |
| 14 * |
| 15 * Redistribution and use in source and binary forms, with or without |
| 16 * modification, are permitted provided that the following conditions |
| 17 * are met: |
| 18 * |
| 19 * Redistributions of source code must retain the above copyright |
| 20 * notice, this list of conditions and the following disclaimer. |
| 21 * |
| 22 * Redistributions in binary form must reproduce the above |
| 23 * copyright notice, this list of conditions and the following |
| 24 * disclaimer in the documentation and/or other materials provided |
| 25 * with the distribution. |
| 26 * |
| 27 * Neither the name of the Cisco Systems, Inc. nor the names of its |
| 28 * contributors may be used to endorse or promote products derived |
| 29 * from this software without specific prior written permission. |
| 30 * |
| 31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| 34 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| 35 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, |
| 36 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 37 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| 38 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| 40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 41 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| 42 * OF THE POSSIBILITY OF SUCH DAMAGE. |
| 43 * |
| 44 */ |
| 45 |
| 46 |
| 47 #ifndef _DATATYPES_H |
| 48 #define _DATATYPES_H |
| 49 |
| 50 #include "integers.h" /* definitions of uint32_t, et cetera */ |
| 51 #include "alloc.h" |
| 52 |
| 53 #include <stdarg.h> |
| 54 |
| 55 #ifndef SRTP_KERNEL |
| 56 # include <stdio.h> |
| 57 # include <string.h> |
| 58 # include <time.h> |
| 59 # ifdef HAVE_NETINET_IN_H |
| 60 # include <netinet/in.h> |
| 61 # elif defined HAVE_WINSOCK2_H |
| 62 # include <winsock2.h> |
| 63 # endif |
| 64 #endif |
| 65 |
| 66 |
| 67 /* if DATATYPES_USE_MACROS is defined, then little functions are macros */ |
| 68 #define DATATYPES_USE_MACROS |
| 69 |
| 70 typedef union { |
| 71 uint8_t v8[2]; |
| 72 uint16_t value; |
| 73 } v16_t; |
| 74 |
| 75 typedef union { |
| 76 uint8_t v8[4]; |
| 77 uint16_t v16[2]; |
| 78 uint32_t value; |
| 79 } v32_t; |
| 80 |
| 81 typedef union { |
| 82 uint8_t v8[8]; |
| 83 uint16_t v16[4]; |
| 84 uint32_t v32[2]; |
| 85 uint64_t value; |
| 86 } v64_t; |
| 87 |
| 88 typedef union { |
| 89 uint8_t v8[16]; |
| 90 uint16_t v16[8]; |
| 91 uint32_t v32[4]; |
| 92 uint64_t v64[2]; |
| 93 } v128_t; |
| 94 |
| 95 |
| 96 |
| 97 /* some useful and simple math functions */ |
| 98 |
| 99 #define pow_2(X) ( (unsigned int)1 << (X) ) /* 2^X */ |
| 100 |
| 101 #define pow_minus_one(X) ( (X) ? -1 : 1 ) /* (-1)^X */ |
| 102 |
| 103 |
| 104 /* |
| 105 * octet_get_weight(x) returns the hamming weight (number of bits equal to |
| 106 * one) in the octet x |
| 107 */ |
| 108 |
| 109 int |
| 110 octet_get_weight(uint8_t octet); |
| 111 |
| 112 char * |
| 113 octet_bit_string(uint8_t x); |
| 114 |
| 115 #define MAX_PRINT_STRING_LEN 1024 |
| 116 |
| 117 char * |
| 118 octet_string_hex_string(const void *str, int length); |
| 119 |
| 120 char * |
| 121 v128_bit_string(v128_t *x); |
| 122 |
| 123 char * |
| 124 v128_hex_string(v128_t *x); |
| 125 |
| 126 uint8_t |
| 127 nibble_to_hex_char(uint8_t nibble); |
| 128 |
| 129 char * |
| 130 char_to_hex_string(char *x, int num_char); |
| 131 |
| 132 uint8_t |
| 133 hex_string_to_octet(char *s); |
| 134 |
| 135 /* |
| 136 * hex_string_to_octet_string(raw, hex, len) converts the hexadecimal |
| 137 * string at *hex (of length len octets) to the equivalent raw data |
| 138 * and writes it to *raw. |
| 139 * |
| 140 * if a character in the hex string that is not a hexadeciaml digit |
| 141 * (0123456789abcdefABCDEF) is encountered, the function stops writing |
| 142 * data to *raw |
| 143 * |
| 144 * the number of hex digits copied (which is two times the number of |
| 145 * octets in *raw) is returned |
| 146 */ |
| 147 |
| 148 int |
| 149 hex_string_to_octet_string(char *raw, char *hex, int len); |
| 150 |
| 151 v128_t |
| 152 hex_string_to_v128(char *s); |
| 153 |
| 154 void |
| 155 v128_copy_octet_string(v128_t *x, const uint8_t s[16]); |
| 156 |
| 157 void |
| 158 v128_left_shift(v128_t *x, int shift_index); |
| 159 |
| 160 void |
| 161 v128_right_shift(v128_t *x, int shift_index); |
| 162 |
| 163 /* |
| 164 * the following macros define the data manipulation functions |
| 165 * |
| 166 * If DATATYPES_USE_MACROS is defined, then these macros are used |
| 167 * directly (and function call overhead is avoided). Otherwise, |
| 168 * the macros are used through the functions defined in datatypes.c |
| 169 * (and the compiler provides better warnings). |
| 170 */ |
| 171 |
| 172 #define _v128_set_to_zero(x) \ |
| 173 ( \ |
| 174 (x)->v32[0] = 0, \ |
| 175 (x)->v32[1] = 0, \ |
| 176 (x)->v32[2] = 0, \ |
| 177 (x)->v32[3] = 0 \ |
| 178 ) |
| 179 |
| 180 #define _v128_copy(x, y) \ |
| 181 ( \ |
| 182 (x)->v32[0] = (y)->v32[0], \ |
| 183 (x)->v32[1] = (y)->v32[1], \ |
| 184 (x)->v32[2] = (y)->v32[2], \ |
| 185 (x)->v32[3] = (y)->v32[3] \ |
| 186 ) |
| 187 |
| 188 #define _v128_xor(z, x, y) \ |
| 189 ( \ |
| 190 (z)->v32[0] = (x)->v32[0] ^ (y)->v32[0], \ |
| 191 (z)->v32[1] = (x)->v32[1] ^ (y)->v32[1], \ |
| 192 (z)->v32[2] = (x)->v32[2] ^ (y)->v32[2], \ |
| 193 (z)->v32[3] = (x)->v32[3] ^ (y)->v32[3] \ |
| 194 ) |
| 195 |
| 196 #define _v128_and(z, x, y) \ |
| 197 ( \ |
| 198 (z)->v32[0] = (x)->v32[0] & (y)->v32[0], \ |
| 199 (z)->v32[1] = (x)->v32[1] & (y)->v32[1], \ |
| 200 (z)->v32[2] = (x)->v32[2] & (y)->v32[2], \ |
| 201 (z)->v32[3] = (x)->v32[3] & (y)->v32[3] \ |
| 202 ) |
| 203 |
| 204 #define _v128_or(z, x, y) \ |
| 205 ( \ |
| 206 (z)->v32[0] = (x)->v32[0] | (y)->v32[0], \ |
| 207 (z)->v32[1] = (x)->v32[1] | (y)->v32[1], \ |
| 208 (z)->v32[2] = (x)->v32[2] | (y)->v32[2], \ |
| 209 (z)->v32[3] = (x)->v32[3] | (y)->v32[3] \ |
| 210 ) |
| 211 |
| 212 #define _v128_complement(x) \ |
| 213 ( \ |
| 214 (x)->v32[0] = ~(x)->v32[0], \ |
| 215 (x)->v32[1] = ~(x)->v32[1], \ |
| 216 (x)->v32[2] = ~(x)->v32[2], \ |
| 217 (x)->v32[3] = ~(x)->v32[3] \ |
| 218 ) |
| 219 |
| 220 /* ok for NO_64BIT_MATH if it can compare uint64_t's (even as structures) */ |
| 221 #define _v128_is_eq(x, y) \ |
| 222 (((x)->v64[0] == (y)->v64[0]) && ((x)->v64[1] == (y)->v64[1])) |
| 223 |
| 224 |
| 225 #ifdef NO_64BIT_MATH |
| 226 #define _v128_xor_eq(z, x) \ |
| 227 ( \ |
| 228 (z)->v32[0] ^= (x)->v32[0], \ |
| 229 (z)->v32[1] ^= (x)->v32[1], \ |
| 230 (z)->v32[2] ^= (x)->v32[2], \ |
| 231 (z)->v32[3] ^= (x)->v32[3] \ |
| 232 ) |
| 233 #else |
| 234 #define _v128_xor_eq(z, x) \ |
| 235 ( \ |
| 236 (z)->v64[0] ^= (x)->v64[0], \ |
| 237 (z)->v64[1] ^= (x)->v64[1] \ |
| 238 ) |
| 239 #endif |
| 240 |
| 241 /* NOTE! This assumes an odd ordering! */ |
| 242 /* This will not be compatible directly with math on some processors */ |
| 243 /* bit 0 is first 32-bit word, low order bit. in little-endian, that's |
| 244 the first byte of the first 32-bit word. In big-endian, that's |
| 245 the 3rd byte of the first 32-bit word */ |
| 246 /* The get/set bit code is used by the replay code ONLY, and it doesn't |
| 247 really care which bit is which. AES does care which bit is which, but |
| 248 doesn't use the 128-bit get/set or 128-bit shifts */ |
| 249 |
| 250 #define _v128_get_bit(x, bit) \ |
| 251 ( \ |
| 252 ((((x)->v32[(bit) >> 5]) >> ((bit) & 31)) & 1) \ |
| 253 ) |
| 254 |
| 255 #define _v128_set_bit(x, bit) \ |
| 256 ( \ |
| 257 (((x)->v32[(bit) >> 5]) |= ((uint32_t)1 << ((bit) & 31))) \ |
| 258 ) |
| 259 |
| 260 #define _v128_clear_bit(x, bit) \ |
| 261 ( \ |
| 262 (((x)->v32[(bit) >> 5]) &= ~((uint32_t)1 << ((bit) & 31))) \ |
| 263 ) |
| 264 |
| 265 #define _v128_set_bit_to(x, bit, value) \ |
| 266 ( \ |
| 267 (value) ? _v128_set_bit(x, bit) : \ |
| 268 _v128_clear_bit(x, bit) \ |
| 269 ) |
| 270 |
| 271 |
| 272 #if 0 |
| 273 /* nothing uses this */ |
| 274 #ifdef WORDS_BIGENDIAN |
| 275 |
| 276 #define _v128_add(z, x, y) { \ |
| 277 uint64_t tmp; \ |
| 278 \ |
| 279 tmp = x->v32[3] + y->v32[3]; \ |
| 280 z->v32[3] = (uint32_t) tmp; \ |
| 281 \ |
| 282 tmp = x->v32[2] + y->v32[2] + (tmp >> 32); \ |
| 283 z->v32[2] = (uint32_t) tmp; \ |
| 284 \ |
| 285 tmp = x->v32[1] + y->v32[1] + (tmp >> 32); \ |
| 286 z->v32[1] = (uint32_t) tmp; \ |
| 287 \ |
| 288 tmp = x->v32[0] + y->v32[0] + (tmp >> 32); \ |
| 289 z->v32[0] = (uint32_t) tmp; \ |
| 290 } |
| 291 |
| 292 #else /* assume little endian architecture */ |
| 293 |
| 294 #define _v128_add(z, x, y) { \ |
| 295 uint64_t tmp; \ |
| 296 \ |
| 297 tmp = htonl(x->v32[3]) + htonl(y->v32[3]); \ |
| 298 z->v32[3] = ntohl((uint32_t) tmp); \ |
| 299 \ |
| 300 tmp = htonl(x->v32[2]) + htonl(y->v32[2]) \ |
| 301 + htonl(tmp >> 32); \ |
| 302 z->v32[2] = ntohl((uint32_t) tmp); \ |
| 303 \ |
| 304 tmp = htonl(x->v32[1]) + htonl(y->v32[1]) \ |
| 305 + htonl(tmp >> 32); \ |
| 306 z->v32[1] = ntohl((uint32_t) tmp); \ |
| 307 \ |
| 308 tmp = htonl(x->v32[0]) + htonl(y->v32[0]) \ |
| 309 + htonl(tmp >> 32); \ |
| 310 z->v32[0] = ntohl((uint32_t) tmp); \ |
| 311 } |
| 312 #endif /* WORDS_BIGENDIAN */ |
| 313 #endif /* 0 */ |
| 314 |
| 315 |
| 316 #ifdef DATATYPES_USE_MACROS /* little functions are really macros */ |
| 317 |
| 318 #define v128_set_to_zero(z) _v128_set_to_zero(z) |
| 319 #define v128_copy(z, x) _v128_copy(z, x) |
| 320 #define v128_xor(z, x, y) _v128_xor(z, x, y) |
| 321 #define v128_and(z, x, y) _v128_and(z, x, y) |
| 322 #define v128_or(z, x, y) _v128_or(z, x, y) |
| 323 #define v128_complement(x) _v128_complement(x) |
| 324 #define v128_is_eq(x, y) _v128_is_eq(x, y) |
| 325 #define v128_xor_eq(x, y) _v128_xor_eq(x, y) |
| 326 #define v128_get_bit(x, i) _v128_get_bit(x, i) |
| 327 #define v128_set_bit(x, i) _v128_set_bit(x, i) |
| 328 #define v128_clear_bit(x, i) _v128_clear_bit(x, i) |
| 329 #define v128_set_bit_to(x, i, y) _v128_set_bit_to(x, i, y) |
| 330 |
| 331 #else |
| 332 |
| 333 void |
| 334 v128_set_to_zero(v128_t *x); |
| 335 |
| 336 int |
| 337 v128_is_eq(const v128_t *x, const v128_t *y); |
| 338 |
| 339 void |
| 340 v128_copy(v128_t *x, const v128_t *y); |
| 341 |
| 342 void |
| 343 v128_xor(v128_t *z, v128_t *x, v128_t *y); |
| 344 |
| 345 void |
| 346 v128_and(v128_t *z, v128_t *x, v128_t *y); |
| 347 |
| 348 void |
| 349 v128_or(v128_t *z, v128_t *x, v128_t *y); |
| 350 |
| 351 void |
| 352 v128_complement(v128_t *x); |
| 353 |
| 354 int |
| 355 v128_get_bit(const v128_t *x, int i); |
| 356 |
| 357 void |
| 358 v128_set_bit(v128_t *x, int i) ; |
| 359 |
| 360 void |
| 361 v128_clear_bit(v128_t *x, int i); |
| 362 |
| 363 void |
| 364 v128_set_bit_to(v128_t *x, int i, int y); |
| 365 |
| 366 #endif /* DATATYPES_USE_MACROS */ |
| 367 |
| 368 /* |
| 369 * octet_string_is_eq(a,b, len) returns 1 if the length len strings a |
| 370 * and b are not equal, returns 0 otherwise |
| 371 */ |
| 372 |
| 373 int |
| 374 octet_string_is_eq(uint8_t *a, uint8_t *b, int len); |
| 375 |
| 376 void |
| 377 octet_string_set_to_zero(uint8_t *s, int len); |
| 378 |
| 379 |
| 380 #ifndef SRTP_KERNEL_LINUX |
| 381 |
| 382 /* |
| 383 * Convert big endian integers to CPU byte order. |
| 384 */ |
| 385 #ifdef WORDS_BIGENDIAN |
| 386 /* Nothing to do. */ |
| 387 # define be32_to_cpu(x) (x) |
| 388 # define be64_to_cpu(x) (x) |
| 389 #elif defined(HAVE_BYTESWAP_H) |
| 390 /* We have (hopefully) optimized versions in byteswap.h */ |
| 391 # include <byteswap.h> |
| 392 # define be32_to_cpu(x) bswap_32((x)) |
| 393 # define be64_to_cpu(x) bswap_64((x)) |
| 394 #else |
| 395 |
| 396 #if defined(__GNUC__) && defined(HAVE_X86) |
| 397 /* Fall back. */ |
| 398 static inline uint32_t be32_to_cpu(uint32_t v) { |
| 399 /* optimized for x86. */ |
| 400 asm("bswap %0" : "=r" (v) : "0" (v)); |
| 401 return v; |
| 402 } |
| 403 # else /* HAVE_X86 */ |
| 404 # ifdef HAVE_NETINET_IN_H |
| 405 # include <netinet/in.h> |
| 406 # elif defined HAVE_WINSOCK2_H |
| 407 # include <winsock2.h> |
| 408 # endif |
| 409 # define be32_to_cpu(x) ntohl((x)) |
| 410 # endif /* HAVE_X86 */ |
| 411 |
| 412 static inline uint64_t be64_to_cpu(uint64_t v) { |
| 413 # ifdef NO_64BIT_MATH |
| 414 /* use the make64 functions to do 64-bit math */ |
| 415 v = make64(htonl(low32(v)),htonl(high32(v))); |
| 416 # else |
| 417 /* use the native 64-bit math */ |
| 418 v= (uint64_t)((be32_to_cpu((uint32_t)(v >> 32))) | (((uint64_t)be32_to_cpu((u
int32_t)v)) << 32)); |
| 419 # endif |
| 420 return v; |
| 421 } |
| 422 |
| 423 #endif /* ! SRTP_KERNEL_LINUX */ |
| 424 |
| 425 #endif /* WORDS_BIGENDIAN */ |
| 426 |
| 427 /* |
| 428 * functions manipulating bitvector_t |
| 429 * |
| 430 * A bitvector_t consists of an array of words and an integer |
| 431 * representing the number of significant bits stored in the array. |
| 432 * The bits are packed as follows: the least significant bit is that |
| 433 * of word[0], while the most significant bit is the nth most |
| 434 * significant bit of word[m], where length = bits_per_word * m + n. |
| 435 * |
| 436 */ |
| 437 |
| 438 #define bits_per_word 32 |
| 439 #define bytes_per_word 4 |
| 440 |
| 441 typedef struct { |
| 442 uint32_t length; |
| 443 uint32_t *word; |
| 444 } bitvector_t; |
| 445 |
| 446 |
| 447 #define _bitvector_get_bit(v, bit_index) \ |
| 448 ( \ |
| 449 ((((v)->word[((bit_index) >> 5)]) >> ((bit_index) & 31)) & 1) \ |
| 450 ) |
| 451 |
| 452 |
| 453 #define _bitvector_set_bit(v, bit_index) \ |
| 454 ( \ |
| 455 (((v)->word[((bit_index) >> 5)] |= ((uint32_t)1 << ((bit_index) & 31)))) \ |
| 456 ) |
| 457 |
| 458 #define _bitvector_clear_bit(v, bit_index) \ |
| 459 ( \ |
| 460 (((v)->word[((bit_index) >> 5)] &= ~((uint32_t)1 << ((bit_index) & 31)))) \ |
| 461 ) |
| 462 |
| 463 #define _bitvector_get_length(v) \ |
| 464 ( \ |
| 465 ((v)->length) \ |
| 466 ) |
| 467 |
| 468 #ifdef DATATYPES_USE_MACROS /* little functions are really macros */ |
| 469 |
| 470 #define bitvector_get_bit(v, bit_index) _bitvector_get_bit(v, bit_index) |
| 471 #define bitvector_set_bit(v, bit_index) _bitvector_set_bit(v, bit_index) |
| 472 #define bitvector_clear_bit(v, bit_index) _bitvector_clear_bit(v, bit_index) |
| 473 #define bitvector_get_length(v) _bitvector_get_length(v) |
| 474 |
| 475 #else |
| 476 |
| 477 int |
| 478 bitvector_get_bit(const bitvector_t *v, int bit_index); |
| 479 |
| 480 void |
| 481 bitvector_set_bit(bitvector_t *v, int bit_index); |
| 482 |
| 483 void |
| 484 bitvector_clear_bit(bitvector_t *v, int bit_index); |
| 485 |
| 486 unsigned long |
| 487 bitvector_get_length(const bitvector_t *v); |
| 488 |
| 489 #endif |
| 490 |
| 491 int |
| 492 bitvector_alloc(bitvector_t *v, unsigned long length); |
| 493 |
| 494 void |
| 495 bitvector_dealloc(bitvector_t *v); |
| 496 |
| 497 void |
| 498 bitvector_set_to_zero(bitvector_t *x); |
| 499 |
| 500 void |
| 501 bitvector_left_shift(bitvector_t *x, int index); |
| 502 |
| 503 char * |
| 504 bitvector_bit_string(bitvector_t *x, char* buf, int len); |
| 505 |
| 506 #endif /* _DATATYPES_H */ |
OLD | NEW |