OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * math.h |
| 3 * |
| 4 * crypto math operations and data types |
| 5 * |
| 6 * David A. McGrew |
| 7 * Cisco Systems, Inc. |
| 8 */ |
| 9 /* |
| 10 * |
| 11 * Copyright (c) 2001-2006 Cisco Systems, Inc. |
| 12 * All rights reserved. |
| 13 * |
| 14 * Redistribution and use in source and binary forms, with or without |
| 15 * modification, are permitted provided that the following conditions |
| 16 * are met: |
| 17 * |
| 18 * Redistributions of source code must retain the above copyright |
| 19 * notice, this list of conditions and the following disclaimer. |
| 20 * |
| 21 * Redistributions in binary form must reproduce the above |
| 22 * copyright notice, this list of conditions and the following |
| 23 * disclaimer in the documentation and/or other materials provided |
| 24 * with the distribution. |
| 25 * |
| 26 * Neither the name of the Cisco Systems, Inc. nor the names of its |
| 27 * contributors may be used to endorse or promote products derived |
| 28 * from this software without specific prior written permission. |
| 29 * |
| 30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| 33 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| 34 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, |
| 35 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 36 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| 37 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| 39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 40 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| 41 * OF THE POSSIBILITY OF SUCH DAMAGE. |
| 42 * |
| 43 */ |
| 44 |
| 45 #ifndef MATH_H |
| 46 #define MATH_H |
| 47 |
| 48 #include "datatypes.h" |
| 49 |
| 50 unsigned char |
| 51 v32_weight(v32_t a); |
| 52 |
| 53 unsigned char |
| 54 v32_distance(v32_t x, v32_t y); |
| 55 |
| 56 unsigned int |
| 57 v32_dot_product(v32_t a, v32_t b); |
| 58 |
| 59 char * |
| 60 v16_bit_string(v16_t x); |
| 61 |
| 62 char * |
| 63 v32_bit_string(v32_t x); |
| 64 |
| 65 char * |
| 66 v64_bit_string(const v64_t *x); |
| 67 |
| 68 char * |
| 69 octet_hex_string(uint8_t x); |
| 70 |
| 71 char * |
| 72 v16_hex_string(v16_t x); |
| 73 |
| 74 char * |
| 75 v32_hex_string(v32_t x); |
| 76 |
| 77 char * |
| 78 v64_hex_string(const v64_t *x); |
| 79 |
| 80 int |
| 81 hex_char_to_nibble(uint8_t c); |
| 82 |
| 83 int |
| 84 is_hex_string(char *s); |
| 85 |
| 86 v16_t |
| 87 hex_string_to_v16(char *s); |
| 88 |
| 89 v32_t |
| 90 hex_string_to_v32(char *s); |
| 91 |
| 92 v64_t |
| 93 hex_string_to_v64(char *s); |
| 94 |
| 95 /* the matrix A[] is stored in column format, i.e., A[i] is |
| 96 the ith column of the matrix */ |
| 97 |
| 98 uint8_t |
| 99 A_times_x_plus_b(uint8_t A[8], uint8_t x, uint8_t b); |
| 100 |
| 101 void |
| 102 v16_copy_octet_string(v16_t *x, const uint8_t s[2]); |
| 103 |
| 104 void |
| 105 v32_copy_octet_string(v32_t *x, const uint8_t s[4]); |
| 106 |
| 107 void |
| 108 v64_copy_octet_string(v64_t *x, const uint8_t s[8]); |
| 109 |
| 110 void |
| 111 v128_add(v128_t *z, v128_t *x, v128_t *y); |
| 112 |
| 113 int |
| 114 octet_string_is_eq(uint8_t *a, uint8_t *b, int len); |
| 115 |
| 116 void |
| 117 octet_string_set_to_zero(uint8_t *s, int len); |
| 118 |
| 119 |
| 120 |
| 121 /* |
| 122 * the matrix A[] is stored in column format, i.e., A[i] is the ith |
| 123 * column of the matrix |
| 124 */ |
| 125 uint8_t |
| 126 A_times_x_plus_b(uint8_t A[8], uint8_t x, uint8_t b); |
| 127 |
| 128 |
| 129 #if 0 |
| 130 #if WORDS_BIGENDIAN |
| 131 |
| 132 #define _v128_add(z, x, y) { \ |
| 133 uint64_t tmp; \ |
| 134 \ |
| 135 tmp = x->v32[3] + y->v32[3]; \ |
| 136 z->v32[3] = (uint32_t) tmp; \ |
| 137 \ |
| 138 tmp = x->v32[2] + y->v32[2] + (tmp >> 32); \ |
| 139 z->v32[2] = (uint32_t) tmp; \ |
| 140 \ |
| 141 tmp = x->v32[1] + y->v32[1] + (tmp >> 32); \ |
| 142 z->v32[1] = (uint32_t) tmp; \ |
| 143 \ |
| 144 tmp = x->v32[0] + y->v32[0] + (tmp >> 32); \ |
| 145 z->v32[0] = (uint32_t) tmp; \ |
| 146 } |
| 147 |
| 148 #else /* assume little endian architecture */ |
| 149 |
| 150 #define _v128_add(z, x, y) { \ |
| 151 uint64_t tmp; \ |
| 152 \ |
| 153 tmp = htonl(x->v32[3]) + htonl(y->v32[3]); \ |
| 154 z->v32[3] = ntohl((uint32_t) tmp); \ |
| 155 \ |
| 156 tmp = htonl(x->v32[2]) + htonl(y->v32[2]) \ |
| 157 + htonl(tmp >> 32); \ |
| 158 z->v32[2] = ntohl((uint32_t) tmp); \ |
| 159 \ |
| 160 tmp = htonl(x->v32[1]) + htonl(y->v32[1]) \ |
| 161 + htonl(tmp >> 32); \ |
| 162 z->v32[1] = ntohl((uint32_t) tmp); \ |
| 163 \ |
| 164 tmp = htonl(x->v32[0]) + htonl(y->v32[0]) \ |
| 165 + htonl(tmp >> 32); \ |
| 166 z->v32[0] = ntohl((uint32_t) tmp); \ |
| 167 } |
| 168 |
| 169 #endif /* WORDS_BIGENDIAN */ |
| 170 #endif |
| 171 |
| 172 #ifdef DATATYPES_USE_MACROS /* little functions are really macros */ |
| 173 |
| 174 #define v128_set_to_zero(z) _v128_set_to_zero(z) |
| 175 #define v128_copy(z, x) _v128_copy(z, x) |
| 176 #define v128_xor(z, x, y) _v128_xor(z, x, y) |
| 177 #define v128_and(z, x, y) _v128_and(z, x, y) |
| 178 #define v128_or(z, x, y) _v128_or(z, x, y) |
| 179 #define v128_complement(x) _v128_complement(x) |
| 180 #define v128_is_eq(x, y) _v128_is_eq(x, y) |
| 181 #define v128_xor_eq(x, y) _v128_xor_eq(x, y) |
| 182 #define v128_get_bit(x, i) _v128_get_bit(x, i) |
| 183 #define v128_set_bit(x, i) _v128_set_bit(x, i) |
| 184 #define v128_clear_bit(x, i) _v128_clear_bit(x, i) |
| 185 #define v128_set_bit_to(x, i, y) _v128_set_bit_to(x, i, y) |
| 186 |
| 187 #else |
| 188 |
| 189 void |
| 190 v128_set_to_zero(v128_t *x); |
| 191 |
| 192 int |
| 193 v128_is_eq(const v128_t *x, const v128_t *y); |
| 194 |
| 195 void |
| 196 v128_copy(v128_t *x, const v128_t *y); |
| 197 |
| 198 void |
| 199 v128_xor(v128_t *z, v128_t *x, v128_t *y); |
| 200 |
| 201 void |
| 202 v128_and(v128_t *z, v128_t *x, v128_t *y); |
| 203 |
| 204 void |
| 205 v128_or(v128_t *z, v128_t *x, v128_t *y); |
| 206 |
| 207 void |
| 208 v128_complement(v128_t *x); |
| 209 |
| 210 int |
| 211 v128_get_bit(const v128_t *x, int i); |
| 212 |
| 213 void |
| 214 v128_set_bit(v128_t *x, int i) ; |
| 215 |
| 216 void |
| 217 v128_clear_bit(v128_t *x, int i); |
| 218 |
| 219 void |
| 220 v128_set_bit_to(v128_t *x, int i, int y); |
| 221 |
| 222 #endif /* DATATYPES_USE_MACROS */ |
| 223 |
| 224 /* |
| 225 * octet_string_is_eq(a,b, len) returns 1 if the length len strings a |
| 226 * and b are not equal, returns 0 otherwise |
| 227 */ |
| 228 |
| 229 int |
| 230 octet_string_is_eq(uint8_t *a, uint8_t *b, int len); |
| 231 |
| 232 void |
| 233 octet_string_set_to_zero(uint8_t *s, int len); |
| 234 |
| 235 |
| 236 #endif /* MATH_H */ |
| 237 |
| 238 |
| 239 |
OLD | NEW |