OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * aes_icm.c |
| 3 * |
| 4 * AES Integer Counter Mode |
| 5 * |
| 6 * David A. McGrew |
| 7 * Cisco Systems, Inc. |
| 8 */ |
| 9 |
| 10 /* |
| 11 * |
| 12 * Copyright (c) 2001-2006, Cisco Systems, Inc. |
| 13 * All rights reserved. |
| 14 * |
| 15 * Redistribution and use in source and binary forms, with or without |
| 16 * modification, are permitted provided that the following conditions |
| 17 * are met: |
| 18 * |
| 19 * Redistributions of source code must retain the above copyright |
| 20 * notice, this list of conditions and the following disclaimer. |
| 21 * |
| 22 * Redistributions in binary form must reproduce the above |
| 23 * copyright notice, this list of conditions and the following |
| 24 * disclaimer in the documentation and/or other materials provided |
| 25 * with the distribution. |
| 26 * |
| 27 * Neither the name of the Cisco Systems, Inc. nor the names of its |
| 28 * contributors may be used to endorse or promote products derived |
| 29 * from this software without specific prior written permission. |
| 30 * |
| 31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| 34 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| 35 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, |
| 36 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 37 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| 38 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| 40 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 41 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| 42 * OF THE POSSIBILITY OF SUCH DAMAGE. |
| 43 * |
| 44 */ |
| 45 |
| 46 |
| 47 #define ALIGN_32 0 |
| 48 |
| 49 #include "aes_icm.h" |
| 50 #include "alloc.h" |
| 51 |
| 52 |
| 53 debug_module_t mod_aes_icm = { |
| 54 0, /* debugging is off by default */ |
| 55 "aes icm" /* printable module name */ |
| 56 }; |
| 57 |
| 58 /* |
| 59 * integer counter mode works as follows: |
| 60 * |
| 61 * 16 bits |
| 62 * <-----> |
| 63 * +------+------+------+------+------+------+------+------+ |
| 64 * | nonce | pakcet index | ctr |---+ |
| 65 * +------+------+------+------+------+------+------+------+ | |
| 66 * | |
| 67 * +------+------+------+------+------+------+------+------+ v |
| 68 * | salt |000000|->(+) |
| 69 * +------+------+------+------+------+------+------+------+ | |
| 70 * | |
| 71 * +---------+ |
| 72 * | encrypt | |
| 73 * +---------+ |
| 74 * | |
| 75 * +------+------+------+------+------+------+------+------+ | |
| 76 * | keystream block |<--+ |
| 77 * +------+------+------+------+------+------+------+------+ |
| 78 * |
| 79 * All fields are big-endian |
| 80 * |
| 81 * ctr is the block counter, which increments from zero for |
| 82 * each packet (16 bits wide) |
| 83 * |
| 84 * packet index is distinct for each packet (48 bits wide) |
| 85 * |
| 86 * nonce can be distinct across many uses of the same key, or |
| 87 * can be a fixed value per key, or can be per-packet randomness |
| 88 * (64 bits) |
| 89 * |
| 90 */ |
| 91 |
| 92 err_status_t |
| 93 aes_icm_alloc_ismacryp(cipher_t **c, int key_len, int forIsmacryp) { |
| 94 extern cipher_type_t aes_icm; |
| 95 uint8_t *pointer; |
| 96 int tmp; |
| 97 |
| 98 debug_print(mod_aes_icm, |
| 99 "allocating cipher with key length %d", key_len); |
| 100 |
| 101 /* |
| 102 * Ismacryp, for example, uses 16 byte key + 8 byte |
| 103 * salt so this function is called with key_len = 24. |
| 104 * The check for key_len = 30/38/46 does not apply. Our usage |
| 105 * of aes functions with key_len = values other than 30 |
| 106 * has not broken anything. Don't know what would be the |
| 107 * effect of skipping this check for srtp in general. |
| 108 */ |
| 109 if (!(forIsmacryp && key_len > 16 && key_len < 30) && |
| 110 key_len != 30 && key_len != 38 && key_len != 46) |
| 111 return err_status_bad_param; |
| 112 |
| 113 /* allocate memory a cipher of type aes_icm */ |
| 114 tmp = (sizeof(aes_icm_ctx_t) + sizeof(cipher_t)); |
| 115 pointer = (uint8_t*)crypto_alloc(tmp); |
| 116 if (pointer == NULL) |
| 117 return err_status_alloc_fail; |
| 118 |
| 119 /* set pointers */ |
| 120 *c = (cipher_t *)pointer; |
| 121 (*c)->type = &aes_icm; |
| 122 (*c)->state = pointer + sizeof(cipher_t); |
| 123 |
| 124 /* increment ref_count */ |
| 125 aes_icm.ref_count++; |
| 126 |
| 127 /* set key size */ |
| 128 (*c)->key_len = key_len; |
| 129 |
| 130 return err_status_ok; |
| 131 } |
| 132 |
| 133 err_status_t aes_icm_alloc(cipher_t **c, int key_len, int forIsmacryp) { |
| 134 return aes_icm_alloc_ismacryp(c, key_len, 0); |
| 135 } |
| 136 |
| 137 err_status_t |
| 138 aes_icm_dealloc(cipher_t *c) { |
| 139 extern cipher_type_t aes_icm; |
| 140 |
| 141 /* zeroize entire state*/ |
| 142 octet_string_set_to_zero((uint8_t *)c, |
| 143 sizeof(aes_icm_ctx_t) + sizeof(cipher_t)); |
| 144 |
| 145 /* free memory */ |
| 146 crypto_free(c); |
| 147 |
| 148 /* decrement ref_count */ |
| 149 aes_icm.ref_count--; |
| 150 |
| 151 return err_status_ok; |
| 152 } |
| 153 |
| 154 |
| 155 /* |
| 156 * aes_icm_context_init(...) initializes the aes_icm_context |
| 157 * using the value in key[]. |
| 158 * |
| 159 * the key is the secret key |
| 160 * |
| 161 * the salt is unpredictable (but not necessarily secret) data which |
| 162 * randomizes the starting point in the keystream |
| 163 */ |
| 164 |
| 165 err_status_t |
| 166 aes_icm_context_init(aes_icm_ctx_t *c, const uint8_t *key, int key_len) { |
| 167 err_status_t status; |
| 168 int base_key_len; |
| 169 |
| 170 if (key_len > 16 && key_len < 30) /* Ismacryp */ |
| 171 base_key_len = 16; |
| 172 else if (key_len == 30 || key_len == 38 || key_len == 46) |
| 173 base_key_len = key_len - 14; |
| 174 else |
| 175 return err_status_bad_param; |
| 176 |
| 177 /* set counter and initial values to 'offset' value */ |
| 178 /* Note this copies past the end of the 'key' array by 2 bytes! */ |
| 179 v128_copy_octet_string(&c->counter, key + base_key_len); |
| 180 v128_copy_octet_string(&c->offset, key + base_key_len); |
| 181 |
| 182 /* force last two octets of the offset to zero (for srtp compatibility) */ |
| 183 c->offset.v8[14] = c->offset.v8[15] = 0; |
| 184 c->counter.v8[14] = c->counter.v8[15] = 0; |
| 185 |
| 186 debug_print(mod_aes_icm, |
| 187 "key: %s", octet_string_hex_string(key, base_key_len)); |
| 188 debug_print(mod_aes_icm, |
| 189 "offset: %s", v128_hex_string(&c->offset)); |
| 190 |
| 191 /* expand key */ |
| 192 status = aes_expand_encryption_key(key, base_key_len, &c->expanded_key); |
| 193 if (status) { |
| 194 v128_set_to_zero(&c->counter); |
| 195 v128_set_to_zero(&c->offset); |
| 196 return status; |
| 197 } |
| 198 |
| 199 /* indicate that the keystream_buffer is empty */ |
| 200 c->bytes_in_buffer = 0; |
| 201 |
| 202 return err_status_ok; |
| 203 } |
| 204 |
| 205 /* |
| 206 * aes_icm_set_octet(c, i) sets the counter of the context which it is |
| 207 * passed so that the next octet of keystream that will be generated |
| 208 * is the ith octet |
| 209 */ |
| 210 |
| 211 err_status_t |
| 212 aes_icm_set_octet(aes_icm_ctx_t *c, |
| 213 uint64_t octet_num) { |
| 214 |
| 215 #ifdef NO_64BIT_MATH |
| 216 int tail_num = low32(octet_num) & 0x0f; |
| 217 /* 64-bit right-shift 4 */ |
| 218 uint64_t block_num = make64(high32(octet_num) >> 4, |
| 219 ((high32(octet_num) &
0x0f)<<(32-4)) | |
| 220 (low32(octet_num) >>
4)); |
| 221 #else |
| 222 int tail_num = (int)(octet_num % 16); |
| 223 uint64_t block_num = octet_num / 16; |
| 224 #endif |
| 225 |
| 226 |
| 227 /* set counter value */ |
| 228 /* FIX - There's no way this is correct */ |
| 229 c->counter.v64[0] = c->offset.v64[0]; |
| 230 #ifdef NO_64BIT_MATH |
| 231 c->counter.v64[0] = make64(high32(c->offset.v64[0]) ^ high32(block_num), |
| 232 low32(c->offset.v64[0])
^ low32(block_num)); |
| 233 #else |
| 234 c->counter.v64[0] = c->offset.v64[0] ^ block_num; |
| 235 #endif |
| 236 |
| 237 debug_print(mod_aes_icm, |
| 238 "set_octet: %s", v128_hex_string(&c->counter)); |
| 239 |
| 240 /* fill keystream buffer, if needed */ |
| 241 if (tail_num) { |
| 242 v128_copy(&c->keystream_buffer, &c->counter); |
| 243 aes_encrypt(&c->keystream_buffer, &c->expanded_key); |
| 244 c->bytes_in_buffer = sizeof(v128_t); |
| 245 |
| 246 debug_print(mod_aes_icm, "counter: %s", |
| 247 v128_hex_string(&c->counter)); |
| 248 debug_print(mod_aes_icm, "ciphertext: %s", |
| 249 v128_hex_string(&c->keystream_buffer)); |
| 250 |
| 251 /* indicate number of bytes in keystream_buffer */ |
| 252 c->bytes_in_buffer = sizeof(v128_t) - tail_num; |
| 253 |
| 254 } else { |
| 255 |
| 256 /* indicate that keystream_buffer is empty */ |
| 257 c->bytes_in_buffer = 0; |
| 258 } |
| 259 |
| 260 return err_status_ok; |
| 261 } |
| 262 |
| 263 /* |
| 264 * aes_icm_set_iv(c, iv) sets the counter value to the exor of iv with |
| 265 * the offset |
| 266 */ |
| 267 |
| 268 err_status_t |
| 269 aes_icm_set_iv(aes_icm_ctx_t *c, void *iv) { |
| 270 v128_t *nonce = (v128_t *) iv; |
| 271 |
| 272 debug_print(mod_aes_icm, |
| 273 "setting iv: %s", v128_hex_string(nonce)); |
| 274 |
| 275 v128_xor(&c->counter, &c->offset, nonce); |
| 276 |
| 277 debug_print(mod_aes_icm, |
| 278 "set_counter: %s", v128_hex_string(&c->counter)); |
| 279 |
| 280 /* indicate that the keystream_buffer is empty */ |
| 281 c->bytes_in_buffer = 0; |
| 282 |
| 283 return err_status_ok; |
| 284 } |
| 285 |
| 286 |
| 287 |
| 288 /* |
| 289 * aes_icm_advance(...) refills the keystream_buffer and |
| 290 * advances the block index of the sicm_context forward by one |
| 291 * |
| 292 * this is an internal, hopefully inlined function |
| 293 */ |
| 294 |
| 295 inline void |
| 296 aes_icm_advance_ismacryp(aes_icm_ctx_t *c, uint8_t forIsmacryp) { |
| 297 /* fill buffer with new keystream */ |
| 298 v128_copy(&c->keystream_buffer, &c->counter); |
| 299 aes_encrypt(&c->keystream_buffer, &c->expanded_key); |
| 300 c->bytes_in_buffer = sizeof(v128_t); |
| 301 |
| 302 debug_print(mod_aes_icm, "counter: %s", |
| 303 v128_hex_string(&c->counter)); |
| 304 debug_print(mod_aes_icm, "ciphertext: %s", |
| 305 v128_hex_string(&c->keystream_buffer)); |
| 306 |
| 307 /* clock counter forward */ |
| 308 |
| 309 if (forIsmacryp) { |
| 310 uint32_t temp; |
| 311 //alex's clock counter forward |
| 312 temp = ntohl(c->counter.v32[3]); |
| 313 c->counter.v32[3] = htonl(++temp); |
| 314 } else { |
| 315 if (!++(c->counter.v8[15])) |
| 316 ++(c->counter.v8[14]); |
| 317 } |
| 318 } |
| 319 |
| 320 inline void aes_icm_advance(aes_icm_ctx_t *c) { |
| 321 aes_icm_advance_ismacryp(c, 0); |
| 322 } |
| 323 |
| 324 |
| 325 /*e |
| 326 * icm_encrypt deals with the following cases: |
| 327 * |
| 328 * bytes_to_encr < bytes_in_buffer |
| 329 * - add keystream into data |
| 330 * |
| 331 * bytes_to_encr > bytes_in_buffer |
| 332 * - add keystream into data until keystream_buffer is depleted |
| 333 * - loop over blocks, filling keystream_buffer and then |
| 334 * adding keystream into data |
| 335 * - fill buffer then add in remaining (< 16) bytes of keystream |
| 336 */ |
| 337 |
| 338 err_status_t |
| 339 aes_icm_encrypt_ismacryp(aes_icm_ctx_t *c, |
| 340 unsigned char *buf, unsigned int *enc_len, |
| 341 int forIsmacryp) { |
| 342 unsigned int bytes_to_encr = *enc_len; |
| 343 unsigned int i; |
| 344 uint32_t *b; |
| 345 |
| 346 /* check that there's enough segment left but not for ismacryp*/ |
| 347 if (!forIsmacryp && (bytes_to_encr + htons(c->counter.v16[7])) > 0xffff) |
| 348 return err_status_terminus; |
| 349 |
| 350 debug_print(mod_aes_icm, "block index: %d", |
| 351 htons(c->counter.v16[7])); |
| 352 if (bytes_to_encr <= (unsigned int)c->bytes_in_buffer) { |
| 353 |
| 354 /* deal with odd case of small bytes_to_encr */ |
| 355 for (i = (sizeof(v128_t) - c->bytes_in_buffer); |
| 356 i < (sizeof(v128_t) - c->bytes_in_buffer + bytes_to_encr); i++)
|
| 357 { |
| 358 *buf++ ^= c->keystream_buffer.v8[i]; |
| 359 } |
| 360 |
| 361 c->bytes_in_buffer -= bytes_to_encr; |
| 362 |
| 363 /* return now to avoid the main loop */ |
| 364 return err_status_ok; |
| 365 |
| 366 } else { |
| 367 |
| 368 /* encrypt bytes until the remaining data is 16-byte aligned */ |
| 369 for (i=(sizeof(v128_t) - c->bytes_in_buffer); i < sizeof(v128_t); i++) |
| 370 *buf++ ^= c->keystream_buffer.v8[i]; |
| 371 |
| 372 bytes_to_encr -= c->bytes_in_buffer; |
| 373 c->bytes_in_buffer = 0; |
| 374 |
| 375 } |
| 376 |
| 377 /* now loop over entire 16-byte blocks of keystream */ |
| 378 for (i=0; i < (bytes_to_encr/sizeof(v128_t)); i++) { |
| 379 |
| 380 /* fill buffer with new keystream */ |
| 381 aes_icm_advance_ismacryp(c, forIsmacryp); |
| 382 |
| 383 /* |
| 384 * add keystream into the data buffer (this would be a lot faster |
| 385 * if we could assume 32-bit alignment!) |
| 386 */ |
| 387 |
| 388 #if ALIGN_32 |
| 389 b = (uint32_t *)buf; |
| 390 *b++ ^= c->keystream_buffer.v32[0]; |
| 391 *b++ ^= c->keystream_buffer.v32[1]; |
| 392 *b++ ^= c->keystream_buffer.v32[2]; |
| 393 *b++ ^= c->keystream_buffer.v32[3]; |
| 394 buf = (uint8_t *)b; |
| 395 #else |
| 396 if ((((unsigned long) buf) & 0x03) != 0) { |
| 397 *buf++ ^= c->keystream_buffer.v8[0]; |
| 398 *buf++ ^= c->keystream_buffer.v8[1]; |
| 399 *buf++ ^= c->keystream_buffer.v8[2]; |
| 400 *buf++ ^= c->keystream_buffer.v8[3]; |
| 401 *buf++ ^= c->keystream_buffer.v8[4]; |
| 402 *buf++ ^= c->keystream_buffer.v8[5]; |
| 403 *buf++ ^= c->keystream_buffer.v8[6]; |
| 404 *buf++ ^= c->keystream_buffer.v8[7]; |
| 405 *buf++ ^= c->keystream_buffer.v8[8]; |
| 406 *buf++ ^= c->keystream_buffer.v8[9]; |
| 407 *buf++ ^= c->keystream_buffer.v8[10]; |
| 408 *buf++ ^= c->keystream_buffer.v8[11]; |
| 409 *buf++ ^= c->keystream_buffer.v8[12]; |
| 410 *buf++ ^= c->keystream_buffer.v8[13]; |
| 411 *buf++ ^= c->keystream_buffer.v8[14]; |
| 412 *buf++ ^= c->keystream_buffer.v8[15]; |
| 413 } else { |
| 414 b = (uint32_t *)buf; |
| 415 *b++ ^= c->keystream_buffer.v32[0]; |
| 416 *b++ ^= c->keystream_buffer.v32[1]; |
| 417 *b++ ^= c->keystream_buffer.v32[2]; |
| 418 *b++ ^= c->keystream_buffer.v32[3]; |
| 419 buf = (uint8_t *)b; |
| 420 } |
| 421 #endif /* #if ALIGN_32 */ |
| 422 |
| 423 } |
| 424 |
| 425 /* if there is a tail end of the data, process it */ |
| 426 if ((bytes_to_encr & 0xf) != 0) { |
| 427 |
| 428 /* fill buffer with new keystream */ |
| 429 aes_icm_advance_ismacryp(c, forIsmacryp); |
| 430 |
| 431 for (i=0; i < (bytes_to_encr & 0xf); i++) |
| 432 *buf++ ^= c->keystream_buffer.v8[i]; |
| 433 |
| 434 /* reset the keystream buffer size to right value */ |
| 435 c->bytes_in_buffer = sizeof(v128_t) - i; |
| 436 } else { |
| 437 |
| 438 /* no tail, so just reset the keystream buffer size to zero */ |
| 439 c->bytes_in_buffer = 0; |
| 440 |
| 441 } |
| 442 |
| 443 return err_status_ok; |
| 444 } |
| 445 |
| 446 err_status_t |
| 447 aes_icm_encrypt(aes_icm_ctx_t *c, unsigned char *buf, unsigned int *enc_len) { |
| 448 return aes_icm_encrypt_ismacryp(c, buf, enc_len, 0); |
| 449 } |
| 450 |
| 451 err_status_t |
| 452 aes_icm_output(aes_icm_ctx_t *c, uint8_t *buffer, int num_octets_to_output) { |
| 453 unsigned int len = num_octets_to_output; |
| 454 |
| 455 /* zeroize the buffer */ |
| 456 octet_string_set_to_zero(buffer, num_octets_to_output); |
| 457 |
| 458 /* exor keystream into buffer */ |
| 459 return aes_icm_encrypt(c, buffer, &len); |
| 460 } |
| 461 |
| 462 |
| 463 char |
| 464 aes_icm_description[] = "aes integer counter mode"; |
| 465 |
| 466 uint8_t aes_icm_test_case_0_key[30] = { |
| 467 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, |
| 468 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c, |
| 469 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, |
| 470 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd |
| 471 }; |
| 472 |
| 473 uint8_t aes_icm_test_case_0_nonce[16] = { |
| 474 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 475 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 |
| 476 }; |
| 477 |
| 478 uint8_t aes_icm_test_case_0_plaintext[32] = { |
| 479 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 480 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 481 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 482 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 483 }; |
| 484 |
| 485 uint8_t aes_icm_test_case_0_ciphertext[32] = { |
| 486 0xe0, 0x3e, 0xad, 0x09, 0x35, 0xc9, 0x5e, 0x80, |
| 487 0xe1, 0x66, 0xb1, 0x6d, 0xd9, 0x2b, 0x4e, 0xb4, |
| 488 0xd2, 0x35, 0x13, 0x16, 0x2b, 0x02, 0xd0, 0xf7, |
| 489 0x2a, 0x43, 0xa2, 0xfe, 0x4a, 0x5f, 0x97, 0xab |
| 490 }; |
| 491 |
| 492 cipher_test_case_t aes_icm_test_case_0 = { |
| 493 30, /* octets in key */ |
| 494 aes_icm_test_case_0_key, /* key */ |
| 495 aes_icm_test_case_0_nonce, /* packet index */ |
| 496 32, /* octets in plaintext */ |
| 497 aes_icm_test_case_0_plaintext, /* plaintext */ |
| 498 32, /* octets in ciphertext */ |
| 499 aes_icm_test_case_0_ciphertext, /* ciphertext */ |
| 500 NULL /* pointer to next testcase */ |
| 501 }; |
| 502 |
| 503 uint8_t aes_icm_test_case_1_key[46] = { |
| 504 0x57, 0xf8, 0x2f, 0xe3, 0x61, 0x3f, 0xd1, 0x70, |
| 505 0xa8, 0x5e, 0xc9, 0x3c, 0x40, 0xb1, 0xf0, 0x92, |
| 506 0x2e, 0xc4, 0xcb, 0x0d, 0xc0, 0x25, 0xb5, 0x82, |
| 507 0x72, 0x14, 0x7c, 0xc4, 0x38, 0x94, 0x4a, 0x98, |
| 508 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, |
| 509 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd |
| 510 }; |
| 511 |
| 512 uint8_t aes_icm_test_case_1_nonce[16] = { |
| 513 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 514 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 |
| 515 }; |
| 516 |
| 517 uint8_t aes_icm_test_case_1_plaintext[32] = { |
| 518 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 519 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 520 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 521 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 522 }; |
| 523 |
| 524 uint8_t aes_icm_test_case_1_ciphertext[32] = { |
| 525 0x92, 0xbd, 0xd2, 0x8a, 0x93, 0xc3, 0xf5, 0x25, |
| 526 0x11, 0xc6, 0x77, 0xd0, 0x8b, 0x55, 0x15, 0xa4, |
| 527 0x9d, 0xa7, 0x1b, 0x23, 0x78, 0xa8, 0x54, 0xf6, |
| 528 0x70, 0x50, 0x75, 0x6d, 0xed, 0x16, 0x5b, 0xac |
| 529 }; |
| 530 |
| 531 cipher_test_case_t aes_icm_test_case_1 = { |
| 532 46, /* octets in key */ |
| 533 aes_icm_test_case_1_key, /* key */ |
| 534 aes_icm_test_case_1_nonce, /* packet index */ |
| 535 32, /* octets in plaintext */ |
| 536 aes_icm_test_case_1_plaintext, /* plaintext */ |
| 537 32, /* octets in ciphertext */ |
| 538 aes_icm_test_case_1_ciphertext, /* ciphertext */ |
| 539 &aes_icm_test_case_0 /* pointer to next testcase */ |
| 540 }; |
| 541 |
| 542 |
| 543 |
| 544 /* |
| 545 * note: the encrypt function is identical to the decrypt function |
| 546 */ |
| 547 |
| 548 cipher_type_t aes_icm = { |
| 549 (cipher_alloc_func_t) aes_icm_alloc, |
| 550 (cipher_dealloc_func_t) aes_icm_dealloc, |
| 551 (cipher_init_func_t) aes_icm_context_init, |
| 552 (cipher_encrypt_func_t) aes_icm_encrypt, |
| 553 (cipher_decrypt_func_t) aes_icm_encrypt, |
| 554 (cipher_set_iv_func_t) aes_icm_set_iv, |
| 555 (char *) aes_icm_description, |
| 556 (int) 0, /* instance count */ |
| 557 (cipher_test_case_t *) &aes_icm_test_case_1, |
| 558 (debug_module_t *) &mod_aes_icm, |
| 559 (cipher_type_id_t) AES_ICM |
| 560 }; |
| 561 |
OLD | NEW |