OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * xfm.c |
| 3 * |
| 4 * Crypto transform implementation |
| 5 * |
| 6 * David A. McGrew |
| 7 * Cisco Systems, Inc. |
| 8 */ |
| 9 |
| 10 #include "cryptoalg.h" |
| 11 #include "aes_cbc.h" |
| 12 #include "hmac.h" |
| 13 #include "crypto_kernel.h" /* for crypto_get_random() */ |
| 14 |
| 15 #define KEY_LEN 16 |
| 16 #define ENC_KEY_LEN 16 |
| 17 #define MAC_KEY_LEN 16 |
| 18 #define IV_LEN 16 |
| 19 #define TAG_LEN 12 |
| 20 #define MAX_EXPAND 27 |
| 21 |
| 22 err_status_t |
| 23 aes_128_cbc_hmac_sha1_96_func(void *key, |
| 24 void *clear, |
| 25 unsigned clear_len, |
| 26 void *iv, |
| 27 void *opaque, |
| 28 unsigned *opaque_len, |
| 29 void *auth_tag) { |
| 30 aes_cbc_ctx_t aes_ctx; |
| 31 hmac_ctx_t hmac_ctx; |
| 32 unsigned char enc_key[ENC_KEY_LEN]; |
| 33 unsigned char mac_key[MAC_KEY_LEN]; |
| 34 err_status_t status; |
| 35 |
| 36 /* check if we're doing authentication only */ |
| 37 if ((iv == NULL) && (opaque == NULL) && (opaque_len == NULL)) { |
| 38 |
| 39 /* perform authentication only */ |
| 40 |
| 41 } else if ((iv == NULL) || (opaque == NULL) || (opaque_len == NULL)) { |
| 42 |
| 43 /* |
| 44 * bad parameter - we expect either all three pointers to be NULL, |
| 45 * or none of those pointers to be NULL |
| 46 */ |
| 47 return err_status_fail; |
| 48 |
| 49 } else { |
| 50 |
| 51 /* derive encryption and authentication keys from the input key */ |
| 52 status = hmac_init(&hmac_ctx, key, KEY_LEN); |
| 53 if (status) return status; |
| 54 status = hmac_compute(&hmac_ctx, "ENC", 3, ENC_KEY_LEN, enc_key); |
| 55 if (status) return status; |
| 56 |
| 57 status = hmac_init(&hmac_ctx, key, KEY_LEN); |
| 58 if (status) return status; |
| 59 status = hmac_compute(&hmac_ctx, "MAC", 3, MAC_KEY_LEN, mac_key); |
| 60 if (status) return status; |
| 61 |
| 62 |
| 63 /* perform encryption and authentication */ |
| 64 |
| 65 /* set aes key */ |
| 66 status = aes_cbc_context_init(&aes_ctx, key, ENC_KEY_LEN, direction_encrypt)
; |
| 67 if (status) return status; |
| 68 |
| 69 /* set iv */ |
| 70 status = crypto_get_random(iv, IV_LEN); |
| 71 if (status) return status; |
| 72 status = aes_cbc_set_iv(&aes_ctx, iv); |
| 73 |
| 74 /* encrypt the opaque data */ |
| 75 status = aes_cbc_nist_encrypt(&aes_ctx, opaque, opaque_len); |
| 76 if (status) return status; |
| 77 |
| 78 /* authenticate clear and opaque data */ |
| 79 status = hmac_init(&hmac_ctx, mac_key, MAC_KEY_LEN); |
| 80 if (status) return status; |
| 81 |
| 82 status = hmac_start(&hmac_ctx); |
| 83 if (status) return status; |
| 84 |
| 85 status = hmac_update(&hmac_ctx, clear, clear_len); |
| 86 if (status) return status; |
| 87 |
| 88 status = hmac_compute(&hmac_ctx, opaque, *opaque_len, TAG_LEN, auth_tag); |
| 89 if (status) return status; |
| 90 |
| 91 } |
| 92 |
| 93 return err_status_ok; |
| 94 } |
| 95 |
| 96 err_status_t |
| 97 aes_128_cbc_hmac_sha1_96_inv(void *key, |
| 98 void *clear, |
| 99 unsigned clear_len, |
| 100 void *iv, |
| 101 void *opaque, |
| 102 unsigned *opaque_len, |
| 103 void *auth_tag) { |
| 104 aes_cbc_ctx_t aes_ctx; |
| 105 hmac_ctx_t hmac_ctx; |
| 106 unsigned char enc_key[ENC_KEY_LEN]; |
| 107 unsigned char mac_key[MAC_KEY_LEN]; |
| 108 unsigned char tmp_tag[TAG_LEN]; |
| 109 unsigned char *tag = auth_tag; |
| 110 err_status_t status; |
| 111 int i; |
| 112 |
| 113 /* check if we're doing authentication only */ |
| 114 if ((iv == NULL) && (opaque == NULL) && (opaque_len == NULL)) { |
| 115 |
| 116 /* perform authentication only */ |
| 117 |
| 118 } else if ((iv == NULL) || (opaque == NULL) || (opaque_len == NULL)) { |
| 119 |
| 120 /* |
| 121 * bad parameter - we expect either all three pointers to be NULL, |
| 122 * or none of those pointers to be NULL |
| 123 */ |
| 124 return err_status_fail; |
| 125 |
| 126 } else { |
| 127 |
| 128 /* derive encryption and authentication keys from the input key */ |
| 129 status = hmac_init(&hmac_ctx, key, KEY_LEN); |
| 130 if (status) return status; |
| 131 status = hmac_compute(&hmac_ctx, "ENC", 3, ENC_KEY_LEN, enc_key); |
| 132 if (status) return status; |
| 133 |
| 134 status = hmac_init(&hmac_ctx, key, KEY_LEN); |
| 135 if (status) return status; |
| 136 status = hmac_compute(&hmac_ctx, "MAC", 3, MAC_KEY_LEN, mac_key); |
| 137 if (status) return status; |
| 138 |
| 139 /* perform encryption and authentication */ |
| 140 |
| 141 /* set aes key */ |
| 142 status = aes_cbc_context_init(&aes_ctx, key, ENC_KEY_LEN, direction_decrypt)
; |
| 143 if (status) return status; |
| 144 |
| 145 /* set iv */ |
| 146 status = rand_source_get_octet_string(iv, IV_LEN); |
| 147 if (status) return status; |
| 148 status = aes_cbc_set_iv(&aes_ctx, iv); |
| 149 |
| 150 /* encrypt the opaque data */ |
| 151 status = aes_cbc_nist_decrypt(&aes_ctx, opaque, opaque_len); |
| 152 if (status) return status; |
| 153 |
| 154 /* authenticate clear and opaque data */ |
| 155 status = hmac_init(&hmac_ctx, mac_key, MAC_KEY_LEN); |
| 156 if (status) return status; |
| 157 |
| 158 status = hmac_start(&hmac_ctx); |
| 159 if (status) return status; |
| 160 |
| 161 status = hmac_update(&hmac_ctx, clear, clear_len); |
| 162 if (status) return status; |
| 163 |
| 164 status = hmac_compute(&hmac_ctx, opaque, *opaque_len, TAG_LEN, tmp_tag); |
| 165 if (status) return status; |
| 166 |
| 167 /* compare the computed tag with the one provided as input */ |
| 168 for (i=0; i < TAG_LEN; i++) |
| 169 if (tmp_tag[i] != tag[i]) |
| 170 return err_status_auth_fail; |
| 171 |
| 172 } |
| 173 |
| 174 return err_status_ok; |
| 175 } |
| 176 |
| 177 |
| 178 #define ENC 1 |
| 179 |
| 180 #define DEBUG 0 |
| 181 |
| 182 err_status_t |
| 183 aes_128_cbc_hmac_sha1_96_enc(void *key, |
| 184 const void *clear, |
| 185 unsigned clear_len, |
| 186 void *iv, |
| 187 void *opaque, |
| 188 unsigned *opaque_len) { |
| 189 aes_cbc_ctx_t aes_ctx; |
| 190 hmac_ctx_t hmac_ctx; |
| 191 unsigned char enc_key[ENC_KEY_LEN]; |
| 192 unsigned char mac_key[MAC_KEY_LEN]; |
| 193 unsigned char *auth_tag; |
| 194 err_status_t status; |
| 195 |
| 196 /* check if we're doing authentication only */ |
| 197 if ((iv == NULL) && (opaque == NULL) && (opaque_len == NULL)) { |
| 198 |
| 199 /* perform authentication only */ |
| 200 |
| 201 } else if ((iv == NULL) || (opaque == NULL) || (opaque_len == NULL)) { |
| 202 |
| 203 /* |
| 204 * bad parameter - we expect either all three pointers to be NULL, |
| 205 * or none of those pointers to be NULL |
| 206 */ |
| 207 return err_status_fail; |
| 208 |
| 209 } else { |
| 210 |
| 211 #if DEBUG |
| 212 printf("ENC using key %s\n", octet_string_hex_string(key, KEY_LEN)); |
| 213 #endif |
| 214 |
| 215 /* derive encryption and authentication keys from the input key */ |
| 216 status = hmac_init(&hmac_ctx, key, KEY_LEN); |
| 217 if (status) return status; |
| 218 status = hmac_compute(&hmac_ctx, "ENC", 3, ENC_KEY_LEN, enc_key); |
| 219 if (status) return status; |
| 220 |
| 221 status = hmac_init(&hmac_ctx, key, KEY_LEN); |
| 222 if (status) return status; |
| 223 status = hmac_compute(&hmac_ctx, "MAC", 3, MAC_KEY_LEN, mac_key); |
| 224 if (status) return status; |
| 225 |
| 226 |
| 227 /* perform encryption and authentication */ |
| 228 |
| 229 /* set aes key */ |
| 230 status = aes_cbc_context_init(&aes_ctx, key, ENC_KEY_LEN, direction_encrypt)
; |
| 231 if (status) return status; |
| 232 |
| 233 /* set iv */ |
| 234 status = rand_source_get_octet_string(iv, IV_LEN); |
| 235 if (status) return status; |
| 236 status = aes_cbc_set_iv(&aes_ctx, iv); |
| 237 if (status) return status; |
| 238 |
| 239 #if DEBUG |
| 240 printf("plaintext len: %d\n", *opaque_len); |
| 241 printf("iv: %s\n", octet_string_hex_string(iv, IV_LEN)); |
| 242 printf("plaintext: %s\n", octet_string_hex_string(opaque, *opaque_len)); |
| 243 #endif |
| 244 |
| 245 #if ENC |
| 246 /* encrypt the opaque data */ |
| 247 status = aes_cbc_nist_encrypt(&aes_ctx, opaque, opaque_len); |
| 248 if (status) return status; |
| 249 #endif |
| 250 |
| 251 #if DEBUG |
| 252 printf("ciphertext len: %d\n", *opaque_len); |
| 253 printf("ciphertext: %s\n", octet_string_hex_string(opaque, *opaque_len)); |
| 254 #endif |
| 255 |
| 256 /* |
| 257 * authenticate clear and opaque data, then write the |
| 258 * authentication tag to the location immediately following the |
| 259 * ciphertext |
| 260 */ |
| 261 status = hmac_init(&hmac_ctx, mac_key, MAC_KEY_LEN); |
| 262 if (status) return status; |
| 263 |
| 264 status = hmac_start(&hmac_ctx); |
| 265 if (status) return status; |
| 266 |
| 267 status = hmac_update(&hmac_ctx, clear, clear_len); |
| 268 if (status) return status; |
| 269 #if DEBUG |
| 270 printf("hmac input: %s\n", |
| 271 octet_string_hex_string(clear, clear_len)); |
| 272 #endif |
| 273 auth_tag = (unsigned char *)opaque; |
| 274 auth_tag += *opaque_len; |
| 275 status = hmac_compute(&hmac_ctx, opaque, *opaque_len, TAG_LEN, auth_tag); |
| 276 if (status) return status; |
| 277 #if DEBUG |
| 278 printf("hmac input: %s\n", |
| 279 octet_string_hex_string(opaque, *opaque_len)); |
| 280 #endif |
| 281 /* bump up the opaque_len to reflect the authentication tag */ |
| 282 *opaque_len += TAG_LEN; |
| 283 |
| 284 #if DEBUG |
| 285 printf("prot data len: %d\n", *opaque_len); |
| 286 printf("prot data: %s\n", octet_string_hex_string(opaque, *opaque_len)); |
| 287 #endif |
| 288 } |
| 289 |
| 290 return err_status_ok; |
| 291 } |
| 292 |
| 293 err_status_t |
| 294 aes_128_cbc_hmac_sha1_96_dec(void *key, |
| 295 const void *clear, |
| 296 unsigned clear_len, |
| 297 void *iv, |
| 298 void *opaque, |
| 299 unsigned *opaque_len) { |
| 300 aes_cbc_ctx_t aes_ctx; |
| 301 hmac_ctx_t hmac_ctx; |
| 302 unsigned char enc_key[ENC_KEY_LEN]; |
| 303 unsigned char mac_key[MAC_KEY_LEN]; |
| 304 unsigned char tmp_tag[TAG_LEN]; |
| 305 unsigned char *auth_tag; |
| 306 unsigned ciphertext_len; |
| 307 err_status_t status; |
| 308 int i; |
| 309 |
| 310 /* check if we're doing authentication only */ |
| 311 if ((iv == NULL) && (opaque == NULL) && (opaque_len == NULL)) { |
| 312 |
| 313 /* perform authentication only */ |
| 314 |
| 315 } else if ((iv == NULL) || (opaque == NULL) || (opaque_len == NULL)) { |
| 316 |
| 317 /* |
| 318 * bad parameter - we expect either all three pointers to be NULL, |
| 319 * or none of those pointers to be NULL |
| 320 */ |
| 321 return err_status_fail; |
| 322 |
| 323 } else { |
| 324 #if DEBUG |
| 325 printf("DEC using key %s\n", octet_string_hex_string(key, KEY_LEN)); |
| 326 #endif |
| 327 |
| 328 /* derive encryption and authentication keys from the input key */ |
| 329 status = hmac_init(&hmac_ctx, key, KEY_LEN); |
| 330 if (status) return status; |
| 331 status = hmac_compute(&hmac_ctx, "ENC", 3, ENC_KEY_LEN, enc_key); |
| 332 if (status) return status; |
| 333 |
| 334 status = hmac_init(&hmac_ctx, key, KEY_LEN); |
| 335 if (status) return status; |
| 336 status = hmac_compute(&hmac_ctx, "MAC", 3, MAC_KEY_LEN, mac_key); |
| 337 if (status) return status; |
| 338 |
| 339 #if DEBUG |
| 340 printf("prot data len: %d\n", *opaque_len); |
| 341 printf("prot data: %s\n", octet_string_hex_string(opaque, *opaque_len)); |
| 342 #endif |
| 343 |
| 344 /* |
| 345 * set the protected data length to that of the ciphertext, by |
| 346 * subtracting out the length of the authentication tag |
| 347 */ |
| 348 ciphertext_len = *opaque_len - TAG_LEN; |
| 349 |
| 350 #if DEBUG |
| 351 printf("ciphertext len: %d\n", ciphertext_len); |
| 352 #endif |
| 353 /* verify the authentication tag */ |
| 354 |
| 355 /* |
| 356 * compute the authentication tag for the clear and opaque data, |
| 357 * and write it to a temporary location |
| 358 */ |
| 359 status = hmac_init(&hmac_ctx, mac_key, MAC_KEY_LEN); |
| 360 if (status) return status; |
| 361 |
| 362 status = hmac_start(&hmac_ctx); |
| 363 if (status) return status; |
| 364 |
| 365 status = hmac_update(&hmac_ctx, clear, clear_len); |
| 366 if (status) return status; |
| 367 |
| 368 #if DEBUG |
| 369 printf("hmac input: %s\n", |
| 370 octet_string_hex_string(clear, clear_len)); |
| 371 #endif |
| 372 |
| 373 status = hmac_compute(&hmac_ctx, opaque, ciphertext_len, TAG_LEN, tmp_tag); |
| 374 if (status) return status; |
| 375 |
| 376 #if DEBUG |
| 377 printf("hmac input: %s\n", |
| 378 octet_string_hex_string(opaque, ciphertext_len)); |
| 379 #endif |
| 380 |
| 381 /* |
| 382 * compare the computed tag with the one provided as input (which |
| 383 * immediately follows the ciphertext) |
| 384 */ |
| 385 auth_tag = (unsigned char *)opaque; |
| 386 auth_tag += ciphertext_len; |
| 387 #if DEBUG |
| 388 printf("auth_tag: %s\n", octet_string_hex_string(auth_tag, TAG_LEN)); |
| 389 printf("tmp_tag: %s\n", octet_string_hex_string(tmp_tag, TAG_LEN)); |
| 390 #endif |
| 391 for (i=0; i < TAG_LEN; i++) { |
| 392 if (tmp_tag[i] != auth_tag[i]) |
| 393 return err_status_auth_fail; |
| 394 } |
| 395 |
| 396 /* bump down the opaque_len to reflect the authentication tag */ |
| 397 *opaque_len -= TAG_LEN; |
| 398 |
| 399 /* decrypt the confidential data */ |
| 400 status = aes_cbc_context_init(&aes_ctx, key, ENC_KEY_LEN, direction_decrypt)
; |
| 401 if (status) return status; |
| 402 status = aes_cbc_set_iv(&aes_ctx, iv); |
| 403 if (status) return status; |
| 404 |
| 405 #if DEBUG |
| 406 printf("ciphertext: %s\n", octet_string_hex_string(opaque, *opaque_len)); |
| 407 printf("iv: %s\n", octet_string_hex_string(iv, IV_LEN)); |
| 408 #endif |
| 409 |
| 410 #if ENC |
| 411 status = aes_cbc_nist_decrypt(&aes_ctx, opaque, &ciphertext_len); |
| 412 if (status) return status; |
| 413 #endif |
| 414 |
| 415 #if DEBUG |
| 416 printf("plaintext len: %d\n", ciphertext_len); |
| 417 printf("plaintext: %s\n", |
| 418 octet_string_hex_string(opaque, ciphertext_len)); |
| 419 #endif |
| 420 |
| 421 /* indicate the length of the plaintext */ |
| 422 *opaque_len = ciphertext_len; |
| 423 } |
| 424 |
| 425 return err_status_ok; |
| 426 } |
| 427 |
| 428 cryptoalg_ctx_t cryptoalg_ctx = { |
| 429 aes_128_cbc_hmac_sha1_96_enc, |
| 430 aes_128_cbc_hmac_sha1_96_dec, |
| 431 KEY_LEN, |
| 432 IV_LEN, |
| 433 TAG_LEN, |
| 434 MAX_EXPAND, |
| 435 }; |
| 436 |
| 437 cryptoalg_t cryptoalg = &cryptoalg_ctx; |
| 438 |
| 439 #define NULL_TAG_LEN 12 |
| 440 |
| 441 err_status_t |
| 442 null_enc(void *key, |
| 443 const void *clear, |
| 444 unsigned clear_len, |
| 445 void *iv, |
| 446 void *opaque, |
| 447 unsigned *opaque_len) { |
| 448 int i; |
| 449 unsigned char *auth_tag; |
| 450 unsigned char *init_vec = iv; |
| 451 |
| 452 /* check if we're doing authentication only */ |
| 453 if ((iv == NULL) && (opaque == NULL) && (opaque_len == NULL)) { |
| 454 |
| 455 /* perform authentication only */ |
| 456 |
| 457 } else if ((iv == NULL) || (opaque == NULL) || (opaque_len == NULL)) { |
| 458 |
| 459 /* |
| 460 * bad parameter - we expect either all three pointers to be NULL, |
| 461 * or none of those pointers to be NULL |
| 462 */ |
| 463 return err_status_fail; |
| 464 |
| 465 } else { |
| 466 |
| 467 #if DEBUG |
| 468 printf("NULL ENC using key %s\n", octet_string_hex_string(key, KEY_LEN)); |
| 469 printf("NULL_TAG_LEN: %d\n", NULL_TAG_LEN); |
| 470 printf("plaintext len: %d\n", *opaque_len); |
| 471 #endif |
| 472 for (i=0; i < IV_LEN; i++) |
| 473 init_vec[i] = i + (i * 16); |
| 474 #if DEBUG |
| 475 printf("iv: %s\n", |
| 476 octet_string_hex_string(iv, IV_LEN)); |
| 477 printf("plaintext: %s\n", |
| 478 octet_string_hex_string(opaque, *opaque_len)); |
| 479 #endif |
| 480 auth_tag = opaque; |
| 481 auth_tag += *opaque_len; |
| 482 for (i=0; i < NULL_TAG_LEN; i++) |
| 483 auth_tag[i] = i + (i * 16); |
| 484 *opaque_len += NULL_TAG_LEN; |
| 485 #if DEBUG |
| 486 printf("protected data len: %d\n", *opaque_len); |
| 487 printf("protected data: %s\n", |
| 488 octet_string_hex_string(opaque, *opaque_len)); |
| 489 #endif |
| 490 |
| 491 } |
| 492 |
| 493 return err_status_ok; |
| 494 } |
| 495 |
| 496 err_status_t |
| 497 null_dec(void *key, |
| 498 const void *clear, |
| 499 unsigned clear_len, |
| 500 void *iv, |
| 501 void *opaque, |
| 502 unsigned *opaque_len) { |
| 503 unsigned char *auth_tag; |
| 504 |
| 505 /* check if we're doing authentication only */ |
| 506 if ((iv == NULL) && (opaque == NULL) && (opaque_len == NULL)) { |
| 507 |
| 508 /* perform authentication only */ |
| 509 |
| 510 } else if ((iv == NULL) || (opaque == NULL) || (opaque_len == NULL)) { |
| 511 |
| 512 /* |
| 513 * bad parameter - we expect either all three pointers to be NULL, |
| 514 * or none of those pointers to be NULL |
| 515 */ |
| 516 return err_status_fail; |
| 517 |
| 518 } else { |
| 519 |
| 520 #if DEBUG |
| 521 printf("NULL DEC using key %s\n", octet_string_hex_string(key, KEY_LEN)); |
| 522 |
| 523 printf("protected data len: %d\n", *opaque_len); |
| 524 printf("protected data: %s\n", |
| 525 octet_string_hex_string(opaque, *opaque_len)); |
| 526 #endif |
| 527 auth_tag = opaque; |
| 528 auth_tag += (*opaque_len - NULL_TAG_LEN); |
| 529 #if DEBUG |
| 530 printf("iv: %s\n", octet_string_hex_string(iv, IV_LEN)); |
| 531 #endif |
| 532 *opaque_len -= NULL_TAG_LEN; |
| 533 #if DEBUG |
| 534 printf("plaintext len: %d\n", *opaque_len); |
| 535 printf("plaintext: %s\n", |
| 536 octet_string_hex_string(opaque, *opaque_len)); |
| 537 #endif |
| 538 } |
| 539 |
| 540 return err_status_ok; |
| 541 } |
| 542 |
| 543 cryptoalg_ctx_t null_cryptoalg_ctx = { |
| 544 null_enc, |
| 545 null_dec, |
| 546 KEY_LEN, |
| 547 IV_LEN, |
| 548 NULL_TAG_LEN, |
| 549 MAX_EXPAND, |
| 550 }; |
| 551 |
| 552 cryptoalg_t null_cryptoalg = &null_cryptoalg_ctx; |
| 553 |
| 554 int |
| 555 cryptoalg_get_id(cryptoalg_t c) { |
| 556 if (c == cryptoalg) |
| 557 return 1; |
| 558 return 0; |
| 559 } |
| 560 |
| 561 cryptoalg_t |
| 562 cryptoalg_find_by_id(int id) { |
| 563 switch(id) { |
| 564 case 1: |
| 565 return cryptoalg; |
| 566 default: |
| 567 break; |
| 568 } |
| 569 return 0; |
| 570 } |
OLD | NEW |