| Index: src/arm/codegen-arm.cc
|
| ===================================================================
|
| --- src/arm/codegen-arm.cc (revision 5337)
|
| +++ src/arm/codegen-arm.cc (working copy)
|
| @@ -30,6 +30,7 @@
|
| #if defined(V8_TARGET_ARCH_ARM)
|
|
|
| #include "bootstrapper.h"
|
| +#include "code-stubs-arm.h"
|
| #include "codegen-inl.h"
|
| #include "compiler.h"
|
| #include "debug.h"
|
| @@ -49,27 +50,6 @@
|
| namespace internal {
|
|
|
|
|
| -static void EmitIdenticalObjectComparison(MacroAssembler* masm,
|
| - Label* slow,
|
| - Condition cc,
|
| - bool never_nan_nan);
|
| -static void EmitSmiNonsmiComparison(MacroAssembler* masm,
|
| - Register lhs,
|
| - Register rhs,
|
| - Label* lhs_not_nan,
|
| - Label* slow,
|
| - bool strict);
|
| -static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc);
|
| -static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
|
| - Register lhs,
|
| - Register rhs);
|
| -static void MultiplyByKnownInt(MacroAssembler* masm,
|
| - Register source,
|
| - Register destination,
|
| - int known_int);
|
| -static bool IsEasyToMultiplyBy(int x);
|
| -
|
| -
|
| #define __ ACCESS_MASM(masm_)
|
|
|
| // -------------------------------------------------------------------------
|
| @@ -1049,6 +1029,43 @@
|
| }
|
|
|
|
|
| +// Can we multiply by x with max two shifts and an add.
|
| +// This answers yes to all integers from 2 to 10.
|
| +static bool IsEasyToMultiplyBy(int x) {
|
| + if (x < 2) return false; // Avoid special cases.
|
| + if (x > (Smi::kMaxValue + 1) >> 2) return false; // Almost always overflows.
|
| + if (IsPowerOf2(x)) return true; // Simple shift.
|
| + if (PopCountLessThanEqual2(x)) return true; // Shift and add and shift.
|
| + if (IsPowerOf2(x + 1)) return true; // Patterns like 11111.
|
| + return false;
|
| +}
|
| +
|
| +
|
| +// Can multiply by anything that IsEasyToMultiplyBy returns true for.
|
| +// Source and destination may be the same register. This routine does
|
| +// not set carry and overflow the way a mul instruction would.
|
| +static void InlineMultiplyByKnownInt(MacroAssembler* masm,
|
| + Register source,
|
| + Register destination,
|
| + int known_int) {
|
| + if (IsPowerOf2(known_int)) {
|
| + masm->mov(destination, Operand(source, LSL, BitPosition(known_int)));
|
| + } else if (PopCountLessThanEqual2(known_int)) {
|
| + int first_bit = BitPosition(known_int);
|
| + int second_bit = BitPosition(known_int ^ (1 << first_bit));
|
| + masm->add(destination, source,
|
| + Operand(source, LSL, second_bit - first_bit));
|
| + if (first_bit != 0) {
|
| + masm->mov(destination, Operand(destination, LSL, first_bit));
|
| + }
|
| + } else {
|
| + ASSERT(IsPowerOf2(known_int + 1)); // Patterns like 1111.
|
| + int the_bit = BitPosition(known_int + 1);
|
| + masm->rsb(destination, source, Operand(source, LSL, the_bit));
|
| + }
|
| +}
|
| +
|
| +
|
| void CodeGenerator::SmiOperation(Token::Value op,
|
| Handle<Object> value,
|
| bool reversed,
|
| @@ -1359,7 +1376,7 @@
|
| // brevity to comprehensiveness.
|
| __ tst(tos, Operand(mask));
|
| deferred->Branch(ne);
|
| - MultiplyByKnownInt(masm_, tos, tos, int_value);
|
| + InlineMultiplyByKnownInt(masm_, tos, tos, int_value);
|
| deferred->BindExit();
|
| frame_->EmitPush(tos);
|
| break;
|
| @@ -7056,1911 +7073,6 @@
|
| }
|
|
|
|
|
| -void FastNewClosureStub::Generate(MacroAssembler* masm) {
|
| - // Create a new closure from the given function info in new
|
| - // space. Set the context to the current context in cp.
|
| - Label gc;
|
| -
|
| - // Pop the function info from the stack.
|
| - __ pop(r3);
|
| -
|
| - // Attempt to allocate new JSFunction in new space.
|
| - __ AllocateInNewSpace(JSFunction::kSize,
|
| - r0,
|
| - r1,
|
| - r2,
|
| - &gc,
|
| - TAG_OBJECT);
|
| -
|
| - // Compute the function map in the current global context and set that
|
| - // as the map of the allocated object.
|
| - __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
|
| - __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset));
|
| - __ ldr(r2, MemOperand(r2, Context::SlotOffset(Context::FUNCTION_MAP_INDEX)));
|
| - __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
|
| -
|
| - // Initialize the rest of the function. We don't have to update the
|
| - // write barrier because the allocated object is in new space.
|
| - __ LoadRoot(r1, Heap::kEmptyFixedArrayRootIndex);
|
| - __ LoadRoot(r2, Heap::kTheHoleValueRootIndex);
|
| - __ str(r1, FieldMemOperand(r0, JSObject::kPropertiesOffset));
|
| - __ str(r1, FieldMemOperand(r0, JSObject::kElementsOffset));
|
| - __ str(r2, FieldMemOperand(r0, JSFunction::kPrototypeOrInitialMapOffset));
|
| - __ str(r3, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset));
|
| - __ str(cp, FieldMemOperand(r0, JSFunction::kContextOffset));
|
| - __ str(r1, FieldMemOperand(r0, JSFunction::kLiteralsOffset));
|
| -
|
| - // Initialize the code pointer in the function to be the one
|
| - // found in the shared function info object.
|
| - __ ldr(r3, FieldMemOperand(r3, SharedFunctionInfo::kCodeOffset));
|
| - __ add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
|
| - __ str(r3, FieldMemOperand(r0, JSFunction::kCodeEntryOffset));
|
| -
|
| - // Return result. The argument function info has been popped already.
|
| - __ Ret();
|
| -
|
| - // Create a new closure through the slower runtime call.
|
| - __ bind(&gc);
|
| - __ Push(cp, r3);
|
| - __ TailCallRuntime(Runtime::kNewClosure, 2, 1);
|
| -}
|
| -
|
| -
|
| -void FastNewContextStub::Generate(MacroAssembler* masm) {
|
| - // Try to allocate the context in new space.
|
| - Label gc;
|
| - int length = slots_ + Context::MIN_CONTEXT_SLOTS;
|
| -
|
| - // Attempt to allocate the context in new space.
|
| - __ AllocateInNewSpace(FixedArray::SizeFor(length),
|
| - r0,
|
| - r1,
|
| - r2,
|
| - &gc,
|
| - TAG_OBJECT);
|
| -
|
| - // Load the function from the stack.
|
| - __ ldr(r3, MemOperand(sp, 0));
|
| -
|
| - // Setup the object header.
|
| - __ LoadRoot(r2, Heap::kContextMapRootIndex);
|
| - __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
|
| - __ mov(r2, Operand(Smi::FromInt(length)));
|
| - __ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset));
|
| -
|
| - // Setup the fixed slots.
|
| - __ mov(r1, Operand(Smi::FromInt(0)));
|
| - __ str(r3, MemOperand(r0, Context::SlotOffset(Context::CLOSURE_INDEX)));
|
| - __ str(r0, MemOperand(r0, Context::SlotOffset(Context::FCONTEXT_INDEX)));
|
| - __ str(r1, MemOperand(r0, Context::SlotOffset(Context::PREVIOUS_INDEX)));
|
| - __ str(r1, MemOperand(r0, Context::SlotOffset(Context::EXTENSION_INDEX)));
|
| -
|
| - // Copy the global object from the surrounding context.
|
| - __ ldr(r1, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
|
| - __ str(r1, MemOperand(r0, Context::SlotOffset(Context::GLOBAL_INDEX)));
|
| -
|
| - // Initialize the rest of the slots to undefined.
|
| - __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
|
| - for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
|
| - __ str(r1, MemOperand(r0, Context::SlotOffset(i)));
|
| - }
|
| -
|
| - // Remove the on-stack argument and return.
|
| - __ mov(cp, r0);
|
| - __ pop();
|
| - __ Ret();
|
| -
|
| - // Need to collect. Call into runtime system.
|
| - __ bind(&gc);
|
| - __ TailCallRuntime(Runtime::kNewContext, 1, 1);
|
| -}
|
| -
|
| -
|
| -void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
|
| - // Stack layout on entry:
|
| - //
|
| - // [sp]: constant elements.
|
| - // [sp + kPointerSize]: literal index.
|
| - // [sp + (2 * kPointerSize)]: literals array.
|
| -
|
| - // All sizes here are multiples of kPointerSize.
|
| - int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0;
|
| - int size = JSArray::kSize + elements_size;
|
| -
|
| - // Load boilerplate object into r3 and check if we need to create a
|
| - // boilerplate.
|
| - Label slow_case;
|
| - __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
|
| - __ ldr(r0, MemOperand(sp, 1 * kPointerSize));
|
| - __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
|
| - __ ldr(r3, MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
|
| - __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
|
| - __ cmp(r3, ip);
|
| - __ b(eq, &slow_case);
|
| -
|
| - if (FLAG_debug_code) {
|
| - const char* message;
|
| - Heap::RootListIndex expected_map_index;
|
| - if (mode_ == CLONE_ELEMENTS) {
|
| - message = "Expected (writable) fixed array";
|
| - expected_map_index = Heap::kFixedArrayMapRootIndex;
|
| - } else {
|
| - ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS);
|
| - message = "Expected copy-on-write fixed array";
|
| - expected_map_index = Heap::kFixedCOWArrayMapRootIndex;
|
| - }
|
| - __ push(r3);
|
| - __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset));
|
| - __ ldr(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
|
| - __ LoadRoot(ip, expected_map_index);
|
| - __ cmp(r3, ip);
|
| - __ Assert(eq, message);
|
| - __ pop(r3);
|
| - }
|
| -
|
| - // Allocate both the JS array and the elements array in one big
|
| - // allocation. This avoids multiple limit checks.
|
| - __ AllocateInNewSpace(size,
|
| - r0,
|
| - r1,
|
| - r2,
|
| - &slow_case,
|
| - TAG_OBJECT);
|
| -
|
| - // Copy the JS array part.
|
| - for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
|
| - if ((i != JSArray::kElementsOffset) || (length_ == 0)) {
|
| - __ ldr(r1, FieldMemOperand(r3, i));
|
| - __ str(r1, FieldMemOperand(r0, i));
|
| - }
|
| - }
|
| -
|
| - if (length_ > 0) {
|
| - // Get hold of the elements array of the boilerplate and setup the
|
| - // elements pointer in the resulting object.
|
| - __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset));
|
| - __ add(r2, r0, Operand(JSArray::kSize));
|
| - __ str(r2, FieldMemOperand(r0, JSArray::kElementsOffset));
|
| -
|
| - // Copy the elements array.
|
| - __ CopyFields(r2, r3, r1.bit(), elements_size / kPointerSize);
|
| - }
|
| -
|
| - // Return and remove the on-stack parameters.
|
| - __ add(sp, sp, Operand(3 * kPointerSize));
|
| - __ Ret();
|
| -
|
| - __ bind(&slow_case);
|
| - __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
|
| -}
|
| -
|
| -
|
| -// Takes a Smi and converts to an IEEE 64 bit floating point value in two
|
| -// registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and
|
| -// 52 fraction bits (20 in the first word, 32 in the second). Zeros is a
|
| -// scratch register. Destroys the source register. No GC occurs during this
|
| -// stub so you don't have to set up the frame.
|
| -class ConvertToDoubleStub : public CodeStub {
|
| - public:
|
| - ConvertToDoubleStub(Register result_reg_1,
|
| - Register result_reg_2,
|
| - Register source_reg,
|
| - Register scratch_reg)
|
| - : result1_(result_reg_1),
|
| - result2_(result_reg_2),
|
| - source_(source_reg),
|
| - zeros_(scratch_reg) { }
|
| -
|
| - private:
|
| - Register result1_;
|
| - Register result2_;
|
| - Register source_;
|
| - Register zeros_;
|
| -
|
| - // Minor key encoding in 16 bits.
|
| - class ModeBits: public BitField<OverwriteMode, 0, 2> {};
|
| - class OpBits: public BitField<Token::Value, 2, 14> {};
|
| -
|
| - Major MajorKey() { return ConvertToDouble; }
|
| - int MinorKey() {
|
| - // Encode the parameters in a unique 16 bit value.
|
| - return result1_.code() +
|
| - (result2_.code() << 4) +
|
| - (source_.code() << 8) +
|
| - (zeros_.code() << 12);
|
| - }
|
| -
|
| - void Generate(MacroAssembler* masm);
|
| -
|
| - const char* GetName() { return "ConvertToDoubleStub"; }
|
| -
|
| -#ifdef DEBUG
|
| - void Print() { PrintF("ConvertToDoubleStub\n"); }
|
| -#endif
|
| -};
|
| -
|
| -
|
| -void ConvertToDoubleStub::Generate(MacroAssembler* masm) {
|
| -#ifndef BIG_ENDIAN_FLOATING_POINT
|
| - Register exponent = result1_;
|
| - Register mantissa = result2_;
|
| -#else
|
| - Register exponent = result2_;
|
| - Register mantissa = result1_;
|
| -#endif
|
| - Label not_special;
|
| - // Convert from Smi to integer.
|
| - __ mov(source_, Operand(source_, ASR, kSmiTagSize));
|
| - // Move sign bit from source to destination. This works because the sign bit
|
| - // in the exponent word of the double has the same position and polarity as
|
| - // the 2's complement sign bit in a Smi.
|
| - STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
|
| - __ and_(exponent, source_, Operand(HeapNumber::kSignMask), SetCC);
|
| - // Subtract from 0 if source was negative.
|
| - __ rsb(source_, source_, Operand(0), LeaveCC, ne);
|
| -
|
| - // We have -1, 0 or 1, which we treat specially. Register source_ contains
|
| - // absolute value: it is either equal to 1 (special case of -1 and 1),
|
| - // greater than 1 (not a special case) or less than 1 (special case of 0).
|
| - __ cmp(source_, Operand(1));
|
| - __ b(gt, ¬_special);
|
| -
|
| - // For 1 or -1 we need to or in the 0 exponent (biased to 1023).
|
| - static const uint32_t exponent_word_for_1 =
|
| - HeapNumber::kExponentBias << HeapNumber::kExponentShift;
|
| - __ orr(exponent, exponent, Operand(exponent_word_for_1), LeaveCC, eq);
|
| - // 1, 0 and -1 all have 0 for the second word.
|
| - __ mov(mantissa, Operand(0));
|
| - __ Ret();
|
| -
|
| - __ bind(¬_special);
|
| - // Count leading zeros. Uses mantissa for a scratch register on pre-ARM5.
|
| - // Gets the wrong answer for 0, but we already checked for that case above.
|
| - __ CountLeadingZeros(zeros_, source_, mantissa);
|
| - // Compute exponent and or it into the exponent register.
|
| - // We use mantissa as a scratch register here. Use a fudge factor to
|
| - // divide the constant 31 + HeapNumber::kExponentBias, 0x41d, into two parts
|
| - // that fit in the ARM's constant field.
|
| - int fudge = 0x400;
|
| - __ rsb(mantissa, zeros_, Operand(31 + HeapNumber::kExponentBias - fudge));
|
| - __ add(mantissa, mantissa, Operand(fudge));
|
| - __ orr(exponent,
|
| - exponent,
|
| - Operand(mantissa, LSL, HeapNumber::kExponentShift));
|
| - // Shift up the source chopping the top bit off.
|
| - __ add(zeros_, zeros_, Operand(1));
|
| - // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0.
|
| - __ mov(source_, Operand(source_, LSL, zeros_));
|
| - // Compute lower part of fraction (last 12 bits).
|
| - __ mov(mantissa, Operand(source_, LSL, HeapNumber::kMantissaBitsInTopWord));
|
| - // And the top (top 20 bits).
|
| - __ orr(exponent,
|
| - exponent,
|
| - Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord));
|
| - __ Ret();
|
| -}
|
| -
|
| -
|
| -// See comment for class.
|
| -void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
|
| - Label max_negative_int;
|
| - // the_int_ has the answer which is a signed int32 but not a Smi.
|
| - // We test for the special value that has a different exponent. This test
|
| - // has the neat side effect of setting the flags according to the sign.
|
| - STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
|
| - __ cmp(the_int_, Operand(0x80000000u));
|
| - __ b(eq, &max_negative_int);
|
| - // Set up the correct exponent in scratch_. All non-Smi int32s have the same.
|
| - // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
|
| - uint32_t non_smi_exponent =
|
| - (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
|
| - __ mov(scratch_, Operand(non_smi_exponent));
|
| - // Set the sign bit in scratch_ if the value was negative.
|
| - __ orr(scratch_, scratch_, Operand(HeapNumber::kSignMask), LeaveCC, cs);
|
| - // Subtract from 0 if the value was negative.
|
| - __ rsb(the_int_, the_int_, Operand(0), LeaveCC, cs);
|
| - // We should be masking the implict first digit of the mantissa away here,
|
| - // but it just ends up combining harmlessly with the last digit of the
|
| - // exponent that happens to be 1. The sign bit is 0 so we shift 10 to get
|
| - // the most significant 1 to hit the last bit of the 12 bit sign and exponent.
|
| - ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
|
| - const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
|
| - __ orr(scratch_, scratch_, Operand(the_int_, LSR, shift_distance));
|
| - __ str(scratch_, FieldMemOperand(the_heap_number_,
|
| - HeapNumber::kExponentOffset));
|
| - __ mov(scratch_, Operand(the_int_, LSL, 32 - shift_distance));
|
| - __ str(scratch_, FieldMemOperand(the_heap_number_,
|
| - HeapNumber::kMantissaOffset));
|
| - __ Ret();
|
| -
|
| - __ bind(&max_negative_int);
|
| - // The max negative int32 is stored as a positive number in the mantissa of
|
| - // a double because it uses a sign bit instead of using two's complement.
|
| - // The actual mantissa bits stored are all 0 because the implicit most
|
| - // significant 1 bit is not stored.
|
| - non_smi_exponent += 1 << HeapNumber::kExponentShift;
|
| - __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent));
|
| - __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset));
|
| - __ mov(ip, Operand(0));
|
| - __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset));
|
| - __ Ret();
|
| -}
|
| -
|
| -
|
| -// Handle the case where the lhs and rhs are the same object.
|
| -// Equality is almost reflexive (everything but NaN), so this is a test
|
| -// for "identity and not NaN".
|
| -static void EmitIdenticalObjectComparison(MacroAssembler* masm,
|
| - Label* slow,
|
| - Condition cc,
|
| - bool never_nan_nan) {
|
| - Label not_identical;
|
| - Label heap_number, return_equal;
|
| - __ cmp(r0, r1);
|
| - __ b(ne, ¬_identical);
|
| -
|
| - // The two objects are identical. If we know that one of them isn't NaN then
|
| - // we now know they test equal.
|
| - if (cc != eq || !never_nan_nan) {
|
| - // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
|
| - // so we do the second best thing - test it ourselves.
|
| - // They are both equal and they are not both Smis so both of them are not
|
| - // Smis. If it's not a heap number, then return equal.
|
| - if (cc == lt || cc == gt) {
|
| - __ CompareObjectType(r0, r4, r4, FIRST_JS_OBJECT_TYPE);
|
| - __ b(ge, slow);
|
| - } else {
|
| - __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
|
| - __ b(eq, &heap_number);
|
| - // Comparing JS objects with <=, >= is complicated.
|
| - if (cc != eq) {
|
| - __ cmp(r4, Operand(FIRST_JS_OBJECT_TYPE));
|
| - __ b(ge, slow);
|
| - // Normally here we fall through to return_equal, but undefined is
|
| - // special: (undefined == undefined) == true, but
|
| - // (undefined <= undefined) == false! See ECMAScript 11.8.5.
|
| - if (cc == le || cc == ge) {
|
| - __ cmp(r4, Operand(ODDBALL_TYPE));
|
| - __ b(ne, &return_equal);
|
| - __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
|
| - __ cmp(r0, r2);
|
| - __ b(ne, &return_equal);
|
| - if (cc == le) {
|
| - // undefined <= undefined should fail.
|
| - __ mov(r0, Operand(GREATER));
|
| - } else {
|
| - // undefined >= undefined should fail.
|
| - __ mov(r0, Operand(LESS));
|
| - }
|
| - __ Ret();
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| - __ bind(&return_equal);
|
| - if (cc == lt) {
|
| - __ mov(r0, Operand(GREATER)); // Things aren't less than themselves.
|
| - } else if (cc == gt) {
|
| - __ mov(r0, Operand(LESS)); // Things aren't greater than themselves.
|
| - } else {
|
| - __ mov(r0, Operand(EQUAL)); // Things are <=, >=, ==, === themselves.
|
| - }
|
| - __ Ret();
|
| -
|
| - if (cc != eq || !never_nan_nan) {
|
| - // For less and greater we don't have to check for NaN since the result of
|
| - // x < x is false regardless. For the others here is some code to check
|
| - // for NaN.
|
| - if (cc != lt && cc != gt) {
|
| - __ bind(&heap_number);
|
| - // It is a heap number, so return non-equal if it's NaN and equal if it's
|
| - // not NaN.
|
| -
|
| - // The representation of NaN values has all exponent bits (52..62) set,
|
| - // and not all mantissa bits (0..51) clear.
|
| - // Read top bits of double representation (second word of value).
|
| - __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
|
| - // Test that exponent bits are all set.
|
| - __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
|
| - // NaNs have all-one exponents so they sign extend to -1.
|
| - __ cmp(r3, Operand(-1));
|
| - __ b(ne, &return_equal);
|
| -
|
| - // Shift out flag and all exponent bits, retaining only mantissa.
|
| - __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord));
|
| - // Or with all low-bits of mantissa.
|
| - __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
|
| - __ orr(r0, r3, Operand(r2), SetCC);
|
| - // For equal we already have the right value in r0: Return zero (equal)
|
| - // if all bits in mantissa are zero (it's an Infinity) and non-zero if
|
| - // not (it's a NaN). For <= and >= we need to load r0 with the failing
|
| - // value if it's a NaN.
|
| - if (cc != eq) {
|
| - // All-zero means Infinity means equal.
|
| - __ Ret(eq);
|
| - if (cc == le) {
|
| - __ mov(r0, Operand(GREATER)); // NaN <= NaN should fail.
|
| - } else {
|
| - __ mov(r0, Operand(LESS)); // NaN >= NaN should fail.
|
| - }
|
| - }
|
| - __ Ret();
|
| - }
|
| - // No fall through here.
|
| - }
|
| -
|
| - __ bind(¬_identical);
|
| -}
|
| -
|
| -
|
| -// See comment at call site.
|
| -static void EmitSmiNonsmiComparison(MacroAssembler* masm,
|
| - Register lhs,
|
| - Register rhs,
|
| - Label* lhs_not_nan,
|
| - Label* slow,
|
| - bool strict) {
|
| - ASSERT((lhs.is(r0) && rhs.is(r1)) ||
|
| - (lhs.is(r1) && rhs.is(r0)));
|
| -
|
| - Label rhs_is_smi;
|
| - __ tst(rhs, Operand(kSmiTagMask));
|
| - __ b(eq, &rhs_is_smi);
|
| -
|
| - // Lhs is a Smi. Check whether the rhs is a heap number.
|
| - __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE);
|
| - if (strict) {
|
| - // If rhs is not a number and lhs is a Smi then strict equality cannot
|
| - // succeed. Return non-equal
|
| - // If rhs is r0 then there is already a non zero value in it.
|
| - if (!rhs.is(r0)) {
|
| - __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
|
| - }
|
| - __ Ret(ne);
|
| - } else {
|
| - // Smi compared non-strictly with a non-Smi non-heap-number. Call
|
| - // the runtime.
|
| - __ b(ne, slow);
|
| - }
|
| -
|
| - // Lhs is a smi, rhs is a number.
|
| - if (CpuFeatures::IsSupported(VFP3)) {
|
| - // Convert lhs to a double in d7.
|
| - CpuFeatures::Scope scope(VFP3);
|
| - __ SmiToDoubleVFPRegister(lhs, d7, r7, s15);
|
| - // Load the double from rhs, tagged HeapNumber r0, to d6.
|
| - __ sub(r7, rhs, Operand(kHeapObjectTag));
|
| - __ vldr(d6, r7, HeapNumber::kValueOffset);
|
| - } else {
|
| - __ push(lr);
|
| - // Convert lhs to a double in r2, r3.
|
| - __ mov(r7, Operand(lhs));
|
| - ConvertToDoubleStub stub1(r3, r2, r7, r6);
|
| - __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET);
|
| - // Load rhs to a double in r0, r1.
|
| - __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset));
|
| - __ pop(lr);
|
| - }
|
| -
|
| - // We now have both loaded as doubles but we can skip the lhs nan check
|
| - // since it's a smi.
|
| - __ jmp(lhs_not_nan);
|
| -
|
| - __ bind(&rhs_is_smi);
|
| - // Rhs is a smi. Check whether the non-smi lhs is a heap number.
|
| - __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE);
|
| - if (strict) {
|
| - // If lhs is not a number and rhs is a smi then strict equality cannot
|
| - // succeed. Return non-equal.
|
| - // If lhs is r0 then there is already a non zero value in it.
|
| - if (!lhs.is(r0)) {
|
| - __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
|
| - }
|
| - __ Ret(ne);
|
| - } else {
|
| - // Smi compared non-strictly with a non-smi non-heap-number. Call
|
| - // the runtime.
|
| - __ b(ne, slow);
|
| - }
|
| -
|
| - // Rhs is a smi, lhs is a heap number.
|
| - if (CpuFeatures::IsSupported(VFP3)) {
|
| - CpuFeatures::Scope scope(VFP3);
|
| - // Load the double from lhs, tagged HeapNumber r1, to d7.
|
| - __ sub(r7, lhs, Operand(kHeapObjectTag));
|
| - __ vldr(d7, r7, HeapNumber::kValueOffset);
|
| - // Convert rhs to a double in d6 .
|
| - __ SmiToDoubleVFPRegister(rhs, d6, r7, s13);
|
| - } else {
|
| - __ push(lr);
|
| - // Load lhs to a double in r2, r3.
|
| - __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset));
|
| - // Convert rhs to a double in r0, r1.
|
| - __ mov(r7, Operand(rhs));
|
| - ConvertToDoubleStub stub2(r1, r0, r7, r6);
|
| - __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET);
|
| - __ pop(lr);
|
| - }
|
| - // Fall through to both_loaded_as_doubles.
|
| -}
|
| -
|
| -
|
| -void EmitNanCheck(MacroAssembler* masm, Label* lhs_not_nan, Condition cc) {
|
| - bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
|
| - Register rhs_exponent = exp_first ? r0 : r1;
|
| - Register lhs_exponent = exp_first ? r2 : r3;
|
| - Register rhs_mantissa = exp_first ? r1 : r0;
|
| - Register lhs_mantissa = exp_first ? r3 : r2;
|
| - Label one_is_nan, neither_is_nan;
|
| -
|
| - __ Sbfx(r4,
|
| - lhs_exponent,
|
| - HeapNumber::kExponentShift,
|
| - HeapNumber::kExponentBits);
|
| - // NaNs have all-one exponents so they sign extend to -1.
|
| - __ cmp(r4, Operand(-1));
|
| - __ b(ne, lhs_not_nan);
|
| - __ mov(r4,
|
| - Operand(lhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
|
| - SetCC);
|
| - __ b(ne, &one_is_nan);
|
| - __ cmp(lhs_mantissa, Operand(0));
|
| - __ b(ne, &one_is_nan);
|
| -
|
| - __ bind(lhs_not_nan);
|
| - __ Sbfx(r4,
|
| - rhs_exponent,
|
| - HeapNumber::kExponentShift,
|
| - HeapNumber::kExponentBits);
|
| - // NaNs have all-one exponents so they sign extend to -1.
|
| - __ cmp(r4, Operand(-1));
|
| - __ b(ne, &neither_is_nan);
|
| - __ mov(r4,
|
| - Operand(rhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
|
| - SetCC);
|
| - __ b(ne, &one_is_nan);
|
| - __ cmp(rhs_mantissa, Operand(0));
|
| - __ b(eq, &neither_is_nan);
|
| -
|
| - __ bind(&one_is_nan);
|
| - // NaN comparisons always fail.
|
| - // Load whatever we need in r0 to make the comparison fail.
|
| - if (cc == lt || cc == le) {
|
| - __ mov(r0, Operand(GREATER));
|
| - } else {
|
| - __ mov(r0, Operand(LESS));
|
| - }
|
| - __ Ret();
|
| -
|
| - __ bind(&neither_is_nan);
|
| -}
|
| -
|
| -
|
| -// See comment at call site.
|
| -static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc) {
|
| - bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
|
| - Register rhs_exponent = exp_first ? r0 : r1;
|
| - Register lhs_exponent = exp_first ? r2 : r3;
|
| - Register rhs_mantissa = exp_first ? r1 : r0;
|
| - Register lhs_mantissa = exp_first ? r3 : r2;
|
| -
|
| - // r0, r1, r2, r3 have the two doubles. Neither is a NaN.
|
| - if (cc == eq) {
|
| - // Doubles are not equal unless they have the same bit pattern.
|
| - // Exception: 0 and -0.
|
| - __ cmp(rhs_mantissa, Operand(lhs_mantissa));
|
| - __ orr(r0, rhs_mantissa, Operand(lhs_mantissa), LeaveCC, ne);
|
| - // Return non-zero if the numbers are unequal.
|
| - __ Ret(ne);
|
| -
|
| - __ sub(r0, rhs_exponent, Operand(lhs_exponent), SetCC);
|
| - // If exponents are equal then return 0.
|
| - __ Ret(eq);
|
| -
|
| - // Exponents are unequal. The only way we can return that the numbers
|
| - // are equal is if one is -0 and the other is 0. We already dealt
|
| - // with the case where both are -0 or both are 0.
|
| - // We start by seeing if the mantissas (that are equal) or the bottom
|
| - // 31 bits of the rhs exponent are non-zero. If so we return not
|
| - // equal.
|
| - __ orr(r4, lhs_mantissa, Operand(lhs_exponent, LSL, kSmiTagSize), SetCC);
|
| - __ mov(r0, Operand(r4), LeaveCC, ne);
|
| - __ Ret(ne);
|
| - // Now they are equal if and only if the lhs exponent is zero in its
|
| - // low 31 bits.
|
| - __ mov(r0, Operand(rhs_exponent, LSL, kSmiTagSize));
|
| - __ Ret();
|
| - } else {
|
| - // Call a native function to do a comparison between two non-NaNs.
|
| - // Call C routine that may not cause GC or other trouble.
|
| - __ push(lr);
|
| - __ PrepareCallCFunction(4, r5); // Two doubles count as 4 arguments.
|
| - __ CallCFunction(ExternalReference::compare_doubles(), 4);
|
| - __ pop(pc); // Return.
|
| - }
|
| -}
|
| -
|
| -
|
| -// See comment at call site.
|
| -static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
|
| - Register lhs,
|
| - Register rhs) {
|
| - ASSERT((lhs.is(r0) && rhs.is(r1)) ||
|
| - (lhs.is(r1) && rhs.is(r0)));
|
| -
|
| - // If either operand is a JSObject or an oddball value, then they are
|
| - // not equal since their pointers are different.
|
| - // There is no test for undetectability in strict equality.
|
| - STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
|
| - Label first_non_object;
|
| - // Get the type of the first operand into r2 and compare it with
|
| - // FIRST_JS_OBJECT_TYPE.
|
| - __ CompareObjectType(rhs, r2, r2, FIRST_JS_OBJECT_TYPE);
|
| - __ b(lt, &first_non_object);
|
| -
|
| - // Return non-zero (r0 is not zero)
|
| - Label return_not_equal;
|
| - __ bind(&return_not_equal);
|
| - __ Ret();
|
| -
|
| - __ bind(&first_non_object);
|
| - // Check for oddballs: true, false, null, undefined.
|
| - __ cmp(r2, Operand(ODDBALL_TYPE));
|
| - __ b(eq, &return_not_equal);
|
| -
|
| - __ CompareObjectType(lhs, r3, r3, FIRST_JS_OBJECT_TYPE);
|
| - __ b(ge, &return_not_equal);
|
| -
|
| - // Check for oddballs: true, false, null, undefined.
|
| - __ cmp(r3, Operand(ODDBALL_TYPE));
|
| - __ b(eq, &return_not_equal);
|
| -
|
| - // Now that we have the types we might as well check for symbol-symbol.
|
| - // Ensure that no non-strings have the symbol bit set.
|
| - STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
|
| - STATIC_ASSERT(kSymbolTag != 0);
|
| - __ and_(r2, r2, Operand(r3));
|
| - __ tst(r2, Operand(kIsSymbolMask));
|
| - __ b(ne, &return_not_equal);
|
| -}
|
| -
|
| -
|
| -// See comment at call site.
|
| -static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
|
| - Register lhs,
|
| - Register rhs,
|
| - Label* both_loaded_as_doubles,
|
| - Label* not_heap_numbers,
|
| - Label* slow) {
|
| - ASSERT((lhs.is(r0) && rhs.is(r1)) ||
|
| - (lhs.is(r1) && rhs.is(r0)));
|
| -
|
| - __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE);
|
| - __ b(ne, not_heap_numbers);
|
| - __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset));
|
| - __ cmp(r2, r3);
|
| - __ b(ne, slow); // First was a heap number, second wasn't. Go slow case.
|
| -
|
| - // Both are heap numbers. Load them up then jump to the code we have
|
| - // for that.
|
| - if (CpuFeatures::IsSupported(VFP3)) {
|
| - CpuFeatures::Scope scope(VFP3);
|
| - __ sub(r7, rhs, Operand(kHeapObjectTag));
|
| - __ vldr(d6, r7, HeapNumber::kValueOffset);
|
| - __ sub(r7, lhs, Operand(kHeapObjectTag));
|
| - __ vldr(d7, r7, HeapNumber::kValueOffset);
|
| - } else {
|
| - __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset));
|
| - __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset));
|
| - }
|
| - __ jmp(both_loaded_as_doubles);
|
| -}
|
| -
|
| -
|
| -// Fast negative check for symbol-to-symbol equality.
|
| -static void EmitCheckForSymbolsOrObjects(MacroAssembler* masm,
|
| - Register lhs,
|
| - Register rhs,
|
| - Label* possible_strings,
|
| - Label* not_both_strings) {
|
| - ASSERT((lhs.is(r0) && rhs.is(r1)) ||
|
| - (lhs.is(r1) && rhs.is(r0)));
|
| -
|
| - // r2 is object type of rhs.
|
| - // Ensure that no non-strings have the symbol bit set.
|
| - Label object_test;
|
| - STATIC_ASSERT(kSymbolTag != 0);
|
| - __ tst(r2, Operand(kIsNotStringMask));
|
| - __ b(ne, &object_test);
|
| - __ tst(r2, Operand(kIsSymbolMask));
|
| - __ b(eq, possible_strings);
|
| - __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE);
|
| - __ b(ge, not_both_strings);
|
| - __ tst(r3, Operand(kIsSymbolMask));
|
| - __ b(eq, possible_strings);
|
| -
|
| - // Both are symbols. We already checked they weren't the same pointer
|
| - // so they are not equal.
|
| - __ mov(r0, Operand(NOT_EQUAL));
|
| - __ Ret();
|
| -
|
| - __ bind(&object_test);
|
| - __ cmp(r2, Operand(FIRST_JS_OBJECT_TYPE));
|
| - __ b(lt, not_both_strings);
|
| - __ CompareObjectType(lhs, r2, r3, FIRST_JS_OBJECT_TYPE);
|
| - __ b(lt, not_both_strings);
|
| - // If both objects are undetectable, they are equal. Otherwise, they
|
| - // are not equal, since they are different objects and an object is not
|
| - // equal to undefined.
|
| - __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset));
|
| - __ ldrb(r2, FieldMemOperand(r2, Map::kBitFieldOffset));
|
| - __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset));
|
| - __ and_(r0, r2, Operand(r3));
|
| - __ and_(r0, r0, Operand(1 << Map::kIsUndetectable));
|
| - __ eor(r0, r0, Operand(1 << Map::kIsUndetectable));
|
| - __ Ret();
|
| -}
|
| -
|
| -
|
| -void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
|
| - Register object,
|
| - Register result,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register scratch3,
|
| - bool object_is_smi,
|
| - Label* not_found) {
|
| - // Use of registers. Register result is used as a temporary.
|
| - Register number_string_cache = result;
|
| - Register mask = scratch3;
|
| -
|
| - // Load the number string cache.
|
| - __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
|
| -
|
| - // Make the hash mask from the length of the number string cache. It
|
| - // contains two elements (number and string) for each cache entry.
|
| - __ ldr(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset));
|
| - // Divide length by two (length is a smi).
|
| - __ mov(mask, Operand(mask, ASR, kSmiTagSize + 1));
|
| - __ sub(mask, mask, Operand(1)); // Make mask.
|
| -
|
| - // Calculate the entry in the number string cache. The hash value in the
|
| - // number string cache for smis is just the smi value, and the hash for
|
| - // doubles is the xor of the upper and lower words. See
|
| - // Heap::GetNumberStringCache.
|
| - Label is_smi;
|
| - Label load_result_from_cache;
|
| - if (!object_is_smi) {
|
| - __ BranchOnSmi(object, &is_smi);
|
| - if (CpuFeatures::IsSupported(VFP3)) {
|
| - CpuFeatures::Scope scope(VFP3);
|
| - __ CheckMap(object,
|
| - scratch1,
|
| - Heap::kHeapNumberMapRootIndex,
|
| - not_found,
|
| - true);
|
| -
|
| - STATIC_ASSERT(8 == kDoubleSize);
|
| - __ add(scratch1,
|
| - object,
|
| - Operand(HeapNumber::kValueOffset - kHeapObjectTag));
|
| - __ ldm(ia, scratch1, scratch1.bit() | scratch2.bit());
|
| - __ eor(scratch1, scratch1, Operand(scratch2));
|
| - __ and_(scratch1, scratch1, Operand(mask));
|
| -
|
| - // Calculate address of entry in string cache: each entry consists
|
| - // of two pointer sized fields.
|
| - __ add(scratch1,
|
| - number_string_cache,
|
| - Operand(scratch1, LSL, kPointerSizeLog2 + 1));
|
| -
|
| - Register probe = mask;
|
| - __ ldr(probe,
|
| - FieldMemOperand(scratch1, FixedArray::kHeaderSize));
|
| - __ BranchOnSmi(probe, not_found);
|
| - __ sub(scratch2, object, Operand(kHeapObjectTag));
|
| - __ vldr(d0, scratch2, HeapNumber::kValueOffset);
|
| - __ sub(probe, probe, Operand(kHeapObjectTag));
|
| - __ vldr(d1, probe, HeapNumber::kValueOffset);
|
| - __ vcmp(d0, d1);
|
| - __ vmrs(pc);
|
| - __ b(ne, not_found); // The cache did not contain this value.
|
| - __ b(&load_result_from_cache);
|
| - } else {
|
| - __ b(not_found);
|
| - }
|
| - }
|
| -
|
| - __ bind(&is_smi);
|
| - Register scratch = scratch1;
|
| - __ and_(scratch, mask, Operand(object, ASR, 1));
|
| - // Calculate address of entry in string cache: each entry consists
|
| - // of two pointer sized fields.
|
| - __ add(scratch,
|
| - number_string_cache,
|
| - Operand(scratch, LSL, kPointerSizeLog2 + 1));
|
| -
|
| - // Check if the entry is the smi we are looking for.
|
| - Register probe = mask;
|
| - __ ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
|
| - __ cmp(object, probe);
|
| - __ b(ne, not_found);
|
| -
|
| - // Get the result from the cache.
|
| - __ bind(&load_result_from_cache);
|
| - __ ldr(result,
|
| - FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
|
| - __ IncrementCounter(&Counters::number_to_string_native,
|
| - 1,
|
| - scratch1,
|
| - scratch2);
|
| -}
|
| -
|
| -
|
| -void NumberToStringStub::Generate(MacroAssembler* masm) {
|
| - Label runtime;
|
| -
|
| - __ ldr(r1, MemOperand(sp, 0));
|
| -
|
| - // Generate code to lookup number in the number string cache.
|
| - GenerateLookupNumberStringCache(masm, r1, r0, r2, r3, r4, false, &runtime);
|
| - __ add(sp, sp, Operand(1 * kPointerSize));
|
| - __ Ret();
|
| -
|
| - __ bind(&runtime);
|
| - // Handle number to string in the runtime system if not found in the cache.
|
| - __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1);
|
| -}
|
| -
|
| -
|
| -void RecordWriteStub::Generate(MacroAssembler* masm) {
|
| - __ add(offset_, object_, Operand(offset_));
|
| - __ RecordWriteHelper(object_, offset_, scratch_);
|
| - __ Ret();
|
| -}
|
| -
|
| -
|
| -// On entry lhs_ and rhs_ are the values to be compared.
|
| -// On exit r0 is 0, positive or negative to indicate the result of
|
| -// the comparison.
|
| -void CompareStub::Generate(MacroAssembler* masm) {
|
| - ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
|
| - (lhs_.is(r1) && rhs_.is(r0)));
|
| -
|
| - Label slow; // Call builtin.
|
| - Label not_smis, both_loaded_as_doubles, lhs_not_nan;
|
| -
|
| - // NOTICE! This code is only reached after a smi-fast-case check, so
|
| - // it is certain that at least one operand isn't a smi.
|
| -
|
| - // Handle the case where the objects are identical. Either returns the answer
|
| - // or goes to slow. Only falls through if the objects were not identical.
|
| - EmitIdenticalObjectComparison(masm, &slow, cc_, never_nan_nan_);
|
| -
|
| - // If either is a Smi (we know that not both are), then they can only
|
| - // be strictly equal if the other is a HeapNumber.
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - ASSERT_EQ(0, Smi::FromInt(0));
|
| - __ and_(r2, lhs_, Operand(rhs_));
|
| - __ tst(r2, Operand(kSmiTagMask));
|
| - __ b(ne, ¬_smis);
|
| - // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
|
| - // 1) Return the answer.
|
| - // 2) Go to slow.
|
| - // 3) Fall through to both_loaded_as_doubles.
|
| - // 4) Jump to lhs_not_nan.
|
| - // In cases 3 and 4 we have found out we were dealing with a number-number
|
| - // comparison. If VFP3 is supported the double values of the numbers have
|
| - // been loaded into d7 and d6. Otherwise, the double values have been loaded
|
| - // into r0, r1, r2, and r3.
|
| - EmitSmiNonsmiComparison(masm, lhs_, rhs_, &lhs_not_nan, &slow, strict_);
|
| -
|
| - __ bind(&both_loaded_as_doubles);
|
| - // The arguments have been converted to doubles and stored in d6 and d7, if
|
| - // VFP3 is supported, or in r0, r1, r2, and r3.
|
| - if (CpuFeatures::IsSupported(VFP3)) {
|
| - __ bind(&lhs_not_nan);
|
| - CpuFeatures::Scope scope(VFP3);
|
| - Label no_nan;
|
| - // ARMv7 VFP3 instructions to implement double precision comparison.
|
| - __ vcmp(d7, d6);
|
| - __ vmrs(pc); // Move vector status bits to normal status bits.
|
| - Label nan;
|
| - __ b(vs, &nan);
|
| - __ mov(r0, Operand(EQUAL), LeaveCC, eq);
|
| - __ mov(r0, Operand(LESS), LeaveCC, lt);
|
| - __ mov(r0, Operand(GREATER), LeaveCC, gt);
|
| - __ Ret();
|
| -
|
| - __ bind(&nan);
|
| - // If one of the sides was a NaN then the v flag is set. Load r0 with
|
| - // whatever it takes to make the comparison fail, since comparisons with NaN
|
| - // always fail.
|
| - if (cc_ == lt || cc_ == le) {
|
| - __ mov(r0, Operand(GREATER));
|
| - } else {
|
| - __ mov(r0, Operand(LESS));
|
| - }
|
| - __ Ret();
|
| - } else {
|
| - // Checks for NaN in the doubles we have loaded. Can return the answer or
|
| - // fall through if neither is a NaN. Also binds lhs_not_nan.
|
| - EmitNanCheck(masm, &lhs_not_nan, cc_);
|
| - // Compares two doubles in r0, r1, r2, r3 that are not NaNs. Returns the
|
| - // answer. Never falls through.
|
| - EmitTwoNonNanDoubleComparison(masm, cc_);
|
| - }
|
| -
|
| - __ bind(¬_smis);
|
| - // At this point we know we are dealing with two different objects,
|
| - // and neither of them is a Smi. The objects are in rhs_ and lhs_.
|
| - if (strict_) {
|
| - // This returns non-equal for some object types, or falls through if it
|
| - // was not lucky.
|
| - EmitStrictTwoHeapObjectCompare(masm, lhs_, rhs_);
|
| - }
|
| -
|
| - Label check_for_symbols;
|
| - Label flat_string_check;
|
| - // Check for heap-number-heap-number comparison. Can jump to slow case,
|
| - // or load both doubles into r0, r1, r2, r3 and jump to the code that handles
|
| - // that case. If the inputs are not doubles then jumps to check_for_symbols.
|
| - // In this case r2 will contain the type of rhs_. Never falls through.
|
| - EmitCheckForTwoHeapNumbers(masm,
|
| - lhs_,
|
| - rhs_,
|
| - &both_loaded_as_doubles,
|
| - &check_for_symbols,
|
| - &flat_string_check);
|
| -
|
| - __ bind(&check_for_symbols);
|
| - // In the strict case the EmitStrictTwoHeapObjectCompare already took care of
|
| - // symbols.
|
| - if (cc_ == eq && !strict_) {
|
| - // Returns an answer for two symbols or two detectable objects.
|
| - // Otherwise jumps to string case or not both strings case.
|
| - // Assumes that r2 is the type of rhs_ on entry.
|
| - EmitCheckForSymbolsOrObjects(masm, lhs_, rhs_, &flat_string_check, &slow);
|
| - }
|
| -
|
| - // Check for both being sequential ASCII strings, and inline if that is the
|
| - // case.
|
| - __ bind(&flat_string_check);
|
| -
|
| - __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs_, rhs_, r2, r3, &slow);
|
| -
|
| - __ IncrementCounter(&Counters::string_compare_native, 1, r2, r3);
|
| - StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
|
| - lhs_,
|
| - rhs_,
|
| - r2,
|
| - r3,
|
| - r4,
|
| - r5);
|
| - // Never falls through to here.
|
| -
|
| - __ bind(&slow);
|
| -
|
| - __ Push(lhs_, rhs_);
|
| - // Figure out which native to call and setup the arguments.
|
| - Builtins::JavaScript native;
|
| - if (cc_ == eq) {
|
| - native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
|
| - } else {
|
| - native = Builtins::COMPARE;
|
| - int ncr; // NaN compare result
|
| - if (cc_ == lt || cc_ == le) {
|
| - ncr = GREATER;
|
| - } else {
|
| - ASSERT(cc_ == gt || cc_ == ge); // remaining cases
|
| - ncr = LESS;
|
| - }
|
| - __ mov(r0, Operand(Smi::FromInt(ncr)));
|
| - __ push(r0);
|
| - }
|
| -
|
| - // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
|
| - // tagged as a small integer.
|
| - __ InvokeBuiltin(native, JUMP_JS);
|
| -}
|
| -
|
| -
|
| -// This stub does not handle the inlined cases (Smis, Booleans, undefined).
|
| -// The stub returns zero for false, and a non-zero value for true.
|
| -void ToBooleanStub::Generate(MacroAssembler* masm) {
|
| - Label false_result;
|
| - Label not_heap_number;
|
| - Register scratch0 = VirtualFrame::scratch0();
|
| -
|
| - // HeapNumber => false iff +0, -0, or NaN.
|
| - __ ldr(scratch0, FieldMemOperand(tos_, HeapObject::kMapOffset));
|
| - __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
|
| - __ cmp(scratch0, ip);
|
| - __ b(¬_heap_number, ne);
|
| -
|
| - __ sub(ip, tos_, Operand(kHeapObjectTag));
|
| - __ vldr(d1, ip, HeapNumber::kValueOffset);
|
| - __ vcmp(d1, 0.0);
|
| - __ vmrs(pc);
|
| - // "tos_" is a register, and contains a non zero value by default.
|
| - // Hence we only need to overwrite "tos_" with zero to return false for
|
| - // FP_ZERO or FP_NAN cases. Otherwise, by default it returns true.
|
| - __ mov(tos_, Operand(0), LeaveCC, eq); // for FP_ZERO
|
| - __ mov(tos_, Operand(0), LeaveCC, vs); // for FP_NAN
|
| - __ Ret();
|
| -
|
| - __ bind(¬_heap_number);
|
| -
|
| - // Check if the value is 'null'.
|
| - // 'null' => false.
|
| - __ LoadRoot(ip, Heap::kNullValueRootIndex);
|
| - __ cmp(tos_, ip);
|
| - __ b(&false_result, eq);
|
| -
|
| - // It can be an undetectable object.
|
| - // Undetectable => false.
|
| - __ ldr(ip, FieldMemOperand(tos_, HeapObject::kMapOffset));
|
| - __ ldrb(scratch0, FieldMemOperand(ip, Map::kBitFieldOffset));
|
| - __ and_(scratch0, scratch0, Operand(1 << Map::kIsUndetectable));
|
| - __ cmp(scratch0, Operand(1 << Map::kIsUndetectable));
|
| - __ b(&false_result, eq);
|
| -
|
| - // JavaScript object => true.
|
| - __ ldr(scratch0, FieldMemOperand(tos_, HeapObject::kMapOffset));
|
| - __ ldrb(scratch0, FieldMemOperand(scratch0, Map::kInstanceTypeOffset));
|
| - __ cmp(scratch0, Operand(FIRST_JS_OBJECT_TYPE));
|
| - // "tos_" is a register and contains a non-zero value.
|
| - // Hence we implicitly return true if the greater than
|
| - // condition is satisfied.
|
| - __ Ret(gt);
|
| -
|
| - // Check for string
|
| - __ ldr(scratch0, FieldMemOperand(tos_, HeapObject::kMapOffset));
|
| - __ ldrb(scratch0, FieldMemOperand(scratch0, Map::kInstanceTypeOffset));
|
| - __ cmp(scratch0, Operand(FIRST_NONSTRING_TYPE));
|
| - // "tos_" is a register and contains a non-zero value.
|
| - // Hence we implicitly return true if the greater than
|
| - // condition is satisfied.
|
| - __ Ret(gt);
|
| -
|
| - // String value => false iff empty, i.e., length is zero
|
| - __ ldr(tos_, FieldMemOperand(tos_, String::kLengthOffset));
|
| - // If length is zero, "tos_" contains zero ==> false.
|
| - // If length is not zero, "tos_" contains a non-zero value ==> true.
|
| - __ Ret();
|
| -
|
| - // Return 0 in "tos_" for false .
|
| - __ bind(&false_result);
|
| - __ mov(tos_, Operand(0));
|
| - __ Ret();
|
| -}
|
| -
|
| -
|
| -// We fall into this code if the operands were Smis, but the result was
|
| -// not (eg. overflow). We branch into this code (to the not_smi label) if
|
| -// the operands were not both Smi. The operands are in r0 and r1. In order
|
| -// to call the C-implemented binary fp operation routines we need to end up
|
| -// with the double precision floating point operands in r0 and r1 (for the
|
| -// value in r1) and r2 and r3 (for the value in r0).
|
| -void GenericBinaryOpStub::HandleBinaryOpSlowCases(
|
| - MacroAssembler* masm,
|
| - Label* not_smi,
|
| - Register lhs,
|
| - Register rhs,
|
| - const Builtins::JavaScript& builtin) {
|
| - Label slow, slow_reverse, do_the_call;
|
| - bool use_fp_registers = CpuFeatures::IsSupported(VFP3) && Token::MOD != op_;
|
| -
|
| - ASSERT((lhs.is(r0) && rhs.is(r1)) || (lhs.is(r1) && rhs.is(r0)));
|
| - Register heap_number_map = r6;
|
| -
|
| - if (ShouldGenerateSmiCode()) {
|
| - __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
|
| -
|
| - // Smi-smi case (overflow).
|
| - // Since both are Smis there is no heap number to overwrite, so allocate.
|
| - // The new heap number is in r5. r3 and r7 are scratch.
|
| - __ AllocateHeapNumber(
|
| - r5, r3, r7, heap_number_map, lhs.is(r0) ? &slow_reverse : &slow);
|
| -
|
| - // If we have floating point hardware, inline ADD, SUB, MUL, and DIV,
|
| - // using registers d7 and d6 for the double values.
|
| - if (CpuFeatures::IsSupported(VFP3)) {
|
| - CpuFeatures::Scope scope(VFP3);
|
| - __ mov(r7, Operand(rhs, ASR, kSmiTagSize));
|
| - __ vmov(s15, r7);
|
| - __ vcvt_f64_s32(d7, s15);
|
| - __ mov(r7, Operand(lhs, ASR, kSmiTagSize));
|
| - __ vmov(s13, r7);
|
| - __ vcvt_f64_s32(d6, s13);
|
| - if (!use_fp_registers) {
|
| - __ vmov(r2, r3, d7);
|
| - __ vmov(r0, r1, d6);
|
| - }
|
| - } else {
|
| - // Write Smi from rhs to r3 and r2 in double format. r9 is scratch.
|
| - __ mov(r7, Operand(rhs));
|
| - ConvertToDoubleStub stub1(r3, r2, r7, r9);
|
| - __ push(lr);
|
| - __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET);
|
| - // Write Smi from lhs to r1 and r0 in double format. r9 is scratch.
|
| - __ mov(r7, Operand(lhs));
|
| - ConvertToDoubleStub stub2(r1, r0, r7, r9);
|
| - __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET);
|
| - __ pop(lr);
|
| - }
|
| - __ jmp(&do_the_call); // Tail call. No return.
|
| - }
|
| -
|
| - // We branch here if at least one of r0 and r1 is not a Smi.
|
| - __ bind(not_smi);
|
| - __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
|
| -
|
| - // After this point we have the left hand side in r1 and the right hand side
|
| - // in r0.
|
| - if (lhs.is(r0)) {
|
| - __ Swap(r0, r1, ip);
|
| - }
|
| -
|
| - // The type transition also calculates the answer.
|
| - bool generate_code_to_calculate_answer = true;
|
| -
|
| - if (ShouldGenerateFPCode()) {
|
| - if (runtime_operands_type_ == BinaryOpIC::DEFAULT) {
|
| - switch (op_) {
|
| - case Token::ADD:
|
| - case Token::SUB:
|
| - case Token::MUL:
|
| - case Token::DIV:
|
| - GenerateTypeTransition(masm); // Tail call.
|
| - generate_code_to_calculate_answer = false;
|
| - break;
|
| -
|
| - default:
|
| - break;
|
| - }
|
| - }
|
| -
|
| - if (generate_code_to_calculate_answer) {
|
| - Label r0_is_smi, r1_is_smi, finished_loading_r0, finished_loading_r1;
|
| - if (mode_ == NO_OVERWRITE) {
|
| - // In the case where there is no chance of an overwritable float we may
|
| - // as well do the allocation immediately while r0 and r1 are untouched.
|
| - __ AllocateHeapNumber(r5, r3, r7, heap_number_map, &slow);
|
| - }
|
| -
|
| - // Move r0 to a double in r2-r3.
|
| - __ tst(r0, Operand(kSmiTagMask));
|
| - __ b(eq, &r0_is_smi); // It's a Smi so don't check it's a heap number.
|
| - __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
|
| - __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
|
| - __ cmp(r4, heap_number_map);
|
| - __ b(ne, &slow);
|
| - if (mode_ == OVERWRITE_RIGHT) {
|
| - __ mov(r5, Operand(r0)); // Overwrite this heap number.
|
| - }
|
| - if (use_fp_registers) {
|
| - CpuFeatures::Scope scope(VFP3);
|
| - // Load the double from tagged HeapNumber r0 to d7.
|
| - __ sub(r7, r0, Operand(kHeapObjectTag));
|
| - __ vldr(d7, r7, HeapNumber::kValueOffset);
|
| - } else {
|
| - // Calling convention says that second double is in r2 and r3.
|
| - __ Ldrd(r2, r3, FieldMemOperand(r0, HeapNumber::kValueOffset));
|
| - }
|
| - __ jmp(&finished_loading_r0);
|
| - __ bind(&r0_is_smi);
|
| - if (mode_ == OVERWRITE_RIGHT) {
|
| - // We can't overwrite a Smi so get address of new heap number into r5.
|
| - __ AllocateHeapNumber(r5, r4, r7, heap_number_map, &slow);
|
| - }
|
| -
|
| - if (CpuFeatures::IsSupported(VFP3)) {
|
| - CpuFeatures::Scope scope(VFP3);
|
| - // Convert smi in r0 to double in d7.
|
| - __ mov(r7, Operand(r0, ASR, kSmiTagSize));
|
| - __ vmov(s15, r7);
|
| - __ vcvt_f64_s32(d7, s15);
|
| - if (!use_fp_registers) {
|
| - __ vmov(r2, r3, d7);
|
| - }
|
| - } else {
|
| - // Write Smi from r0 to r3 and r2 in double format.
|
| - __ mov(r7, Operand(r0));
|
| - ConvertToDoubleStub stub3(r3, r2, r7, r4);
|
| - __ push(lr);
|
| - __ Call(stub3.GetCode(), RelocInfo::CODE_TARGET);
|
| - __ pop(lr);
|
| - }
|
| -
|
| - // HEAP_NUMBERS stub is slower than GENERIC on a pair of smis.
|
| - // r0 is known to be a smi. If r1 is also a smi then switch to GENERIC.
|
| - Label r1_is_not_smi;
|
| - if (runtime_operands_type_ == BinaryOpIC::HEAP_NUMBERS) {
|
| - __ tst(r1, Operand(kSmiTagMask));
|
| - __ b(ne, &r1_is_not_smi);
|
| - GenerateTypeTransition(masm); // Tail call.
|
| - }
|
| -
|
| - __ bind(&finished_loading_r0);
|
| -
|
| - // Move r1 to a double in r0-r1.
|
| - __ tst(r1, Operand(kSmiTagMask));
|
| - __ b(eq, &r1_is_smi); // It's a Smi so don't check it's a heap number.
|
| - __ bind(&r1_is_not_smi);
|
| - __ ldr(r4, FieldMemOperand(r1, HeapNumber::kMapOffset));
|
| - __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
|
| - __ cmp(r4, heap_number_map);
|
| - __ b(ne, &slow);
|
| - if (mode_ == OVERWRITE_LEFT) {
|
| - __ mov(r5, Operand(r1)); // Overwrite this heap number.
|
| - }
|
| - if (use_fp_registers) {
|
| - CpuFeatures::Scope scope(VFP3);
|
| - // Load the double from tagged HeapNumber r1 to d6.
|
| - __ sub(r7, r1, Operand(kHeapObjectTag));
|
| - __ vldr(d6, r7, HeapNumber::kValueOffset);
|
| - } else {
|
| - // Calling convention says that first double is in r0 and r1.
|
| - __ Ldrd(r0, r1, FieldMemOperand(r1, HeapNumber::kValueOffset));
|
| - }
|
| - __ jmp(&finished_loading_r1);
|
| - __ bind(&r1_is_smi);
|
| - if (mode_ == OVERWRITE_LEFT) {
|
| - // We can't overwrite a Smi so get address of new heap number into r5.
|
| - __ AllocateHeapNumber(r5, r4, r7, heap_number_map, &slow);
|
| - }
|
| -
|
| - if (CpuFeatures::IsSupported(VFP3)) {
|
| - CpuFeatures::Scope scope(VFP3);
|
| - // Convert smi in r1 to double in d6.
|
| - __ mov(r7, Operand(r1, ASR, kSmiTagSize));
|
| - __ vmov(s13, r7);
|
| - __ vcvt_f64_s32(d6, s13);
|
| - if (!use_fp_registers) {
|
| - __ vmov(r0, r1, d6);
|
| - }
|
| - } else {
|
| - // Write Smi from r1 to r1 and r0 in double format.
|
| - __ mov(r7, Operand(r1));
|
| - ConvertToDoubleStub stub4(r1, r0, r7, r9);
|
| - __ push(lr);
|
| - __ Call(stub4.GetCode(), RelocInfo::CODE_TARGET);
|
| - __ pop(lr);
|
| - }
|
| -
|
| - __ bind(&finished_loading_r1);
|
| - }
|
| -
|
| - if (generate_code_to_calculate_answer || do_the_call.is_linked()) {
|
| - __ bind(&do_the_call);
|
| - // If we are inlining the operation using VFP3 instructions for
|
| - // add, subtract, multiply, or divide, the arguments are in d6 and d7.
|
| - if (use_fp_registers) {
|
| - CpuFeatures::Scope scope(VFP3);
|
| - // ARMv7 VFP3 instructions to implement
|
| - // double precision, add, subtract, multiply, divide.
|
| -
|
| - if (Token::MUL == op_) {
|
| - __ vmul(d5, d6, d7);
|
| - } else if (Token::DIV == op_) {
|
| - __ vdiv(d5, d6, d7);
|
| - } else if (Token::ADD == op_) {
|
| - __ vadd(d5, d6, d7);
|
| - } else if (Token::SUB == op_) {
|
| - __ vsub(d5, d6, d7);
|
| - } else {
|
| - UNREACHABLE();
|
| - }
|
| - __ sub(r0, r5, Operand(kHeapObjectTag));
|
| - __ vstr(d5, r0, HeapNumber::kValueOffset);
|
| - __ add(r0, r0, Operand(kHeapObjectTag));
|
| - __ mov(pc, lr);
|
| - } else {
|
| - // If we did not inline the operation, then the arguments are in:
|
| - // r0: Left value (least significant part of mantissa).
|
| - // r1: Left value (sign, exponent, top of mantissa).
|
| - // r2: Right value (least significant part of mantissa).
|
| - // r3: Right value (sign, exponent, top of mantissa).
|
| - // r5: Address of heap number for result.
|
| -
|
| - __ push(lr); // For later.
|
| - __ PrepareCallCFunction(4, r4); // Two doubles count as 4 arguments.
|
| - // Call C routine that may not cause GC or other trouble. r5 is callee
|
| - // save.
|
| - __ CallCFunction(ExternalReference::double_fp_operation(op_), 4);
|
| - // Store answer in the overwritable heap number.
|
| - #if !defined(USE_ARM_EABI)
|
| - // Double returned in fp coprocessor register 0 and 1, encoded as
|
| - // register cr8. Offsets must be divisible by 4 for coprocessor so we
|
| - // need to substract the tag from r5.
|
| - __ sub(r4, r5, Operand(kHeapObjectTag));
|
| - __ stc(p1, cr8, MemOperand(r4, HeapNumber::kValueOffset));
|
| - #else
|
| - // Double returned in registers 0 and 1.
|
| - __ Strd(r0, r1, FieldMemOperand(r5, HeapNumber::kValueOffset));
|
| - #endif
|
| - __ mov(r0, Operand(r5));
|
| - // And we are done.
|
| - __ pop(pc);
|
| - }
|
| - }
|
| - }
|
| -
|
| - if (!generate_code_to_calculate_answer &&
|
| - !slow_reverse.is_linked() &&
|
| - !slow.is_linked()) {
|
| - return;
|
| - }
|
| -
|
| - if (lhs.is(r0)) {
|
| - __ b(&slow);
|
| - __ bind(&slow_reverse);
|
| - __ Swap(r0, r1, ip);
|
| - }
|
| -
|
| - heap_number_map = no_reg; // Don't use this any more from here on.
|
| -
|
| - // We jump to here if something goes wrong (one param is not a number of any
|
| - // sort or new-space allocation fails).
|
| - __ bind(&slow);
|
| -
|
| - // Push arguments to the stack
|
| - __ Push(r1, r0);
|
| -
|
| - if (Token::ADD == op_) {
|
| - // Test for string arguments before calling runtime.
|
| - // r1 : first argument
|
| - // r0 : second argument
|
| - // sp[0] : second argument
|
| - // sp[4] : first argument
|
| -
|
| - Label not_strings, not_string1, string1, string1_smi2;
|
| - __ tst(r1, Operand(kSmiTagMask));
|
| - __ b(eq, ¬_string1);
|
| - __ CompareObjectType(r1, r2, r2, FIRST_NONSTRING_TYPE);
|
| - __ b(ge, ¬_string1);
|
| -
|
| - // First argument is a a string, test second.
|
| - __ tst(r0, Operand(kSmiTagMask));
|
| - __ b(eq, &string1_smi2);
|
| - __ CompareObjectType(r0, r2, r2, FIRST_NONSTRING_TYPE);
|
| - __ b(ge, &string1);
|
| -
|
| - // First and second argument are strings.
|
| - StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
|
| - __ TailCallStub(&string_add_stub);
|
| -
|
| - __ bind(&string1_smi2);
|
| - // First argument is a string, second is a smi. Try to lookup the number
|
| - // string for the smi in the number string cache.
|
| - NumberToStringStub::GenerateLookupNumberStringCache(
|
| - masm, r0, r2, r4, r5, r6, true, &string1);
|
| -
|
| - // Replace second argument on stack and tailcall string add stub to make
|
| - // the result.
|
| - __ str(r2, MemOperand(sp, 0));
|
| - __ TailCallStub(&string_add_stub);
|
| -
|
| - // Only first argument is a string.
|
| - __ bind(&string1);
|
| - __ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_JS);
|
| -
|
| - // First argument was not a string, test second.
|
| - __ bind(¬_string1);
|
| - __ tst(r0, Operand(kSmiTagMask));
|
| - __ b(eq, ¬_strings);
|
| - __ CompareObjectType(r0, r2, r2, FIRST_NONSTRING_TYPE);
|
| - __ b(ge, ¬_strings);
|
| -
|
| - // Only second argument is a string.
|
| - __ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_JS);
|
| -
|
| - __ bind(¬_strings);
|
| - }
|
| -
|
| - __ InvokeBuiltin(builtin, JUMP_JS); // Tail call. No return.
|
| -}
|
| -
|
| -
|
| -// Tries to get a signed int32 out of a double precision floating point heap
|
| -// number. Rounds towards 0. Fastest for doubles that are in the ranges
|
| -// -0x7fffffff to -0x40000000 or 0x40000000 to 0x7fffffff. This corresponds
|
| -// almost to the range of signed int32 values that are not Smis. Jumps to the
|
| -// label 'slow' if the double isn't in the range -0x80000000.0 to 0x80000000.0
|
| -// (excluding the endpoints).
|
| -static void GetInt32(MacroAssembler* masm,
|
| - Register source,
|
| - Register dest,
|
| - Register scratch,
|
| - Register scratch2,
|
| - Label* slow) {
|
| - Label right_exponent, done;
|
| - // Get exponent word.
|
| - __ ldr(scratch, FieldMemOperand(source, HeapNumber::kExponentOffset));
|
| - // Get exponent alone in scratch2.
|
| - __ Ubfx(scratch2,
|
| - scratch,
|
| - HeapNumber::kExponentShift,
|
| - HeapNumber::kExponentBits);
|
| - // Load dest with zero. We use this either for the final shift or
|
| - // for the answer.
|
| - __ mov(dest, Operand(0));
|
| - // Check whether the exponent matches a 32 bit signed int that is not a Smi.
|
| - // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). This is
|
| - // the exponent that we are fastest at and also the highest exponent we can
|
| - // handle here.
|
| - const uint32_t non_smi_exponent = HeapNumber::kExponentBias + 30;
|
| - // The non_smi_exponent, 0x41d, is too big for ARM's immediate field so we
|
| - // split it up to avoid a constant pool entry. You can't do that in general
|
| - // for cmp because of the overflow flag, but we know the exponent is in the
|
| - // range 0-2047 so there is no overflow.
|
| - int fudge_factor = 0x400;
|
| - __ sub(scratch2, scratch2, Operand(fudge_factor));
|
| - __ cmp(scratch2, Operand(non_smi_exponent - fudge_factor));
|
| - // If we have a match of the int32-but-not-Smi exponent then skip some logic.
|
| - __ b(eq, &right_exponent);
|
| - // If the exponent is higher than that then go to slow case. This catches
|
| - // numbers that don't fit in a signed int32, infinities and NaNs.
|
| - __ b(gt, slow);
|
| -
|
| - // We know the exponent is smaller than 30 (biased). If it is less than
|
| - // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie
|
| - // it rounds to zero.
|
| - const uint32_t zero_exponent = HeapNumber::kExponentBias + 0;
|
| - __ sub(scratch2, scratch2, Operand(zero_exponent - fudge_factor), SetCC);
|
| - // Dest already has a Smi zero.
|
| - __ b(lt, &done);
|
| - if (!CpuFeatures::IsSupported(VFP3)) {
|
| - // We have an exponent between 0 and 30 in scratch2. Subtract from 30 to
|
| - // get how much to shift down.
|
| - __ rsb(dest, scratch2, Operand(30));
|
| - }
|
| - __ bind(&right_exponent);
|
| - if (CpuFeatures::IsSupported(VFP3)) {
|
| - CpuFeatures::Scope scope(VFP3);
|
| - // ARMv7 VFP3 instructions implementing double precision to integer
|
| - // conversion using round to zero.
|
| - __ ldr(scratch2, FieldMemOperand(source, HeapNumber::kMantissaOffset));
|
| - __ vmov(d7, scratch2, scratch);
|
| - __ vcvt_s32_f64(s15, d7);
|
| - __ vmov(dest, s15);
|
| - } else {
|
| - // Get the top bits of the mantissa.
|
| - __ and_(scratch2, scratch, Operand(HeapNumber::kMantissaMask));
|
| - // Put back the implicit 1.
|
| - __ orr(scratch2, scratch2, Operand(1 << HeapNumber::kExponentShift));
|
| - // Shift up the mantissa bits to take up the space the exponent used to
|
| - // take. We just orred in the implicit bit so that took care of one and
|
| - // we want to leave the sign bit 0 so we subtract 2 bits from the shift
|
| - // distance.
|
| - const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
|
| - __ mov(scratch2, Operand(scratch2, LSL, shift_distance));
|
| - // Put sign in zero flag.
|
| - __ tst(scratch, Operand(HeapNumber::kSignMask));
|
| - // Get the second half of the double. For some exponents we don't
|
| - // actually need this because the bits get shifted out again, but
|
| - // it's probably slower to test than just to do it.
|
| - __ ldr(scratch, FieldMemOperand(source, HeapNumber::kMantissaOffset));
|
| - // Shift down 22 bits to get the last 10 bits.
|
| - __ orr(scratch, scratch2, Operand(scratch, LSR, 32 - shift_distance));
|
| - // Move down according to the exponent.
|
| - __ mov(dest, Operand(scratch, LSR, dest));
|
| - // Fix sign if sign bit was set.
|
| - __ rsb(dest, dest, Operand(0), LeaveCC, ne);
|
| - }
|
| - __ bind(&done);
|
| -}
|
| -
|
| -// For bitwise ops where the inputs are not both Smis we here try to determine
|
| -// whether both inputs are either Smis or at least heap numbers that can be
|
| -// represented by a 32 bit signed value. We truncate towards zero as required
|
| -// by the ES spec. If this is the case we do the bitwise op and see if the
|
| -// result is a Smi. If so, great, otherwise we try to find a heap number to
|
| -// write the answer into (either by allocating or by overwriting).
|
| -// On entry the operands are in lhs and rhs. On exit the answer is in r0.
|
| -void GenericBinaryOpStub::HandleNonSmiBitwiseOp(MacroAssembler* masm,
|
| - Register lhs,
|
| - Register rhs) {
|
| - Label slow, result_not_a_smi;
|
| - Label rhs_is_smi, lhs_is_smi;
|
| - Label done_checking_rhs, done_checking_lhs;
|
| -
|
| - Register heap_number_map = r6;
|
| - __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
|
| -
|
| - __ tst(lhs, Operand(kSmiTagMask));
|
| - __ b(eq, &lhs_is_smi); // It's a Smi so don't check it's a heap number.
|
| - __ ldr(r4, FieldMemOperand(lhs, HeapNumber::kMapOffset));
|
| - __ cmp(r4, heap_number_map);
|
| - __ b(ne, &slow);
|
| - GetInt32(masm, lhs, r3, r5, r4, &slow);
|
| - __ jmp(&done_checking_lhs);
|
| - __ bind(&lhs_is_smi);
|
| - __ mov(r3, Operand(lhs, ASR, 1));
|
| - __ bind(&done_checking_lhs);
|
| -
|
| - __ tst(rhs, Operand(kSmiTagMask));
|
| - __ b(eq, &rhs_is_smi); // It's a Smi so don't check it's a heap number.
|
| - __ ldr(r4, FieldMemOperand(rhs, HeapNumber::kMapOffset));
|
| - __ cmp(r4, heap_number_map);
|
| - __ b(ne, &slow);
|
| - GetInt32(masm, rhs, r2, r5, r4, &slow);
|
| - __ jmp(&done_checking_rhs);
|
| - __ bind(&rhs_is_smi);
|
| - __ mov(r2, Operand(rhs, ASR, 1));
|
| - __ bind(&done_checking_rhs);
|
| -
|
| - ASSERT(((lhs.is(r0) && rhs.is(r1)) || (lhs.is(r1) && rhs.is(r0))));
|
| -
|
| - // r0 and r1: Original operands (Smi or heap numbers).
|
| - // r2 and r3: Signed int32 operands.
|
| - switch (op_) {
|
| - case Token::BIT_OR: __ orr(r2, r2, Operand(r3)); break;
|
| - case Token::BIT_XOR: __ eor(r2, r2, Operand(r3)); break;
|
| - case Token::BIT_AND: __ and_(r2, r2, Operand(r3)); break;
|
| - case Token::SAR:
|
| - // Use only the 5 least significant bits of the shift count.
|
| - __ and_(r2, r2, Operand(0x1f));
|
| - __ mov(r2, Operand(r3, ASR, r2));
|
| - break;
|
| - case Token::SHR:
|
| - // Use only the 5 least significant bits of the shift count.
|
| - __ and_(r2, r2, Operand(0x1f));
|
| - __ mov(r2, Operand(r3, LSR, r2), SetCC);
|
| - // SHR is special because it is required to produce a positive answer.
|
| - // The code below for writing into heap numbers isn't capable of writing
|
| - // the register as an unsigned int so we go to slow case if we hit this
|
| - // case.
|
| - if (CpuFeatures::IsSupported(VFP3)) {
|
| - __ b(mi, &result_not_a_smi);
|
| - } else {
|
| - __ b(mi, &slow);
|
| - }
|
| - break;
|
| - case Token::SHL:
|
| - // Use only the 5 least significant bits of the shift count.
|
| - __ and_(r2, r2, Operand(0x1f));
|
| - __ mov(r2, Operand(r3, LSL, r2));
|
| - break;
|
| - default: UNREACHABLE();
|
| - }
|
| - // check that the *signed* result fits in a smi
|
| - __ add(r3, r2, Operand(0x40000000), SetCC);
|
| - __ b(mi, &result_not_a_smi);
|
| - __ mov(r0, Operand(r2, LSL, kSmiTagSize));
|
| - __ Ret();
|
| -
|
| - Label have_to_allocate, got_a_heap_number;
|
| - __ bind(&result_not_a_smi);
|
| - switch (mode_) {
|
| - case OVERWRITE_RIGHT: {
|
| - __ tst(rhs, Operand(kSmiTagMask));
|
| - __ b(eq, &have_to_allocate);
|
| - __ mov(r5, Operand(rhs));
|
| - break;
|
| - }
|
| - case OVERWRITE_LEFT: {
|
| - __ tst(lhs, Operand(kSmiTagMask));
|
| - __ b(eq, &have_to_allocate);
|
| - __ mov(r5, Operand(lhs));
|
| - break;
|
| - }
|
| - case NO_OVERWRITE: {
|
| - // Get a new heap number in r5. r4 and r7 are scratch.
|
| - __ AllocateHeapNumber(r5, r4, r7, heap_number_map, &slow);
|
| - }
|
| - default: break;
|
| - }
|
| - __ bind(&got_a_heap_number);
|
| - // r2: Answer as signed int32.
|
| - // r5: Heap number to write answer into.
|
| -
|
| - // Nothing can go wrong now, so move the heap number to r0, which is the
|
| - // result.
|
| - __ mov(r0, Operand(r5));
|
| -
|
| - if (CpuFeatures::IsSupported(VFP3)) {
|
| - // Convert the int32 in r2 to the heap number in r0. r3 is corrupted.
|
| - CpuFeatures::Scope scope(VFP3);
|
| - __ vmov(s0, r2);
|
| - if (op_ == Token::SHR) {
|
| - __ vcvt_f64_u32(d0, s0);
|
| - } else {
|
| - __ vcvt_f64_s32(d0, s0);
|
| - }
|
| - __ sub(r3, r0, Operand(kHeapObjectTag));
|
| - __ vstr(d0, r3, HeapNumber::kValueOffset);
|
| - __ Ret();
|
| - } else {
|
| - // Tail call that writes the int32 in r2 to the heap number in r0, using
|
| - // r3 as scratch. r0 is preserved and returned.
|
| - WriteInt32ToHeapNumberStub stub(r2, r0, r3);
|
| - __ TailCallStub(&stub);
|
| - }
|
| -
|
| - if (mode_ != NO_OVERWRITE) {
|
| - __ bind(&have_to_allocate);
|
| - // Get a new heap number in r5. r4 and r7 are scratch.
|
| - __ AllocateHeapNumber(r5, r4, r7, heap_number_map, &slow);
|
| - __ jmp(&got_a_heap_number);
|
| - }
|
| -
|
| - // If all else failed then we go to the runtime system.
|
| - __ bind(&slow);
|
| - __ Push(lhs, rhs); // Restore stack.
|
| - switch (op_) {
|
| - case Token::BIT_OR:
|
| - __ InvokeBuiltin(Builtins::BIT_OR, JUMP_JS);
|
| - break;
|
| - case Token::BIT_AND:
|
| - __ InvokeBuiltin(Builtins::BIT_AND, JUMP_JS);
|
| - break;
|
| - case Token::BIT_XOR:
|
| - __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_JS);
|
| - break;
|
| - case Token::SAR:
|
| - __ InvokeBuiltin(Builtins::SAR, JUMP_JS);
|
| - break;
|
| - case Token::SHR:
|
| - __ InvokeBuiltin(Builtins::SHR, JUMP_JS);
|
| - break;
|
| - case Token::SHL:
|
| - __ InvokeBuiltin(Builtins::SHL, JUMP_JS);
|
| - break;
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| -}
|
| -
|
| -
|
| -// Can we multiply by x with max two shifts and an add.
|
| -// This answers yes to all integers from 2 to 10.
|
| -static bool IsEasyToMultiplyBy(int x) {
|
| - if (x < 2) return false; // Avoid special cases.
|
| - if (x > (Smi::kMaxValue + 1) >> 2) return false; // Almost always overflows.
|
| - if (IsPowerOf2(x)) return true; // Simple shift.
|
| - if (PopCountLessThanEqual2(x)) return true; // Shift and add and shift.
|
| - if (IsPowerOf2(x + 1)) return true; // Patterns like 11111.
|
| - return false;
|
| -}
|
| -
|
| -
|
| -// Can multiply by anything that IsEasyToMultiplyBy returns true for.
|
| -// Source and destination may be the same register. This routine does
|
| -// not set carry and overflow the way a mul instruction would.
|
| -static void MultiplyByKnownInt(MacroAssembler* masm,
|
| - Register source,
|
| - Register destination,
|
| - int known_int) {
|
| - if (IsPowerOf2(known_int)) {
|
| - __ mov(destination, Operand(source, LSL, BitPosition(known_int)));
|
| - } else if (PopCountLessThanEqual2(known_int)) {
|
| - int first_bit = BitPosition(known_int);
|
| - int second_bit = BitPosition(known_int ^ (1 << first_bit));
|
| - __ add(destination, source, Operand(source, LSL, second_bit - first_bit));
|
| - if (first_bit != 0) {
|
| - __ mov(destination, Operand(destination, LSL, first_bit));
|
| - }
|
| - } else {
|
| - ASSERT(IsPowerOf2(known_int + 1)); // Patterns like 1111.
|
| - int the_bit = BitPosition(known_int + 1);
|
| - __ rsb(destination, source, Operand(source, LSL, the_bit));
|
| - }
|
| -}
|
| -
|
| -
|
| -// This function (as opposed to MultiplyByKnownInt) takes the known int in a
|
| -// a register for the cases where it doesn't know a good trick, and may deliver
|
| -// a result that needs shifting.
|
| -static void MultiplyByKnownInt2(
|
| - MacroAssembler* masm,
|
| - Register result,
|
| - Register source,
|
| - Register known_int_register, // Smi tagged.
|
| - int known_int,
|
| - int* required_shift) { // Including Smi tag shift
|
| - switch (known_int) {
|
| - case 3:
|
| - __ add(result, source, Operand(source, LSL, 1));
|
| - *required_shift = 1;
|
| - break;
|
| - case 5:
|
| - __ add(result, source, Operand(source, LSL, 2));
|
| - *required_shift = 1;
|
| - break;
|
| - case 6:
|
| - __ add(result, source, Operand(source, LSL, 1));
|
| - *required_shift = 2;
|
| - break;
|
| - case 7:
|
| - __ rsb(result, source, Operand(source, LSL, 3));
|
| - *required_shift = 1;
|
| - break;
|
| - case 9:
|
| - __ add(result, source, Operand(source, LSL, 3));
|
| - *required_shift = 1;
|
| - break;
|
| - case 10:
|
| - __ add(result, source, Operand(source, LSL, 2));
|
| - *required_shift = 2;
|
| - break;
|
| - default:
|
| - ASSERT(!IsPowerOf2(known_int)); // That would be very inefficient.
|
| - __ mul(result, source, known_int_register);
|
| - *required_shift = 0;
|
| - }
|
| -}
|
| -
|
| -
|
| -// This uses versions of the sum-of-digits-to-see-if-a-number-is-divisible-by-3
|
| -// trick. See http://en.wikipedia.org/wiki/Divisibility_rule
|
| -// Takes the sum of the digits base (mask + 1) repeatedly until we have a
|
| -// number from 0 to mask. On exit the 'eq' condition flags are set if the
|
| -// answer is exactly the mask.
|
| -void IntegerModStub::DigitSum(MacroAssembler* masm,
|
| - Register lhs,
|
| - int mask,
|
| - int shift,
|
| - Label* entry) {
|
| - ASSERT(mask > 0);
|
| - ASSERT(mask <= 0xff); // This ensures we don't need ip to use it.
|
| - Label loop;
|
| - __ bind(&loop);
|
| - __ and_(ip, lhs, Operand(mask));
|
| - __ add(lhs, ip, Operand(lhs, LSR, shift));
|
| - __ bind(entry);
|
| - __ cmp(lhs, Operand(mask));
|
| - __ b(gt, &loop);
|
| -}
|
| -
|
| -
|
| -void IntegerModStub::DigitSum(MacroAssembler* masm,
|
| - Register lhs,
|
| - Register scratch,
|
| - int mask,
|
| - int shift1,
|
| - int shift2,
|
| - Label* entry) {
|
| - ASSERT(mask > 0);
|
| - ASSERT(mask <= 0xff); // This ensures we don't need ip to use it.
|
| - Label loop;
|
| - __ bind(&loop);
|
| - __ bic(scratch, lhs, Operand(mask));
|
| - __ and_(ip, lhs, Operand(mask));
|
| - __ add(lhs, ip, Operand(lhs, LSR, shift1));
|
| - __ add(lhs, lhs, Operand(scratch, LSR, shift2));
|
| - __ bind(entry);
|
| - __ cmp(lhs, Operand(mask));
|
| - __ b(gt, &loop);
|
| -}
|
| -
|
| -
|
| -// Splits the number into two halves (bottom half has shift bits). The top
|
| -// half is subtracted from the bottom half. If the result is negative then
|
| -// rhs is added.
|
| -void IntegerModStub::ModGetInRangeBySubtraction(MacroAssembler* masm,
|
| - Register lhs,
|
| - int shift,
|
| - int rhs) {
|
| - int mask = (1 << shift) - 1;
|
| - __ and_(ip, lhs, Operand(mask));
|
| - __ sub(lhs, ip, Operand(lhs, LSR, shift), SetCC);
|
| - __ add(lhs, lhs, Operand(rhs), LeaveCC, mi);
|
| -}
|
| -
|
| -
|
| -void IntegerModStub::ModReduce(MacroAssembler* masm,
|
| - Register lhs,
|
| - int max,
|
| - int denominator) {
|
| - int limit = denominator;
|
| - while (limit * 2 <= max) limit *= 2;
|
| - while (limit >= denominator) {
|
| - __ cmp(lhs, Operand(limit));
|
| - __ sub(lhs, lhs, Operand(limit), LeaveCC, ge);
|
| - limit >>= 1;
|
| - }
|
| -}
|
| -
|
| -
|
| -void IntegerModStub::ModAnswer(MacroAssembler* masm,
|
| - Register result,
|
| - Register shift_distance,
|
| - Register mask_bits,
|
| - Register sum_of_digits) {
|
| - __ add(result, mask_bits, Operand(sum_of_digits, LSL, shift_distance));
|
| - __ Ret();
|
| -}
|
| -
|
| -
|
| -// See comment for class.
|
| -void IntegerModStub::Generate(MacroAssembler* masm) {
|
| - __ mov(lhs_, Operand(lhs_, LSR, shift_distance_));
|
| - __ bic(odd_number_, odd_number_, Operand(1));
|
| - __ mov(odd_number_, Operand(odd_number_, LSL, 1));
|
| - // We now have (odd_number_ - 1) * 2 in the register.
|
| - // Build a switch out of branches instead of data because it avoids
|
| - // having to teach the assembler about intra-code-object pointers
|
| - // that are not in relative branch instructions.
|
| - Label mod3, mod5, mod7, mod9, mod11, mod13, mod15, mod17, mod19;
|
| - Label mod21, mod23, mod25;
|
| - { Assembler::BlockConstPoolScope block_const_pool(masm);
|
| - __ add(pc, pc, Operand(odd_number_));
|
| - // When you read pc it is always 8 ahead, but when you write it you always
|
| - // write the actual value. So we put in two nops to take up the slack.
|
| - __ nop();
|
| - __ nop();
|
| - __ b(&mod3);
|
| - __ b(&mod5);
|
| - __ b(&mod7);
|
| - __ b(&mod9);
|
| - __ b(&mod11);
|
| - __ b(&mod13);
|
| - __ b(&mod15);
|
| - __ b(&mod17);
|
| - __ b(&mod19);
|
| - __ b(&mod21);
|
| - __ b(&mod23);
|
| - __ b(&mod25);
|
| - }
|
| -
|
| - // For each denominator we find a multiple that is almost only ones
|
| - // when expressed in binary. Then we do the sum-of-digits trick for
|
| - // that number. If the multiple is not 1 then we have to do a little
|
| - // more work afterwards to get the answer into the 0-denominator-1
|
| - // range.
|
| - DigitSum(masm, lhs_, 3, 2, &mod3); // 3 = b11.
|
| - __ sub(lhs_, lhs_, Operand(3), LeaveCC, eq);
|
| - ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
|
| -
|
| - DigitSum(masm, lhs_, 0xf, 4, &mod5); // 5 * 3 = b1111.
|
| - ModGetInRangeBySubtraction(masm, lhs_, 2, 5);
|
| - ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
|
| -
|
| - DigitSum(masm, lhs_, 7, 3, &mod7); // 7 = b111.
|
| - __ sub(lhs_, lhs_, Operand(7), LeaveCC, eq);
|
| - ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
|
| -
|
| - DigitSum(masm, lhs_, 0x3f, 6, &mod9); // 7 * 9 = b111111.
|
| - ModGetInRangeBySubtraction(masm, lhs_, 3, 9);
|
| - ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
|
| -
|
| - DigitSum(masm, lhs_, r5, 0x3f, 6, 3, &mod11); // 5 * 11 = b110111.
|
| - ModReduce(masm, lhs_, 0x3f, 11);
|
| - ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
|
| -
|
| - DigitSum(masm, lhs_, r5, 0xff, 8, 5, &mod13); // 19 * 13 = b11110111.
|
| - ModReduce(masm, lhs_, 0xff, 13);
|
| - ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
|
| -
|
| - DigitSum(masm, lhs_, 0xf, 4, &mod15); // 15 = b1111.
|
| - __ sub(lhs_, lhs_, Operand(15), LeaveCC, eq);
|
| - ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
|
| -
|
| - DigitSum(masm, lhs_, 0xff, 8, &mod17); // 15 * 17 = b11111111.
|
| - ModGetInRangeBySubtraction(masm, lhs_, 4, 17);
|
| - ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
|
| -
|
| - DigitSum(masm, lhs_, r5, 0xff, 8, 5, &mod19); // 13 * 19 = b11110111.
|
| - ModReduce(masm, lhs_, 0xff, 19);
|
| - ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
|
| -
|
| - DigitSum(masm, lhs_, 0x3f, 6, &mod21); // 3 * 21 = b111111.
|
| - ModReduce(masm, lhs_, 0x3f, 21);
|
| - ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
|
| -
|
| - DigitSum(masm, lhs_, r5, 0xff, 8, 7, &mod23); // 11 * 23 = b11111101.
|
| - ModReduce(masm, lhs_, 0xff, 23);
|
| - ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
|
| -
|
| - DigitSum(masm, lhs_, r5, 0x7f, 7, 6, &mod25); // 5 * 25 = b1111101.
|
| - ModReduce(masm, lhs_, 0x7f, 25);
|
| - ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
|
| -}
|
| -
|
| -
|
| const char* GenericBinaryOpStub::GetName() {
|
| if (name_ != NULL) return name_;
|
| const int len = 100;
|
| @@ -8985,2787 +7097,6 @@
|
| }
|
|
|
|
|
| -
|
| -void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
|
| - // lhs_ : x
|
| - // rhs_ : y
|
| - // r0 : result
|
| -
|
| - Register result = r0;
|
| - Register lhs = lhs_;
|
| - Register rhs = rhs_;
|
| -
|
| - // This code can't cope with other register allocations yet.
|
| - ASSERT(result.is(r0) &&
|
| - ((lhs.is(r0) && rhs.is(r1)) ||
|
| - (lhs.is(r1) && rhs.is(r0))));
|
| -
|
| - Register smi_test_reg = VirtualFrame::scratch0();
|
| - Register scratch = VirtualFrame::scratch1();
|
| -
|
| - // All ops need to know whether we are dealing with two Smis. Set up
|
| - // smi_test_reg to tell us that.
|
| - if (ShouldGenerateSmiCode()) {
|
| - __ orr(smi_test_reg, lhs, Operand(rhs));
|
| - }
|
| -
|
| - switch (op_) {
|
| - case Token::ADD: {
|
| - Label not_smi;
|
| - // Fast path.
|
| - if (ShouldGenerateSmiCode()) {
|
| - STATIC_ASSERT(kSmiTag == 0); // Adjust code below.
|
| - __ tst(smi_test_reg, Operand(kSmiTagMask));
|
| - __ b(ne, ¬_smi);
|
| - __ add(r0, r1, Operand(r0), SetCC); // Add y optimistically.
|
| - // Return if no overflow.
|
| - __ Ret(vc);
|
| - __ sub(r0, r0, Operand(r1)); // Revert optimistic add.
|
| - }
|
| - HandleBinaryOpSlowCases(masm, ¬_smi, lhs, rhs, Builtins::ADD);
|
| - break;
|
| - }
|
| -
|
| - case Token::SUB: {
|
| - Label not_smi;
|
| - // Fast path.
|
| - if (ShouldGenerateSmiCode()) {
|
| - STATIC_ASSERT(kSmiTag == 0); // Adjust code below.
|
| - __ tst(smi_test_reg, Operand(kSmiTagMask));
|
| - __ b(ne, ¬_smi);
|
| - if (lhs.is(r1)) {
|
| - __ sub(r0, r1, Operand(r0), SetCC); // Subtract y optimistically.
|
| - // Return if no overflow.
|
| - __ Ret(vc);
|
| - __ sub(r0, r1, Operand(r0)); // Revert optimistic subtract.
|
| - } else {
|
| - __ sub(r0, r0, Operand(r1), SetCC); // Subtract y optimistically.
|
| - // Return if no overflow.
|
| - __ Ret(vc);
|
| - __ add(r0, r0, Operand(r1)); // Revert optimistic subtract.
|
| - }
|
| - }
|
| - HandleBinaryOpSlowCases(masm, ¬_smi, lhs, rhs, Builtins::SUB);
|
| - break;
|
| - }
|
| -
|
| - case Token::MUL: {
|
| - Label not_smi, slow;
|
| - if (ShouldGenerateSmiCode()) {
|
| - STATIC_ASSERT(kSmiTag == 0); // adjust code below
|
| - __ tst(smi_test_reg, Operand(kSmiTagMask));
|
| - Register scratch2 = smi_test_reg;
|
| - smi_test_reg = no_reg;
|
| - __ b(ne, ¬_smi);
|
| - // Remove tag from one operand (but keep sign), so that result is Smi.
|
| - __ mov(ip, Operand(rhs, ASR, kSmiTagSize));
|
| - // Do multiplication
|
| - // scratch = lower 32 bits of ip * lhs.
|
| - __ smull(scratch, scratch2, lhs, ip);
|
| - // Go slow on overflows (overflow bit is not set).
|
| - __ mov(ip, Operand(scratch, ASR, 31));
|
| - // No overflow if higher 33 bits are identical.
|
| - __ cmp(ip, Operand(scratch2));
|
| - __ b(ne, &slow);
|
| - // Go slow on zero result to handle -0.
|
| - __ tst(scratch, Operand(scratch));
|
| - __ mov(result, Operand(scratch), LeaveCC, ne);
|
| - __ Ret(ne);
|
| - // We need -0 if we were multiplying a negative number with 0 to get 0.
|
| - // We know one of them was zero.
|
| - __ add(scratch2, rhs, Operand(lhs), SetCC);
|
| - __ mov(result, Operand(Smi::FromInt(0)), LeaveCC, pl);
|
| - __ Ret(pl); // Return Smi 0 if the non-zero one was positive.
|
| - // Slow case. We fall through here if we multiplied a negative number
|
| - // with 0, because that would mean we should produce -0.
|
| - __ bind(&slow);
|
| - }
|
| - HandleBinaryOpSlowCases(masm, ¬_smi, lhs, rhs, Builtins::MUL);
|
| - break;
|
| - }
|
| -
|
| - case Token::DIV:
|
| - case Token::MOD: {
|
| - Label not_smi;
|
| - if (ShouldGenerateSmiCode() && specialized_on_rhs_) {
|
| - Label lhs_is_unsuitable;
|
| - __ BranchOnNotSmi(lhs, ¬_smi);
|
| - if (IsPowerOf2(constant_rhs_)) {
|
| - if (op_ == Token::MOD) {
|
| - __ and_(rhs,
|
| - lhs,
|
| - Operand(0x80000000u | ((constant_rhs_ << kSmiTagSize) - 1)),
|
| - SetCC);
|
| - // We now have the answer, but if the input was negative we also
|
| - // have the sign bit. Our work is done if the result is
|
| - // positive or zero:
|
| - if (!rhs.is(r0)) {
|
| - __ mov(r0, rhs, LeaveCC, pl);
|
| - }
|
| - __ Ret(pl);
|
| - // A mod of a negative left hand side must return a negative number.
|
| - // Unfortunately if the answer is 0 then we must return -0. And we
|
| - // already optimistically trashed rhs so we may need to restore it.
|
| - __ eor(rhs, rhs, Operand(0x80000000u), SetCC);
|
| - // Next two instructions are conditional on the answer being -0.
|
| - __ mov(rhs, Operand(Smi::FromInt(constant_rhs_)), LeaveCC, eq);
|
| - __ b(eq, &lhs_is_unsuitable);
|
| - // We need to subtract the dividend. Eg. -3 % 4 == -3.
|
| - __ sub(result, rhs, Operand(Smi::FromInt(constant_rhs_)));
|
| - } else {
|
| - ASSERT(op_ == Token::DIV);
|
| - __ tst(lhs,
|
| - Operand(0x80000000u | ((constant_rhs_ << kSmiTagSize) - 1)));
|
| - __ b(ne, &lhs_is_unsuitable); // Go slow on negative or remainder.
|
| - int shift = 0;
|
| - int d = constant_rhs_;
|
| - while ((d & 1) == 0) {
|
| - d >>= 1;
|
| - shift++;
|
| - }
|
| - __ mov(r0, Operand(lhs, LSR, shift));
|
| - __ bic(r0, r0, Operand(kSmiTagMask));
|
| - }
|
| - } else {
|
| - // Not a power of 2.
|
| - __ tst(lhs, Operand(0x80000000u));
|
| - __ b(ne, &lhs_is_unsuitable);
|
| - // Find a fixed point reciprocal of the divisor so we can divide by
|
| - // multiplying.
|
| - double divisor = 1.0 / constant_rhs_;
|
| - int shift = 32;
|
| - double scale = 4294967296.0; // 1 << 32.
|
| - uint32_t mul;
|
| - // Maximise the precision of the fixed point reciprocal.
|
| - while (true) {
|
| - mul = static_cast<uint32_t>(scale * divisor);
|
| - if (mul >= 0x7fffffff) break;
|
| - scale *= 2.0;
|
| - shift++;
|
| - }
|
| - mul++;
|
| - Register scratch2 = smi_test_reg;
|
| - smi_test_reg = no_reg;
|
| - __ mov(scratch2, Operand(mul));
|
| - __ umull(scratch, scratch2, scratch2, lhs);
|
| - __ mov(scratch2, Operand(scratch2, LSR, shift - 31));
|
| - // scratch2 is lhs / rhs. scratch2 is not Smi tagged.
|
| - // rhs is still the known rhs. rhs is Smi tagged.
|
| - // lhs is still the unkown lhs. lhs is Smi tagged.
|
| - int required_scratch_shift = 0; // Including the Smi tag shift of 1.
|
| - // scratch = scratch2 * rhs.
|
| - MultiplyByKnownInt2(masm,
|
| - scratch,
|
| - scratch2,
|
| - rhs,
|
| - constant_rhs_,
|
| - &required_scratch_shift);
|
| - // scratch << required_scratch_shift is now the Smi tagged rhs *
|
| - // (lhs / rhs) where / indicates integer division.
|
| - if (op_ == Token::DIV) {
|
| - __ cmp(lhs, Operand(scratch, LSL, required_scratch_shift));
|
| - __ b(ne, &lhs_is_unsuitable); // There was a remainder.
|
| - __ mov(result, Operand(scratch2, LSL, kSmiTagSize));
|
| - } else {
|
| - ASSERT(op_ == Token::MOD);
|
| - __ sub(result, lhs, Operand(scratch, LSL, required_scratch_shift));
|
| - }
|
| - }
|
| - __ Ret();
|
| - __ bind(&lhs_is_unsuitable);
|
| - } else if (op_ == Token::MOD &&
|
| - runtime_operands_type_ != BinaryOpIC::HEAP_NUMBERS &&
|
| - runtime_operands_type_ != BinaryOpIC::STRINGS) {
|
| - // Do generate a bit of smi code for modulus even though the default for
|
| - // modulus is not to do it, but as the ARM processor has no coprocessor
|
| - // support for modulus checking for smis makes sense. We can handle
|
| - // 1 to 25 times any power of 2. This covers over half the numbers from
|
| - // 1 to 100 including all of the first 25. (Actually the constants < 10
|
| - // are handled above by reciprocal multiplication. We only get here for
|
| - // those cases if the right hand side is not a constant or for cases
|
| - // like 192 which is 3*2^6 and ends up in the 3 case in the integer mod
|
| - // stub.)
|
| - Label slow;
|
| - Label not_power_of_2;
|
| - ASSERT(!ShouldGenerateSmiCode());
|
| - STATIC_ASSERT(kSmiTag == 0); // Adjust code below.
|
| - // Check for two positive smis.
|
| - __ orr(smi_test_reg, lhs, Operand(rhs));
|
| - __ tst(smi_test_reg, Operand(0x80000000u | kSmiTagMask));
|
| - __ b(ne, &slow);
|
| - // Check that rhs is a power of two and not zero.
|
| - Register mask_bits = r3;
|
| - __ sub(scratch, rhs, Operand(1), SetCC);
|
| - __ b(mi, &slow);
|
| - __ and_(mask_bits, rhs, Operand(scratch), SetCC);
|
| - __ b(ne, ¬_power_of_2);
|
| - // Calculate power of two modulus.
|
| - __ and_(result, lhs, Operand(scratch));
|
| - __ Ret();
|
| -
|
| - __ bind(¬_power_of_2);
|
| - __ eor(scratch, scratch, Operand(mask_bits));
|
| - // At least two bits are set in the modulus. The high one(s) are in
|
| - // mask_bits and the low one is scratch + 1.
|
| - __ and_(mask_bits, scratch, Operand(lhs));
|
| - Register shift_distance = scratch;
|
| - scratch = no_reg;
|
| -
|
| - // The rhs consists of a power of 2 multiplied by some odd number.
|
| - // The power-of-2 part we handle by putting the corresponding bits
|
| - // from the lhs in the mask_bits register, and the power in the
|
| - // shift_distance register. Shift distance is never 0 due to Smi
|
| - // tagging.
|
| - __ CountLeadingZeros(r4, shift_distance, shift_distance);
|
| - __ rsb(shift_distance, r4, Operand(32));
|
| -
|
| - // Now we need to find out what the odd number is. The last bit is
|
| - // always 1.
|
| - Register odd_number = r4;
|
| - __ mov(odd_number, Operand(rhs, LSR, shift_distance));
|
| - __ cmp(odd_number, Operand(25));
|
| - __ b(gt, &slow);
|
| -
|
| - IntegerModStub stub(
|
| - result, shift_distance, odd_number, mask_bits, lhs, r5);
|
| - __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); // Tail call.
|
| -
|
| - __ bind(&slow);
|
| - }
|
| - HandleBinaryOpSlowCases(
|
| - masm,
|
| - ¬_smi,
|
| - lhs,
|
| - rhs,
|
| - op_ == Token::MOD ? Builtins::MOD : Builtins::DIV);
|
| - break;
|
| - }
|
| -
|
| - case Token::BIT_OR:
|
| - case Token::BIT_AND:
|
| - case Token::BIT_XOR:
|
| - case Token::SAR:
|
| - case Token::SHR:
|
| - case Token::SHL: {
|
| - Label slow;
|
| - STATIC_ASSERT(kSmiTag == 0); // adjust code below
|
| - __ tst(smi_test_reg, Operand(kSmiTagMask));
|
| - __ b(ne, &slow);
|
| - Register scratch2 = smi_test_reg;
|
| - smi_test_reg = no_reg;
|
| - switch (op_) {
|
| - case Token::BIT_OR: __ orr(result, rhs, Operand(lhs)); break;
|
| - case Token::BIT_AND: __ and_(result, rhs, Operand(lhs)); break;
|
| - case Token::BIT_XOR: __ eor(result, rhs, Operand(lhs)); break;
|
| - case Token::SAR:
|
| - // Remove tags from right operand.
|
| - __ GetLeastBitsFromSmi(scratch2, rhs, 5);
|
| - __ mov(result, Operand(lhs, ASR, scratch2));
|
| - // Smi tag result.
|
| - __ bic(result, result, Operand(kSmiTagMask));
|
| - break;
|
| - case Token::SHR:
|
| - // Remove tags from operands. We can't do this on a 31 bit number
|
| - // because then the 0s get shifted into bit 30 instead of bit 31.
|
| - __ mov(scratch, Operand(lhs, ASR, kSmiTagSize)); // x
|
| - __ GetLeastBitsFromSmi(scratch2, rhs, 5);
|
| - __ mov(scratch, Operand(scratch, LSR, scratch2));
|
| - // Unsigned shift is not allowed to produce a negative number, so
|
| - // check the sign bit and the sign bit after Smi tagging.
|
| - __ tst(scratch, Operand(0xc0000000));
|
| - __ b(ne, &slow);
|
| - // Smi tag result.
|
| - __ mov(result, Operand(scratch, LSL, kSmiTagSize));
|
| - break;
|
| - case Token::SHL:
|
| - // Remove tags from operands.
|
| - __ mov(scratch, Operand(lhs, ASR, kSmiTagSize)); // x
|
| - __ GetLeastBitsFromSmi(scratch2, rhs, 5);
|
| - __ mov(scratch, Operand(scratch, LSL, scratch2));
|
| - // Check that the signed result fits in a Smi.
|
| - __ add(scratch2, scratch, Operand(0x40000000), SetCC);
|
| - __ b(mi, &slow);
|
| - __ mov(result, Operand(scratch, LSL, kSmiTagSize));
|
| - break;
|
| - default: UNREACHABLE();
|
| - }
|
| - __ Ret();
|
| - __ bind(&slow);
|
| - HandleNonSmiBitwiseOp(masm, lhs, rhs);
|
| - break;
|
| - }
|
| -
|
| - default: UNREACHABLE();
|
| - }
|
| - // This code should be unreachable.
|
| - __ stop("Unreachable");
|
| -
|
| - // Generate an unreachable reference to the DEFAULT stub so that it can be
|
| - // found at the end of this stub when clearing ICs at GC.
|
| - // TODO(kaznacheev): Check performance impact and get rid of this.
|
| - if (runtime_operands_type_ != BinaryOpIC::DEFAULT) {
|
| - GenericBinaryOpStub uninit(MinorKey(), BinaryOpIC::DEFAULT);
|
| - __ CallStub(&uninit);
|
| - }
|
| -}
|
| -
|
| -
|
| -void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
|
| - Label get_result;
|
| -
|
| - __ Push(r1, r0);
|
| -
|
| - __ mov(r2, Operand(Smi::FromInt(MinorKey())));
|
| - __ mov(r1, Operand(Smi::FromInt(op_)));
|
| - __ mov(r0, Operand(Smi::FromInt(runtime_operands_type_)));
|
| - __ Push(r2, r1, r0);
|
| -
|
| - __ TailCallExternalReference(
|
| - ExternalReference(IC_Utility(IC::kBinaryOp_Patch)),
|
| - 5,
|
| - 1);
|
| -}
|
| -
|
| -
|
| -Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) {
|
| - GenericBinaryOpStub stub(key, type_info);
|
| - return stub.GetCode();
|
| -}
|
| -
|
| -
|
| -void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
|
| - // Argument is a number and is on stack and in r0.
|
| - Label runtime_call;
|
| - Label input_not_smi;
|
| - Label loaded;
|
| -
|
| - if (CpuFeatures::IsSupported(VFP3)) {
|
| - // Load argument and check if it is a smi.
|
| - __ BranchOnNotSmi(r0, &input_not_smi);
|
| -
|
| - CpuFeatures::Scope scope(VFP3);
|
| - // Input is a smi. Convert to double and load the low and high words
|
| - // of the double into r2, r3.
|
| - __ IntegerToDoubleConversionWithVFP3(r0, r3, r2);
|
| - __ b(&loaded);
|
| -
|
| - __ bind(&input_not_smi);
|
| - // Check if input is a HeapNumber.
|
| - __ CheckMap(r0,
|
| - r1,
|
| - Heap::kHeapNumberMapRootIndex,
|
| - &runtime_call,
|
| - true);
|
| - // Input is a HeapNumber. Load it to a double register and store the
|
| - // low and high words into r2, r3.
|
| - __ Ldrd(r2, r3, FieldMemOperand(r0, HeapNumber::kValueOffset));
|
| -
|
| - __ bind(&loaded);
|
| - // r2 = low 32 bits of double value
|
| - // r3 = high 32 bits of double value
|
| - // Compute hash (the shifts are arithmetic):
|
| - // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1);
|
| - __ eor(r1, r2, Operand(r3));
|
| - __ eor(r1, r1, Operand(r1, ASR, 16));
|
| - __ eor(r1, r1, Operand(r1, ASR, 8));
|
| - ASSERT(IsPowerOf2(TranscendentalCache::kCacheSize));
|
| - __ And(r1, r1, Operand(TranscendentalCache::kCacheSize - 1));
|
| -
|
| - // r2 = low 32 bits of double value.
|
| - // r3 = high 32 bits of double value.
|
| - // r1 = TranscendentalCache::hash(double value).
|
| - __ mov(r0,
|
| - Operand(ExternalReference::transcendental_cache_array_address()));
|
| - // r0 points to cache array.
|
| - __ ldr(r0, MemOperand(r0, type_ * sizeof(TranscendentalCache::caches_[0])));
|
| - // r0 points to the cache for the type type_.
|
| - // If NULL, the cache hasn't been initialized yet, so go through runtime.
|
| - __ cmp(r0, Operand(0));
|
| - __ b(eq, &runtime_call);
|
| -
|
| -#ifdef DEBUG
|
| - // Check that the layout of cache elements match expectations.
|
| - { TranscendentalCache::Element test_elem[2];
|
| - char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
|
| - char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
|
| - char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
|
| - char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
|
| - char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
|
| - CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer.
|
| - CHECK_EQ(0, elem_in0 - elem_start);
|
| - CHECK_EQ(kIntSize, elem_in1 - elem_start);
|
| - CHECK_EQ(2 * kIntSize, elem_out - elem_start);
|
| - }
|
| -#endif
|
| -
|
| - // Find the address of the r1'st entry in the cache, i.e., &r0[r1*12].
|
| - __ add(r1, r1, Operand(r1, LSL, 1));
|
| - __ add(r0, r0, Operand(r1, LSL, 2));
|
| - // Check if cache matches: Double value is stored in uint32_t[2] array.
|
| - __ ldm(ia, r0, r4.bit()| r5.bit() | r6.bit());
|
| - __ cmp(r2, r4);
|
| - __ b(ne, &runtime_call);
|
| - __ cmp(r3, r5);
|
| - __ b(ne, &runtime_call);
|
| - // Cache hit. Load result, pop argument and return.
|
| - __ mov(r0, Operand(r6));
|
| - __ pop();
|
| - __ Ret();
|
| - }
|
| -
|
| - __ bind(&runtime_call);
|
| - __ TailCallExternalReference(ExternalReference(RuntimeFunction()), 1, 1);
|
| -}
|
| -
|
| -
|
| -Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
|
| - switch (type_) {
|
| - // Add more cases when necessary.
|
| - case TranscendentalCache::SIN: return Runtime::kMath_sin;
|
| - case TranscendentalCache::COS: return Runtime::kMath_cos;
|
| - default:
|
| - UNIMPLEMENTED();
|
| - return Runtime::kAbort;
|
| - }
|
| -}
|
| -
|
| -
|
| -void StackCheckStub::Generate(MacroAssembler* masm) {
|
| - // Do tail-call to runtime routine. Runtime routines expect at least one
|
| - // argument, so give it a Smi.
|
| - __ mov(r0, Operand(Smi::FromInt(0)));
|
| - __ push(r0);
|
| - __ TailCallRuntime(Runtime::kStackGuard, 1, 1);
|
| -
|
| - __ StubReturn(1);
|
| -}
|
| -
|
| -
|
| -void GenericUnaryOpStub::Generate(MacroAssembler* masm) {
|
| - Label slow, done;
|
| -
|
| - Register heap_number_map = r6;
|
| - __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
|
| -
|
| - if (op_ == Token::SUB) {
|
| - // Check whether the value is a smi.
|
| - Label try_float;
|
| - __ tst(r0, Operand(kSmiTagMask));
|
| - __ b(ne, &try_float);
|
| -
|
| - // Go slow case if the value of the expression is zero
|
| - // to make sure that we switch between 0 and -0.
|
| - if (negative_zero_ == kStrictNegativeZero) {
|
| - // If we have to check for zero, then we can check for the max negative
|
| - // smi while we are at it.
|
| - __ bic(ip, r0, Operand(0x80000000), SetCC);
|
| - __ b(eq, &slow);
|
| - __ rsb(r0, r0, Operand(0));
|
| - __ StubReturn(1);
|
| - } else {
|
| - // The value of the expression is a smi and 0 is OK for -0. Try
|
| - // optimistic subtraction '0 - value'.
|
| - __ rsb(r0, r0, Operand(0), SetCC);
|
| - __ StubReturn(1, vc);
|
| - // We don't have to reverse the optimistic neg since the only case
|
| - // where we fall through is the minimum negative Smi, which is the case
|
| - // where the neg leaves the register unchanged.
|
| - __ jmp(&slow); // Go slow on max negative Smi.
|
| - }
|
| -
|
| - __ bind(&try_float);
|
| - __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
|
| - __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
|
| - __ cmp(r1, heap_number_map);
|
| - __ b(ne, &slow);
|
| - // r0 is a heap number. Get a new heap number in r1.
|
| - if (overwrite_ == UNARY_OVERWRITE) {
|
| - __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
|
| - __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign.
|
| - __ str(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
|
| - } else {
|
| - __ AllocateHeapNumber(r1, r2, r3, r6, &slow);
|
| - __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
|
| - __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
|
| - __ str(r3, FieldMemOperand(r1, HeapNumber::kMantissaOffset));
|
| - __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign.
|
| - __ str(r2, FieldMemOperand(r1, HeapNumber::kExponentOffset));
|
| - __ mov(r0, Operand(r1));
|
| - }
|
| - } else if (op_ == Token::BIT_NOT) {
|
| - // Check if the operand is a heap number.
|
| - __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
|
| - __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
|
| - __ cmp(r1, heap_number_map);
|
| - __ b(ne, &slow);
|
| -
|
| - // Convert the heap number is r0 to an untagged integer in r1.
|
| - GetInt32(masm, r0, r1, r2, r3, &slow);
|
| -
|
| - // Do the bitwise operation (move negated) and check if the result
|
| - // fits in a smi.
|
| - Label try_float;
|
| - __ mvn(r1, Operand(r1));
|
| - __ add(r2, r1, Operand(0x40000000), SetCC);
|
| - __ b(mi, &try_float);
|
| - __ mov(r0, Operand(r1, LSL, kSmiTagSize));
|
| - __ b(&done);
|
| -
|
| - __ bind(&try_float);
|
| - if (!overwrite_ == UNARY_OVERWRITE) {
|
| - // Allocate a fresh heap number, but don't overwrite r0 until
|
| - // we're sure we can do it without going through the slow case
|
| - // that needs the value in r0.
|
| - __ AllocateHeapNumber(r2, r3, r4, r6, &slow);
|
| - __ mov(r0, Operand(r2));
|
| - }
|
| -
|
| - if (CpuFeatures::IsSupported(VFP3)) {
|
| - // Convert the int32 in r1 to the heap number in r0. r2 is corrupted.
|
| - CpuFeatures::Scope scope(VFP3);
|
| - __ vmov(s0, r1);
|
| - __ vcvt_f64_s32(d0, s0);
|
| - __ sub(r2, r0, Operand(kHeapObjectTag));
|
| - __ vstr(d0, r2, HeapNumber::kValueOffset);
|
| - } else {
|
| - // WriteInt32ToHeapNumberStub does not trigger GC, so we do not
|
| - // have to set up a frame.
|
| - WriteInt32ToHeapNumberStub stub(r1, r0, r2);
|
| - __ push(lr);
|
| - __ Call(stub.GetCode(), RelocInfo::CODE_TARGET);
|
| - __ pop(lr);
|
| - }
|
| - } else {
|
| - UNIMPLEMENTED();
|
| - }
|
| -
|
| - __ bind(&done);
|
| - __ StubReturn(1);
|
| -
|
| - // Handle the slow case by jumping to the JavaScript builtin.
|
| - __ bind(&slow);
|
| - __ push(r0);
|
| - switch (op_) {
|
| - case Token::SUB:
|
| - __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_JS);
|
| - break;
|
| - case Token::BIT_NOT:
|
| - __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_JS);
|
| - break;
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| -}
|
| -
|
| -
|
| -void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
|
| - // r0 holds the exception.
|
| -
|
| - // Adjust this code if not the case.
|
| - STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
|
| -
|
| - // Drop the sp to the top of the handler.
|
| - __ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
|
| - __ ldr(sp, MemOperand(r3));
|
| -
|
| - // Restore the next handler and frame pointer, discard handler state.
|
| - STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
| - __ pop(r2);
|
| - __ str(r2, MemOperand(r3));
|
| - STATIC_ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize);
|
| - __ ldm(ia_w, sp, r3.bit() | fp.bit()); // r3: discarded state.
|
| -
|
| - // Before returning we restore the context from the frame pointer if
|
| - // not NULL. The frame pointer is NULL in the exception handler of a
|
| - // JS entry frame.
|
| - __ cmp(fp, Operand(0));
|
| - // Set cp to NULL if fp is NULL.
|
| - __ mov(cp, Operand(0), LeaveCC, eq);
|
| - // Restore cp otherwise.
|
| - __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
|
| -#ifdef DEBUG
|
| - if (FLAG_debug_code) {
|
| - __ mov(lr, Operand(pc));
|
| - }
|
| -#endif
|
| - STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
|
| - __ pop(pc);
|
| -}
|
| -
|
| -
|
| -void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
|
| - UncatchableExceptionType type) {
|
| - // Adjust this code if not the case.
|
| - STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
|
| -
|
| - // Drop sp to the top stack handler.
|
| - __ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
|
| - __ ldr(sp, MemOperand(r3));
|
| -
|
| - // Unwind the handlers until the ENTRY handler is found.
|
| - Label loop, done;
|
| - __ bind(&loop);
|
| - // Load the type of the current stack handler.
|
| - const int kStateOffset = StackHandlerConstants::kStateOffset;
|
| - __ ldr(r2, MemOperand(sp, kStateOffset));
|
| - __ cmp(r2, Operand(StackHandler::ENTRY));
|
| - __ b(eq, &done);
|
| - // Fetch the next handler in the list.
|
| - const int kNextOffset = StackHandlerConstants::kNextOffset;
|
| - __ ldr(sp, MemOperand(sp, kNextOffset));
|
| - __ jmp(&loop);
|
| - __ bind(&done);
|
| -
|
| - // Set the top handler address to next handler past the current ENTRY handler.
|
| - STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
| - __ pop(r2);
|
| - __ str(r2, MemOperand(r3));
|
| -
|
| - if (type == OUT_OF_MEMORY) {
|
| - // Set external caught exception to false.
|
| - ExternalReference external_caught(Top::k_external_caught_exception_address);
|
| - __ mov(r0, Operand(false));
|
| - __ mov(r2, Operand(external_caught));
|
| - __ str(r0, MemOperand(r2));
|
| -
|
| - // Set pending exception and r0 to out of memory exception.
|
| - Failure* out_of_memory = Failure::OutOfMemoryException();
|
| - __ mov(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
|
| - __ mov(r2, Operand(ExternalReference(Top::k_pending_exception_address)));
|
| - __ str(r0, MemOperand(r2));
|
| - }
|
| -
|
| - // Stack layout at this point. See also StackHandlerConstants.
|
| - // sp -> state (ENTRY)
|
| - // fp
|
| - // lr
|
| -
|
| - // Discard handler state (r2 is not used) and restore frame pointer.
|
| - STATIC_ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize);
|
| - __ ldm(ia_w, sp, r2.bit() | fp.bit()); // r2: discarded state.
|
| - // Before returning we restore the context from the frame pointer if
|
| - // not NULL. The frame pointer is NULL in the exception handler of a
|
| - // JS entry frame.
|
| - __ cmp(fp, Operand(0));
|
| - // Set cp to NULL if fp is NULL.
|
| - __ mov(cp, Operand(0), LeaveCC, eq);
|
| - // Restore cp otherwise.
|
| - __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
|
| -#ifdef DEBUG
|
| - if (FLAG_debug_code) {
|
| - __ mov(lr, Operand(pc));
|
| - }
|
| -#endif
|
| - STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
|
| - __ pop(pc);
|
| -}
|
| -
|
| -
|
| -void CEntryStub::GenerateCore(MacroAssembler* masm,
|
| - Label* throw_normal_exception,
|
| - Label* throw_termination_exception,
|
| - Label* throw_out_of_memory_exception,
|
| - bool do_gc,
|
| - bool always_allocate,
|
| - int frame_alignment_skew) {
|
| - // r0: result parameter for PerformGC, if any
|
| - // r4: number of arguments including receiver (C callee-saved)
|
| - // r5: pointer to builtin function (C callee-saved)
|
| - // r6: pointer to the first argument (C callee-saved)
|
| -
|
| - if (do_gc) {
|
| - // Passing r0.
|
| - __ PrepareCallCFunction(1, r1);
|
| - __ CallCFunction(ExternalReference::perform_gc_function(), 1);
|
| - }
|
| -
|
| - ExternalReference scope_depth =
|
| - ExternalReference::heap_always_allocate_scope_depth();
|
| - if (always_allocate) {
|
| - __ mov(r0, Operand(scope_depth));
|
| - __ ldr(r1, MemOperand(r0));
|
| - __ add(r1, r1, Operand(1));
|
| - __ str(r1, MemOperand(r0));
|
| - }
|
| -
|
| - // Call C built-in.
|
| - // r0 = argc, r1 = argv
|
| - __ mov(r0, Operand(r4));
|
| - __ mov(r1, Operand(r6));
|
| -
|
| - int frame_alignment = MacroAssembler::ActivationFrameAlignment();
|
| - int frame_alignment_mask = frame_alignment - 1;
|
| -#if defined(V8_HOST_ARCH_ARM)
|
| - if (FLAG_debug_code) {
|
| - if (frame_alignment > kPointerSize) {
|
| - Label alignment_as_expected;
|
| - ASSERT(IsPowerOf2(frame_alignment));
|
| - __ sub(r2, sp, Operand(frame_alignment_skew));
|
| - __ tst(r2, Operand(frame_alignment_mask));
|
| - __ b(eq, &alignment_as_expected);
|
| - // Don't use Check here, as it will call Runtime_Abort re-entering here.
|
| - __ stop("Unexpected alignment");
|
| - __ bind(&alignment_as_expected);
|
| - }
|
| - }
|
| -#endif
|
| -
|
| - // Just before the call (jump) below lr is pushed, so the actual alignment is
|
| - // adding one to the current skew.
|
| - int alignment_before_call =
|
| - (frame_alignment_skew + kPointerSize) & frame_alignment_mask;
|
| - if (alignment_before_call > 0) {
|
| - // Push until the alignment before the call is met.
|
| - __ mov(r2, Operand(0));
|
| - for (int i = alignment_before_call;
|
| - (i & frame_alignment_mask) != 0;
|
| - i += kPointerSize) {
|
| - __ push(r2);
|
| - }
|
| - }
|
| -
|
| - // TODO(1242173): To let the GC traverse the return address of the exit
|
| - // frames, we need to know where the return address is. Right now,
|
| - // we push it on the stack to be able to find it again, but we never
|
| - // restore from it in case of changes, which makes it impossible to
|
| - // support moving the C entry code stub. This should be fixed, but currently
|
| - // this is OK because the CEntryStub gets generated so early in the V8 boot
|
| - // sequence that it is not moving ever.
|
| - masm->add(lr, pc, Operand(4)); // Compute return address: (pc + 8) + 4
|
| - masm->push(lr);
|
| - masm->Jump(r5);
|
| -
|
| - // Restore sp back to before aligning the stack.
|
| - if (alignment_before_call > 0) {
|
| - __ add(sp, sp, Operand(alignment_before_call));
|
| - }
|
| -
|
| - if (always_allocate) {
|
| - // It's okay to clobber r2 and r3 here. Don't mess with r0 and r1
|
| - // though (contain the result).
|
| - __ mov(r2, Operand(scope_depth));
|
| - __ ldr(r3, MemOperand(r2));
|
| - __ sub(r3, r3, Operand(1));
|
| - __ str(r3, MemOperand(r2));
|
| - }
|
| -
|
| - // check for failure result
|
| - Label failure_returned;
|
| - STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
|
| - // Lower 2 bits of r2 are 0 iff r0 has failure tag.
|
| - __ add(r2, r0, Operand(1));
|
| - __ tst(r2, Operand(kFailureTagMask));
|
| - __ b(eq, &failure_returned);
|
| -
|
| - // Exit C frame and return.
|
| - // r0:r1: result
|
| - // sp: stack pointer
|
| - // fp: frame pointer
|
| - __ LeaveExitFrame(mode_);
|
| -
|
| - // check if we should retry or throw exception
|
| - Label retry;
|
| - __ bind(&failure_returned);
|
| - STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
|
| - __ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
|
| - __ b(eq, &retry);
|
| -
|
| - // Special handling of out of memory exceptions.
|
| - Failure* out_of_memory = Failure::OutOfMemoryException();
|
| - __ cmp(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
|
| - __ b(eq, throw_out_of_memory_exception);
|
| -
|
| - // Retrieve the pending exception and clear the variable.
|
| - __ mov(ip, Operand(ExternalReference::the_hole_value_location()));
|
| - __ ldr(r3, MemOperand(ip));
|
| - __ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address)));
|
| - __ ldr(r0, MemOperand(ip));
|
| - __ str(r3, MemOperand(ip));
|
| -
|
| - // Special handling of termination exceptions which are uncatchable
|
| - // by javascript code.
|
| - __ cmp(r0, Operand(Factory::termination_exception()));
|
| - __ b(eq, throw_termination_exception);
|
| -
|
| - // Handle normal exception.
|
| - __ jmp(throw_normal_exception);
|
| -
|
| - __ bind(&retry); // pass last failure (r0) as parameter (r0) when retrying
|
| -}
|
| -
|
| -
|
| -void CEntryStub::Generate(MacroAssembler* masm) {
|
| - // Called from JavaScript; parameters are on stack as if calling JS function
|
| - // r0: number of arguments including receiver
|
| - // r1: pointer to builtin function
|
| - // fp: frame pointer (restored after C call)
|
| - // sp: stack pointer (restored as callee's sp after C call)
|
| - // cp: current context (C callee-saved)
|
| -
|
| - // Result returned in r0 or r0+r1 by default.
|
| -
|
| - // NOTE: Invocations of builtins may return failure objects
|
| - // instead of a proper result. The builtin entry handles
|
| - // this by performing a garbage collection and retrying the
|
| - // builtin once.
|
| -
|
| - // Enter the exit frame that transitions from JavaScript to C++.
|
| - __ EnterExitFrame(mode_);
|
| -
|
| - // r4: number of arguments (C callee-saved)
|
| - // r5: pointer to builtin function (C callee-saved)
|
| - // r6: pointer to first argument (C callee-saved)
|
| -
|
| - Label throw_normal_exception;
|
| - Label throw_termination_exception;
|
| - Label throw_out_of_memory_exception;
|
| -
|
| - // Call into the runtime system.
|
| - GenerateCore(masm,
|
| - &throw_normal_exception,
|
| - &throw_termination_exception,
|
| - &throw_out_of_memory_exception,
|
| - false,
|
| - false,
|
| - -kPointerSize);
|
| -
|
| - // Do space-specific GC and retry runtime call.
|
| - GenerateCore(masm,
|
| - &throw_normal_exception,
|
| - &throw_termination_exception,
|
| - &throw_out_of_memory_exception,
|
| - true,
|
| - false,
|
| - 0);
|
| -
|
| - // Do full GC and retry runtime call one final time.
|
| - Failure* failure = Failure::InternalError();
|
| - __ mov(r0, Operand(reinterpret_cast<int32_t>(failure)));
|
| - GenerateCore(masm,
|
| - &throw_normal_exception,
|
| - &throw_termination_exception,
|
| - &throw_out_of_memory_exception,
|
| - true,
|
| - true,
|
| - kPointerSize);
|
| -
|
| - __ bind(&throw_out_of_memory_exception);
|
| - GenerateThrowUncatchable(masm, OUT_OF_MEMORY);
|
| -
|
| - __ bind(&throw_termination_exception);
|
| - GenerateThrowUncatchable(masm, TERMINATION);
|
| -
|
| - __ bind(&throw_normal_exception);
|
| - GenerateThrowTOS(masm);
|
| -}
|
| -
|
| -
|
| -void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
|
| - // r0: code entry
|
| - // r1: function
|
| - // r2: receiver
|
| - // r3: argc
|
| - // [sp+0]: argv
|
| -
|
| - Label invoke, exit;
|
| -
|
| - // Called from C, so do not pop argc and args on exit (preserve sp)
|
| - // No need to save register-passed args
|
| - // Save callee-saved registers (incl. cp and fp), sp, and lr
|
| - __ stm(db_w, sp, kCalleeSaved | lr.bit());
|
| -
|
| - // Get address of argv, see stm above.
|
| - // r0: code entry
|
| - // r1: function
|
| - // r2: receiver
|
| - // r3: argc
|
| - __ ldr(r4, MemOperand(sp, (kNumCalleeSaved + 1) * kPointerSize)); // argv
|
| -
|
| - // Push a frame with special values setup to mark it as an entry frame.
|
| - // r0: code entry
|
| - // r1: function
|
| - // r2: receiver
|
| - // r3: argc
|
| - // r4: argv
|
| - __ mov(r8, Operand(-1)); // Push a bad frame pointer to fail if it is used.
|
| - int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
|
| - __ mov(r7, Operand(Smi::FromInt(marker)));
|
| - __ mov(r6, Operand(Smi::FromInt(marker)));
|
| - __ mov(r5, Operand(ExternalReference(Top::k_c_entry_fp_address)));
|
| - __ ldr(r5, MemOperand(r5));
|
| - __ Push(r8, r7, r6, r5);
|
| -
|
| - // Setup frame pointer for the frame to be pushed.
|
| - __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
|
| -
|
| - // Call a faked try-block that does the invoke.
|
| - __ bl(&invoke);
|
| -
|
| - // Caught exception: Store result (exception) in the pending
|
| - // exception field in the JSEnv and return a failure sentinel.
|
| - // Coming in here the fp will be invalid because the PushTryHandler below
|
| - // sets it to 0 to signal the existence of the JSEntry frame.
|
| - __ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address)));
|
| - __ str(r0, MemOperand(ip));
|
| - __ mov(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception())));
|
| - __ b(&exit);
|
| -
|
| - // Invoke: Link this frame into the handler chain.
|
| - __ bind(&invoke);
|
| - // Must preserve r0-r4, r5-r7 are available.
|
| - __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);
|
| - // If an exception not caught by another handler occurs, this handler
|
| - // returns control to the code after the bl(&invoke) above, which
|
| - // restores all kCalleeSaved registers (including cp and fp) to their
|
| - // saved values before returning a failure to C.
|
| -
|
| - // Clear any pending exceptions.
|
| - __ mov(ip, Operand(ExternalReference::the_hole_value_location()));
|
| - __ ldr(r5, MemOperand(ip));
|
| - __ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address)));
|
| - __ str(r5, MemOperand(ip));
|
| -
|
| - // Invoke the function by calling through JS entry trampoline builtin.
|
| - // Notice that we cannot store a reference to the trampoline code directly in
|
| - // this stub, because runtime stubs are not traversed when doing GC.
|
| -
|
| - // Expected registers by Builtins::JSEntryTrampoline
|
| - // r0: code entry
|
| - // r1: function
|
| - // r2: receiver
|
| - // r3: argc
|
| - // r4: argv
|
| - if (is_construct) {
|
| - ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline);
|
| - __ mov(ip, Operand(construct_entry));
|
| - } else {
|
| - ExternalReference entry(Builtins::JSEntryTrampoline);
|
| - __ mov(ip, Operand(entry));
|
| - }
|
| - __ ldr(ip, MemOperand(ip)); // deref address
|
| -
|
| - // Branch and link to JSEntryTrampoline. We don't use the double underscore
|
| - // macro for the add instruction because we don't want the coverage tool
|
| - // inserting instructions here after we read the pc.
|
| - __ mov(lr, Operand(pc));
|
| - masm->add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
|
| -
|
| - // Unlink this frame from the handler chain. When reading the
|
| - // address of the next handler, there is no need to use the address
|
| - // displacement since the current stack pointer (sp) points directly
|
| - // to the stack handler.
|
| - __ ldr(r3, MemOperand(sp, StackHandlerConstants::kNextOffset));
|
| - __ mov(ip, Operand(ExternalReference(Top::k_handler_address)));
|
| - __ str(r3, MemOperand(ip));
|
| - // No need to restore registers
|
| - __ add(sp, sp, Operand(StackHandlerConstants::kSize));
|
| -
|
| -
|
| - __ bind(&exit); // r0 holds result
|
| - // Restore the top frame descriptors from the stack.
|
| - __ pop(r3);
|
| - __ mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address)));
|
| - __ str(r3, MemOperand(ip));
|
| -
|
| - // Reset the stack to the callee saved registers.
|
| - __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
|
| -
|
| - // Restore callee-saved registers and return.
|
| -#ifdef DEBUG
|
| - if (FLAG_debug_code) {
|
| - __ mov(lr, Operand(pc));
|
| - }
|
| -#endif
|
| - __ ldm(ia_w, sp, kCalleeSaved | pc.bit());
|
| -}
|
| -
|
| -
|
| -// This stub performs an instanceof, calling the builtin function if
|
| -// necessary. Uses r1 for the object, r0 for the function that it may
|
| -// be an instance of (these are fetched from the stack).
|
| -void InstanceofStub::Generate(MacroAssembler* masm) {
|
| - // Get the object - slow case for smis (we may need to throw an exception
|
| - // depending on the rhs).
|
| - Label slow, loop, is_instance, is_not_instance;
|
| - __ ldr(r0, MemOperand(sp, 1 * kPointerSize));
|
| - __ BranchOnSmi(r0, &slow);
|
| -
|
| - // Check that the left hand is a JS object and put map in r3.
|
| - __ CompareObjectType(r0, r3, r2, FIRST_JS_OBJECT_TYPE);
|
| - __ b(lt, &slow);
|
| - __ cmp(r2, Operand(LAST_JS_OBJECT_TYPE));
|
| - __ b(gt, &slow);
|
| -
|
| - // Get the prototype of the function (r4 is result, r2 is scratch).
|
| - __ ldr(r1, MemOperand(sp, 0));
|
| - // r1 is function, r3 is map.
|
| -
|
| - // Look up the function and the map in the instanceof cache.
|
| - Label miss;
|
| - __ LoadRoot(ip, Heap::kInstanceofCacheFunctionRootIndex);
|
| - __ cmp(r1, ip);
|
| - __ b(ne, &miss);
|
| - __ LoadRoot(ip, Heap::kInstanceofCacheMapRootIndex);
|
| - __ cmp(r3, ip);
|
| - __ b(ne, &miss);
|
| - __ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
|
| - __ pop();
|
| - __ pop();
|
| - __ mov(pc, Operand(lr));
|
| -
|
| - __ bind(&miss);
|
| - __ TryGetFunctionPrototype(r1, r4, r2, &slow);
|
| -
|
| - // Check that the function prototype is a JS object.
|
| - __ BranchOnSmi(r4, &slow);
|
| - __ CompareObjectType(r4, r5, r5, FIRST_JS_OBJECT_TYPE);
|
| - __ b(lt, &slow);
|
| - __ cmp(r5, Operand(LAST_JS_OBJECT_TYPE));
|
| - __ b(gt, &slow);
|
| -
|
| - __ StoreRoot(r1, Heap::kInstanceofCacheFunctionRootIndex);
|
| - __ StoreRoot(r3, Heap::kInstanceofCacheMapRootIndex);
|
| -
|
| - // Register mapping: r3 is object map and r4 is function prototype.
|
| - // Get prototype of object into r2.
|
| - __ ldr(r2, FieldMemOperand(r3, Map::kPrototypeOffset));
|
| -
|
| - // Loop through the prototype chain looking for the function prototype.
|
| - __ bind(&loop);
|
| - __ cmp(r2, Operand(r4));
|
| - __ b(eq, &is_instance);
|
| - __ LoadRoot(ip, Heap::kNullValueRootIndex);
|
| - __ cmp(r2, ip);
|
| - __ b(eq, &is_not_instance);
|
| - __ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
|
| - __ ldr(r2, FieldMemOperand(r2, Map::kPrototypeOffset));
|
| - __ jmp(&loop);
|
| -
|
| - __ bind(&is_instance);
|
| - __ mov(r0, Operand(Smi::FromInt(0)));
|
| - __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
|
| - __ pop();
|
| - __ pop();
|
| - __ mov(pc, Operand(lr)); // Return.
|
| -
|
| - __ bind(&is_not_instance);
|
| - __ mov(r0, Operand(Smi::FromInt(1)));
|
| - __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
|
| - __ pop();
|
| - __ pop();
|
| - __ mov(pc, Operand(lr)); // Return.
|
| -
|
| - // Slow-case. Tail call builtin.
|
| - __ bind(&slow);
|
| - __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_JS);
|
| -}
|
| -
|
| -
|
| -void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
|
| - // The displacement is the offset of the last parameter (if any)
|
| - // relative to the frame pointer.
|
| - static const int kDisplacement =
|
| - StandardFrameConstants::kCallerSPOffset - kPointerSize;
|
| -
|
| - // Check that the key is a smi.
|
| - Label slow;
|
| - __ BranchOnNotSmi(r1, &slow);
|
| -
|
| - // Check if the calling frame is an arguments adaptor frame.
|
| - Label adaptor;
|
| - __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
| - __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
|
| - __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
|
| - __ b(eq, &adaptor);
|
| -
|
| - // Check index against formal parameters count limit passed in
|
| - // through register r0. Use unsigned comparison to get negative
|
| - // check for free.
|
| - __ cmp(r1, r0);
|
| - __ b(cs, &slow);
|
| -
|
| - // Read the argument from the stack and return it.
|
| - __ sub(r3, r0, r1);
|
| - __ add(r3, fp, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
|
| - __ ldr(r0, MemOperand(r3, kDisplacement));
|
| - __ Jump(lr);
|
| -
|
| - // Arguments adaptor case: Check index against actual arguments
|
| - // limit found in the arguments adaptor frame. Use unsigned
|
| - // comparison to get negative check for free.
|
| - __ bind(&adaptor);
|
| - __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
|
| - __ cmp(r1, r0);
|
| - __ b(cs, &slow);
|
| -
|
| - // Read the argument from the adaptor frame and return it.
|
| - __ sub(r3, r0, r1);
|
| - __ add(r3, r2, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
|
| - __ ldr(r0, MemOperand(r3, kDisplacement));
|
| - __ Jump(lr);
|
| -
|
| - // Slow-case: Handle non-smi or out-of-bounds access to arguments
|
| - // by calling the runtime system.
|
| - __ bind(&slow);
|
| - __ push(r1);
|
| - __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
|
| -}
|
| -
|
| -
|
| -void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
|
| - // sp[0] : number of parameters
|
| - // sp[4] : receiver displacement
|
| - // sp[8] : function
|
| -
|
| - // Check if the calling frame is an arguments adaptor frame.
|
| - Label adaptor_frame, try_allocate, runtime;
|
| - __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
| - __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
|
| - __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
|
| - __ b(eq, &adaptor_frame);
|
| -
|
| - // Get the length from the frame.
|
| - __ ldr(r1, MemOperand(sp, 0));
|
| - __ b(&try_allocate);
|
| -
|
| - // Patch the arguments.length and the parameters pointer.
|
| - __ bind(&adaptor_frame);
|
| - __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
|
| - __ str(r1, MemOperand(sp, 0));
|
| - __ add(r3, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
|
| - __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
|
| - __ str(r3, MemOperand(sp, 1 * kPointerSize));
|
| -
|
| - // Try the new space allocation. Start out with computing the size
|
| - // of the arguments object and the elements array in words.
|
| - Label add_arguments_object;
|
| - __ bind(&try_allocate);
|
| - __ cmp(r1, Operand(0));
|
| - __ b(eq, &add_arguments_object);
|
| - __ mov(r1, Operand(r1, LSR, kSmiTagSize));
|
| - __ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize));
|
| - __ bind(&add_arguments_object);
|
| - __ add(r1, r1, Operand(Heap::kArgumentsObjectSize / kPointerSize));
|
| -
|
| - // Do the allocation of both objects in one go.
|
| - __ AllocateInNewSpace(
|
| - r1,
|
| - r0,
|
| - r2,
|
| - r3,
|
| - &runtime,
|
| - static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
|
| -
|
| - // Get the arguments boilerplate from the current (global) context.
|
| - int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX);
|
| - __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
|
| - __ ldr(r4, FieldMemOperand(r4, GlobalObject::kGlobalContextOffset));
|
| - __ ldr(r4, MemOperand(r4, offset));
|
| -
|
| - // Copy the JS object part.
|
| - __ CopyFields(r0, r4, r3.bit(), JSObject::kHeaderSize / kPointerSize);
|
| -
|
| - // Setup the callee in-object property.
|
| - STATIC_ASSERT(Heap::arguments_callee_index == 0);
|
| - __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
|
| - __ str(r3, FieldMemOperand(r0, JSObject::kHeaderSize));
|
| -
|
| - // Get the length (smi tagged) and set that as an in-object property too.
|
| - STATIC_ASSERT(Heap::arguments_length_index == 1);
|
| - __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
|
| - __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize + kPointerSize));
|
| -
|
| - // If there are no actual arguments, we're done.
|
| - Label done;
|
| - __ cmp(r1, Operand(0));
|
| - __ b(eq, &done);
|
| -
|
| - // Get the parameters pointer from the stack.
|
| - __ ldr(r2, MemOperand(sp, 1 * kPointerSize));
|
| -
|
| - // Setup the elements pointer in the allocated arguments object and
|
| - // initialize the header in the elements fixed array.
|
| - __ add(r4, r0, Operand(Heap::kArgumentsObjectSize));
|
| - __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
|
| - __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex);
|
| - __ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset));
|
| - __ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset));
|
| - __ mov(r1, Operand(r1, LSR, kSmiTagSize)); // Untag the length for the loop.
|
| -
|
| - // Copy the fixed array slots.
|
| - Label loop;
|
| - // Setup r4 to point to the first array slot.
|
| - __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
|
| - __ bind(&loop);
|
| - // Pre-decrement r2 with kPointerSize on each iteration.
|
| - // Pre-decrement in order to skip receiver.
|
| - __ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex));
|
| - // Post-increment r4 with kPointerSize on each iteration.
|
| - __ str(r3, MemOperand(r4, kPointerSize, PostIndex));
|
| - __ sub(r1, r1, Operand(1));
|
| - __ cmp(r1, Operand(0));
|
| - __ b(ne, &loop);
|
| -
|
| - // Return and remove the on-stack parameters.
|
| - __ bind(&done);
|
| - __ add(sp, sp, Operand(3 * kPointerSize));
|
| - __ Ret();
|
| -
|
| - // Do the runtime call to allocate the arguments object.
|
| - __ bind(&runtime);
|
| - __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
|
| -}
|
| -
|
| -
|
| -void RegExpExecStub::Generate(MacroAssembler* masm) {
|
| - // Just jump directly to runtime if native RegExp is not selected at compile
|
| - // time or if regexp entry in generated code is turned off runtime switch or
|
| - // at compilation.
|
| -#ifdef V8_INTERPRETED_REGEXP
|
| - __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
|
| -#else // V8_INTERPRETED_REGEXP
|
| - if (!FLAG_regexp_entry_native) {
|
| - __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
|
| - return;
|
| - }
|
| -
|
| - // Stack frame on entry.
|
| - // sp[0]: last_match_info (expected JSArray)
|
| - // sp[4]: previous index
|
| - // sp[8]: subject string
|
| - // sp[12]: JSRegExp object
|
| -
|
| - static const int kLastMatchInfoOffset = 0 * kPointerSize;
|
| - static const int kPreviousIndexOffset = 1 * kPointerSize;
|
| - static const int kSubjectOffset = 2 * kPointerSize;
|
| - static const int kJSRegExpOffset = 3 * kPointerSize;
|
| -
|
| - Label runtime, invoke_regexp;
|
| -
|
| - // Allocation of registers for this function. These are in callee save
|
| - // registers and will be preserved by the call to the native RegExp code, as
|
| - // this code is called using the normal C calling convention. When calling
|
| - // directly from generated code the native RegExp code will not do a GC and
|
| - // therefore the content of these registers are safe to use after the call.
|
| - Register subject = r4;
|
| - Register regexp_data = r5;
|
| - Register last_match_info_elements = r6;
|
| -
|
| - // Ensure that a RegExp stack is allocated.
|
| - ExternalReference address_of_regexp_stack_memory_address =
|
| - ExternalReference::address_of_regexp_stack_memory_address();
|
| - ExternalReference address_of_regexp_stack_memory_size =
|
| - ExternalReference::address_of_regexp_stack_memory_size();
|
| - __ mov(r0, Operand(address_of_regexp_stack_memory_size));
|
| - __ ldr(r0, MemOperand(r0, 0));
|
| - __ tst(r0, Operand(r0));
|
| - __ b(eq, &runtime);
|
| -
|
| - // Check that the first argument is a JSRegExp object.
|
| - __ ldr(r0, MemOperand(sp, kJSRegExpOffset));
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - __ tst(r0, Operand(kSmiTagMask));
|
| - __ b(eq, &runtime);
|
| - __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE);
|
| - __ b(ne, &runtime);
|
| -
|
| - // Check that the RegExp has been compiled (data contains a fixed array).
|
| - __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset));
|
| - if (FLAG_debug_code) {
|
| - __ tst(regexp_data, Operand(kSmiTagMask));
|
| - __ Check(nz, "Unexpected type for RegExp data, FixedArray expected");
|
| - __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE);
|
| - __ Check(eq, "Unexpected type for RegExp data, FixedArray expected");
|
| - }
|
| -
|
| - // regexp_data: RegExp data (FixedArray)
|
| - // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
|
| - __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
|
| - __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
|
| - __ b(ne, &runtime);
|
| -
|
| - // regexp_data: RegExp data (FixedArray)
|
| - // Check that the number of captures fit in the static offsets vector buffer.
|
| - __ ldr(r2,
|
| - FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
|
| - // Calculate number of capture registers (number_of_captures + 1) * 2. This
|
| - // uses the asumption that smis are 2 * their untagged value.
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
|
| - __ add(r2, r2, Operand(2)); // r2 was a smi.
|
| - // Check that the static offsets vector buffer is large enough.
|
| - __ cmp(r2, Operand(OffsetsVector::kStaticOffsetsVectorSize));
|
| - __ b(hi, &runtime);
|
| -
|
| - // r2: Number of capture registers
|
| - // regexp_data: RegExp data (FixedArray)
|
| - // Check that the second argument is a string.
|
| - __ ldr(subject, MemOperand(sp, kSubjectOffset));
|
| - __ tst(subject, Operand(kSmiTagMask));
|
| - __ b(eq, &runtime);
|
| - Condition is_string = masm->IsObjectStringType(subject, r0);
|
| - __ b(NegateCondition(is_string), &runtime);
|
| - // Get the length of the string to r3.
|
| - __ ldr(r3, FieldMemOperand(subject, String::kLengthOffset));
|
| -
|
| - // r2: Number of capture registers
|
| - // r3: Length of subject string as a smi
|
| - // subject: Subject string
|
| - // regexp_data: RegExp data (FixedArray)
|
| - // Check that the third argument is a positive smi less than the subject
|
| - // string length. A negative value will be greater (unsigned comparison).
|
| - __ ldr(r0, MemOperand(sp, kPreviousIndexOffset));
|
| - __ tst(r0, Operand(kSmiTagMask));
|
| - __ b(ne, &runtime);
|
| - __ cmp(r3, Operand(r0));
|
| - __ b(ls, &runtime);
|
| -
|
| - // r2: Number of capture registers
|
| - // subject: Subject string
|
| - // regexp_data: RegExp data (FixedArray)
|
| - // Check that the fourth object is a JSArray object.
|
| - __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
|
| - __ tst(r0, Operand(kSmiTagMask));
|
| - __ b(eq, &runtime);
|
| - __ CompareObjectType(r0, r1, r1, JS_ARRAY_TYPE);
|
| - __ b(ne, &runtime);
|
| - // Check that the JSArray is in fast case.
|
| - __ ldr(last_match_info_elements,
|
| - FieldMemOperand(r0, JSArray::kElementsOffset));
|
| - __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
|
| - __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex);
|
| - __ cmp(r0, ip);
|
| - __ b(ne, &runtime);
|
| - // Check that the last match info has space for the capture registers and the
|
| - // additional information.
|
| - __ ldr(r0,
|
| - FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
|
| - __ add(r2, r2, Operand(RegExpImpl::kLastMatchOverhead));
|
| - __ cmp(r2, Operand(r0, ASR, kSmiTagSize));
|
| - __ b(gt, &runtime);
|
| -
|
| - // subject: Subject string
|
| - // regexp_data: RegExp data (FixedArray)
|
| - // Check the representation and encoding of the subject string.
|
| - Label seq_string;
|
| - __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
|
| - __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
|
| - // First check for flat string.
|
| - __ tst(r0, Operand(kIsNotStringMask | kStringRepresentationMask));
|
| - STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
|
| - __ b(eq, &seq_string);
|
| -
|
| - // subject: Subject string
|
| - // regexp_data: RegExp data (FixedArray)
|
| - // Check for flat cons string.
|
| - // A flat cons string is a cons string where the second part is the empty
|
| - // string. In that case the subject string is just the first part of the cons
|
| - // string. Also in this case the first part of the cons string is known to be
|
| - // a sequential string or an external string.
|
| - STATIC_ASSERT(kExternalStringTag !=0);
|
| - STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0);
|
| - __ tst(r0, Operand(kIsNotStringMask | kExternalStringTag));
|
| - __ b(ne, &runtime);
|
| - __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset));
|
| - __ LoadRoot(r1, Heap::kEmptyStringRootIndex);
|
| - __ cmp(r0, r1);
|
| - __ b(ne, &runtime);
|
| - __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
|
| - __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
|
| - __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
|
| - // Is first part a flat string?
|
| - STATIC_ASSERT(kSeqStringTag == 0);
|
| - __ tst(r0, Operand(kStringRepresentationMask));
|
| - __ b(nz, &runtime);
|
| -
|
| - __ bind(&seq_string);
|
| - // subject: Subject string
|
| - // regexp_data: RegExp data (FixedArray)
|
| - // r0: Instance type of subject string
|
| - STATIC_ASSERT(4 == kAsciiStringTag);
|
| - STATIC_ASSERT(kTwoByteStringTag == 0);
|
| - // Find the code object based on the assumptions above.
|
| - __ and_(r0, r0, Operand(kStringEncodingMask));
|
| - __ mov(r3, Operand(r0, ASR, 2), SetCC);
|
| - __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset), ne);
|
| - __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq);
|
| -
|
| - // Check that the irregexp code has been generated for the actual string
|
| - // encoding. If it has, the field contains a code object otherwise it contains
|
| - // the hole.
|
| - __ CompareObjectType(r7, r0, r0, CODE_TYPE);
|
| - __ b(ne, &runtime);
|
| -
|
| - // r3: encoding of subject string (1 if ascii, 0 if two_byte);
|
| - // r7: code
|
| - // subject: Subject string
|
| - // regexp_data: RegExp data (FixedArray)
|
| - // Load used arguments before starting to push arguments for call to native
|
| - // RegExp code to avoid handling changing stack height.
|
| - __ ldr(r1, MemOperand(sp, kPreviousIndexOffset));
|
| - __ mov(r1, Operand(r1, ASR, kSmiTagSize));
|
| -
|
| - // r1: previous index
|
| - // r3: encoding of subject string (1 if ascii, 0 if two_byte);
|
| - // r7: code
|
| - // subject: Subject string
|
| - // regexp_data: RegExp data (FixedArray)
|
| - // All checks done. Now push arguments for native regexp code.
|
| - __ IncrementCounter(&Counters::regexp_entry_native, 1, r0, r2);
|
| -
|
| - static const int kRegExpExecuteArguments = 7;
|
| - __ push(lr);
|
| - __ PrepareCallCFunction(kRegExpExecuteArguments, r0);
|
| -
|
| - // Argument 7 (sp[8]): Indicate that this is a direct call from JavaScript.
|
| - __ mov(r0, Operand(1));
|
| - __ str(r0, MemOperand(sp, 2 * kPointerSize));
|
| -
|
| - // Argument 6 (sp[4]): Start (high end) of backtracking stack memory area.
|
| - __ mov(r0, Operand(address_of_regexp_stack_memory_address));
|
| - __ ldr(r0, MemOperand(r0, 0));
|
| - __ mov(r2, Operand(address_of_regexp_stack_memory_size));
|
| - __ ldr(r2, MemOperand(r2, 0));
|
| - __ add(r0, r0, Operand(r2));
|
| - __ str(r0, MemOperand(sp, 1 * kPointerSize));
|
| -
|
| - // Argument 5 (sp[0]): static offsets vector buffer.
|
| - __ mov(r0, Operand(ExternalReference::address_of_static_offsets_vector()));
|
| - __ str(r0, MemOperand(sp, 0 * kPointerSize));
|
| -
|
| - // For arguments 4 and 3 get string length, calculate start of string data and
|
| - // calculate the shift of the index (0 for ASCII and 1 for two byte).
|
| - __ ldr(r0, FieldMemOperand(subject, String::kLengthOffset));
|
| - __ mov(r0, Operand(r0, ASR, kSmiTagSize));
|
| - STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
|
| - __ add(r9, subject, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
|
| - __ eor(r3, r3, Operand(1));
|
| - // Argument 4 (r3): End of string data
|
| - // Argument 3 (r2): Start of string data
|
| - __ add(r2, r9, Operand(r1, LSL, r3));
|
| - __ add(r3, r9, Operand(r0, LSL, r3));
|
| -
|
| - // Argument 2 (r1): Previous index.
|
| - // Already there
|
| -
|
| - // Argument 1 (r0): Subject string.
|
| - __ mov(r0, subject);
|
| -
|
| - // Locate the code entry and call it.
|
| - __ add(r7, r7, Operand(Code::kHeaderSize - kHeapObjectTag));
|
| - __ CallCFunction(r7, kRegExpExecuteArguments);
|
| - __ pop(lr);
|
| -
|
| - // r0: result
|
| - // subject: subject string (callee saved)
|
| - // regexp_data: RegExp data (callee saved)
|
| - // last_match_info_elements: Last match info elements (callee saved)
|
| -
|
| - // Check the result.
|
| - Label success;
|
| - __ cmp(r0, Operand(NativeRegExpMacroAssembler::SUCCESS));
|
| - __ b(eq, &success);
|
| - Label failure;
|
| - __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE));
|
| - __ b(eq, &failure);
|
| - __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
|
| - // If not exception it can only be retry. Handle that in the runtime system.
|
| - __ b(ne, &runtime);
|
| - // Result must now be exception. If there is no pending exception already a
|
| - // stack overflow (on the backtrack stack) was detected in RegExp code but
|
| - // haven't created the exception yet. Handle that in the runtime system.
|
| - // TODO(592): Rerunning the RegExp to get the stack overflow exception.
|
| - __ mov(r0, Operand(ExternalReference::the_hole_value_location()));
|
| - __ ldr(r0, MemOperand(r0, 0));
|
| - __ mov(r1, Operand(ExternalReference(Top::k_pending_exception_address)));
|
| - __ ldr(r1, MemOperand(r1, 0));
|
| - __ cmp(r0, r1);
|
| - __ b(eq, &runtime);
|
| - __ bind(&failure);
|
| - // For failure and exception return null.
|
| - __ mov(r0, Operand(Factory::null_value()));
|
| - __ add(sp, sp, Operand(4 * kPointerSize));
|
| - __ Ret();
|
| -
|
| - // Process the result from the native regexp code.
|
| - __ bind(&success);
|
| - __ ldr(r1,
|
| - FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
|
| - // Calculate number of capture registers (number_of_captures + 1) * 2.
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
|
| - __ add(r1, r1, Operand(2)); // r1 was a smi.
|
| -
|
| - // r1: number of capture registers
|
| - // r4: subject string
|
| - // Store the capture count.
|
| - __ mov(r2, Operand(r1, LSL, kSmiTagSize + kSmiShiftSize)); // To smi.
|
| - __ str(r2, FieldMemOperand(last_match_info_elements,
|
| - RegExpImpl::kLastCaptureCountOffset));
|
| - // Store last subject and last input.
|
| - __ mov(r3, last_match_info_elements); // Moved up to reduce latency.
|
| - __ str(subject,
|
| - FieldMemOperand(last_match_info_elements,
|
| - RegExpImpl::kLastSubjectOffset));
|
| - __ RecordWrite(r3, Operand(RegExpImpl::kLastSubjectOffset), r2, r7);
|
| - __ str(subject,
|
| - FieldMemOperand(last_match_info_elements,
|
| - RegExpImpl::kLastInputOffset));
|
| - __ mov(r3, last_match_info_elements);
|
| - __ RecordWrite(r3, Operand(RegExpImpl::kLastInputOffset), r2, r7);
|
| -
|
| - // Get the static offsets vector filled by the native regexp code.
|
| - ExternalReference address_of_static_offsets_vector =
|
| - ExternalReference::address_of_static_offsets_vector();
|
| - __ mov(r2, Operand(address_of_static_offsets_vector));
|
| -
|
| - // r1: number of capture registers
|
| - // r2: offsets vector
|
| - Label next_capture, done;
|
| - // Capture register counter starts from number of capture registers and
|
| - // counts down until wraping after zero.
|
| - __ add(r0,
|
| - last_match_info_elements,
|
| - Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
|
| - __ bind(&next_capture);
|
| - __ sub(r1, r1, Operand(1), SetCC);
|
| - __ b(mi, &done);
|
| - // Read the value from the static offsets vector buffer.
|
| - __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex));
|
| - // Store the smi value in the last match info.
|
| - __ mov(r3, Operand(r3, LSL, kSmiTagSize));
|
| - __ str(r3, MemOperand(r0, kPointerSize, PostIndex));
|
| - __ jmp(&next_capture);
|
| - __ bind(&done);
|
| -
|
| - // Return last match info.
|
| - __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
|
| - __ add(sp, sp, Operand(4 * kPointerSize));
|
| - __ Ret();
|
| -
|
| - // Do the runtime call to execute the regexp.
|
| - __ bind(&runtime);
|
| - __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
|
| -#endif // V8_INTERPRETED_REGEXP
|
| -}
|
| -
|
| -
|
| -void CallFunctionStub::Generate(MacroAssembler* masm) {
|
| - Label slow;
|
| -
|
| - // If the receiver might be a value (string, number or boolean) check for this
|
| - // and box it if it is.
|
| - if (ReceiverMightBeValue()) {
|
| - // Get the receiver from the stack.
|
| - // function, receiver [, arguments]
|
| - Label receiver_is_value, receiver_is_js_object;
|
| - __ ldr(r1, MemOperand(sp, argc_ * kPointerSize));
|
| -
|
| - // Check if receiver is a smi (which is a number value).
|
| - __ BranchOnSmi(r1, &receiver_is_value);
|
| -
|
| - // Check if the receiver is a valid JS object.
|
| - __ CompareObjectType(r1, r2, r2, FIRST_JS_OBJECT_TYPE);
|
| - __ b(ge, &receiver_is_js_object);
|
| -
|
| - // Call the runtime to box the value.
|
| - __ bind(&receiver_is_value);
|
| - __ EnterInternalFrame();
|
| - __ push(r1);
|
| - __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS);
|
| - __ LeaveInternalFrame();
|
| - __ str(r0, MemOperand(sp, argc_ * kPointerSize));
|
| -
|
| - __ bind(&receiver_is_js_object);
|
| - }
|
| -
|
| - // Get the function to call from the stack.
|
| - // function, receiver [, arguments]
|
| - __ ldr(r1, MemOperand(sp, (argc_ + 1) * kPointerSize));
|
| -
|
| - // Check that the function is really a JavaScript function.
|
| - // r1: pushed function (to be verified)
|
| - __ BranchOnSmi(r1, &slow);
|
| - // Get the map of the function object.
|
| - __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
|
| - __ b(ne, &slow);
|
| -
|
| - // Fast-case: Invoke the function now.
|
| - // r1: pushed function
|
| - ParameterCount actual(argc_);
|
| - __ InvokeFunction(r1, actual, JUMP_FUNCTION);
|
| -
|
| - // Slow-case: Non-function called.
|
| - __ bind(&slow);
|
| - // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
|
| - // of the original receiver from the call site).
|
| - __ str(r1, MemOperand(sp, argc_ * kPointerSize));
|
| - __ mov(r0, Operand(argc_)); // Setup the number of arguments.
|
| - __ mov(r2, Operand(0));
|
| - __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION);
|
| - __ Jump(Handle<Code>(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)),
|
| - RelocInfo::CODE_TARGET);
|
| -}
|
| -
|
| -
|
| -// Unfortunately you have to run without snapshots to see most of these
|
| -// names in the profile since most compare stubs end up in the snapshot.
|
| -const char* CompareStub::GetName() {
|
| - ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
|
| - (lhs_.is(r1) && rhs_.is(r0)));
|
| -
|
| - if (name_ != NULL) return name_;
|
| - const int kMaxNameLength = 100;
|
| - name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength);
|
| - if (name_ == NULL) return "OOM";
|
| -
|
| - const char* cc_name;
|
| - switch (cc_) {
|
| - case lt: cc_name = "LT"; break;
|
| - case gt: cc_name = "GT"; break;
|
| - case le: cc_name = "LE"; break;
|
| - case ge: cc_name = "GE"; break;
|
| - case eq: cc_name = "EQ"; break;
|
| - case ne: cc_name = "NE"; break;
|
| - default: cc_name = "UnknownCondition"; break;
|
| - }
|
| -
|
| - const char* lhs_name = lhs_.is(r0) ? "_r0" : "_r1";
|
| - const char* rhs_name = rhs_.is(r0) ? "_r0" : "_r1";
|
| -
|
| - const char* strict_name = "";
|
| - if (strict_ && (cc_ == eq || cc_ == ne)) {
|
| - strict_name = "_STRICT";
|
| - }
|
| -
|
| - const char* never_nan_nan_name = "";
|
| - if (never_nan_nan_ && (cc_ == eq || cc_ == ne)) {
|
| - never_nan_nan_name = "_NO_NAN";
|
| - }
|
| -
|
| - const char* include_number_compare_name = "";
|
| - if (!include_number_compare_) {
|
| - include_number_compare_name = "_NO_NUMBER";
|
| - }
|
| -
|
| - OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
|
| - "CompareStub_%s%s%s%s%s%s",
|
| - cc_name,
|
| - lhs_name,
|
| - rhs_name,
|
| - strict_name,
|
| - never_nan_nan_name,
|
| - include_number_compare_name);
|
| - return name_;
|
| -}
|
| -
|
| -
|
| -int CompareStub::MinorKey() {
|
| - // Encode the three parameters in a unique 16 bit value. To avoid duplicate
|
| - // stubs the never NaN NaN condition is only taken into account if the
|
| - // condition is equals.
|
| - ASSERT((static_cast<unsigned>(cc_) >> 28) < (1 << 12));
|
| - ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
|
| - (lhs_.is(r1) && rhs_.is(r0)));
|
| - return ConditionField::encode(static_cast<unsigned>(cc_) >> 28)
|
| - | RegisterField::encode(lhs_.is(r0))
|
| - | StrictField::encode(strict_)
|
| - | NeverNanNanField::encode(cc_ == eq ? never_nan_nan_ : false)
|
| - | IncludeNumberCompareField::encode(include_number_compare_);
|
| -}
|
| -
|
| -
|
| -// StringCharCodeAtGenerator
|
| -
|
| -void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
|
| - Label flat_string;
|
| - Label ascii_string;
|
| - Label got_char_code;
|
| -
|
| - // If the receiver is a smi trigger the non-string case.
|
| - __ BranchOnSmi(object_, receiver_not_string_);
|
| -
|
| - // Fetch the instance type of the receiver into result register.
|
| - __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
|
| - __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
|
| - // If the receiver is not a string trigger the non-string case.
|
| - __ tst(result_, Operand(kIsNotStringMask));
|
| - __ b(ne, receiver_not_string_);
|
| -
|
| - // If the index is non-smi trigger the non-smi case.
|
| - __ BranchOnNotSmi(index_, &index_not_smi_);
|
| -
|
| - // Put smi-tagged index into scratch register.
|
| - __ mov(scratch_, index_);
|
| - __ bind(&got_smi_index_);
|
| -
|
| - // Check for index out of range.
|
| - __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset));
|
| - __ cmp(ip, Operand(scratch_));
|
| - __ b(ls, index_out_of_range_);
|
| -
|
| - // We need special handling for non-flat strings.
|
| - STATIC_ASSERT(kSeqStringTag == 0);
|
| - __ tst(result_, Operand(kStringRepresentationMask));
|
| - __ b(eq, &flat_string);
|
| -
|
| - // Handle non-flat strings.
|
| - __ tst(result_, Operand(kIsConsStringMask));
|
| - __ b(eq, &call_runtime_);
|
| -
|
| - // ConsString.
|
| - // Check whether the right hand side is the empty string (i.e. if
|
| - // this is really a flat string in a cons string). If that is not
|
| - // the case we would rather go to the runtime system now to flatten
|
| - // the string.
|
| - __ ldr(result_, FieldMemOperand(object_, ConsString::kSecondOffset));
|
| - __ LoadRoot(ip, Heap::kEmptyStringRootIndex);
|
| - __ cmp(result_, Operand(ip));
|
| - __ b(ne, &call_runtime_);
|
| - // Get the first of the two strings and load its instance type.
|
| - __ ldr(object_, FieldMemOperand(object_, ConsString::kFirstOffset));
|
| - __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
|
| - __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
|
| - // If the first cons component is also non-flat, then go to runtime.
|
| - STATIC_ASSERT(kSeqStringTag == 0);
|
| - __ tst(result_, Operand(kStringRepresentationMask));
|
| - __ b(nz, &call_runtime_);
|
| -
|
| - // Check for 1-byte or 2-byte string.
|
| - __ bind(&flat_string);
|
| - STATIC_ASSERT(kAsciiStringTag != 0);
|
| - __ tst(result_, Operand(kStringEncodingMask));
|
| - __ b(nz, &ascii_string);
|
| -
|
| - // 2-byte string.
|
| - // Load the 2-byte character code into the result register. We can
|
| - // add without shifting since the smi tag size is the log2 of the
|
| - // number of bytes in a two-byte character.
|
| - STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1 && kSmiShiftSize == 0);
|
| - __ add(scratch_, object_, Operand(scratch_));
|
| - __ ldrh(result_, FieldMemOperand(scratch_, SeqTwoByteString::kHeaderSize));
|
| - __ jmp(&got_char_code);
|
| -
|
| - // ASCII string.
|
| - // Load the byte into the result register.
|
| - __ bind(&ascii_string);
|
| - __ add(scratch_, object_, Operand(scratch_, LSR, kSmiTagSize));
|
| - __ ldrb(result_, FieldMemOperand(scratch_, SeqAsciiString::kHeaderSize));
|
| -
|
| - __ bind(&got_char_code);
|
| - __ mov(result_, Operand(result_, LSL, kSmiTagSize));
|
| - __ bind(&exit_);
|
| -}
|
| -
|
| -
|
| -void StringCharCodeAtGenerator::GenerateSlow(
|
| - MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
|
| - __ Abort("Unexpected fallthrough to CharCodeAt slow case");
|
| -
|
| - // Index is not a smi.
|
| - __ bind(&index_not_smi_);
|
| - // If index is a heap number, try converting it to an integer.
|
| - __ CheckMap(index_,
|
| - scratch_,
|
| - Heap::kHeapNumberMapRootIndex,
|
| - index_not_number_,
|
| - true);
|
| - call_helper.BeforeCall(masm);
|
| - __ Push(object_, index_);
|
| - __ push(index_); // Consumed by runtime conversion function.
|
| - if (index_flags_ == STRING_INDEX_IS_NUMBER) {
|
| - __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
|
| - } else {
|
| - ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
|
| - // NumberToSmi discards numbers that are not exact integers.
|
| - __ CallRuntime(Runtime::kNumberToSmi, 1);
|
| - }
|
| - // Save the conversion result before the pop instructions below
|
| - // have a chance to overwrite it.
|
| - __ Move(scratch_, r0);
|
| - __ pop(index_);
|
| - __ pop(object_);
|
| - // Reload the instance type.
|
| - __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
|
| - __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
|
| - call_helper.AfterCall(masm);
|
| - // If index is still not a smi, it must be out of range.
|
| - __ BranchOnNotSmi(scratch_, index_out_of_range_);
|
| - // Otherwise, return to the fast path.
|
| - __ jmp(&got_smi_index_);
|
| -
|
| - // Call runtime. We get here when the receiver is a string and the
|
| - // index is a number, but the code of getting the actual character
|
| - // is too complex (e.g., when the string needs to be flattened).
|
| - __ bind(&call_runtime_);
|
| - call_helper.BeforeCall(masm);
|
| - __ Push(object_, index_);
|
| - __ CallRuntime(Runtime::kStringCharCodeAt, 2);
|
| - __ Move(result_, r0);
|
| - call_helper.AfterCall(masm);
|
| - __ jmp(&exit_);
|
| -
|
| - __ Abort("Unexpected fallthrough from CharCodeAt slow case");
|
| -}
|
| -
|
| -
|
| -// -------------------------------------------------------------------------
|
| -// StringCharFromCodeGenerator
|
| -
|
| -void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
|
| - // Fast case of Heap::LookupSingleCharacterStringFromCode.
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - STATIC_ASSERT(kSmiShiftSize == 0);
|
| - ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1));
|
| - __ tst(code_,
|
| - Operand(kSmiTagMask |
|
| - ((~String::kMaxAsciiCharCode) << kSmiTagSize)));
|
| - __ b(nz, &slow_case_);
|
| -
|
| - __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
|
| - // At this point code register contains smi tagged ascii char code.
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - __ add(result_, result_, Operand(code_, LSL, kPointerSizeLog2 - kSmiTagSize));
|
| - __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
|
| - __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
|
| - __ cmp(result_, Operand(ip));
|
| - __ b(eq, &slow_case_);
|
| - __ bind(&exit_);
|
| -}
|
| -
|
| -
|
| -void StringCharFromCodeGenerator::GenerateSlow(
|
| - MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
|
| - __ Abort("Unexpected fallthrough to CharFromCode slow case");
|
| -
|
| - __ bind(&slow_case_);
|
| - call_helper.BeforeCall(masm);
|
| - __ push(code_);
|
| - __ CallRuntime(Runtime::kCharFromCode, 1);
|
| - __ Move(result_, r0);
|
| - call_helper.AfterCall(masm);
|
| - __ jmp(&exit_);
|
| -
|
| - __ Abort("Unexpected fallthrough from CharFromCode slow case");
|
| -}
|
| -
|
| -
|
| -// -------------------------------------------------------------------------
|
| -// StringCharAtGenerator
|
| -
|
| -void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
|
| - char_code_at_generator_.GenerateFast(masm);
|
| - char_from_code_generator_.GenerateFast(masm);
|
| -}
|
| -
|
| -
|
| -void StringCharAtGenerator::GenerateSlow(
|
| - MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
|
| - char_code_at_generator_.GenerateSlow(masm, call_helper);
|
| - char_from_code_generator_.GenerateSlow(masm, call_helper);
|
| -}
|
| -
|
| -
|
| -void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
|
| - Register dest,
|
| - Register src,
|
| - Register count,
|
| - Register scratch,
|
| - bool ascii) {
|
| - Label loop;
|
| - Label done;
|
| - // This loop just copies one character at a time, as it is only used for very
|
| - // short strings.
|
| - if (!ascii) {
|
| - __ add(count, count, Operand(count), SetCC);
|
| - } else {
|
| - __ cmp(count, Operand(0));
|
| - }
|
| - __ b(eq, &done);
|
| -
|
| - __ bind(&loop);
|
| - __ ldrb(scratch, MemOperand(src, 1, PostIndex));
|
| - // Perform sub between load and dependent store to get the load time to
|
| - // complete.
|
| - __ sub(count, count, Operand(1), SetCC);
|
| - __ strb(scratch, MemOperand(dest, 1, PostIndex));
|
| - // last iteration.
|
| - __ b(gt, &loop);
|
| -
|
| - __ bind(&done);
|
| -}
|
| -
|
| -
|
| -enum CopyCharactersFlags {
|
| - COPY_ASCII = 1,
|
| - DEST_ALWAYS_ALIGNED = 2
|
| -};
|
| -
|
| -
|
| -void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm,
|
| - Register dest,
|
| - Register src,
|
| - Register count,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register scratch3,
|
| - Register scratch4,
|
| - Register scratch5,
|
| - int flags) {
|
| - bool ascii = (flags & COPY_ASCII) != 0;
|
| - bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0;
|
| -
|
| - if (dest_always_aligned && FLAG_debug_code) {
|
| - // Check that destination is actually word aligned if the flag says
|
| - // that it is.
|
| - __ tst(dest, Operand(kPointerAlignmentMask));
|
| - __ Check(eq, "Destination of copy not aligned.");
|
| - }
|
| -
|
| - const int kReadAlignment = 4;
|
| - const int kReadAlignmentMask = kReadAlignment - 1;
|
| - // Ensure that reading an entire aligned word containing the last character
|
| - // of a string will not read outside the allocated area (because we pad up
|
| - // to kObjectAlignment).
|
| - STATIC_ASSERT(kObjectAlignment >= kReadAlignment);
|
| - // Assumes word reads and writes are little endian.
|
| - // Nothing to do for zero characters.
|
| - Label done;
|
| - if (!ascii) {
|
| - __ add(count, count, Operand(count), SetCC);
|
| - } else {
|
| - __ cmp(count, Operand(0));
|
| - }
|
| - __ b(eq, &done);
|
| -
|
| - // Assume that you cannot read (or write) unaligned.
|
| - Label byte_loop;
|
| - // Must copy at least eight bytes, otherwise just do it one byte at a time.
|
| - __ cmp(count, Operand(8));
|
| - __ add(count, dest, Operand(count));
|
| - Register limit = count; // Read until src equals this.
|
| - __ b(lt, &byte_loop);
|
| -
|
| - if (!dest_always_aligned) {
|
| - // Align dest by byte copying. Copies between zero and three bytes.
|
| - __ and_(scratch4, dest, Operand(kReadAlignmentMask), SetCC);
|
| - Label dest_aligned;
|
| - __ b(eq, &dest_aligned);
|
| - __ cmp(scratch4, Operand(2));
|
| - __ ldrb(scratch1, MemOperand(src, 1, PostIndex));
|
| - __ ldrb(scratch2, MemOperand(src, 1, PostIndex), le);
|
| - __ ldrb(scratch3, MemOperand(src, 1, PostIndex), lt);
|
| - __ strb(scratch1, MemOperand(dest, 1, PostIndex));
|
| - __ strb(scratch2, MemOperand(dest, 1, PostIndex), le);
|
| - __ strb(scratch3, MemOperand(dest, 1, PostIndex), lt);
|
| - __ bind(&dest_aligned);
|
| - }
|
| -
|
| - Label simple_loop;
|
| -
|
| - __ sub(scratch4, dest, Operand(src));
|
| - __ and_(scratch4, scratch4, Operand(0x03), SetCC);
|
| - __ b(eq, &simple_loop);
|
| - // Shift register is number of bits in a source word that
|
| - // must be combined with bits in the next source word in order
|
| - // to create a destination word.
|
| -
|
| - // Complex loop for src/dst that are not aligned the same way.
|
| - {
|
| - Label loop;
|
| - __ mov(scratch4, Operand(scratch4, LSL, 3));
|
| - Register left_shift = scratch4;
|
| - __ and_(src, src, Operand(~3)); // Round down to load previous word.
|
| - __ ldr(scratch1, MemOperand(src, 4, PostIndex));
|
| - // Store the "shift" most significant bits of scratch in the least
|
| - // signficant bits (i.e., shift down by (32-shift)).
|
| - __ rsb(scratch2, left_shift, Operand(32));
|
| - Register right_shift = scratch2;
|
| - __ mov(scratch1, Operand(scratch1, LSR, right_shift));
|
| -
|
| - __ bind(&loop);
|
| - __ ldr(scratch3, MemOperand(src, 4, PostIndex));
|
| - __ sub(scratch5, limit, Operand(dest));
|
| - __ orr(scratch1, scratch1, Operand(scratch3, LSL, left_shift));
|
| - __ str(scratch1, MemOperand(dest, 4, PostIndex));
|
| - __ mov(scratch1, Operand(scratch3, LSR, right_shift));
|
| - // Loop if four or more bytes left to copy.
|
| - // Compare to eight, because we did the subtract before increasing dst.
|
| - __ sub(scratch5, scratch5, Operand(8), SetCC);
|
| - __ b(ge, &loop);
|
| - }
|
| - // There is now between zero and three bytes left to copy (negative that
|
| - // number is in scratch5), and between one and three bytes already read into
|
| - // scratch1 (eight times that number in scratch4). We may have read past
|
| - // the end of the string, but because objects are aligned, we have not read
|
| - // past the end of the object.
|
| - // Find the minimum of remaining characters to move and preloaded characters
|
| - // and write those as bytes.
|
| - __ add(scratch5, scratch5, Operand(4), SetCC);
|
| - __ b(eq, &done);
|
| - __ cmp(scratch4, Operand(scratch5, LSL, 3), ne);
|
| - // Move minimum of bytes read and bytes left to copy to scratch4.
|
| - __ mov(scratch5, Operand(scratch4, LSR, 3), LeaveCC, lt);
|
| - // Between one and three (value in scratch5) characters already read into
|
| - // scratch ready to write.
|
| - __ cmp(scratch5, Operand(2));
|
| - __ strb(scratch1, MemOperand(dest, 1, PostIndex));
|
| - __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, ge);
|
| - __ strb(scratch1, MemOperand(dest, 1, PostIndex), ge);
|
| - __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, gt);
|
| - __ strb(scratch1, MemOperand(dest, 1, PostIndex), gt);
|
| - // Copy any remaining bytes.
|
| - __ b(&byte_loop);
|
| -
|
| - // Simple loop.
|
| - // Copy words from src to dst, until less than four bytes left.
|
| - // Both src and dest are word aligned.
|
| - __ bind(&simple_loop);
|
| - {
|
| - Label loop;
|
| - __ bind(&loop);
|
| - __ ldr(scratch1, MemOperand(src, 4, PostIndex));
|
| - __ sub(scratch3, limit, Operand(dest));
|
| - __ str(scratch1, MemOperand(dest, 4, PostIndex));
|
| - // Compare to 8, not 4, because we do the substraction before increasing
|
| - // dest.
|
| - __ cmp(scratch3, Operand(8));
|
| - __ b(ge, &loop);
|
| - }
|
| -
|
| - // Copy bytes from src to dst until dst hits limit.
|
| - __ bind(&byte_loop);
|
| - __ cmp(dest, Operand(limit));
|
| - __ ldrb(scratch1, MemOperand(src, 1, PostIndex), lt);
|
| - __ b(ge, &done);
|
| - __ strb(scratch1, MemOperand(dest, 1, PostIndex));
|
| - __ b(&byte_loop);
|
| -
|
| - __ bind(&done);
|
| -}
|
| -
|
| -
|
| -void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
|
| - Register c1,
|
| - Register c2,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register scratch3,
|
| - Register scratch4,
|
| - Register scratch5,
|
| - Label* not_found) {
|
| - // Register scratch3 is the general scratch register in this function.
|
| - Register scratch = scratch3;
|
| -
|
| - // Make sure that both characters are not digits as such strings has a
|
| - // different hash algorithm. Don't try to look for these in the symbol table.
|
| - Label not_array_index;
|
| - __ sub(scratch, c1, Operand(static_cast<int>('0')));
|
| - __ cmp(scratch, Operand(static_cast<int>('9' - '0')));
|
| - __ b(hi, ¬_array_index);
|
| - __ sub(scratch, c2, Operand(static_cast<int>('0')));
|
| - __ cmp(scratch, Operand(static_cast<int>('9' - '0')));
|
| -
|
| - // If check failed combine both characters into single halfword.
|
| - // This is required by the contract of the method: code at the
|
| - // not_found branch expects this combination in c1 register
|
| - __ orr(c1, c1, Operand(c2, LSL, kBitsPerByte), LeaveCC, ls);
|
| - __ b(ls, not_found);
|
| -
|
| - __ bind(¬_array_index);
|
| - // Calculate the two character string hash.
|
| - Register hash = scratch1;
|
| - StringHelper::GenerateHashInit(masm, hash, c1);
|
| - StringHelper::GenerateHashAddCharacter(masm, hash, c2);
|
| - StringHelper::GenerateHashGetHash(masm, hash);
|
| -
|
| - // Collect the two characters in a register.
|
| - Register chars = c1;
|
| - __ orr(chars, chars, Operand(c2, LSL, kBitsPerByte));
|
| -
|
| - // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
|
| - // hash: hash of two character string.
|
| -
|
| - // Load symbol table
|
| - // Load address of first element of the symbol table.
|
| - Register symbol_table = c2;
|
| - __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex);
|
| -
|
| - // Load undefined value
|
| - Register undefined = scratch4;
|
| - __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
|
| -
|
| - // Calculate capacity mask from the symbol table capacity.
|
| - Register mask = scratch2;
|
| - __ ldr(mask, FieldMemOperand(symbol_table, SymbolTable::kCapacityOffset));
|
| - __ mov(mask, Operand(mask, ASR, 1));
|
| - __ sub(mask, mask, Operand(1));
|
| -
|
| - // Calculate untagged address of the first element of the symbol table.
|
| - Register first_symbol_table_element = symbol_table;
|
| - __ add(first_symbol_table_element, symbol_table,
|
| - Operand(SymbolTable::kElementsStartOffset - kHeapObjectTag));
|
| -
|
| - // Registers
|
| - // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
|
| - // hash: hash of two character string
|
| - // mask: capacity mask
|
| - // first_symbol_table_element: address of the first element of
|
| - // the symbol table
|
| - // scratch: -
|
| -
|
| - // Perform a number of probes in the symbol table.
|
| - static const int kProbes = 4;
|
| - Label found_in_symbol_table;
|
| - Label next_probe[kProbes];
|
| - for (int i = 0; i < kProbes; i++) {
|
| - Register candidate = scratch5; // Scratch register contains candidate.
|
| -
|
| - // Calculate entry in symbol table.
|
| - if (i > 0) {
|
| - __ add(candidate, hash, Operand(SymbolTable::GetProbeOffset(i)));
|
| - } else {
|
| - __ mov(candidate, hash);
|
| - }
|
| -
|
| - __ and_(candidate, candidate, Operand(mask));
|
| -
|
| - // Load the entry from the symble table.
|
| - STATIC_ASSERT(SymbolTable::kEntrySize == 1);
|
| - __ ldr(candidate,
|
| - MemOperand(first_symbol_table_element,
|
| - candidate,
|
| - LSL,
|
| - kPointerSizeLog2));
|
| -
|
| - // If entry is undefined no string with this hash can be found.
|
| - __ cmp(candidate, undefined);
|
| - __ b(eq, not_found);
|
| -
|
| - // If length is not 2 the string is not a candidate.
|
| - __ ldr(scratch, FieldMemOperand(candidate, String::kLengthOffset));
|
| - __ cmp(scratch, Operand(Smi::FromInt(2)));
|
| - __ b(ne, &next_probe[i]);
|
| -
|
| - // Check that the candidate is a non-external ascii string.
|
| - __ ldr(scratch, FieldMemOperand(candidate, HeapObject::kMapOffset));
|
| - __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
|
| - __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch,
|
| - &next_probe[i]);
|
| -
|
| - // Check if the two characters match.
|
| - // Assumes that word load is little endian.
|
| - __ ldrh(scratch, FieldMemOperand(candidate, SeqAsciiString::kHeaderSize));
|
| - __ cmp(chars, scratch);
|
| - __ b(eq, &found_in_symbol_table);
|
| - __ bind(&next_probe[i]);
|
| - }
|
| -
|
| - // No matching 2 character string found by probing.
|
| - __ jmp(not_found);
|
| -
|
| - // Scratch register contains result when we fall through to here.
|
| - Register result = scratch;
|
| - __ bind(&found_in_symbol_table);
|
| - __ Move(r0, result);
|
| -}
|
| -
|
| -
|
| -void StringHelper::GenerateHashInit(MacroAssembler* masm,
|
| - Register hash,
|
| - Register character) {
|
| - // hash = character + (character << 10);
|
| - __ add(hash, character, Operand(character, LSL, 10));
|
| - // hash ^= hash >> 6;
|
| - __ eor(hash, hash, Operand(hash, ASR, 6));
|
| -}
|
| -
|
| -
|
| -void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
|
| - Register hash,
|
| - Register character) {
|
| - // hash += character;
|
| - __ add(hash, hash, Operand(character));
|
| - // hash += hash << 10;
|
| - __ add(hash, hash, Operand(hash, LSL, 10));
|
| - // hash ^= hash >> 6;
|
| - __ eor(hash, hash, Operand(hash, ASR, 6));
|
| -}
|
| -
|
| -
|
| -void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
|
| - Register hash) {
|
| - // hash += hash << 3;
|
| - __ add(hash, hash, Operand(hash, LSL, 3));
|
| - // hash ^= hash >> 11;
|
| - __ eor(hash, hash, Operand(hash, ASR, 11));
|
| - // hash += hash << 15;
|
| - __ add(hash, hash, Operand(hash, LSL, 15), SetCC);
|
| -
|
| - // if (hash == 0) hash = 27;
|
| - __ mov(hash, Operand(27), LeaveCC, nz);
|
| -}
|
| -
|
| -
|
| -void SubStringStub::Generate(MacroAssembler* masm) {
|
| - Label runtime;
|
| -
|
| - // Stack frame on entry.
|
| - // lr: return address
|
| - // sp[0]: to
|
| - // sp[4]: from
|
| - // sp[8]: string
|
| -
|
| - // This stub is called from the native-call %_SubString(...), so
|
| - // nothing can be assumed about the arguments. It is tested that:
|
| - // "string" is a sequential string,
|
| - // both "from" and "to" are smis, and
|
| - // 0 <= from <= to <= string.length.
|
| - // If any of these assumptions fail, we call the runtime system.
|
| -
|
| - static const int kToOffset = 0 * kPointerSize;
|
| - static const int kFromOffset = 1 * kPointerSize;
|
| - static const int kStringOffset = 2 * kPointerSize;
|
| -
|
| -
|
| - // Check bounds and smi-ness.
|
| - __ ldr(r7, MemOperand(sp, kToOffset));
|
| - __ ldr(r6, MemOperand(sp, kFromOffset));
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
|
| - // I.e., arithmetic shift right by one un-smi-tags.
|
| - __ mov(r2, Operand(r7, ASR, 1), SetCC);
|
| - __ mov(r3, Operand(r6, ASR, 1), SetCC, cc);
|
| - // If either r2 or r6 had the smi tag bit set, then carry is set now.
|
| - __ b(cs, &runtime); // Either "from" or "to" is not a smi.
|
| - __ b(mi, &runtime); // From is negative.
|
| -
|
| - __ sub(r2, r2, Operand(r3), SetCC);
|
| - __ b(mi, &runtime); // Fail if from > to.
|
| - // Special handling of sub-strings of length 1 and 2. One character strings
|
| - // are handled in the runtime system (looked up in the single character
|
| - // cache). Two character strings are looked for in the symbol cache.
|
| - __ cmp(r2, Operand(2));
|
| - __ b(lt, &runtime);
|
| -
|
| - // r2: length
|
| - // r3: from index (untaged smi)
|
| - // r6: from (smi)
|
| - // r7: to (smi)
|
| -
|
| - // Make sure first argument is a sequential (or flat) string.
|
| - __ ldr(r5, MemOperand(sp, kStringOffset));
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - __ tst(r5, Operand(kSmiTagMask));
|
| - __ b(eq, &runtime);
|
| - Condition is_string = masm->IsObjectStringType(r5, r1);
|
| - __ b(NegateCondition(is_string), &runtime);
|
| -
|
| - // r1: instance type
|
| - // r2: length
|
| - // r3: from index (untaged smi)
|
| - // r5: string
|
| - // r6: from (smi)
|
| - // r7: to (smi)
|
| - Label seq_string;
|
| - __ and_(r4, r1, Operand(kStringRepresentationMask));
|
| - STATIC_ASSERT(kSeqStringTag < kConsStringTag);
|
| - STATIC_ASSERT(kConsStringTag < kExternalStringTag);
|
| - __ cmp(r4, Operand(kConsStringTag));
|
| - __ b(gt, &runtime); // External strings go to runtime.
|
| - __ b(lt, &seq_string); // Sequential strings are handled directly.
|
| -
|
| - // Cons string. Try to recurse (once) on the first substring.
|
| - // (This adds a little more generality than necessary to handle flattened
|
| - // cons strings, but not much).
|
| - __ ldr(r5, FieldMemOperand(r5, ConsString::kFirstOffset));
|
| - __ ldr(r4, FieldMemOperand(r5, HeapObject::kMapOffset));
|
| - __ ldrb(r1, FieldMemOperand(r4, Map::kInstanceTypeOffset));
|
| - __ tst(r1, Operand(kStringRepresentationMask));
|
| - STATIC_ASSERT(kSeqStringTag == 0);
|
| - __ b(ne, &runtime); // Cons and External strings go to runtime.
|
| -
|
| - // Definitly a sequential string.
|
| - __ bind(&seq_string);
|
| -
|
| - // r1: instance type.
|
| - // r2: length
|
| - // r3: from index (untaged smi)
|
| - // r5: string
|
| - // r6: from (smi)
|
| - // r7: to (smi)
|
| - __ ldr(r4, FieldMemOperand(r5, String::kLengthOffset));
|
| - __ cmp(r4, Operand(r7));
|
| - __ b(lt, &runtime); // Fail if to > length.
|
| -
|
| - // r1: instance type.
|
| - // r2: result string length.
|
| - // r3: from index (untaged smi)
|
| - // r5: string.
|
| - // r6: from offset (smi)
|
| - // Check for flat ascii string.
|
| - Label non_ascii_flat;
|
| - __ tst(r1, Operand(kStringEncodingMask));
|
| - STATIC_ASSERT(kTwoByteStringTag == 0);
|
| - __ b(eq, &non_ascii_flat);
|
| -
|
| - Label result_longer_than_two;
|
| - __ cmp(r2, Operand(2));
|
| - __ b(gt, &result_longer_than_two);
|
| -
|
| - // Sub string of length 2 requested.
|
| - // Get the two characters forming the sub string.
|
| - __ add(r5, r5, Operand(r3));
|
| - __ ldrb(r3, FieldMemOperand(r5, SeqAsciiString::kHeaderSize));
|
| - __ ldrb(r4, FieldMemOperand(r5, SeqAsciiString::kHeaderSize + 1));
|
| -
|
| - // Try to lookup two character string in symbol table.
|
| - Label make_two_character_string;
|
| - StringHelper::GenerateTwoCharacterSymbolTableProbe(
|
| - masm, r3, r4, r1, r5, r6, r7, r9, &make_two_character_string);
|
| - __ IncrementCounter(&Counters::sub_string_native, 1, r3, r4);
|
| - __ add(sp, sp, Operand(3 * kPointerSize));
|
| - __ Ret();
|
| -
|
| - // r2: result string length.
|
| - // r3: two characters combined into halfword in little endian byte order.
|
| - __ bind(&make_two_character_string);
|
| - __ AllocateAsciiString(r0, r2, r4, r5, r9, &runtime);
|
| - __ strh(r3, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
|
| - __ IncrementCounter(&Counters::sub_string_native, 1, r3, r4);
|
| - __ add(sp, sp, Operand(3 * kPointerSize));
|
| - __ Ret();
|
| -
|
| - __ bind(&result_longer_than_two);
|
| -
|
| - // Allocate the result.
|
| - __ AllocateAsciiString(r0, r2, r3, r4, r1, &runtime);
|
| -
|
| - // r0: result string.
|
| - // r2: result string length.
|
| - // r5: string.
|
| - // r6: from offset (smi)
|
| - // Locate first character of result.
|
| - __ add(r1, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
|
| - // Locate 'from' character of string.
|
| - __ add(r5, r5, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
|
| - __ add(r5, r5, Operand(r6, ASR, 1));
|
| -
|
| - // r0: result string.
|
| - // r1: first character of result string.
|
| - // r2: result string length.
|
| - // r5: first character of sub string to copy.
|
| - STATIC_ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
|
| - StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9,
|
| - COPY_ASCII | DEST_ALWAYS_ALIGNED);
|
| - __ IncrementCounter(&Counters::sub_string_native, 1, r3, r4);
|
| - __ add(sp, sp, Operand(3 * kPointerSize));
|
| - __ Ret();
|
| -
|
| - __ bind(&non_ascii_flat);
|
| - // r2: result string length.
|
| - // r5: string.
|
| - // r6: from offset (smi)
|
| - // Check for flat two byte string.
|
| -
|
| - // Allocate the result.
|
| - __ AllocateTwoByteString(r0, r2, r1, r3, r4, &runtime);
|
| -
|
| - // r0: result string.
|
| - // r2: result string length.
|
| - // r5: string.
|
| - // Locate first character of result.
|
| - __ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
|
| - // Locate 'from' character of string.
|
| - __ add(r5, r5, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
|
| - // As "from" is a smi it is 2 times the value which matches the size of a two
|
| - // byte character.
|
| - __ add(r5, r5, Operand(r6));
|
| -
|
| - // r0: result string.
|
| - // r1: first character of result.
|
| - // r2: result length.
|
| - // r5: first character of string to copy.
|
| - STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
|
| - StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9,
|
| - DEST_ALWAYS_ALIGNED);
|
| - __ IncrementCounter(&Counters::sub_string_native, 1, r3, r4);
|
| - __ add(sp, sp, Operand(3 * kPointerSize));
|
| - __ Ret();
|
| -
|
| - // Just jump to runtime to create the sub string.
|
| - __ bind(&runtime);
|
| - __ TailCallRuntime(Runtime::kSubString, 3, 1);
|
| -}
|
| -
|
| -
|
| -void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
|
| - Register left,
|
| - Register right,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register scratch3,
|
| - Register scratch4) {
|
| - Label compare_lengths;
|
| - // Find minimum length and length difference.
|
| - __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
|
| - __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
|
| - __ sub(scratch3, scratch1, Operand(scratch2), SetCC);
|
| - Register length_delta = scratch3;
|
| - __ mov(scratch1, scratch2, LeaveCC, gt);
|
| - Register min_length = scratch1;
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - __ tst(min_length, Operand(min_length));
|
| - __ b(eq, &compare_lengths);
|
| -
|
| - // Untag smi.
|
| - __ mov(min_length, Operand(min_length, ASR, kSmiTagSize));
|
| -
|
| - // Setup registers so that we only need to increment one register
|
| - // in the loop.
|
| - __ add(scratch2, min_length,
|
| - Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
|
| - __ add(left, left, Operand(scratch2));
|
| - __ add(right, right, Operand(scratch2));
|
| - // Registers left and right points to the min_length character of strings.
|
| - __ rsb(min_length, min_length, Operand(-1));
|
| - Register index = min_length;
|
| - // Index starts at -min_length.
|
| -
|
| - {
|
| - // Compare loop.
|
| - Label loop;
|
| - __ bind(&loop);
|
| - // Compare characters.
|
| - __ add(index, index, Operand(1), SetCC);
|
| - __ ldrb(scratch2, MemOperand(left, index), ne);
|
| - __ ldrb(scratch4, MemOperand(right, index), ne);
|
| - // Skip to compare lengths with eq condition true.
|
| - __ b(eq, &compare_lengths);
|
| - __ cmp(scratch2, scratch4);
|
| - __ b(eq, &loop);
|
| - // Fallthrough with eq condition false.
|
| - }
|
| - // Compare lengths - strings up to min-length are equal.
|
| - __ bind(&compare_lengths);
|
| - ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
|
| - // Use zero length_delta as result.
|
| - __ mov(r0, Operand(length_delta), SetCC, eq);
|
| - // Fall through to here if characters compare not-equal.
|
| - __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt);
|
| - __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt);
|
| - __ Ret();
|
| -}
|
| -
|
| -
|
| -void StringCompareStub::Generate(MacroAssembler* masm) {
|
| - Label runtime;
|
| -
|
| - // Stack frame on entry.
|
| - // sp[0]: right string
|
| - // sp[4]: left string
|
| - __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); // left
|
| - __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); // right
|
| -
|
| - Label not_same;
|
| - __ cmp(r0, r1);
|
| - __ b(ne, ¬_same);
|
| - STATIC_ASSERT(EQUAL == 0);
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - __ mov(r0, Operand(Smi::FromInt(EQUAL)));
|
| - __ IncrementCounter(&Counters::string_compare_native, 1, r1, r2);
|
| - __ add(sp, sp, Operand(2 * kPointerSize));
|
| - __ Ret();
|
| -
|
| - __ bind(¬_same);
|
| -
|
| - // Check that both objects are sequential ascii strings.
|
| - __ JumpIfNotBothSequentialAsciiStrings(r0, r1, r2, r3, &runtime);
|
| -
|
| - // Compare flat ascii strings natively. Remove arguments from stack first.
|
| - __ IncrementCounter(&Counters::string_compare_native, 1, r2, r3);
|
| - __ add(sp, sp, Operand(2 * kPointerSize));
|
| - GenerateCompareFlatAsciiStrings(masm, r0, r1, r2, r3, r4, r5);
|
| -
|
| - // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
|
| - // tagged as a small integer.
|
| - __ bind(&runtime);
|
| - __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
|
| -}
|
| -
|
| -
|
| -void StringAddStub::Generate(MacroAssembler* masm) {
|
| - Label string_add_runtime;
|
| - // Stack on entry:
|
| - // sp[0]: second argument.
|
| - // sp[4]: first argument.
|
| -
|
| - // Load the two arguments.
|
| - __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); // First argument.
|
| - __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); // Second argument.
|
| -
|
| - // Make sure that both arguments are strings if not known in advance.
|
| - if (string_check_) {
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - __ JumpIfEitherSmi(r0, r1, &string_add_runtime);
|
| - // Load instance types.
|
| - __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
|
| - __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
|
| - __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
|
| - __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
|
| - STATIC_ASSERT(kStringTag == 0);
|
| - // If either is not a string, go to runtime.
|
| - __ tst(r4, Operand(kIsNotStringMask));
|
| - __ tst(r5, Operand(kIsNotStringMask), eq);
|
| - __ b(ne, &string_add_runtime);
|
| - }
|
| -
|
| - // Both arguments are strings.
|
| - // r0: first string
|
| - // r1: second string
|
| - // r4: first string instance type (if string_check_)
|
| - // r5: second string instance type (if string_check_)
|
| - {
|
| - Label strings_not_empty;
|
| - // Check if either of the strings are empty. In that case return the other.
|
| - __ ldr(r2, FieldMemOperand(r0, String::kLengthOffset));
|
| - __ ldr(r3, FieldMemOperand(r1, String::kLengthOffset));
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - __ cmp(r2, Operand(Smi::FromInt(0))); // Test if first string is empty.
|
| - __ mov(r0, Operand(r1), LeaveCC, eq); // If first is empty, return second.
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - // Else test if second string is empty.
|
| - __ cmp(r3, Operand(Smi::FromInt(0)), ne);
|
| - __ b(ne, &strings_not_empty); // If either string was empty, return r0.
|
| -
|
| - __ IncrementCounter(&Counters::string_add_native, 1, r2, r3);
|
| - __ add(sp, sp, Operand(2 * kPointerSize));
|
| - __ Ret();
|
| -
|
| - __ bind(&strings_not_empty);
|
| - }
|
| -
|
| - __ mov(r2, Operand(r2, ASR, kSmiTagSize));
|
| - __ mov(r3, Operand(r3, ASR, kSmiTagSize));
|
| - // Both strings are non-empty.
|
| - // r0: first string
|
| - // r1: second string
|
| - // r2: length of first string
|
| - // r3: length of second string
|
| - // r4: first string instance type (if string_check_)
|
| - // r5: second string instance type (if string_check_)
|
| - // Look at the length of the result of adding the two strings.
|
| - Label string_add_flat_result, longer_than_two;
|
| - // Adding two lengths can't overflow.
|
| - STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2);
|
| - __ add(r6, r2, Operand(r3));
|
| - // Use the runtime system when adding two one character strings, as it
|
| - // contains optimizations for this specific case using the symbol table.
|
| - __ cmp(r6, Operand(2));
|
| - __ b(ne, &longer_than_two);
|
| -
|
| - // Check that both strings are non-external ascii strings.
|
| - if (!string_check_) {
|
| - __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
|
| - __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
|
| - __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
|
| - __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
|
| - }
|
| - __ JumpIfBothInstanceTypesAreNotSequentialAscii(r4, r5, r6, r7,
|
| - &string_add_runtime);
|
| -
|
| - // Get the two characters forming the sub string.
|
| - __ ldrb(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
|
| - __ ldrb(r3, FieldMemOperand(r1, SeqAsciiString::kHeaderSize));
|
| -
|
| - // Try to lookup two character string in symbol table. If it is not found
|
| - // just allocate a new one.
|
| - Label make_two_character_string;
|
| - StringHelper::GenerateTwoCharacterSymbolTableProbe(
|
| - masm, r2, r3, r6, r7, r4, r5, r9, &make_two_character_string);
|
| - __ IncrementCounter(&Counters::string_add_native, 1, r2, r3);
|
| - __ add(sp, sp, Operand(2 * kPointerSize));
|
| - __ Ret();
|
| -
|
| - __ bind(&make_two_character_string);
|
| - // Resulting string has length 2 and first chars of two strings
|
| - // are combined into single halfword in r2 register.
|
| - // So we can fill resulting string without two loops by a single
|
| - // halfword store instruction (which assumes that processor is
|
| - // in a little endian mode)
|
| - __ mov(r6, Operand(2));
|
| - __ AllocateAsciiString(r0, r6, r4, r5, r9, &string_add_runtime);
|
| - __ strh(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
|
| - __ IncrementCounter(&Counters::string_add_native, 1, r2, r3);
|
| - __ add(sp, sp, Operand(2 * kPointerSize));
|
| - __ Ret();
|
| -
|
| - __ bind(&longer_than_two);
|
| - // Check if resulting string will be flat.
|
| - __ cmp(r6, Operand(String::kMinNonFlatLength));
|
| - __ b(lt, &string_add_flat_result);
|
| - // Handle exceptionally long strings in the runtime system.
|
| - STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
|
| - ASSERT(IsPowerOf2(String::kMaxLength + 1));
|
| - // kMaxLength + 1 is representable as shifted literal, kMaxLength is not.
|
| - __ cmp(r6, Operand(String::kMaxLength + 1));
|
| - __ b(hs, &string_add_runtime);
|
| -
|
| - // If result is not supposed to be flat, allocate a cons string object.
|
| - // If both strings are ascii the result is an ascii cons string.
|
| - if (!string_check_) {
|
| - __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
|
| - __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
|
| - __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
|
| - __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
|
| - }
|
| - Label non_ascii, allocated, ascii_data;
|
| - STATIC_ASSERT(kTwoByteStringTag == 0);
|
| - __ tst(r4, Operand(kStringEncodingMask));
|
| - __ tst(r5, Operand(kStringEncodingMask), ne);
|
| - __ b(eq, &non_ascii);
|
| -
|
| - // Allocate an ASCII cons string.
|
| - __ bind(&ascii_data);
|
| - __ AllocateAsciiConsString(r7, r6, r4, r5, &string_add_runtime);
|
| - __ bind(&allocated);
|
| - // Fill the fields of the cons string.
|
| - __ str(r0, FieldMemOperand(r7, ConsString::kFirstOffset));
|
| - __ str(r1, FieldMemOperand(r7, ConsString::kSecondOffset));
|
| - __ mov(r0, Operand(r7));
|
| - __ IncrementCounter(&Counters::string_add_native, 1, r2, r3);
|
| - __ add(sp, sp, Operand(2 * kPointerSize));
|
| - __ Ret();
|
| -
|
| - __ bind(&non_ascii);
|
| - // At least one of the strings is two-byte. Check whether it happens
|
| - // to contain only ascii characters.
|
| - // r4: first instance type.
|
| - // r5: second instance type.
|
| - __ tst(r4, Operand(kAsciiDataHintMask));
|
| - __ tst(r5, Operand(kAsciiDataHintMask), ne);
|
| - __ b(ne, &ascii_data);
|
| - __ eor(r4, r4, Operand(r5));
|
| - STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
|
| - __ and_(r4, r4, Operand(kAsciiStringTag | kAsciiDataHintTag));
|
| - __ cmp(r4, Operand(kAsciiStringTag | kAsciiDataHintTag));
|
| - __ b(eq, &ascii_data);
|
| -
|
| - // Allocate a two byte cons string.
|
| - __ AllocateTwoByteConsString(r7, r6, r4, r5, &string_add_runtime);
|
| - __ jmp(&allocated);
|
| -
|
| - // Handle creating a flat result. First check that both strings are
|
| - // sequential and that they have the same encoding.
|
| - // r0: first string
|
| - // r1: second string
|
| - // r2: length of first string
|
| - // r3: length of second string
|
| - // r4: first string instance type (if string_check_)
|
| - // r5: second string instance type (if string_check_)
|
| - // r6: sum of lengths.
|
| - __ bind(&string_add_flat_result);
|
| - if (!string_check_) {
|
| - __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
|
| - __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
|
| - __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
|
| - __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
|
| - }
|
| - // Check that both strings are sequential.
|
| - STATIC_ASSERT(kSeqStringTag == 0);
|
| - __ tst(r4, Operand(kStringRepresentationMask));
|
| - __ tst(r5, Operand(kStringRepresentationMask), eq);
|
| - __ b(ne, &string_add_runtime);
|
| - // Now check if both strings have the same encoding (ASCII/Two-byte).
|
| - // r0: first string.
|
| - // r1: second string.
|
| - // r2: length of first string.
|
| - // r3: length of second string.
|
| - // r6: sum of lengths..
|
| - Label non_ascii_string_add_flat_result;
|
| - ASSERT(IsPowerOf2(kStringEncodingMask)); // Just one bit to test.
|
| - __ eor(r7, r4, Operand(r5));
|
| - __ tst(r7, Operand(kStringEncodingMask));
|
| - __ b(ne, &string_add_runtime);
|
| - // And see if it's ASCII or two-byte.
|
| - __ tst(r4, Operand(kStringEncodingMask));
|
| - __ b(eq, &non_ascii_string_add_flat_result);
|
| -
|
| - // Both strings are sequential ASCII strings. We also know that they are
|
| - // short (since the sum of the lengths is less than kMinNonFlatLength).
|
| - // r6: length of resulting flat string
|
| - __ AllocateAsciiString(r7, r6, r4, r5, r9, &string_add_runtime);
|
| - // Locate first character of result.
|
| - __ add(r6, r7, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
|
| - // Locate first character of first argument.
|
| - __ add(r0, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
|
| - // r0: first character of first string.
|
| - // r1: second string.
|
| - // r2: length of first string.
|
| - // r3: length of second string.
|
| - // r6: first character of result.
|
| - // r7: result string.
|
| - StringHelper::GenerateCopyCharacters(masm, r6, r0, r2, r4, true);
|
| -
|
| - // Load second argument and locate first character.
|
| - __ add(r1, r1, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
|
| - // r1: first character of second string.
|
| - // r3: length of second string.
|
| - // r6: next character of result.
|
| - // r7: result string.
|
| - StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, true);
|
| - __ mov(r0, Operand(r7));
|
| - __ IncrementCounter(&Counters::string_add_native, 1, r2, r3);
|
| - __ add(sp, sp, Operand(2 * kPointerSize));
|
| - __ Ret();
|
| -
|
| - __ bind(&non_ascii_string_add_flat_result);
|
| - // Both strings are sequential two byte strings.
|
| - // r0: first string.
|
| - // r1: second string.
|
| - // r2: length of first string.
|
| - // r3: length of second string.
|
| - // r6: sum of length of strings.
|
| - __ AllocateTwoByteString(r7, r6, r4, r5, r9, &string_add_runtime);
|
| - // r0: first string.
|
| - // r1: second string.
|
| - // r2: length of first string.
|
| - // r3: length of second string.
|
| - // r7: result string.
|
| -
|
| - // Locate first character of result.
|
| - __ add(r6, r7, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
|
| - // Locate first character of first argument.
|
| - __ add(r0, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
|
| -
|
| - // r0: first character of first string.
|
| - // r1: second string.
|
| - // r2: length of first string.
|
| - // r3: length of second string.
|
| - // r6: first character of result.
|
| - // r7: result string.
|
| - StringHelper::GenerateCopyCharacters(masm, r6, r0, r2, r4, false);
|
| -
|
| - // Locate first character of second argument.
|
| - __ add(r1, r1, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
|
| -
|
| - // r1: first character of second string.
|
| - // r3: length of second string.
|
| - // r6: next character of result (after copy of first string).
|
| - // r7: result string.
|
| - StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, false);
|
| -
|
| - __ mov(r0, Operand(r7));
|
| - __ IncrementCounter(&Counters::string_add_native, 1, r2, r3);
|
| - __ add(sp, sp, Operand(2 * kPointerSize));
|
| - __ Ret();
|
| -
|
| - // Just jump to runtime to add the two strings.
|
| - __ bind(&string_add_runtime);
|
| - __ TailCallRuntime(Runtime::kStringAdd, 2, 1);
|
| -}
|
| -
|
| -
|
| #undef __
|
|
|
| } } // namespace v8::internal
|
|
|