Index: src/x64/codegen-x64.cc |
=================================================================== |
--- src/x64/codegen-x64.cc (revision 5337) |
+++ src/x64/codegen-x64.cc (working copy) |
@@ -30,6 +30,7 @@ |
#if defined(V8_TARGET_ARCH_X64) |
#include "bootstrapper.h" |
+#include "code-stubs-x64.h" |
#include "codegen-inl.h" |
#include "compiler.h" |
#include "debug.h" |
@@ -807,55 +808,6 @@ |
} |
-class FloatingPointHelper : public AllStatic { |
- public: |
- // Load the operands from rdx and rax into xmm0 and xmm1, as doubles. |
- // If the operands are not both numbers, jump to not_numbers. |
- // Leaves rdx and rax unchanged. SmiOperands assumes both are smis. |
- // NumberOperands assumes both are smis or heap numbers. |
- static void LoadSSE2SmiOperands(MacroAssembler* masm); |
- static void LoadSSE2NumberOperands(MacroAssembler* masm); |
- static void LoadSSE2UnknownOperands(MacroAssembler* masm, |
- Label* not_numbers); |
- |
- // Takes the operands in rdx and rax and loads them as integers in rax |
- // and rcx. |
- static void LoadAsIntegers(MacroAssembler* masm, |
- Label* operand_conversion_failure, |
- Register heap_number_map); |
- // As above, but we know the operands to be numbers. In that case, |
- // conversion can't fail. |
- static void LoadNumbersAsIntegers(MacroAssembler* masm); |
-}; |
- |
- |
-const char* GenericBinaryOpStub::GetName() { |
- if (name_ != NULL) return name_; |
- const int kMaxNameLength = 100; |
- name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength); |
- if (name_ == NULL) return "OOM"; |
- const char* op_name = Token::Name(op_); |
- const char* overwrite_name; |
- switch (mode_) { |
- case NO_OVERWRITE: overwrite_name = "Alloc"; break; |
- case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; |
- case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; |
- default: overwrite_name = "UnknownOverwrite"; break; |
- } |
- |
- OS::SNPrintF(Vector<char>(name_, kMaxNameLength), |
- "GenericBinaryOpStub_%s_%s%s_%s%s_%s_%s", |
- op_name, |
- overwrite_name, |
- (flags_ & NO_SMI_CODE_IN_STUB) ? "_NoSmiInStub" : "", |
- args_in_registers_ ? "RegArgs" : "StackArgs", |
- args_reversed_ ? "_R" : "", |
- static_operands_type_.ToString(), |
- BinaryOpIC::GetName(runtime_operands_type_)); |
- return name_; |
-} |
- |
- |
// Call the specialized stub for a binary operation. |
class DeferredInlineBinaryOperation: public DeferredCode { |
public: |
@@ -8819,350 +8771,6 @@ |
} |
-void FastNewClosureStub::Generate(MacroAssembler* masm) { |
- // Create a new closure from the given function info in new |
- // space. Set the context to the current context in rsi. |
- Label gc; |
- __ AllocateInNewSpace(JSFunction::kSize, rax, rbx, rcx, &gc, TAG_OBJECT); |
- |
- // Get the function info from the stack. |
- __ movq(rdx, Operand(rsp, 1 * kPointerSize)); |
- |
- // Compute the function map in the current global context and set that |
- // as the map of the allocated object. |
- __ movq(rcx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
- __ movq(rcx, FieldOperand(rcx, GlobalObject::kGlobalContextOffset)); |
- __ movq(rcx, Operand(rcx, Context::SlotOffset(Context::FUNCTION_MAP_INDEX))); |
- __ movq(FieldOperand(rax, JSObject::kMapOffset), rcx); |
- |
- // Initialize the rest of the function. We don't have to update the |
- // write barrier because the allocated object is in new space. |
- __ LoadRoot(rbx, Heap::kEmptyFixedArrayRootIndex); |
- __ LoadRoot(rcx, Heap::kTheHoleValueRootIndex); |
- __ movq(FieldOperand(rax, JSObject::kPropertiesOffset), rbx); |
- __ movq(FieldOperand(rax, JSObject::kElementsOffset), rbx); |
- __ movq(FieldOperand(rax, JSFunction::kPrototypeOrInitialMapOffset), rcx); |
- __ movq(FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset), rdx); |
- __ movq(FieldOperand(rax, JSFunction::kContextOffset), rsi); |
- __ movq(FieldOperand(rax, JSFunction::kLiteralsOffset), rbx); |
- |
- // Initialize the code pointer in the function to be the one |
- // found in the shared function info object. |
- __ movq(rdx, FieldOperand(rdx, SharedFunctionInfo::kCodeOffset)); |
- __ lea(rdx, FieldOperand(rdx, Code::kHeaderSize)); |
- __ movq(FieldOperand(rax, JSFunction::kCodeEntryOffset), rdx); |
- |
- |
- // Return and remove the on-stack parameter. |
- __ ret(1 * kPointerSize); |
- |
- // Create a new closure through the slower runtime call. |
- __ bind(&gc); |
- __ pop(rcx); // Temporarily remove return address. |
- __ pop(rdx); |
- __ push(rsi); |
- __ push(rdx); |
- __ push(rcx); // Restore return address. |
- __ TailCallRuntime(Runtime::kNewClosure, 2, 1); |
-} |
- |
- |
-void FastNewContextStub::Generate(MacroAssembler* masm) { |
- // Try to allocate the context in new space. |
- Label gc; |
- int length = slots_ + Context::MIN_CONTEXT_SLOTS; |
- __ AllocateInNewSpace((length * kPointerSize) + FixedArray::kHeaderSize, |
- rax, rbx, rcx, &gc, TAG_OBJECT); |
- |
- // Get the function from the stack. |
- __ movq(rcx, Operand(rsp, 1 * kPointerSize)); |
- |
- // Setup the object header. |
- __ LoadRoot(kScratchRegister, Heap::kContextMapRootIndex); |
- __ movq(FieldOperand(rax, HeapObject::kMapOffset), kScratchRegister); |
- __ Move(FieldOperand(rax, FixedArray::kLengthOffset), Smi::FromInt(length)); |
- |
- // Setup the fixed slots. |
- __ xor_(rbx, rbx); // Set to NULL. |
- __ movq(Operand(rax, Context::SlotOffset(Context::CLOSURE_INDEX)), rcx); |
- __ movq(Operand(rax, Context::SlotOffset(Context::FCONTEXT_INDEX)), rax); |
- __ movq(Operand(rax, Context::SlotOffset(Context::PREVIOUS_INDEX)), rbx); |
- __ movq(Operand(rax, Context::SlotOffset(Context::EXTENSION_INDEX)), rbx); |
- |
- // Copy the global object from the surrounding context. |
- __ movq(rbx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
- __ movq(Operand(rax, Context::SlotOffset(Context::GLOBAL_INDEX)), rbx); |
- |
- // Initialize the rest of the slots to undefined. |
- __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex); |
- for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) { |
- __ movq(Operand(rax, Context::SlotOffset(i)), rbx); |
- } |
- |
- // Return and remove the on-stack parameter. |
- __ movq(rsi, rax); |
- __ ret(1 * kPointerSize); |
- |
- // Need to collect. Call into runtime system. |
- __ bind(&gc); |
- __ TailCallRuntime(Runtime::kNewContext, 1, 1); |
-} |
- |
- |
-void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) { |
- // Stack layout on entry: |
- // |
- // [rsp + kPointerSize]: constant elements. |
- // [rsp + (2 * kPointerSize)]: literal index. |
- // [rsp + (3 * kPointerSize)]: literals array. |
- |
- // All sizes here are multiples of kPointerSize. |
- int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0; |
- int size = JSArray::kSize + elements_size; |
- |
- // Load boilerplate object into rcx and check if we need to create a |
- // boilerplate. |
- Label slow_case; |
- __ movq(rcx, Operand(rsp, 3 * kPointerSize)); |
- __ movq(rax, Operand(rsp, 2 * kPointerSize)); |
- SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2); |
- __ movq(rcx, |
- FieldOperand(rcx, index.reg, index.scale, FixedArray::kHeaderSize)); |
- __ CompareRoot(rcx, Heap::kUndefinedValueRootIndex); |
- __ j(equal, &slow_case); |
- |
- if (FLAG_debug_code) { |
- const char* message; |
- Heap::RootListIndex expected_map_index; |
- if (mode_ == CLONE_ELEMENTS) { |
- message = "Expected (writable) fixed array"; |
- expected_map_index = Heap::kFixedArrayMapRootIndex; |
- } else { |
- ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS); |
- message = "Expected copy-on-write fixed array"; |
- expected_map_index = Heap::kFixedCOWArrayMapRootIndex; |
- } |
- __ push(rcx); |
- __ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset)); |
- __ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset), |
- expected_map_index); |
- __ Assert(equal, message); |
- __ pop(rcx); |
- } |
- |
- // Allocate both the JS array and the elements array in one big |
- // allocation. This avoids multiple limit checks. |
- __ AllocateInNewSpace(size, rax, rbx, rdx, &slow_case, TAG_OBJECT); |
- |
- // Copy the JS array part. |
- for (int i = 0; i < JSArray::kSize; i += kPointerSize) { |
- if ((i != JSArray::kElementsOffset) || (length_ == 0)) { |
- __ movq(rbx, FieldOperand(rcx, i)); |
- __ movq(FieldOperand(rax, i), rbx); |
- } |
- } |
- |
- if (length_ > 0) { |
- // Get hold of the elements array of the boilerplate and setup the |
- // elements pointer in the resulting object. |
- __ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset)); |
- __ lea(rdx, Operand(rax, JSArray::kSize)); |
- __ movq(FieldOperand(rax, JSArray::kElementsOffset), rdx); |
- |
- // Copy the elements array. |
- for (int i = 0; i < elements_size; i += kPointerSize) { |
- __ movq(rbx, FieldOperand(rcx, i)); |
- __ movq(FieldOperand(rdx, i), rbx); |
- } |
- } |
- |
- // Return and remove the on-stack parameters. |
- __ ret(3 * kPointerSize); |
- |
- __ bind(&slow_case); |
- __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1); |
-} |
- |
- |
-void ToBooleanStub::Generate(MacroAssembler* masm) { |
- Label false_result, true_result, not_string; |
- __ movq(rax, Operand(rsp, 1 * kPointerSize)); |
- |
- // 'null' => false. |
- __ CompareRoot(rax, Heap::kNullValueRootIndex); |
- __ j(equal, &false_result); |
- |
- // Get the map and type of the heap object. |
- // We don't use CmpObjectType because we manipulate the type field. |
- __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset)); |
- __ movzxbq(rcx, FieldOperand(rdx, Map::kInstanceTypeOffset)); |
- |
- // Undetectable => false. |
- __ movzxbq(rbx, FieldOperand(rdx, Map::kBitFieldOffset)); |
- __ and_(rbx, Immediate(1 << Map::kIsUndetectable)); |
- __ j(not_zero, &false_result); |
- |
- // JavaScript object => true. |
- __ cmpq(rcx, Immediate(FIRST_JS_OBJECT_TYPE)); |
- __ j(above_equal, &true_result); |
- |
- // String value => false iff empty. |
- __ cmpq(rcx, Immediate(FIRST_NONSTRING_TYPE)); |
- __ j(above_equal, ¬_string); |
- __ movq(rdx, FieldOperand(rax, String::kLengthOffset)); |
- __ SmiTest(rdx); |
- __ j(zero, &false_result); |
- __ jmp(&true_result); |
- |
- __ bind(¬_string); |
- __ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex); |
- __ j(not_equal, &true_result); |
- // HeapNumber => false iff +0, -0, or NaN. |
- // These three cases set the zero flag when compared to zero using ucomisd. |
- __ xorpd(xmm0, xmm0); |
- __ ucomisd(xmm0, FieldOperand(rax, HeapNumber::kValueOffset)); |
- __ j(zero, &false_result); |
- // Fall through to |true_result|. |
- |
- // Return 1/0 for true/false in rax. |
- __ bind(&true_result); |
- __ movq(rax, Immediate(1)); |
- __ ret(1 * kPointerSize); |
- __ bind(&false_result); |
- __ xor_(rax, rax); |
- __ ret(1 * kPointerSize); |
-} |
- |
- |
-void GenericBinaryOpStub::GenerateCall( |
- MacroAssembler* masm, |
- Register left, |
- Register right) { |
- if (!ArgsInRegistersSupported()) { |
- // Pass arguments on the stack. |
- __ push(left); |
- __ push(right); |
- } else { |
- // The calling convention with registers is left in rdx and right in rax. |
- Register left_arg = rdx; |
- Register right_arg = rax; |
- if (!(left.is(left_arg) && right.is(right_arg))) { |
- if (left.is(right_arg) && right.is(left_arg)) { |
- if (IsOperationCommutative()) { |
- SetArgsReversed(); |
- } else { |
- __ xchg(left, right); |
- } |
- } else if (left.is(left_arg)) { |
- __ movq(right_arg, right); |
- } else if (right.is(right_arg)) { |
- __ movq(left_arg, left); |
- } else if (left.is(right_arg)) { |
- if (IsOperationCommutative()) { |
- __ movq(left_arg, right); |
- SetArgsReversed(); |
- } else { |
- // Order of moves important to avoid destroying left argument. |
- __ movq(left_arg, left); |
- __ movq(right_arg, right); |
- } |
- } else if (right.is(left_arg)) { |
- if (IsOperationCommutative()) { |
- __ movq(right_arg, left); |
- SetArgsReversed(); |
- } else { |
- // Order of moves important to avoid destroying right argument. |
- __ movq(right_arg, right); |
- __ movq(left_arg, left); |
- } |
- } else { |
- // Order of moves is not important. |
- __ movq(left_arg, left); |
- __ movq(right_arg, right); |
- } |
- } |
- |
- // Update flags to indicate that arguments are in registers. |
- SetArgsInRegisters(); |
- __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); |
- } |
- |
- // Call the stub. |
- __ CallStub(this); |
-} |
- |
- |
-void GenericBinaryOpStub::GenerateCall( |
- MacroAssembler* masm, |
- Register left, |
- Smi* right) { |
- if (!ArgsInRegistersSupported()) { |
- // Pass arguments on the stack. |
- __ push(left); |
- __ Push(right); |
- } else { |
- // The calling convention with registers is left in rdx and right in rax. |
- Register left_arg = rdx; |
- Register right_arg = rax; |
- if (left.is(left_arg)) { |
- __ Move(right_arg, right); |
- } else if (left.is(right_arg) && IsOperationCommutative()) { |
- __ Move(left_arg, right); |
- SetArgsReversed(); |
- } else { |
- // For non-commutative operations, left and right_arg might be |
- // the same register. Therefore, the order of the moves is |
- // important here in order to not overwrite left before moving |
- // it to left_arg. |
- __ movq(left_arg, left); |
- __ Move(right_arg, right); |
- } |
- |
- // Update flags to indicate that arguments are in registers. |
- SetArgsInRegisters(); |
- __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); |
- } |
- |
- // Call the stub. |
- __ CallStub(this); |
-} |
- |
- |
-void GenericBinaryOpStub::GenerateCall( |
- MacroAssembler* masm, |
- Smi* left, |
- Register right) { |
- if (!ArgsInRegistersSupported()) { |
- // Pass arguments on the stack. |
- __ Push(left); |
- __ push(right); |
- } else { |
- // The calling convention with registers is left in rdx and right in rax. |
- Register left_arg = rdx; |
- Register right_arg = rax; |
- if (right.is(right_arg)) { |
- __ Move(left_arg, left); |
- } else if (right.is(left_arg) && IsOperationCommutative()) { |
- __ Move(right_arg, left); |
- SetArgsReversed(); |
- } else { |
- // For non-commutative operations, right and left_arg might be |
- // the same register. Therefore, the order of the moves is |
- // important here in order to not overwrite right before moving |
- // it to right_arg. |
- __ movq(right_arg, right); |
- __ Move(left_arg, left); |
- } |
- // Update flags to indicate that arguments are in registers. |
- SetArgsInRegisters(); |
- __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); |
- } |
- |
- // Call the stub. |
- __ CallStub(this); |
-} |
- |
- |
Result GenericBinaryOpStub::GenerateCall(MacroAssembler* masm, |
VirtualFrame* frame, |
Result* left, |
@@ -9177,3585 +8785,6 @@ |
} |
} |
- |
-void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) { |
- // 1. Move arguments into rdx, rax except for DIV and MOD, which need the |
- // dividend in rax and rdx free for the division. Use rax, rbx for those. |
- Comment load_comment(masm, "-- Load arguments"); |
- Register left = rdx; |
- Register right = rax; |
- if (op_ == Token::DIV || op_ == Token::MOD) { |
- left = rax; |
- right = rbx; |
- if (HasArgsInRegisters()) { |
- __ movq(rbx, rax); |
- __ movq(rax, rdx); |
- } |
- } |
- if (!HasArgsInRegisters()) { |
- __ movq(right, Operand(rsp, 1 * kPointerSize)); |
- __ movq(left, Operand(rsp, 2 * kPointerSize)); |
- } |
- |
- Label not_smis; |
- // 2. Smi check both operands. |
- if (static_operands_type_.IsSmi()) { |
- // Skip smi check if we know that both arguments are smis. |
- if (FLAG_debug_code) { |
- __ AbortIfNotSmi(left); |
- __ AbortIfNotSmi(right); |
- } |
- if (op_ == Token::BIT_OR) { |
- // Handle OR here, since we do extra smi-checking in the or code below. |
- __ SmiOr(right, right, left); |
- GenerateReturn(masm); |
- return; |
- } |
- } else { |
- if (op_ != Token::BIT_OR) { |
- // Skip the check for OR as it is better combined with the |
- // actual operation. |
- Comment smi_check_comment(masm, "-- Smi check arguments"); |
- __ JumpIfNotBothSmi(left, right, ¬_smis); |
- } |
- } |
- |
- // 3. Operands are both smis (except for OR), perform the operation leaving |
- // the result in rax and check the result if necessary. |
- Comment perform_smi(masm, "-- Perform smi operation"); |
- Label use_fp_on_smis; |
- switch (op_) { |
- case Token::ADD: { |
- ASSERT(right.is(rax)); |
- __ SmiAdd(right, right, left, &use_fp_on_smis); // ADD is commutative. |
- break; |
- } |
- |
- case Token::SUB: { |
- __ SmiSub(left, left, right, &use_fp_on_smis); |
- __ movq(rax, left); |
- break; |
- } |
- |
- case Token::MUL: |
- ASSERT(right.is(rax)); |
- __ SmiMul(right, right, left, &use_fp_on_smis); // MUL is commutative. |
- break; |
- |
- case Token::DIV: |
- ASSERT(left.is(rax)); |
- __ SmiDiv(left, left, right, &use_fp_on_smis); |
- break; |
- |
- case Token::MOD: |
- ASSERT(left.is(rax)); |
- __ SmiMod(left, left, right, slow); |
- break; |
- |
- case Token::BIT_OR: |
- ASSERT(right.is(rax)); |
- __ movq(rcx, right); // Save the right operand. |
- __ SmiOr(right, right, left); // BIT_OR is commutative. |
- __ testb(right, Immediate(kSmiTagMask)); |
- __ j(not_zero, ¬_smis); |
- break; |
- |
- case Token::BIT_AND: |
- ASSERT(right.is(rax)); |
- __ SmiAnd(right, right, left); // BIT_AND is commutative. |
- break; |
- |
- case Token::BIT_XOR: |
- ASSERT(right.is(rax)); |
- __ SmiXor(right, right, left); // BIT_XOR is commutative. |
- break; |
- |
- case Token::SHL: |
- case Token::SHR: |
- case Token::SAR: |
- switch (op_) { |
- case Token::SAR: |
- __ SmiShiftArithmeticRight(left, left, right); |
- break; |
- case Token::SHR: |
- __ SmiShiftLogicalRight(left, left, right, slow); |
- break; |
- case Token::SHL: |
- __ SmiShiftLeft(left, left, right); |
- break; |
- default: |
- UNREACHABLE(); |
- } |
- __ movq(rax, left); |
- break; |
- |
- default: |
- UNREACHABLE(); |
- break; |
- } |
- |
- // 4. Emit return of result in rax. |
- GenerateReturn(masm); |
- |
- // 5. For some operations emit inline code to perform floating point |
- // operations on known smis (e.g., if the result of the operation |
- // overflowed the smi range). |
- switch (op_) { |
- case Token::ADD: |
- case Token::SUB: |
- case Token::MUL: |
- case Token::DIV: { |
- ASSERT(use_fp_on_smis.is_linked()); |
- __ bind(&use_fp_on_smis); |
- if (op_ == Token::DIV) { |
- __ movq(rdx, rax); |
- __ movq(rax, rbx); |
- } |
- // left is rdx, right is rax. |
- __ AllocateHeapNumber(rbx, rcx, slow); |
- FloatingPointHelper::LoadSSE2SmiOperands(masm); |
- switch (op_) { |
- case Token::ADD: __ addsd(xmm0, xmm1); break; |
- case Token::SUB: __ subsd(xmm0, xmm1); break; |
- case Token::MUL: __ mulsd(xmm0, xmm1); break; |
- case Token::DIV: __ divsd(xmm0, xmm1); break; |
- default: UNREACHABLE(); |
- } |
- __ movsd(FieldOperand(rbx, HeapNumber::kValueOffset), xmm0); |
- __ movq(rax, rbx); |
- GenerateReturn(masm); |
- } |
- default: |
- break; |
- } |
- |
- // 6. Non-smi operands, fall out to the non-smi code with the operands in |
- // rdx and rax. |
- Comment done_comment(masm, "-- Enter non-smi code"); |
- __ bind(¬_smis); |
- |
- switch (op_) { |
- case Token::DIV: |
- case Token::MOD: |
- // Operands are in rax, rbx at this point. |
- __ movq(rdx, rax); |
- __ movq(rax, rbx); |
- break; |
- |
- case Token::BIT_OR: |
- // Right operand is saved in rcx and rax was destroyed by the smi |
- // operation. |
- __ movq(rax, rcx); |
- break; |
- |
- default: |
- break; |
- } |
-} |
- |
- |
-void GenericBinaryOpStub::Generate(MacroAssembler* masm) { |
- Label call_runtime; |
- |
- if (ShouldGenerateSmiCode()) { |
- GenerateSmiCode(masm, &call_runtime); |
- } else if (op_ != Token::MOD) { |
- if (!HasArgsInRegisters()) { |
- GenerateLoadArguments(masm); |
- } |
- } |
- // Floating point case. |
- if (ShouldGenerateFPCode()) { |
- switch (op_) { |
- case Token::ADD: |
- case Token::SUB: |
- case Token::MUL: |
- case Token::DIV: { |
- if (runtime_operands_type_ == BinaryOpIC::DEFAULT && |
- HasSmiCodeInStub()) { |
- // Execution reaches this point when the first non-smi argument occurs |
- // (and only if smi code is generated). This is the right moment to |
- // patch to HEAP_NUMBERS state. The transition is attempted only for |
- // the four basic operations. The stub stays in the DEFAULT state |
- // forever for all other operations (also if smi code is skipped). |
- GenerateTypeTransition(masm); |
- break; |
- } |
- |
- Label not_floats; |
- // rax: y |
- // rdx: x |
- if (static_operands_type_.IsNumber()) { |
- if (FLAG_debug_code) { |
- // Assert at runtime that inputs are only numbers. |
- __ AbortIfNotNumber(rdx); |
- __ AbortIfNotNumber(rax); |
- } |
- FloatingPointHelper::LoadSSE2NumberOperands(masm); |
- } else { |
- FloatingPointHelper::LoadSSE2UnknownOperands(masm, &call_runtime); |
- } |
- |
- switch (op_) { |
- case Token::ADD: __ addsd(xmm0, xmm1); break; |
- case Token::SUB: __ subsd(xmm0, xmm1); break; |
- case Token::MUL: __ mulsd(xmm0, xmm1); break; |
- case Token::DIV: __ divsd(xmm0, xmm1); break; |
- default: UNREACHABLE(); |
- } |
- // Allocate a heap number, if needed. |
- Label skip_allocation; |
- OverwriteMode mode = mode_; |
- if (HasArgsReversed()) { |
- if (mode == OVERWRITE_RIGHT) { |
- mode = OVERWRITE_LEFT; |
- } else if (mode == OVERWRITE_LEFT) { |
- mode = OVERWRITE_RIGHT; |
- } |
- } |
- switch (mode) { |
- case OVERWRITE_LEFT: |
- __ JumpIfNotSmi(rdx, &skip_allocation); |
- __ AllocateHeapNumber(rbx, rcx, &call_runtime); |
- __ movq(rdx, rbx); |
- __ bind(&skip_allocation); |
- __ movq(rax, rdx); |
- break; |
- case OVERWRITE_RIGHT: |
- // If the argument in rax is already an object, we skip the |
- // allocation of a heap number. |
- __ JumpIfNotSmi(rax, &skip_allocation); |
- // Fall through! |
- case NO_OVERWRITE: |
- // Allocate a heap number for the result. Keep rax and rdx intact |
- // for the possible runtime call. |
- __ AllocateHeapNumber(rbx, rcx, &call_runtime); |
- __ movq(rax, rbx); |
- __ bind(&skip_allocation); |
- break; |
- default: UNREACHABLE(); |
- } |
- __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0); |
- GenerateReturn(masm); |
- __ bind(¬_floats); |
- if (runtime_operands_type_ == BinaryOpIC::DEFAULT && |
- !HasSmiCodeInStub()) { |
- // Execution reaches this point when the first non-number argument |
- // occurs (and only if smi code is skipped from the stub, otherwise |
- // the patching has already been done earlier in this case branch). |
- // A perfect moment to try patching to STRINGS for ADD operation. |
- if (op_ == Token::ADD) { |
- GenerateTypeTransition(masm); |
- } |
- } |
- break; |
- } |
- case Token::MOD: { |
- // For MOD we go directly to runtime in the non-smi case. |
- break; |
- } |
- case Token::BIT_OR: |
- case Token::BIT_AND: |
- case Token::BIT_XOR: |
- case Token::SAR: |
- case Token::SHL: |
- case Token::SHR: { |
- Label skip_allocation, non_smi_shr_result; |
- Register heap_number_map = r9; |
- __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
- if (static_operands_type_.IsNumber()) { |
- if (FLAG_debug_code) { |
- // Assert at runtime that inputs are only numbers. |
- __ AbortIfNotNumber(rdx); |
- __ AbortIfNotNumber(rax); |
- } |
- FloatingPointHelper::LoadNumbersAsIntegers(masm); |
- } else { |
- FloatingPointHelper::LoadAsIntegers(masm, |
- &call_runtime, |
- heap_number_map); |
- } |
- switch (op_) { |
- case Token::BIT_OR: __ orl(rax, rcx); break; |
- case Token::BIT_AND: __ andl(rax, rcx); break; |
- case Token::BIT_XOR: __ xorl(rax, rcx); break; |
- case Token::SAR: __ sarl_cl(rax); break; |
- case Token::SHL: __ shll_cl(rax); break; |
- case Token::SHR: { |
- __ shrl_cl(rax); |
- // Check if result is negative. This can only happen for a shift |
- // by zero. |
- __ testl(rax, rax); |
- __ j(negative, &non_smi_shr_result); |
- break; |
- } |
- default: UNREACHABLE(); |
- } |
- |
- STATIC_ASSERT(kSmiValueSize == 32); |
- // Tag smi result and return. |
- __ Integer32ToSmi(rax, rax); |
- GenerateReturn(masm); |
- |
- // All bit-ops except SHR return a signed int32 that can be |
- // returned immediately as a smi. |
- // We might need to allocate a HeapNumber if we shift a negative |
- // number right by zero (i.e., convert to UInt32). |
- if (op_ == Token::SHR) { |
- ASSERT(non_smi_shr_result.is_linked()); |
- __ bind(&non_smi_shr_result); |
- // Allocate a heap number if needed. |
- __ movl(rbx, rax); // rbx holds result value (uint32 value as int64). |
- switch (mode_) { |
- case OVERWRITE_LEFT: |
- case OVERWRITE_RIGHT: |
- // If the operand was an object, we skip the |
- // allocation of a heap number. |
- __ movq(rax, Operand(rsp, mode_ == OVERWRITE_RIGHT ? |
- 1 * kPointerSize : 2 * kPointerSize)); |
- __ JumpIfNotSmi(rax, &skip_allocation); |
- // Fall through! |
- case NO_OVERWRITE: |
- // Allocate heap number in new space. |
- // Not using AllocateHeapNumber macro in order to reuse |
- // already loaded heap_number_map. |
- __ AllocateInNewSpace(HeapNumber::kSize, |
- rax, |
- rcx, |
- no_reg, |
- &call_runtime, |
- TAG_OBJECT); |
- // Set the map. |
- if (FLAG_debug_code) { |
- __ AbortIfNotRootValue(heap_number_map, |
- Heap::kHeapNumberMapRootIndex, |
- "HeapNumberMap register clobbered."); |
- } |
- __ movq(FieldOperand(rax, HeapObject::kMapOffset), |
- heap_number_map); |
- __ bind(&skip_allocation); |
- break; |
- default: UNREACHABLE(); |
- } |
- // Store the result in the HeapNumber and return. |
- __ cvtqsi2sd(xmm0, rbx); |
- __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0); |
- GenerateReturn(masm); |
- } |
- |
- break; |
- } |
- default: UNREACHABLE(); break; |
- } |
- } |
- |
- // If all else fails, use the runtime system to get the correct |
- // result. If arguments was passed in registers now place them on the |
- // stack in the correct order below the return address. |
- __ bind(&call_runtime); |
- |
- if (HasArgsInRegisters()) { |
- GenerateRegisterArgsPush(masm); |
- } |
- |
- switch (op_) { |
- case Token::ADD: { |
- // Registers containing left and right operands respectively. |
- Register lhs, rhs; |
- |
- if (HasArgsReversed()) { |
- lhs = rax; |
- rhs = rdx; |
- } else { |
- lhs = rdx; |
- rhs = rax; |
- } |
- |
- // Test for string arguments before calling runtime. |
- Label not_strings, both_strings, not_string1, string1, string1_smi2; |
- |
- // If this stub has already generated FP-specific code then the arguments |
- // are already in rdx and rax. |
- if (!ShouldGenerateFPCode() && !HasArgsInRegisters()) { |
- GenerateLoadArguments(masm); |
- } |
- |
- Condition is_smi; |
- is_smi = masm->CheckSmi(lhs); |
- __ j(is_smi, ¬_string1); |
- __ CmpObjectType(lhs, FIRST_NONSTRING_TYPE, r8); |
- __ j(above_equal, ¬_string1); |
- |
- // First argument is a a string, test second. |
- is_smi = masm->CheckSmi(rhs); |
- __ j(is_smi, &string1_smi2); |
- __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, r9); |
- __ j(above_equal, &string1); |
- |
- // First and second argument are strings. |
- StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB); |
- __ TailCallStub(&string_add_stub); |
- |
- __ bind(&string1_smi2); |
- // First argument is a string, second is a smi. Try to lookup the number |
- // string for the smi in the number string cache. |
- NumberToStringStub::GenerateLookupNumberStringCache( |
- masm, rhs, rbx, rcx, r8, true, &string1); |
- |
- // Replace second argument on stack and tailcall string add stub to make |
- // the result. |
- __ movq(Operand(rsp, 1 * kPointerSize), rbx); |
- __ TailCallStub(&string_add_stub); |
- |
- // Only first argument is a string. |
- __ bind(&string1); |
- __ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_FUNCTION); |
- |
- // First argument was not a string, test second. |
- __ bind(¬_string1); |
- is_smi = masm->CheckSmi(rhs); |
- __ j(is_smi, ¬_strings); |
- __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, rhs); |
- __ j(above_equal, ¬_strings); |
- |
- // Only second argument is a string. |
- __ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_FUNCTION); |
- |
- __ bind(¬_strings); |
- // Neither argument is a string. |
- __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION); |
- break; |
- } |
- case Token::SUB: |
- __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION); |
- break; |
- case Token::MUL: |
- __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION); |
- break; |
- case Token::DIV: |
- __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION); |
- break; |
- case Token::MOD: |
- __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION); |
- break; |
- case Token::BIT_OR: |
- __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION); |
- break; |
- case Token::BIT_AND: |
- __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION); |
- break; |
- case Token::BIT_XOR: |
- __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION); |
- break; |
- case Token::SAR: |
- __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION); |
- break; |
- case Token::SHL: |
- __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION); |
- break; |
- case Token::SHR: |
- __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION); |
- break; |
- default: |
- UNREACHABLE(); |
- } |
-} |
- |
- |
-void GenericBinaryOpStub::GenerateLoadArguments(MacroAssembler* masm) { |
- ASSERT(!HasArgsInRegisters()); |
- __ movq(rax, Operand(rsp, 1 * kPointerSize)); |
- __ movq(rdx, Operand(rsp, 2 * kPointerSize)); |
-} |
- |
- |
-void GenericBinaryOpStub::GenerateReturn(MacroAssembler* masm) { |
- // If arguments are not passed in registers remove them from the stack before |
- // returning. |
- if (!HasArgsInRegisters()) { |
- __ ret(2 * kPointerSize); // Remove both operands |
- } else { |
- __ ret(0); |
- } |
-} |
- |
- |
-void GenericBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) { |
- ASSERT(HasArgsInRegisters()); |
- __ pop(rcx); |
- if (HasArgsReversed()) { |
- __ push(rax); |
- __ push(rdx); |
- } else { |
- __ push(rdx); |
- __ push(rax); |
- } |
- __ push(rcx); |
-} |
- |
- |
-void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { |
- Label get_result; |
- |
- // Ensure the operands are on the stack. |
- if (HasArgsInRegisters()) { |
- GenerateRegisterArgsPush(masm); |
- } |
- |
- // Left and right arguments are already on stack. |
- __ pop(rcx); // Save the return address. |
- |
- // Push this stub's key. |
- __ Push(Smi::FromInt(MinorKey())); |
- |
- // Although the operation and the type info are encoded into the key, |
- // the encoding is opaque, so push them too. |
- __ Push(Smi::FromInt(op_)); |
- |
- __ Push(Smi::FromInt(runtime_operands_type_)); |
- |
- __ push(rcx); // The return address. |
- |
- // Perform patching to an appropriate fast case and return the result. |
- __ TailCallExternalReference( |
- ExternalReference(IC_Utility(IC::kBinaryOp_Patch)), |
- 5, |
- 1); |
-} |
- |
- |
-Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) { |
- GenericBinaryOpStub stub(key, type_info); |
- return stub.GetCode(); |
-} |
- |
- |
-void TranscendentalCacheStub::Generate(MacroAssembler* masm) { |
- // Input on stack: |
- // rsp[8]: argument (should be number). |
- // rsp[0]: return address. |
- Label runtime_call; |
- Label runtime_call_clear_stack; |
- Label input_not_smi; |
- Label loaded; |
- // Test that rax is a number. |
- __ movq(rax, Operand(rsp, kPointerSize)); |
- __ JumpIfNotSmi(rax, &input_not_smi); |
- // Input is a smi. Untag and load it onto the FPU stack. |
- // Then load the bits of the double into rbx. |
- __ SmiToInteger32(rax, rax); |
- __ subq(rsp, Immediate(kPointerSize)); |
- __ cvtlsi2sd(xmm1, rax); |
- __ movsd(Operand(rsp, 0), xmm1); |
- __ movq(rbx, xmm1); |
- __ movq(rdx, xmm1); |
- __ fld_d(Operand(rsp, 0)); |
- __ addq(rsp, Immediate(kPointerSize)); |
- __ jmp(&loaded); |
- |
- __ bind(&input_not_smi); |
- // Check if input is a HeapNumber. |
- __ Move(rbx, Factory::heap_number_map()); |
- __ cmpq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); |
- __ j(not_equal, &runtime_call); |
- // Input is a HeapNumber. Push it on the FPU stack and load its |
- // bits into rbx. |
- __ fld_d(FieldOperand(rax, HeapNumber::kValueOffset)); |
- __ movq(rbx, FieldOperand(rax, HeapNumber::kValueOffset)); |
- __ movq(rdx, rbx); |
- __ bind(&loaded); |
- // ST[0] == double value |
- // rbx = bits of double value. |
- // rdx = also bits of double value. |
- // Compute hash (h is 32 bits, bits are 64 and the shifts are arithmetic): |
- // h = h0 = bits ^ (bits >> 32); |
- // h ^= h >> 16; |
- // h ^= h >> 8; |
- // h = h & (cacheSize - 1); |
- // or h = (h0 ^ (h0 >> 8) ^ (h0 >> 16) ^ (h0 >> 24)) & (cacheSize - 1) |
- __ sar(rdx, Immediate(32)); |
- __ xorl(rdx, rbx); |
- __ movl(rcx, rdx); |
- __ movl(rax, rdx); |
- __ movl(rdi, rdx); |
- __ sarl(rdx, Immediate(8)); |
- __ sarl(rcx, Immediate(16)); |
- __ sarl(rax, Immediate(24)); |
- __ xorl(rcx, rdx); |
- __ xorl(rax, rdi); |
- __ xorl(rcx, rax); |
- ASSERT(IsPowerOf2(TranscendentalCache::kCacheSize)); |
- __ andl(rcx, Immediate(TranscendentalCache::kCacheSize - 1)); |
- |
- // ST[0] == double value. |
- // rbx = bits of double value. |
- // rcx = TranscendentalCache::hash(double value). |
- __ movq(rax, ExternalReference::transcendental_cache_array_address()); |
- // rax points to cache array. |
- __ movq(rax, Operand(rax, type_ * sizeof(TranscendentalCache::caches_[0]))); |
- // rax points to the cache for the type type_. |
- // If NULL, the cache hasn't been initialized yet, so go through runtime. |
- __ testq(rax, rax); |
- __ j(zero, &runtime_call_clear_stack); |
-#ifdef DEBUG |
- // Check that the layout of cache elements match expectations. |
- { // NOLINT - doesn't like a single brace on a line. |
- TranscendentalCache::Element test_elem[2]; |
- char* elem_start = reinterpret_cast<char*>(&test_elem[0]); |
- char* elem2_start = reinterpret_cast<char*>(&test_elem[1]); |
- char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0])); |
- char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1])); |
- char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output)); |
- // Two uint_32's and a pointer per element. |
- CHECK_EQ(16, static_cast<int>(elem2_start - elem_start)); |
- CHECK_EQ(0, static_cast<int>(elem_in0 - elem_start)); |
- CHECK_EQ(kIntSize, static_cast<int>(elem_in1 - elem_start)); |
- CHECK_EQ(2 * kIntSize, static_cast<int>(elem_out - elem_start)); |
- } |
-#endif |
- // Find the address of the rcx'th entry in the cache, i.e., &rax[rcx*16]. |
- __ addl(rcx, rcx); |
- __ lea(rcx, Operand(rax, rcx, times_8, 0)); |
- // Check if cache matches: Double value is stored in uint32_t[2] array. |
- Label cache_miss; |
- __ cmpq(rbx, Operand(rcx, 0)); |
- __ j(not_equal, &cache_miss); |
- // Cache hit! |
- __ movq(rax, Operand(rcx, 2 * kIntSize)); |
- __ fstp(0); // Clear FPU stack. |
- __ ret(kPointerSize); |
- |
- __ bind(&cache_miss); |
- // Update cache with new value. |
- Label nan_result; |
- GenerateOperation(masm, &nan_result); |
- __ AllocateHeapNumber(rax, rdi, &runtime_call_clear_stack); |
- __ movq(Operand(rcx, 0), rbx); |
- __ movq(Operand(rcx, 2 * kIntSize), rax); |
- __ fstp_d(FieldOperand(rax, HeapNumber::kValueOffset)); |
- __ ret(kPointerSize); |
- |
- __ bind(&runtime_call_clear_stack); |
- __ fstp(0); |
- __ bind(&runtime_call); |
- __ TailCallExternalReference(ExternalReference(RuntimeFunction()), 1, 1); |
- |
- __ bind(&nan_result); |
- __ fstp(0); // Remove argument from FPU stack. |
- __ LoadRoot(rax, Heap::kNanValueRootIndex); |
- __ movq(Operand(rcx, 0), rbx); |
- __ movq(Operand(rcx, 2 * kIntSize), rax); |
- __ ret(kPointerSize); |
-} |
- |
- |
-Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() { |
- switch (type_) { |
- // Add more cases when necessary. |
- case TranscendentalCache::SIN: return Runtime::kMath_sin; |
- case TranscendentalCache::COS: return Runtime::kMath_cos; |
- default: |
- UNIMPLEMENTED(); |
- return Runtime::kAbort; |
- } |
-} |
- |
- |
-void TranscendentalCacheStub::GenerateOperation(MacroAssembler* masm, |
- Label* on_nan_result) { |
- // Registers: |
- // rbx: Bits of input double. Must be preserved. |
- // rcx: Pointer to cache entry. Must be preserved. |
- // st(0): Input double |
- Label done; |
- ASSERT(type_ == TranscendentalCache::SIN || |
- type_ == TranscendentalCache::COS); |
- // More transcendental types can be added later. |
- |
- // Both fsin and fcos require arguments in the range +/-2^63 and |
- // return NaN for infinities and NaN. They can share all code except |
- // the actual fsin/fcos operation. |
- Label in_range; |
- // If argument is outside the range -2^63..2^63, fsin/cos doesn't |
- // work. We must reduce it to the appropriate range. |
- __ movq(rdi, rbx); |
- // Move exponent and sign bits to low bits. |
- __ shr(rdi, Immediate(HeapNumber::kMantissaBits)); |
- // Remove sign bit. |
- __ andl(rdi, Immediate((1 << HeapNumber::kExponentBits) - 1)); |
- int supported_exponent_limit = (63 + HeapNumber::kExponentBias); |
- __ cmpl(rdi, Immediate(supported_exponent_limit)); |
- __ j(below, &in_range); |
- // Check for infinity and NaN. Both return NaN for sin. |
- __ cmpl(rdi, Immediate(0x7ff)); |
- __ j(equal, on_nan_result); |
- |
- // Use fpmod to restrict argument to the range +/-2*PI. |
- __ fldpi(); |
- __ fadd(0); |
- __ fld(1); |
- // FPU Stack: input, 2*pi, input. |
- { |
- Label no_exceptions; |
- __ fwait(); |
- __ fnstsw_ax(); |
- // Clear if Illegal Operand or Zero Division exceptions are set. |
- __ testl(rax, Immediate(5)); // #IO and #ZD flags of FPU status word. |
- __ j(zero, &no_exceptions); |
- __ fnclex(); |
- __ bind(&no_exceptions); |
- } |
- |
- // Compute st(0) % st(1) |
- { |
- Label partial_remainder_loop; |
- __ bind(&partial_remainder_loop); |
- __ fprem1(); |
- __ fwait(); |
- __ fnstsw_ax(); |
- __ testl(rax, Immediate(0x400)); // Check C2 bit of FPU status word. |
- // If C2 is set, computation only has partial result. Loop to |
- // continue computation. |
- __ j(not_zero, &partial_remainder_loop); |
- } |
- // FPU Stack: input, 2*pi, input % 2*pi |
- __ fstp(2); |
- // FPU Stack: input % 2*pi, 2*pi, |
- __ fstp(0); |
- // FPU Stack: input % 2*pi |
- __ bind(&in_range); |
- switch (type_) { |
- case TranscendentalCache::SIN: |
- __ fsin(); |
- break; |
- case TranscendentalCache::COS: |
- __ fcos(); |
- break; |
- default: |
- UNREACHABLE(); |
- } |
- __ bind(&done); |
-} |
- |
- |
-// Get the integer part of a heap number. |
-// Overwrites the contents of rdi, rbx and rcx. Result cannot be rdi or rbx. |
-void IntegerConvert(MacroAssembler* masm, |
- Register result, |
- Register source) { |
- // Result may be rcx. If result and source are the same register, source will |
- // be overwritten. |
- ASSERT(!result.is(rdi) && !result.is(rbx)); |
- // TODO(lrn): When type info reaches here, if value is a 32-bit integer, use |
- // cvttsd2si (32-bit version) directly. |
- Register double_exponent = rbx; |
- Register double_value = rdi; |
- Label done, exponent_63_plus; |
- // Get double and extract exponent. |
- __ movq(double_value, FieldOperand(source, HeapNumber::kValueOffset)); |
- // Clear result preemptively, in case we need to return zero. |
- __ xorl(result, result); |
- __ movq(xmm0, double_value); // Save copy in xmm0 in case we need it there. |
- // Double to remove sign bit, shift exponent down to least significant bits. |
- // and subtract bias to get the unshifted, unbiased exponent. |
- __ lea(double_exponent, Operand(double_value, double_value, times_1, 0)); |
- __ shr(double_exponent, Immediate(64 - HeapNumber::kExponentBits)); |
- __ subl(double_exponent, Immediate(HeapNumber::kExponentBias)); |
- // Check whether the exponent is too big for a 63 bit unsigned integer. |
- __ cmpl(double_exponent, Immediate(63)); |
- __ j(above_equal, &exponent_63_plus); |
- // Handle exponent range 0..62. |
- __ cvttsd2siq(result, xmm0); |
- __ jmp(&done); |
- |
- __ bind(&exponent_63_plus); |
- // Exponent negative or 63+. |
- __ cmpl(double_exponent, Immediate(83)); |
- // If exponent negative or above 83, number contains no significant bits in |
- // the range 0..2^31, so result is zero, and rcx already holds zero. |
- __ j(above, &done); |
- |
- // Exponent in rage 63..83. |
- // Mantissa * 2^exponent contains bits in the range 2^0..2^31, namely |
- // the least significant exponent-52 bits. |
- |
- // Negate low bits of mantissa if value is negative. |
- __ addq(double_value, double_value); // Move sign bit to carry. |
- __ sbbl(result, result); // And convert carry to -1 in result register. |
- // if scratch2 is negative, do (scratch2-1)^-1, otherwise (scratch2-0)^0. |
- __ addl(double_value, result); |
- // Do xor in opposite directions depending on where we want the result |
- // (depending on whether result is rcx or not). |
- |
- if (result.is(rcx)) { |
- __ xorl(double_value, result); |
- // Left shift mantissa by (exponent - mantissabits - 1) to save the |
- // bits that have positional values below 2^32 (the extra -1 comes from the |
- // doubling done above to move the sign bit into the carry flag). |
- __ leal(rcx, Operand(double_exponent, -HeapNumber::kMantissaBits - 1)); |
- __ shll_cl(double_value); |
- __ movl(result, double_value); |
- } else { |
- // As the then-branch, but move double-value to result before shifting. |
- __ xorl(result, double_value); |
- __ leal(rcx, Operand(double_exponent, -HeapNumber::kMantissaBits - 1)); |
- __ shll_cl(result); |
- } |
- |
- __ bind(&done); |
-} |
- |
- |
-// Input: rdx, rax are the left and right objects of a bit op. |
-// Output: rax, rcx are left and right integers for a bit op. |
-void FloatingPointHelper::LoadNumbersAsIntegers(MacroAssembler* masm) { |
- // Check float operands. |
- Label done; |
- Label rax_is_smi; |
- Label rax_is_object; |
- Label rdx_is_object; |
- |
- __ JumpIfNotSmi(rdx, &rdx_is_object); |
- __ SmiToInteger32(rdx, rdx); |
- __ JumpIfSmi(rax, &rax_is_smi); |
- |
- __ bind(&rax_is_object); |
- IntegerConvert(masm, rcx, rax); // Uses rdi, rcx and rbx. |
- __ jmp(&done); |
- |
- __ bind(&rdx_is_object); |
- IntegerConvert(masm, rdx, rdx); // Uses rdi, rcx and rbx. |
- __ JumpIfNotSmi(rax, &rax_is_object); |
- __ bind(&rax_is_smi); |
- __ SmiToInteger32(rcx, rax); |
- |
- __ bind(&done); |
- __ movl(rax, rdx); |
-} |
- |
- |
-// Input: rdx, rax are the left and right objects of a bit op. |
-// Output: rax, rcx are left and right integers for a bit op. |
-void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm, |
- Label* conversion_failure, |
- Register heap_number_map) { |
- // Check float operands. |
- Label arg1_is_object, check_undefined_arg1; |
- Label arg2_is_object, check_undefined_arg2; |
- Label load_arg2, done; |
- |
- __ JumpIfNotSmi(rdx, &arg1_is_object); |
- __ SmiToInteger32(rdx, rdx); |
- __ jmp(&load_arg2); |
- |
- // If the argument is undefined it converts to zero (ECMA-262, section 9.5). |
- __ bind(&check_undefined_arg1); |
- __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex); |
- __ j(not_equal, conversion_failure); |
- __ movl(rdx, Immediate(0)); |
- __ jmp(&load_arg2); |
- |
- __ bind(&arg1_is_object); |
- __ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), heap_number_map); |
- __ j(not_equal, &check_undefined_arg1); |
- // Get the untagged integer version of the edx heap number in rcx. |
- IntegerConvert(masm, rdx, rdx); |
- |
- // Here rdx has the untagged integer, rax has a Smi or a heap number. |
- __ bind(&load_arg2); |
- // Test if arg2 is a Smi. |
- __ JumpIfNotSmi(rax, &arg2_is_object); |
- __ SmiToInteger32(rax, rax); |
- __ movl(rcx, rax); |
- __ jmp(&done); |
- |
- // If the argument is undefined it converts to zero (ECMA-262, section 9.5). |
- __ bind(&check_undefined_arg2); |
- __ CompareRoot(rax, Heap::kUndefinedValueRootIndex); |
- __ j(not_equal, conversion_failure); |
- __ movl(rcx, Immediate(0)); |
- __ jmp(&done); |
- |
- __ bind(&arg2_is_object); |
- __ cmpq(FieldOperand(rax, HeapObject::kMapOffset), heap_number_map); |
- __ j(not_equal, &check_undefined_arg2); |
- // Get the untagged integer version of the rax heap number in rcx. |
- IntegerConvert(masm, rcx, rax); |
- __ bind(&done); |
- __ movl(rax, rdx); |
-} |
- |
- |
-void FloatingPointHelper::LoadSSE2SmiOperands(MacroAssembler* masm) { |
- __ SmiToInteger32(kScratchRegister, rdx); |
- __ cvtlsi2sd(xmm0, kScratchRegister); |
- __ SmiToInteger32(kScratchRegister, rax); |
- __ cvtlsi2sd(xmm1, kScratchRegister); |
-} |
- |
- |
-void FloatingPointHelper::LoadSSE2NumberOperands(MacroAssembler* masm) { |
- Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, done; |
- // Load operand in rdx into xmm0. |
- __ JumpIfSmi(rdx, &load_smi_rdx); |
- __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); |
- // Load operand in rax into xmm1. |
- __ JumpIfSmi(rax, &load_smi_rax); |
- __ bind(&load_nonsmi_rax); |
- __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); |
- __ jmp(&done); |
- |
- __ bind(&load_smi_rdx); |
- __ SmiToInteger32(kScratchRegister, rdx); |
- __ cvtlsi2sd(xmm0, kScratchRegister); |
- __ JumpIfNotSmi(rax, &load_nonsmi_rax); |
- |
- __ bind(&load_smi_rax); |
- __ SmiToInteger32(kScratchRegister, rax); |
- __ cvtlsi2sd(xmm1, kScratchRegister); |
- |
- __ bind(&done); |
-} |
- |
- |
-void FloatingPointHelper::LoadSSE2UnknownOperands(MacroAssembler* masm, |
- Label* not_numbers) { |
- Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, load_float_rax, done; |
- // Load operand in rdx into xmm0, or branch to not_numbers. |
- __ LoadRoot(rcx, Heap::kHeapNumberMapRootIndex); |
- __ JumpIfSmi(rdx, &load_smi_rdx); |
- __ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), rcx); |
- __ j(not_equal, not_numbers); // Argument in rdx is not a number. |
- __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); |
- // Load operand in rax into xmm1, or branch to not_numbers. |
- __ JumpIfSmi(rax, &load_smi_rax); |
- |
- __ bind(&load_nonsmi_rax); |
- __ cmpq(FieldOperand(rax, HeapObject::kMapOffset), rcx); |
- __ j(not_equal, not_numbers); |
- __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); |
- __ jmp(&done); |
- |
- __ bind(&load_smi_rdx); |
- __ SmiToInteger32(kScratchRegister, rdx); |
- __ cvtlsi2sd(xmm0, kScratchRegister); |
- __ JumpIfNotSmi(rax, &load_nonsmi_rax); |
- |
- __ bind(&load_smi_rax); |
- __ SmiToInteger32(kScratchRegister, rax); |
- __ cvtlsi2sd(xmm1, kScratchRegister); |
- __ bind(&done); |
-} |
- |
- |
-void GenericUnaryOpStub::Generate(MacroAssembler* masm) { |
- Label slow, done; |
- |
- if (op_ == Token::SUB) { |
- // Check whether the value is a smi. |
- Label try_float; |
- __ JumpIfNotSmi(rax, &try_float); |
- |
- if (negative_zero_ == kIgnoreNegativeZero) { |
- __ SmiCompare(rax, Smi::FromInt(0)); |
- __ j(equal, &done); |
- } |
- |
- // Enter runtime system if the value of the smi is zero |
- // to make sure that we switch between 0 and -0. |
- // Also enter it if the value of the smi is Smi::kMinValue. |
- __ SmiNeg(rax, rax, &done); |
- |
- // Either zero or Smi::kMinValue, neither of which become a smi when |
- // negated. |
- if (negative_zero_ == kStrictNegativeZero) { |
- __ SmiCompare(rax, Smi::FromInt(0)); |
- __ j(not_equal, &slow); |
- __ Move(rax, Factory::minus_zero_value()); |
- __ jmp(&done); |
- } else { |
- __ jmp(&slow); |
- } |
- |
- // Try floating point case. |
- __ bind(&try_float); |
- __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset)); |
- __ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex); |
- __ j(not_equal, &slow); |
- // Operand is a float, negate its value by flipping sign bit. |
- __ movq(rdx, FieldOperand(rax, HeapNumber::kValueOffset)); |
- __ movq(kScratchRegister, Immediate(0x01)); |
- __ shl(kScratchRegister, Immediate(63)); |
- __ xor_(rdx, kScratchRegister); // Flip sign. |
- // rdx is value to store. |
- if (overwrite_ == UNARY_OVERWRITE) { |
- __ movq(FieldOperand(rax, HeapNumber::kValueOffset), rdx); |
- } else { |
- __ AllocateHeapNumber(rcx, rbx, &slow); |
- // rcx: allocated 'empty' number |
- __ movq(FieldOperand(rcx, HeapNumber::kValueOffset), rdx); |
- __ movq(rax, rcx); |
- } |
- } else if (op_ == Token::BIT_NOT) { |
- // Check if the operand is a heap number. |
- __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset)); |
- __ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex); |
- __ j(not_equal, &slow); |
- |
- // Convert the heap number in rax to an untagged integer in rcx. |
- IntegerConvert(masm, rax, rax); |
- |
- // Do the bitwise operation and smi tag the result. |
- __ notl(rax); |
- __ Integer32ToSmi(rax, rax); |
- } |
- |
- // Return from the stub. |
- __ bind(&done); |
- __ StubReturn(1); |
- |
- // Handle the slow case by jumping to the JavaScript builtin. |
- __ bind(&slow); |
- __ pop(rcx); // pop return address |
- __ push(rax); |
- __ push(rcx); // push return address |
- switch (op_) { |
- case Token::SUB: |
- __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION); |
- break; |
- case Token::BIT_NOT: |
- __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION); |
- break; |
- default: |
- UNREACHABLE(); |
- } |
-} |
- |
- |
-void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { |
- // The key is in rdx and the parameter count is in rax. |
- |
- // The displacement is used for skipping the frame pointer on the |
- // stack. It is the offset of the last parameter (if any) relative |
- // to the frame pointer. |
- static const int kDisplacement = 1 * kPointerSize; |
- |
- // Check that the key is a smi. |
- Label slow; |
- __ JumpIfNotSmi(rdx, &slow); |
- |
- // Check if the calling frame is an arguments adaptor frame. |
- Label adaptor; |
- __ movq(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); |
- __ SmiCompare(Operand(rbx, StandardFrameConstants::kContextOffset), |
- Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); |
- __ j(equal, &adaptor); |
- |
- // Check index against formal parameters count limit passed in |
- // through register rax. Use unsigned comparison to get negative |
- // check for free. |
- __ cmpq(rdx, rax); |
- __ j(above_equal, &slow); |
- |
- // Read the argument from the stack and return it. |
- SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2); |
- __ lea(rbx, Operand(rbp, index.reg, index.scale, 0)); |
- index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2); |
- __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement)); |
- __ Ret(); |
- |
- // Arguments adaptor case: Check index against actual arguments |
- // limit found in the arguments adaptor frame. Use unsigned |
- // comparison to get negative check for free. |
- __ bind(&adaptor); |
- __ movq(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
- __ cmpq(rdx, rcx); |
- __ j(above_equal, &slow); |
- |
- // Read the argument from the stack and return it. |
- index = masm->SmiToIndex(rax, rcx, kPointerSizeLog2); |
- __ lea(rbx, Operand(rbx, index.reg, index.scale, 0)); |
- index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2); |
- __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement)); |
- __ Ret(); |
- |
- // Slow-case: Handle non-smi or out-of-bounds access to arguments |
- // by calling the runtime system. |
- __ bind(&slow); |
- __ pop(rbx); // Return address. |
- __ push(rdx); |
- __ push(rbx); |
- __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); |
-} |
- |
- |
-void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) { |
- // rsp[0] : return address |
- // rsp[8] : number of parameters |
- // rsp[16] : receiver displacement |
- // rsp[24] : function |
- |
- // The displacement is used for skipping the return address and the |
- // frame pointer on the stack. It is the offset of the last |
- // parameter (if any) relative to the frame pointer. |
- static const int kDisplacement = 2 * kPointerSize; |
- |
- // Check if the calling frame is an arguments adaptor frame. |
- Label adaptor_frame, try_allocate, runtime; |
- __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); |
- __ SmiCompare(Operand(rdx, StandardFrameConstants::kContextOffset), |
- Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); |
- __ j(equal, &adaptor_frame); |
- |
- // Get the length from the frame. |
- __ SmiToInteger32(rcx, Operand(rsp, 1 * kPointerSize)); |
- __ jmp(&try_allocate); |
- |
- // Patch the arguments.length and the parameters pointer. |
- __ bind(&adaptor_frame); |
- __ SmiToInteger32(rcx, |
- Operand(rdx, |
- ArgumentsAdaptorFrameConstants::kLengthOffset)); |
- // Space on stack must already hold a smi. |
- __ Integer32ToSmiField(Operand(rsp, 1 * kPointerSize), rcx); |
- // Do not clobber the length index for the indexing operation since |
- // it is used compute the size for allocation later. |
- __ lea(rdx, Operand(rdx, rcx, times_pointer_size, kDisplacement)); |
- __ movq(Operand(rsp, 2 * kPointerSize), rdx); |
- |
- // Try the new space allocation. Start out with computing the size of |
- // the arguments object and the elements array. |
- Label add_arguments_object; |
- __ bind(&try_allocate); |
- __ testl(rcx, rcx); |
- __ j(zero, &add_arguments_object); |
- __ leal(rcx, Operand(rcx, times_pointer_size, FixedArray::kHeaderSize)); |
- __ bind(&add_arguments_object); |
- __ addl(rcx, Immediate(Heap::kArgumentsObjectSize)); |
- |
- // Do the allocation of both objects in one go. |
- __ AllocateInNewSpace(rcx, rax, rdx, rbx, &runtime, TAG_OBJECT); |
- |
- // Get the arguments boilerplate from the current (global) context. |
- int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX); |
- __ movq(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
- __ movq(rdi, FieldOperand(rdi, GlobalObject::kGlobalContextOffset)); |
- __ movq(rdi, Operand(rdi, offset)); |
- |
- // Copy the JS object part. |
- STATIC_ASSERT(JSObject::kHeaderSize == 3 * kPointerSize); |
- __ movq(kScratchRegister, FieldOperand(rdi, 0 * kPointerSize)); |
- __ movq(rdx, FieldOperand(rdi, 1 * kPointerSize)); |
- __ movq(rbx, FieldOperand(rdi, 2 * kPointerSize)); |
- __ movq(FieldOperand(rax, 0 * kPointerSize), kScratchRegister); |
- __ movq(FieldOperand(rax, 1 * kPointerSize), rdx); |
- __ movq(FieldOperand(rax, 2 * kPointerSize), rbx); |
- |
- // Setup the callee in-object property. |
- ASSERT(Heap::arguments_callee_index == 0); |
- __ movq(kScratchRegister, Operand(rsp, 3 * kPointerSize)); |
- __ movq(FieldOperand(rax, JSObject::kHeaderSize), kScratchRegister); |
- |
- // Get the length (smi tagged) and set that as an in-object property too. |
- ASSERT(Heap::arguments_length_index == 1); |
- __ movq(rcx, Operand(rsp, 1 * kPointerSize)); |
- __ movq(FieldOperand(rax, JSObject::kHeaderSize + kPointerSize), rcx); |
- |
- // If there are no actual arguments, we're done. |
- Label done; |
- __ SmiTest(rcx); |
- __ j(zero, &done); |
- |
- // Get the parameters pointer from the stack and untag the length. |
- __ movq(rdx, Operand(rsp, 2 * kPointerSize)); |
- |
- // Setup the elements pointer in the allocated arguments object and |
- // initialize the header in the elements fixed array. |
- __ lea(rdi, Operand(rax, Heap::kArgumentsObjectSize)); |
- __ movq(FieldOperand(rax, JSObject::kElementsOffset), rdi); |
- __ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex); |
- __ movq(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister); |
- __ movq(FieldOperand(rdi, FixedArray::kLengthOffset), rcx); |
- __ SmiToInteger32(rcx, rcx); // Untag length for the loop below. |
- |
- // Copy the fixed array slots. |
- Label loop; |
- __ bind(&loop); |
- __ movq(kScratchRegister, Operand(rdx, -1 * kPointerSize)); // Skip receiver. |
- __ movq(FieldOperand(rdi, FixedArray::kHeaderSize), kScratchRegister); |
- __ addq(rdi, Immediate(kPointerSize)); |
- __ subq(rdx, Immediate(kPointerSize)); |
- __ decl(rcx); |
- __ j(not_zero, &loop); |
- |
- // Return and remove the on-stack parameters. |
- __ bind(&done); |
- __ ret(3 * kPointerSize); |
- |
- // Do the runtime call to allocate the arguments object. |
- __ bind(&runtime); |
- __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); |
-} |
- |
- |
-void RegExpExecStub::Generate(MacroAssembler* masm) { |
- // Just jump directly to runtime if native RegExp is not selected at compile |
- // time or if regexp entry in generated code is turned off runtime switch or |
- // at compilation. |
-#ifdef V8_INTERPRETED_REGEXP |
- __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
-#else // V8_INTERPRETED_REGEXP |
- if (!FLAG_regexp_entry_native) { |
- __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
- return; |
- } |
- |
- // Stack frame on entry. |
- // esp[0]: return address |
- // esp[8]: last_match_info (expected JSArray) |
- // esp[16]: previous index |
- // esp[24]: subject string |
- // esp[32]: JSRegExp object |
- |
- static const int kLastMatchInfoOffset = 1 * kPointerSize; |
- static const int kPreviousIndexOffset = 2 * kPointerSize; |
- static const int kSubjectOffset = 3 * kPointerSize; |
- static const int kJSRegExpOffset = 4 * kPointerSize; |
- |
- Label runtime; |
- |
- // Ensure that a RegExp stack is allocated. |
- ExternalReference address_of_regexp_stack_memory_address = |
- ExternalReference::address_of_regexp_stack_memory_address(); |
- ExternalReference address_of_regexp_stack_memory_size = |
- ExternalReference::address_of_regexp_stack_memory_size(); |
- __ movq(kScratchRegister, address_of_regexp_stack_memory_size); |
- __ movq(kScratchRegister, Operand(kScratchRegister, 0)); |
- __ testq(kScratchRegister, kScratchRegister); |
- __ j(zero, &runtime); |
- |
- |
- // Check that the first argument is a JSRegExp object. |
- __ movq(rax, Operand(rsp, kJSRegExpOffset)); |
- __ JumpIfSmi(rax, &runtime); |
- __ CmpObjectType(rax, JS_REGEXP_TYPE, kScratchRegister); |
- __ j(not_equal, &runtime); |
- // Check that the RegExp has been compiled (data contains a fixed array). |
- __ movq(rcx, FieldOperand(rax, JSRegExp::kDataOffset)); |
- if (FLAG_debug_code) { |
- Condition is_smi = masm->CheckSmi(rcx); |
- __ Check(NegateCondition(is_smi), |
- "Unexpected type for RegExp data, FixedArray expected"); |
- __ CmpObjectType(rcx, FIXED_ARRAY_TYPE, kScratchRegister); |
- __ Check(equal, "Unexpected type for RegExp data, FixedArray expected"); |
- } |
- |
- // rcx: RegExp data (FixedArray) |
- // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. |
- __ SmiToInteger32(rbx, FieldOperand(rcx, JSRegExp::kDataTagOffset)); |
- __ cmpl(rbx, Immediate(JSRegExp::IRREGEXP)); |
- __ j(not_equal, &runtime); |
- |
- // rcx: RegExp data (FixedArray) |
- // Check that the number of captures fit in the static offsets vector buffer. |
- __ SmiToInteger32(rdx, |
- FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset)); |
- // Calculate number of capture registers (number_of_captures + 1) * 2. |
- __ leal(rdx, Operand(rdx, rdx, times_1, 2)); |
- // Check that the static offsets vector buffer is large enough. |
- __ cmpl(rdx, Immediate(OffsetsVector::kStaticOffsetsVectorSize)); |
- __ j(above, &runtime); |
- |
- // rcx: RegExp data (FixedArray) |
- // rdx: Number of capture registers |
- // Check that the second argument is a string. |
- __ movq(rax, Operand(rsp, kSubjectOffset)); |
- __ JumpIfSmi(rax, &runtime); |
- Condition is_string = masm->IsObjectStringType(rax, rbx, rbx); |
- __ j(NegateCondition(is_string), &runtime); |
- |
- // rax: Subject string. |
- // rcx: RegExp data (FixedArray). |
- // rdx: Number of capture registers. |
- // Check that the third argument is a positive smi less than the string |
- // length. A negative value will be greater (unsigned comparison). |
- __ movq(rbx, Operand(rsp, kPreviousIndexOffset)); |
- __ JumpIfNotSmi(rbx, &runtime); |
- __ SmiCompare(rbx, FieldOperand(rax, String::kLengthOffset)); |
- __ j(above_equal, &runtime); |
- |
- // rcx: RegExp data (FixedArray) |
- // rdx: Number of capture registers |
- // Check that the fourth object is a JSArray object. |
- __ movq(rax, Operand(rsp, kLastMatchInfoOffset)); |
- __ JumpIfSmi(rax, &runtime); |
- __ CmpObjectType(rax, JS_ARRAY_TYPE, kScratchRegister); |
- __ j(not_equal, &runtime); |
- // Check that the JSArray is in fast case. |
- __ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset)); |
- __ movq(rax, FieldOperand(rbx, HeapObject::kMapOffset)); |
- __ Cmp(rax, Factory::fixed_array_map()); |
- __ j(not_equal, &runtime); |
- // Check that the last match info has space for the capture registers and the |
- // additional information. Ensure no overflow in add. |
- STATIC_ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset); |
- __ SmiToInteger32(rax, FieldOperand(rbx, FixedArray::kLengthOffset)); |
- __ addl(rdx, Immediate(RegExpImpl::kLastMatchOverhead)); |
- __ cmpl(rdx, rax); |
- __ j(greater, &runtime); |
- |
- // rcx: RegExp data (FixedArray) |
- // Check the representation and encoding of the subject string. |
- Label seq_ascii_string, seq_two_byte_string, check_code; |
- __ movq(rax, Operand(rsp, kSubjectOffset)); |
- __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); |
- __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); |
- // First check for flat two byte string. |
- __ andb(rbx, Immediate( |
- kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask)); |
- STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0); |
- __ j(zero, &seq_two_byte_string); |
- // Any other flat string must be a flat ascii string. |
- __ testb(rbx, Immediate(kIsNotStringMask | kStringRepresentationMask)); |
- __ j(zero, &seq_ascii_string); |
- |
- // Check for flat cons string. |
- // A flat cons string is a cons string where the second part is the empty |
- // string. In that case the subject string is just the first part of the cons |
- // string. Also in this case the first part of the cons string is known to be |
- // a sequential string or an external string. |
- STATIC_ASSERT(kExternalStringTag !=0); |
- STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0); |
- __ testb(rbx, Immediate(kIsNotStringMask | kExternalStringTag)); |
- __ j(not_zero, &runtime); |
- // String is a cons string. |
- __ movq(rdx, FieldOperand(rax, ConsString::kSecondOffset)); |
- __ Cmp(rdx, Factory::empty_string()); |
- __ j(not_equal, &runtime); |
- __ movq(rax, FieldOperand(rax, ConsString::kFirstOffset)); |
- __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); |
- // String is a cons string with empty second part. |
- // rax: first part of cons string. |
- // rbx: map of first part of cons string. |
- // Is first part a flat two byte string? |
- __ testb(FieldOperand(rbx, Map::kInstanceTypeOffset), |
- Immediate(kStringRepresentationMask | kStringEncodingMask)); |
- STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0); |
- __ j(zero, &seq_two_byte_string); |
- // Any other flat string must be ascii. |
- __ testb(FieldOperand(rbx, Map::kInstanceTypeOffset), |
- Immediate(kStringRepresentationMask)); |
- __ j(not_zero, &runtime); |
- |
- __ bind(&seq_ascii_string); |
- // rax: subject string (sequential ascii) |
- // rcx: RegExp data (FixedArray) |
- __ movq(r11, FieldOperand(rcx, JSRegExp::kDataAsciiCodeOffset)); |
- __ Set(rdi, 1); // Type is ascii. |
- __ jmp(&check_code); |
- |
- __ bind(&seq_two_byte_string); |
- // rax: subject string (flat two-byte) |
- // rcx: RegExp data (FixedArray) |
- __ movq(r11, FieldOperand(rcx, JSRegExp::kDataUC16CodeOffset)); |
- __ Set(rdi, 0); // Type is two byte. |
- |
- __ bind(&check_code); |
- // Check that the irregexp code has been generated for the actual string |
- // encoding. If it has, the field contains a code object otherwise it contains |
- // the hole. |
- __ CmpObjectType(r11, CODE_TYPE, kScratchRegister); |
- __ j(not_equal, &runtime); |
- |
- // rax: subject string |
- // rdi: encoding of subject string (1 if ascii, 0 if two_byte); |
- // r11: code |
- // Load used arguments before starting to push arguments for call to native |
- // RegExp code to avoid handling changing stack height. |
- __ SmiToInteger64(rbx, Operand(rsp, kPreviousIndexOffset)); |
- |
- // rax: subject string |
- // rbx: previous index |
- // rdi: encoding of subject string (1 if ascii 0 if two_byte); |
- // r11: code |
- // All checks done. Now push arguments for native regexp code. |
- __ IncrementCounter(&Counters::regexp_entry_native, 1); |
- |
- // rsi is caller save on Windows and used to pass parameter on Linux. |
- __ push(rsi); |
- |
- static const int kRegExpExecuteArguments = 7; |
- __ PrepareCallCFunction(kRegExpExecuteArguments); |
- int argument_slots_on_stack = |
- masm->ArgumentStackSlotsForCFunctionCall(kRegExpExecuteArguments); |
- |
- // Argument 7: Indicate that this is a direct call from JavaScript. |
- __ movq(Operand(rsp, (argument_slots_on_stack - 1) * kPointerSize), |
- Immediate(1)); |
- |
- // Argument 6: Start (high end) of backtracking stack memory area. |
- __ movq(kScratchRegister, address_of_regexp_stack_memory_address); |
- __ movq(r9, Operand(kScratchRegister, 0)); |
- __ movq(kScratchRegister, address_of_regexp_stack_memory_size); |
- __ addq(r9, Operand(kScratchRegister, 0)); |
- // Argument 6 passed in r9 on Linux and on the stack on Windows. |
-#ifdef _WIN64 |
- __ movq(Operand(rsp, (argument_slots_on_stack - 2) * kPointerSize), r9); |
-#endif |
- |
- // Argument 5: static offsets vector buffer. |
- __ movq(r8, ExternalReference::address_of_static_offsets_vector()); |
- // Argument 5 passed in r8 on Linux and on the stack on Windows. |
-#ifdef _WIN64 |
- __ movq(Operand(rsp, (argument_slots_on_stack - 3) * kPointerSize), r8); |
-#endif |
- |
- // First four arguments are passed in registers on both Linux and Windows. |
-#ifdef _WIN64 |
- Register arg4 = r9; |
- Register arg3 = r8; |
- Register arg2 = rdx; |
- Register arg1 = rcx; |
-#else |
- Register arg4 = rcx; |
- Register arg3 = rdx; |
- Register arg2 = rsi; |
- Register arg1 = rdi; |
-#endif |
- |
- // Keep track on aliasing between argX defined above and the registers used. |
- // rax: subject string |
- // rbx: previous index |
- // rdi: encoding of subject string (1 if ascii 0 if two_byte); |
- // r11: code |
- |
- // Argument 4: End of string data |
- // Argument 3: Start of string data |
- Label setup_two_byte, setup_rest; |
- __ testb(rdi, rdi); |
- __ j(zero, &setup_two_byte); |
- __ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset)); |
- __ lea(arg4, FieldOperand(rax, rdi, times_1, SeqAsciiString::kHeaderSize)); |
- __ lea(arg3, FieldOperand(rax, rbx, times_1, SeqAsciiString::kHeaderSize)); |
- __ jmp(&setup_rest); |
- __ bind(&setup_two_byte); |
- __ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset)); |
- __ lea(arg4, FieldOperand(rax, rdi, times_2, SeqTwoByteString::kHeaderSize)); |
- __ lea(arg3, FieldOperand(rax, rbx, times_2, SeqTwoByteString::kHeaderSize)); |
- |
- __ bind(&setup_rest); |
- // Argument 2: Previous index. |
- __ movq(arg2, rbx); |
- |
- // Argument 1: Subject string. |
- __ movq(arg1, rax); |
- |
- // Locate the code entry and call it. |
- __ addq(r11, Immediate(Code::kHeaderSize - kHeapObjectTag)); |
- __ CallCFunction(r11, kRegExpExecuteArguments); |
- |
- // rsi is caller save, as it is used to pass parameter. |
- __ pop(rsi); |
- |
- // Check the result. |
- Label success; |
- __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::SUCCESS)); |
- __ j(equal, &success); |
- Label failure; |
- __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::FAILURE)); |
- __ j(equal, &failure); |
- __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::EXCEPTION)); |
- // If not exception it can only be retry. Handle that in the runtime system. |
- __ j(not_equal, &runtime); |
- // Result must now be exception. If there is no pending exception already a |
- // stack overflow (on the backtrack stack) was detected in RegExp code but |
- // haven't created the exception yet. Handle that in the runtime system. |
- // TODO(592): Rerunning the RegExp to get the stack overflow exception. |
- ExternalReference pending_exception_address(Top::k_pending_exception_address); |
- __ movq(kScratchRegister, pending_exception_address); |
- __ Cmp(kScratchRegister, Factory::the_hole_value()); |
- __ j(equal, &runtime); |
- __ bind(&failure); |
- // For failure and exception return null. |
- __ Move(rax, Factory::null_value()); |
- __ ret(4 * kPointerSize); |
- |
- // Load RegExp data. |
- __ bind(&success); |
- __ movq(rax, Operand(rsp, kJSRegExpOffset)); |
- __ movq(rcx, FieldOperand(rax, JSRegExp::kDataOffset)); |
- __ SmiToInteger32(rax, |
- FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset)); |
- // Calculate number of capture registers (number_of_captures + 1) * 2. |
- __ leal(rdx, Operand(rax, rax, times_1, 2)); |
- |
- // rdx: Number of capture registers |
- // Load last_match_info which is still known to be a fast case JSArray. |
- __ movq(rax, Operand(rsp, kLastMatchInfoOffset)); |
- __ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset)); |
- |
- // rbx: last_match_info backing store (FixedArray) |
- // rdx: number of capture registers |
- // Store the capture count. |
- __ Integer32ToSmi(kScratchRegister, rdx); |
- __ movq(FieldOperand(rbx, RegExpImpl::kLastCaptureCountOffset), |
- kScratchRegister); |
- // Store last subject and last input. |
- __ movq(rax, Operand(rsp, kSubjectOffset)); |
- __ movq(FieldOperand(rbx, RegExpImpl::kLastSubjectOffset), rax); |
- __ movq(rcx, rbx); |
- __ RecordWrite(rcx, RegExpImpl::kLastSubjectOffset, rax, rdi); |
- __ movq(rax, Operand(rsp, kSubjectOffset)); |
- __ movq(FieldOperand(rbx, RegExpImpl::kLastInputOffset), rax); |
- __ movq(rcx, rbx); |
- __ RecordWrite(rcx, RegExpImpl::kLastInputOffset, rax, rdi); |
- |
- // Get the static offsets vector filled by the native regexp code. |
- __ movq(rcx, ExternalReference::address_of_static_offsets_vector()); |
- |
- // rbx: last_match_info backing store (FixedArray) |
- // rcx: offsets vector |
- // rdx: number of capture registers |
- Label next_capture, done; |
- // Capture register counter starts from number of capture registers and |
- // counts down until wraping after zero. |
- __ bind(&next_capture); |
- __ subq(rdx, Immediate(1)); |
- __ j(negative, &done); |
- // Read the value from the static offsets vector buffer and make it a smi. |
- __ movl(rdi, Operand(rcx, rdx, times_int_size, 0)); |
- __ Integer32ToSmi(rdi, rdi, &runtime); |
- // Store the smi value in the last match info. |
- __ movq(FieldOperand(rbx, |
- rdx, |
- times_pointer_size, |
- RegExpImpl::kFirstCaptureOffset), |
- rdi); |
- __ jmp(&next_capture); |
- __ bind(&done); |
- |
- // Return last match info. |
- __ movq(rax, Operand(rsp, kLastMatchInfoOffset)); |
- __ ret(4 * kPointerSize); |
- |
- // Do the runtime call to execute the regexp. |
- __ bind(&runtime); |
- __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
-#endif // V8_INTERPRETED_REGEXP |
-} |
- |
- |
-void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm, |
- Register object, |
- Register result, |
- Register scratch1, |
- Register scratch2, |
- bool object_is_smi, |
- Label* not_found) { |
- // Use of registers. Register result is used as a temporary. |
- Register number_string_cache = result; |
- Register mask = scratch1; |
- Register scratch = scratch2; |
- |
- // Load the number string cache. |
- __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex); |
- |
- // Make the hash mask from the length of the number string cache. It |
- // contains two elements (number and string) for each cache entry. |
- __ SmiToInteger32( |
- mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset)); |
- __ shrl(mask, Immediate(1)); |
- __ subq(mask, Immediate(1)); // Make mask. |
- |
- // Calculate the entry in the number string cache. The hash value in the |
- // number string cache for smis is just the smi value, and the hash for |
- // doubles is the xor of the upper and lower words. See |
- // Heap::GetNumberStringCache. |
- Label is_smi; |
- Label load_result_from_cache; |
- if (!object_is_smi) { |
- __ JumpIfSmi(object, &is_smi); |
- __ CheckMap(object, Factory::heap_number_map(), not_found, true); |
- |
- STATIC_ASSERT(8 == kDoubleSize); |
- __ movl(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4)); |
- __ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset)); |
- GenerateConvertHashCodeToIndex(masm, scratch, mask); |
- |
- Register index = scratch; |
- Register probe = mask; |
- __ movq(probe, |
- FieldOperand(number_string_cache, |
- index, |
- times_1, |
- FixedArray::kHeaderSize)); |
- __ JumpIfSmi(probe, not_found); |
- ASSERT(CpuFeatures::IsSupported(SSE2)); |
- CpuFeatures::Scope fscope(SSE2); |
- __ movsd(xmm0, FieldOperand(object, HeapNumber::kValueOffset)); |
- __ movsd(xmm1, FieldOperand(probe, HeapNumber::kValueOffset)); |
- __ ucomisd(xmm0, xmm1); |
- __ j(parity_even, not_found); // Bail out if NaN is involved. |
- __ j(not_equal, not_found); // The cache did not contain this value. |
- __ jmp(&load_result_from_cache); |
- } |
- |
- __ bind(&is_smi); |
- __ SmiToInteger32(scratch, object); |
- GenerateConvertHashCodeToIndex(masm, scratch, mask); |
- |
- Register index = scratch; |
- // Check if the entry is the smi we are looking for. |
- __ cmpq(object, |
- FieldOperand(number_string_cache, |
- index, |
- times_1, |
- FixedArray::kHeaderSize)); |
- __ j(not_equal, not_found); |
- |
- // Get the result from the cache. |
- __ bind(&load_result_from_cache); |
- __ movq(result, |
- FieldOperand(number_string_cache, |
- index, |
- times_1, |
- FixedArray::kHeaderSize + kPointerSize)); |
- __ IncrementCounter(&Counters::number_to_string_native, 1); |
-} |
- |
- |
-void NumberToStringStub::GenerateConvertHashCodeToIndex(MacroAssembler* masm, |
- Register hash, |
- Register mask) { |
- __ and_(hash, mask); |
- // Each entry in string cache consists of two pointer sized fields, |
- // but times_twice_pointer_size (multiplication by 16) scale factor |
- // is not supported by addrmode on x64 platform. |
- // So we have to premultiply entry index before lookup. |
- __ shl(hash, Immediate(kPointerSizeLog2 + 1)); |
-} |
- |
- |
-void NumberToStringStub::Generate(MacroAssembler* masm) { |
- Label runtime; |
- |
- __ movq(rbx, Operand(rsp, kPointerSize)); |
- |
- // Generate code to lookup number in the number string cache. |
- GenerateLookupNumberStringCache(masm, rbx, rax, r8, r9, false, &runtime); |
- __ ret(1 * kPointerSize); |
- |
- __ bind(&runtime); |
- // Handle number to string in the runtime system if not found in the cache. |
- __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1); |
-} |
- |
- |
-static int NegativeComparisonResult(Condition cc) { |
- ASSERT(cc != equal); |
- ASSERT((cc == less) || (cc == less_equal) |
- || (cc == greater) || (cc == greater_equal)); |
- return (cc == greater || cc == greater_equal) ? LESS : GREATER; |
-} |
- |
- |
-void CompareStub::Generate(MacroAssembler* masm) { |
- ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); |
- |
- Label check_unequal_objects, done; |
- // The compare stub returns a positive, negative, or zero 64-bit integer |
- // value in rax, corresponding to result of comparing the two inputs. |
- // NOTICE! This code is only reached after a smi-fast-case check, so |
- // it is certain that at least one operand isn't a smi. |
- |
- // Two identical objects are equal unless they are both NaN or undefined. |
- { |
- Label not_identical; |
- __ cmpq(rax, rdx); |
- __ j(not_equal, ¬_identical); |
- |
- if (cc_ != equal) { |
- // Check for undefined. undefined OP undefined is false even though |
- // undefined == undefined. |
- Label check_for_nan; |
- __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex); |
- __ j(not_equal, &check_for_nan); |
- __ Set(rax, NegativeComparisonResult(cc_)); |
- __ ret(0); |
- __ bind(&check_for_nan); |
- } |
- |
- // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), |
- // so we do the second best thing - test it ourselves. |
- // Note: if cc_ != equal, never_nan_nan_ is not used. |
- // We cannot set rax to EQUAL until just before return because |
- // rax must be unchanged on jump to not_identical. |
- |
- if (never_nan_nan_ && (cc_ == equal)) { |
- __ Set(rax, EQUAL); |
- __ ret(0); |
- } else { |
- Label heap_number; |
- // If it's not a heap number, then return equal for (in)equality operator. |
- __ Cmp(FieldOperand(rdx, HeapObject::kMapOffset), |
- Factory::heap_number_map()); |
- __ j(equal, &heap_number); |
- if (cc_ != equal) { |
- // Call runtime on identical JSObjects. Otherwise return equal. |
- __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx); |
- __ j(above_equal, ¬_identical); |
- } |
- __ Set(rax, EQUAL); |
- __ ret(0); |
- |
- __ bind(&heap_number); |
- // It is a heap number, so return equal if it's not NaN. |
- // For NaN, return 1 for every condition except greater and |
- // greater-equal. Return -1 for them, so the comparison yields |
- // false for all conditions except not-equal. |
- __ Set(rax, EQUAL); |
- __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); |
- __ ucomisd(xmm0, xmm0); |
- __ setcc(parity_even, rax); |
- // rax is 0 for equal non-NaN heapnumbers, 1 for NaNs. |
- if (cc_ == greater_equal || cc_ == greater) { |
- __ neg(rax); |
- } |
- __ ret(0); |
- } |
- |
- __ bind(¬_identical); |
- } |
- |
- if (cc_ == equal) { // Both strict and non-strict. |
- Label slow; // Fallthrough label. |
- |
- // If we're doing a strict equality comparison, we don't have to do |
- // type conversion, so we generate code to do fast comparison for objects |
- // and oddballs. Non-smi numbers and strings still go through the usual |
- // slow-case code. |
- if (strict_) { |
- // If either is a Smi (we know that not both are), then they can only |
- // be equal if the other is a HeapNumber. If so, use the slow case. |
- { |
- Label not_smis; |
- __ SelectNonSmi(rbx, rax, rdx, ¬_smis); |
- |
- // Check if the non-smi operand is a heap number. |
- __ Cmp(FieldOperand(rbx, HeapObject::kMapOffset), |
- Factory::heap_number_map()); |
- // If heap number, handle it in the slow case. |
- __ j(equal, &slow); |
- // Return non-equal. ebx (the lower half of rbx) is not zero. |
- __ movq(rax, rbx); |
- __ ret(0); |
- |
- __ bind(¬_smis); |
- } |
- |
- // If either operand is a JSObject or an oddball value, then they are not |
- // equal since their pointers are different |
- // There is no test for undetectability in strict equality. |
- |
- // If the first object is a JS object, we have done pointer comparison. |
- STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); |
- Label first_non_object; |
- __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx); |
- __ j(below, &first_non_object); |
- // Return non-zero (eax (not rax) is not zero) |
- Label return_not_equal; |
- STATIC_ASSERT(kHeapObjectTag != 0); |
- __ bind(&return_not_equal); |
- __ ret(0); |
- |
- __ bind(&first_non_object); |
- // Check for oddballs: true, false, null, undefined. |
- __ CmpInstanceType(rcx, ODDBALL_TYPE); |
- __ j(equal, &return_not_equal); |
- |
- __ CmpObjectType(rdx, FIRST_JS_OBJECT_TYPE, rcx); |
- __ j(above_equal, &return_not_equal); |
- |
- // Check for oddballs: true, false, null, undefined. |
- __ CmpInstanceType(rcx, ODDBALL_TYPE); |
- __ j(equal, &return_not_equal); |
- |
- // Fall through to the general case. |
- } |
- __ bind(&slow); |
- } |
- |
- // Generate the number comparison code. |
- if (include_number_compare_) { |
- Label non_number_comparison; |
- Label unordered; |
- FloatingPointHelper::LoadSSE2UnknownOperands(masm, &non_number_comparison); |
- __ xorl(rax, rax); |
- __ xorl(rcx, rcx); |
- __ ucomisd(xmm0, xmm1); |
- |
- // Don't base result on EFLAGS when a NaN is involved. |
- __ j(parity_even, &unordered); |
- // Return a result of -1, 0, or 1, based on EFLAGS. |
- __ setcc(above, rax); |
- __ setcc(below, rcx); |
- __ subq(rax, rcx); |
- __ ret(0); |
- |
- // If one of the numbers was NaN, then the result is always false. |
- // The cc is never not-equal. |
- __ bind(&unordered); |
- ASSERT(cc_ != not_equal); |
- if (cc_ == less || cc_ == less_equal) { |
- __ Set(rax, 1); |
- } else { |
- __ Set(rax, -1); |
- } |
- __ ret(0); |
- |
- // The number comparison code did not provide a valid result. |
- __ bind(&non_number_comparison); |
- } |
- |
- // Fast negative check for symbol-to-symbol equality. |
- Label check_for_strings; |
- if (cc_ == equal) { |
- BranchIfNonSymbol(masm, &check_for_strings, rax, kScratchRegister); |
- BranchIfNonSymbol(masm, &check_for_strings, rdx, kScratchRegister); |
- |
- // We've already checked for object identity, so if both operands |
- // are symbols they aren't equal. Register eax (not rax) already holds a |
- // non-zero value, which indicates not equal, so just return. |
- __ ret(0); |
- } |
- |
- __ bind(&check_for_strings); |
- |
- __ JumpIfNotBothSequentialAsciiStrings( |
- rdx, rax, rcx, rbx, &check_unequal_objects); |
- |
- // Inline comparison of ascii strings. |
- StringCompareStub::GenerateCompareFlatAsciiStrings(masm, |
- rdx, |
- rax, |
- rcx, |
- rbx, |
- rdi, |
- r8); |
- |
-#ifdef DEBUG |
- __ Abort("Unexpected fall-through from string comparison"); |
-#endif |
- |
- __ bind(&check_unequal_objects); |
- if (cc_ == equal && !strict_) { |
- // Not strict equality. Objects are unequal if |
- // they are both JSObjects and not undetectable, |
- // and their pointers are different. |
- Label not_both_objects, return_unequal; |
- // At most one is a smi, so we can test for smi by adding the two. |
- // A smi plus a heap object has the low bit set, a heap object plus |
- // a heap object has the low bit clear. |
- STATIC_ASSERT(kSmiTag == 0); |
- STATIC_ASSERT(kSmiTagMask == 1); |
- __ lea(rcx, Operand(rax, rdx, times_1, 0)); |
- __ testb(rcx, Immediate(kSmiTagMask)); |
- __ j(not_zero, ¬_both_objects); |
- __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rbx); |
- __ j(below, ¬_both_objects); |
- __ CmpObjectType(rdx, FIRST_JS_OBJECT_TYPE, rcx); |
- __ j(below, ¬_both_objects); |
- __ testb(FieldOperand(rbx, Map::kBitFieldOffset), |
- Immediate(1 << Map::kIsUndetectable)); |
- __ j(zero, &return_unequal); |
- __ testb(FieldOperand(rcx, Map::kBitFieldOffset), |
- Immediate(1 << Map::kIsUndetectable)); |
- __ j(zero, &return_unequal); |
- // The objects are both undetectable, so they both compare as the value |
- // undefined, and are equal. |
- __ Set(rax, EQUAL); |
- __ bind(&return_unequal); |
- // Return non-equal by returning the non-zero object pointer in eax, |
- // or return equal if we fell through to here. |
- __ ret(0); |
- __ bind(¬_both_objects); |
- } |
- |
- // Push arguments below the return address to prepare jump to builtin. |
- __ pop(rcx); |
- __ push(rdx); |
- __ push(rax); |
- |
- // Figure out which native to call and setup the arguments. |
- Builtins::JavaScript builtin; |
- if (cc_ == equal) { |
- builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS; |
- } else { |
- builtin = Builtins::COMPARE; |
- __ Push(Smi::FromInt(NegativeComparisonResult(cc_))); |
- } |
- |
- // Restore return address on the stack. |
- __ push(rcx); |
- |
- // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) |
- // tagged as a small integer. |
- __ InvokeBuiltin(builtin, JUMP_FUNCTION); |
-} |
- |
- |
-void CompareStub::BranchIfNonSymbol(MacroAssembler* masm, |
- Label* label, |
- Register object, |
- Register scratch) { |
- __ JumpIfSmi(object, label); |
- __ movq(scratch, FieldOperand(object, HeapObject::kMapOffset)); |
- __ movzxbq(scratch, |
- FieldOperand(scratch, Map::kInstanceTypeOffset)); |
- // Ensure that no non-strings have the symbol bit set. |
- STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask); |
- STATIC_ASSERT(kSymbolTag != 0); |
- __ testb(scratch, Immediate(kIsSymbolMask)); |
- __ j(zero, label); |
-} |
- |
- |
-void StackCheckStub::Generate(MacroAssembler* masm) { |
- // Because builtins always remove the receiver from the stack, we |
- // have to fake one to avoid underflowing the stack. The receiver |
- // must be inserted below the return address on the stack so we |
- // temporarily store that in a register. |
- __ pop(rax); |
- __ Push(Smi::FromInt(0)); |
- __ push(rax); |
- |
- // Do tail-call to runtime routine. |
- __ TailCallRuntime(Runtime::kStackGuard, 1, 1); |
-} |
- |
- |
-void CallFunctionStub::Generate(MacroAssembler* masm) { |
- Label slow; |
- |
- // If the receiver might be a value (string, number or boolean) check for this |
- // and box it if it is. |
- if (ReceiverMightBeValue()) { |
- // Get the receiver from the stack. |
- // +1 ~ return address |
- Label receiver_is_value, receiver_is_js_object; |
- __ movq(rax, Operand(rsp, (argc_ + 1) * kPointerSize)); |
- |
- // Check if receiver is a smi (which is a number value). |
- __ JumpIfSmi(rax, &receiver_is_value); |
- |
- // Check if the receiver is a valid JS object. |
- __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rdi); |
- __ j(above_equal, &receiver_is_js_object); |
- |
- // Call the runtime to box the value. |
- __ bind(&receiver_is_value); |
- __ EnterInternalFrame(); |
- __ push(rax); |
- __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); |
- __ LeaveInternalFrame(); |
- __ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rax); |
- |
- __ bind(&receiver_is_js_object); |
- } |
- |
- // Get the function to call from the stack. |
- // +2 ~ receiver, return address |
- __ movq(rdi, Operand(rsp, (argc_ + 2) * kPointerSize)); |
- |
- // Check that the function really is a JavaScript function. |
- __ JumpIfSmi(rdi, &slow); |
- // Goto slow case if we do not have a function. |
- __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); |
- __ j(not_equal, &slow); |
- |
- // Fast-case: Just invoke the function. |
- ParameterCount actual(argc_); |
- __ InvokeFunction(rdi, actual, JUMP_FUNCTION); |
- |
- // Slow-case: Non-function called. |
- __ bind(&slow); |
- // CALL_NON_FUNCTION expects the non-function callee as receiver (instead |
- // of the original receiver from the call site). |
- __ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rdi); |
- __ Set(rax, argc_); |
- __ Set(rbx, 0); |
- __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION); |
- Handle<Code> adaptor(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)); |
- __ Jump(adaptor, RelocInfo::CODE_TARGET); |
-} |
- |
- |
-void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) { |
- // Check that stack should contain next handler, frame pointer, state and |
- // return address in that order. |
- STATIC_ASSERT(StackHandlerConstants::kFPOffset + kPointerSize == |
- StackHandlerConstants::kStateOffset); |
- STATIC_ASSERT(StackHandlerConstants::kStateOffset + kPointerSize == |
- StackHandlerConstants::kPCOffset); |
- |
- ExternalReference handler_address(Top::k_handler_address); |
- __ movq(kScratchRegister, handler_address); |
- __ movq(rsp, Operand(kScratchRegister, 0)); |
- // get next in chain |
- __ pop(rcx); |
- __ movq(Operand(kScratchRegister, 0), rcx); |
- __ pop(rbp); // pop frame pointer |
- __ pop(rdx); // remove state |
- |
- // Before returning we restore the context from the frame pointer if not NULL. |
- // The frame pointer is NULL in the exception handler of a JS entry frame. |
- __ xor_(rsi, rsi); // tentatively set context pointer to NULL |
- Label skip; |
- __ cmpq(rbp, Immediate(0)); |
- __ j(equal, &skip); |
- __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); |
- __ bind(&skip); |
- __ ret(0); |
-} |
- |
- |
-void ApiGetterEntryStub::Generate(MacroAssembler* masm) { |
- Label empty_result; |
- Label prologue; |
- Label promote_scheduled_exception; |
- __ EnterApiExitFrame(ExitFrame::MODE_NORMAL, kStackSpace, 0); |
- ASSERT_EQ(kArgc, 4); |
-#ifdef _WIN64 |
- // All the parameters should be set up by a caller. |
-#else |
- // Set 1st parameter register with property name. |
- __ movq(rsi, rdx); |
- // Second parameter register rdi should be set with pointer to AccessorInfo |
- // by a caller. |
-#endif |
- // Call the api function! |
- __ movq(rax, |
- reinterpret_cast<int64_t>(fun()->address()), |
- RelocInfo::RUNTIME_ENTRY); |
- __ call(rax); |
- // Check if the function scheduled an exception. |
- ExternalReference scheduled_exception_address = |
- ExternalReference::scheduled_exception_address(); |
- __ movq(rsi, scheduled_exception_address); |
- __ Cmp(Operand(rsi, 0), Factory::the_hole_value()); |
- __ j(not_equal, &promote_scheduled_exception); |
-#ifdef _WIN64 |
- // rax keeps a pointer to v8::Handle, unpack it. |
- __ movq(rax, Operand(rax, 0)); |
-#endif |
- // Check if the result handle holds 0. |
- __ testq(rax, rax); |
- __ j(zero, &empty_result); |
- // It was non-zero. Dereference to get the result value. |
- __ movq(rax, Operand(rax, 0)); |
- __ bind(&prologue); |
- __ LeaveExitFrame(ExitFrame::MODE_NORMAL); |
- __ ret(0); |
- __ bind(&promote_scheduled_exception); |
- __ TailCallRuntime(Runtime::kPromoteScheduledException, 0, 1); |
- __ bind(&empty_result); |
- // It was zero; the result is undefined. |
- __ Move(rax, Factory::undefined_value()); |
- __ jmp(&prologue); |
-} |
- |
- |
-void CEntryStub::GenerateCore(MacroAssembler* masm, |
- Label* throw_normal_exception, |
- Label* throw_termination_exception, |
- Label* throw_out_of_memory_exception, |
- bool do_gc, |
- bool always_allocate_scope, |
- int /* alignment_skew */) { |
- // rax: result parameter for PerformGC, if any. |
- // rbx: pointer to C function (C callee-saved). |
- // rbp: frame pointer (restored after C call). |
- // rsp: stack pointer (restored after C call). |
- // r14: number of arguments including receiver (C callee-saved). |
- // r12: pointer to the first argument (C callee-saved). |
- // This pointer is reused in LeaveExitFrame(), so it is stored in a |
- // callee-saved register. |
- |
- // Simple results returned in rax (both AMD64 and Win64 calling conventions). |
- // Complex results must be written to address passed as first argument. |
- // AMD64 calling convention: a struct of two pointers in rax+rdx |
- |
- // Check stack alignment. |
- if (FLAG_debug_code) { |
- __ CheckStackAlignment(); |
- } |
- |
- if (do_gc) { |
- // Pass failure code returned from last attempt as first argument to |
- // PerformGC. No need to use PrepareCallCFunction/CallCFunction here as the |
- // stack is known to be aligned. This function takes one argument which is |
- // passed in register. |
-#ifdef _WIN64 |
- __ movq(rcx, rax); |
-#else // _WIN64 |
- __ movq(rdi, rax); |
-#endif |
- __ movq(kScratchRegister, |
- FUNCTION_ADDR(Runtime::PerformGC), |
- RelocInfo::RUNTIME_ENTRY); |
- __ call(kScratchRegister); |
- } |
- |
- ExternalReference scope_depth = |
- ExternalReference::heap_always_allocate_scope_depth(); |
- if (always_allocate_scope) { |
- __ movq(kScratchRegister, scope_depth); |
- __ incl(Operand(kScratchRegister, 0)); |
- } |
- |
- // Call C function. |
-#ifdef _WIN64 |
- // Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9 |
- // Store Arguments object on stack, below the 4 WIN64 ABI parameter slots. |
- __ movq(Operand(rsp, 4 * kPointerSize), r14); // argc. |
- __ movq(Operand(rsp, 5 * kPointerSize), r12); // argv. |
- if (result_size_ < 2) { |
- // Pass a pointer to the Arguments object as the first argument. |
- // Return result in single register (rax). |
- __ lea(rcx, Operand(rsp, 4 * kPointerSize)); |
- } else { |
- ASSERT_EQ(2, result_size_); |
- // Pass a pointer to the result location as the first argument. |
- __ lea(rcx, Operand(rsp, 6 * kPointerSize)); |
- // Pass a pointer to the Arguments object as the second argument. |
- __ lea(rdx, Operand(rsp, 4 * kPointerSize)); |
- } |
- |
-#else // _WIN64 |
- // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9. |
- __ movq(rdi, r14); // argc. |
- __ movq(rsi, r12); // argv. |
-#endif |
- __ call(rbx); |
- // Result is in rax - do not destroy this register! |
- |
- if (always_allocate_scope) { |
- __ movq(kScratchRegister, scope_depth); |
- __ decl(Operand(kScratchRegister, 0)); |
- } |
- |
- // Check for failure result. |
- Label failure_returned; |
- STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); |
-#ifdef _WIN64 |
- // If return value is on the stack, pop it to registers. |
- if (result_size_ > 1) { |
- ASSERT_EQ(2, result_size_); |
- // Read result values stored on stack. Result is stored |
- // above the four argument mirror slots and the two |
- // Arguments object slots. |
- __ movq(rax, Operand(rsp, 6 * kPointerSize)); |
- __ movq(rdx, Operand(rsp, 7 * kPointerSize)); |
- } |
-#endif |
- __ lea(rcx, Operand(rax, 1)); |
- // Lower 2 bits of rcx are 0 iff rax has failure tag. |
- __ testl(rcx, Immediate(kFailureTagMask)); |
- __ j(zero, &failure_returned); |
- |
- // Exit the JavaScript to C++ exit frame. |
- __ LeaveExitFrame(mode_, result_size_); |
- __ ret(0); |
- |
- // Handling of failure. |
- __ bind(&failure_returned); |
- |
- Label retry; |
- // If the returned exception is RETRY_AFTER_GC continue at retry label |
- STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0); |
- __ testl(rax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize)); |
- __ j(zero, &retry); |
- |
- // Special handling of out of memory exceptions. |
- __ movq(kScratchRegister, Failure::OutOfMemoryException(), RelocInfo::NONE); |
- __ cmpq(rax, kScratchRegister); |
- __ j(equal, throw_out_of_memory_exception); |
- |
- // Retrieve the pending exception and clear the variable. |
- ExternalReference pending_exception_address(Top::k_pending_exception_address); |
- __ movq(kScratchRegister, pending_exception_address); |
- __ movq(rax, Operand(kScratchRegister, 0)); |
- __ movq(rdx, ExternalReference::the_hole_value_location()); |
- __ movq(rdx, Operand(rdx, 0)); |
- __ movq(Operand(kScratchRegister, 0), rdx); |
- |
- // Special handling of termination exceptions which are uncatchable |
- // by javascript code. |
- __ CompareRoot(rax, Heap::kTerminationExceptionRootIndex); |
- __ j(equal, throw_termination_exception); |
- |
- // Handle normal exception. |
- __ jmp(throw_normal_exception); |
- |
- // Retry. |
- __ bind(&retry); |
-} |
- |
- |
-void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm, |
- UncatchableExceptionType type) { |
- // Fetch top stack handler. |
- ExternalReference handler_address(Top::k_handler_address); |
- __ movq(kScratchRegister, handler_address); |
- __ movq(rsp, Operand(kScratchRegister, 0)); |
- |
- // Unwind the handlers until the ENTRY handler is found. |
- Label loop, done; |
- __ bind(&loop); |
- // Load the type of the current stack handler. |
- const int kStateOffset = StackHandlerConstants::kStateOffset; |
- __ cmpq(Operand(rsp, kStateOffset), Immediate(StackHandler::ENTRY)); |
- __ j(equal, &done); |
- // Fetch the next handler in the list. |
- const int kNextOffset = StackHandlerConstants::kNextOffset; |
- __ movq(rsp, Operand(rsp, kNextOffset)); |
- __ jmp(&loop); |
- __ bind(&done); |
- |
- // Set the top handler address to next handler past the current ENTRY handler. |
- __ movq(kScratchRegister, handler_address); |
- __ pop(Operand(kScratchRegister, 0)); |
- |
- if (type == OUT_OF_MEMORY) { |
- // Set external caught exception to false. |
- ExternalReference external_caught(Top::k_external_caught_exception_address); |
- __ movq(rax, Immediate(false)); |
- __ store_rax(external_caught); |
- |
- // Set pending exception and rax to out of memory exception. |
- ExternalReference pending_exception(Top::k_pending_exception_address); |
- __ movq(rax, Failure::OutOfMemoryException(), RelocInfo::NONE); |
- __ store_rax(pending_exception); |
- } |
- |
- // Clear the context pointer. |
- __ xor_(rsi, rsi); |
- |
- // Restore registers from handler. |
- STATIC_ASSERT(StackHandlerConstants::kNextOffset + kPointerSize == |
- StackHandlerConstants::kFPOffset); |
- __ pop(rbp); // FP |
- STATIC_ASSERT(StackHandlerConstants::kFPOffset + kPointerSize == |
- StackHandlerConstants::kStateOffset); |
- __ pop(rdx); // State |
- |
- STATIC_ASSERT(StackHandlerConstants::kStateOffset + kPointerSize == |
- StackHandlerConstants::kPCOffset); |
- __ ret(0); |
-} |
- |
- |
-void CEntryStub::Generate(MacroAssembler* masm) { |
- // rax: number of arguments including receiver |
- // rbx: pointer to C function (C callee-saved) |
- // rbp: frame pointer of calling JS frame (restored after C call) |
- // rsp: stack pointer (restored after C call) |
- // rsi: current context (restored) |
- |
- // NOTE: Invocations of builtins may return failure objects |
- // instead of a proper result. The builtin entry handles |
- // this by performing a garbage collection and retrying the |
- // builtin once. |
- |
- // Enter the exit frame that transitions from JavaScript to C++. |
- __ EnterExitFrame(mode_, result_size_); |
- |
- // rax: Holds the context at this point, but should not be used. |
- // On entry to code generated by GenerateCore, it must hold |
- // a failure result if the collect_garbage argument to GenerateCore |
- // is true. This failure result can be the result of code |
- // generated by a previous call to GenerateCore. The value |
- // of rax is then passed to Runtime::PerformGC. |
- // rbx: pointer to builtin function (C callee-saved). |
- // rbp: frame pointer of exit frame (restored after C call). |
- // rsp: stack pointer (restored after C call). |
- // r14: number of arguments including receiver (C callee-saved). |
- // r12: argv pointer (C callee-saved). |
- |
- Label throw_normal_exception; |
- Label throw_termination_exception; |
- Label throw_out_of_memory_exception; |
- |
- // Call into the runtime system. |
- GenerateCore(masm, |
- &throw_normal_exception, |
- &throw_termination_exception, |
- &throw_out_of_memory_exception, |
- false, |
- false); |
- |
- // Do space-specific GC and retry runtime call. |
- GenerateCore(masm, |
- &throw_normal_exception, |
- &throw_termination_exception, |
- &throw_out_of_memory_exception, |
- true, |
- false); |
- |
- // Do full GC and retry runtime call one final time. |
- Failure* failure = Failure::InternalError(); |
- __ movq(rax, failure, RelocInfo::NONE); |
- GenerateCore(masm, |
- &throw_normal_exception, |
- &throw_termination_exception, |
- &throw_out_of_memory_exception, |
- true, |
- true); |
- |
- __ bind(&throw_out_of_memory_exception); |
- GenerateThrowUncatchable(masm, OUT_OF_MEMORY); |
- |
- __ bind(&throw_termination_exception); |
- GenerateThrowUncatchable(masm, TERMINATION); |
- |
- __ bind(&throw_normal_exception); |
- GenerateThrowTOS(masm); |
-} |
- |
- |
-void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { |
- Label invoke, exit; |
-#ifdef ENABLE_LOGGING_AND_PROFILING |
- Label not_outermost_js, not_outermost_js_2; |
-#endif |
- |
- // Setup frame. |
- __ push(rbp); |
- __ movq(rbp, rsp); |
- |
- // Push the stack frame type marker twice. |
- int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; |
- // Scratch register is neither callee-save, nor an argument register on any |
- // platform. It's free to use at this point. |
- // Cannot use smi-register for loading yet. |
- __ movq(kScratchRegister, |
- reinterpret_cast<uint64_t>(Smi::FromInt(marker)), |
- RelocInfo::NONE); |
- __ push(kScratchRegister); // context slot |
- __ push(kScratchRegister); // function slot |
- // Save callee-saved registers (X64/Win64 calling conventions). |
- __ push(r12); |
- __ push(r13); |
- __ push(r14); |
- __ push(r15); |
-#ifdef _WIN64 |
- __ push(rdi); // Only callee save in Win64 ABI, argument in AMD64 ABI. |
- __ push(rsi); // Only callee save in Win64 ABI, argument in AMD64 ABI. |
-#endif |
- __ push(rbx); |
- // TODO(X64): On Win64, if we ever use XMM6-XMM15, the low low 64 bits are |
- // callee save as well. |
- |
- // Save copies of the top frame descriptor on the stack. |
- ExternalReference c_entry_fp(Top::k_c_entry_fp_address); |
- __ load_rax(c_entry_fp); |
- __ push(rax); |
- |
- // Set up the roots and smi constant registers. |
- // Needs to be done before any further smi loads. |
- ExternalReference roots_address = ExternalReference::roots_address(); |
- __ movq(kRootRegister, roots_address); |
- __ InitializeSmiConstantRegister(); |
- |
-#ifdef ENABLE_LOGGING_AND_PROFILING |
- // If this is the outermost JS call, set js_entry_sp value. |
- ExternalReference js_entry_sp(Top::k_js_entry_sp_address); |
- __ load_rax(js_entry_sp); |
- __ testq(rax, rax); |
- __ j(not_zero, ¬_outermost_js); |
- __ movq(rax, rbp); |
- __ store_rax(js_entry_sp); |
- __ bind(¬_outermost_js); |
-#endif |
- |
- // Call a faked try-block that does the invoke. |
- __ call(&invoke); |
- |
- // Caught exception: Store result (exception) in the pending |
- // exception field in the JSEnv and return a failure sentinel. |
- ExternalReference pending_exception(Top::k_pending_exception_address); |
- __ store_rax(pending_exception); |
- __ movq(rax, Failure::Exception(), RelocInfo::NONE); |
- __ jmp(&exit); |
- |
- // Invoke: Link this frame into the handler chain. |
- __ bind(&invoke); |
- __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER); |
- |
- // Clear any pending exceptions. |
- __ load_rax(ExternalReference::the_hole_value_location()); |
- __ store_rax(pending_exception); |
- |
- // Fake a receiver (NULL). |
- __ push(Immediate(0)); // receiver |
- |
- // Invoke the function by calling through JS entry trampoline |
- // builtin and pop the faked function when we return. We load the address |
- // from an external reference instead of inlining the call target address |
- // directly in the code, because the builtin stubs may not have been |
- // generated yet at the time this code is generated. |
- if (is_construct) { |
- ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline); |
- __ load_rax(construct_entry); |
- } else { |
- ExternalReference entry(Builtins::JSEntryTrampoline); |
- __ load_rax(entry); |
- } |
- __ lea(kScratchRegister, FieldOperand(rax, Code::kHeaderSize)); |
- __ call(kScratchRegister); |
- |
- // Unlink this frame from the handler chain. |
- __ movq(kScratchRegister, ExternalReference(Top::k_handler_address)); |
- __ pop(Operand(kScratchRegister, 0)); |
- // Pop next_sp. |
- __ addq(rsp, Immediate(StackHandlerConstants::kSize - kPointerSize)); |
- |
-#ifdef ENABLE_LOGGING_AND_PROFILING |
- // If current EBP value is the same as js_entry_sp value, it means that |
- // the current function is the outermost. |
- __ movq(kScratchRegister, js_entry_sp); |
- __ cmpq(rbp, Operand(kScratchRegister, 0)); |
- __ j(not_equal, ¬_outermost_js_2); |
- __ movq(Operand(kScratchRegister, 0), Immediate(0)); |
- __ bind(¬_outermost_js_2); |
-#endif |
- |
- // Restore the top frame descriptor from the stack. |
- __ bind(&exit); |
- __ movq(kScratchRegister, ExternalReference(Top::k_c_entry_fp_address)); |
- __ pop(Operand(kScratchRegister, 0)); |
- |
- // Restore callee-saved registers (X64 conventions). |
- __ pop(rbx); |
-#ifdef _WIN64 |
- // Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI. |
- __ pop(rsi); |
- __ pop(rdi); |
-#endif |
- __ pop(r15); |
- __ pop(r14); |
- __ pop(r13); |
- __ pop(r12); |
- __ addq(rsp, Immediate(2 * kPointerSize)); // remove markers |
- |
- // Restore frame pointer and return. |
- __ pop(rbp); |
- __ ret(0); |
-} |
- |
- |
-void InstanceofStub::Generate(MacroAssembler* masm) { |
- // Implements "value instanceof function" operator. |
- // Expected input state: |
- // rsp[0] : return address |
- // rsp[1] : function pointer |
- // rsp[2] : value |
- // Returns a bitwise zero to indicate that the value |
- // is and instance of the function and anything else to |
- // indicate that the value is not an instance. |
- |
- // Get the object - go slow case if it's a smi. |
- Label slow; |
- __ movq(rax, Operand(rsp, 2 * kPointerSize)); |
- __ JumpIfSmi(rax, &slow); |
- |
- // Check that the left hand is a JS object. Leave its map in rax. |
- __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rax); |
- __ j(below, &slow); |
- __ CmpInstanceType(rax, LAST_JS_OBJECT_TYPE); |
- __ j(above, &slow); |
- |
- // Get the prototype of the function. |
- __ movq(rdx, Operand(rsp, 1 * kPointerSize)); |
- // rdx is function, rax is map. |
- |
- // Look up the function and the map in the instanceof cache. |
- Label miss; |
- __ CompareRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex); |
- __ j(not_equal, &miss); |
- __ CompareRoot(rax, Heap::kInstanceofCacheMapRootIndex); |
- __ j(not_equal, &miss); |
- __ LoadRoot(rax, Heap::kInstanceofCacheAnswerRootIndex); |
- __ ret(2 * kPointerSize); |
- |
- __ bind(&miss); |
- __ TryGetFunctionPrototype(rdx, rbx, &slow); |
- |
- // Check that the function prototype is a JS object. |
- __ JumpIfSmi(rbx, &slow); |
- __ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, kScratchRegister); |
- __ j(below, &slow); |
- __ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE); |
- __ j(above, &slow); |
- |
- // Register mapping: |
- // rax is object map. |
- // rdx is function. |
- // rbx is function prototype. |
- __ StoreRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex); |
- __ StoreRoot(rax, Heap::kInstanceofCacheMapRootIndex); |
- |
- __ movq(rcx, FieldOperand(rax, Map::kPrototypeOffset)); |
- |
- // Loop through the prototype chain looking for the function prototype. |
- Label loop, is_instance, is_not_instance; |
- __ LoadRoot(kScratchRegister, Heap::kNullValueRootIndex); |
- __ bind(&loop); |
- __ cmpq(rcx, rbx); |
- __ j(equal, &is_instance); |
- __ cmpq(rcx, kScratchRegister); |
- // The code at is_not_instance assumes that kScratchRegister contains a |
- // non-zero GCable value (the null object in this case). |
- __ j(equal, &is_not_instance); |
- __ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset)); |
- __ movq(rcx, FieldOperand(rcx, Map::kPrototypeOffset)); |
- __ jmp(&loop); |
- |
- __ bind(&is_instance); |
- __ xorl(rax, rax); |
- // Store bitwise zero in the cache. This is a Smi in GC terms. |
- STATIC_ASSERT(kSmiTag == 0); |
- __ StoreRoot(rax, Heap::kInstanceofCacheAnswerRootIndex); |
- __ ret(2 * kPointerSize); |
- |
- __ bind(&is_not_instance); |
- // We have to store a non-zero value in the cache. |
- __ StoreRoot(kScratchRegister, Heap::kInstanceofCacheAnswerRootIndex); |
- __ ret(2 * kPointerSize); |
- |
- // Slow-case: Go through the JavaScript implementation. |
- __ bind(&slow); |
- __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); |
-} |
- |
- |
-int CompareStub::MinorKey() { |
- // Encode the three parameters in a unique 16 bit value. To avoid duplicate |
- // stubs the never NaN NaN condition is only taken into account if the |
- // condition is equals. |
- ASSERT(static_cast<unsigned>(cc_) < (1 << 12)); |
- ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); |
- return ConditionField::encode(static_cast<unsigned>(cc_)) |
- | RegisterField::encode(false) // lhs_ and rhs_ are not used |
- | StrictField::encode(strict_) |
- | NeverNanNanField::encode(cc_ == equal ? never_nan_nan_ : false) |
- | IncludeNumberCompareField::encode(include_number_compare_); |
-} |
- |
- |
-// Unfortunately you have to run without snapshots to see most of these |
-// names in the profile since most compare stubs end up in the snapshot. |
-const char* CompareStub::GetName() { |
- ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); |
- |
- if (name_ != NULL) return name_; |
- const int kMaxNameLength = 100; |
- name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength); |
- if (name_ == NULL) return "OOM"; |
- |
- const char* cc_name; |
- switch (cc_) { |
- case less: cc_name = "LT"; break; |
- case greater: cc_name = "GT"; break; |
- case less_equal: cc_name = "LE"; break; |
- case greater_equal: cc_name = "GE"; break; |
- case equal: cc_name = "EQ"; break; |
- case not_equal: cc_name = "NE"; break; |
- default: cc_name = "UnknownCondition"; break; |
- } |
- |
- const char* strict_name = ""; |
- if (strict_ && (cc_ == equal || cc_ == not_equal)) { |
- strict_name = "_STRICT"; |
- } |
- |
- const char* never_nan_nan_name = ""; |
- if (never_nan_nan_ && (cc_ == equal || cc_ == not_equal)) { |
- never_nan_nan_name = "_NO_NAN"; |
- } |
- |
- const char* include_number_compare_name = ""; |
- if (!include_number_compare_) { |
- include_number_compare_name = "_NO_NUMBER"; |
- } |
- |
- OS::SNPrintF(Vector<char>(name_, kMaxNameLength), |
- "CompareStub_%s%s%s%s", |
- cc_name, |
- strict_name, |
- never_nan_nan_name, |
- include_number_compare_name); |
- return name_; |
-} |
- |
- |
-// ------------------------------------------------------------------------- |
-// StringCharCodeAtGenerator |
- |
-void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { |
- Label flat_string; |
- Label ascii_string; |
- Label got_char_code; |
- |
- // If the receiver is a smi trigger the non-string case. |
- __ JumpIfSmi(object_, receiver_not_string_); |
- |
- // Fetch the instance type of the receiver into result register. |
- __ movq(result_, FieldOperand(object_, HeapObject::kMapOffset)); |
- __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); |
- // If the receiver is not a string trigger the non-string case. |
- __ testb(result_, Immediate(kIsNotStringMask)); |
- __ j(not_zero, receiver_not_string_); |
- |
- // If the index is non-smi trigger the non-smi case. |
- __ JumpIfNotSmi(index_, &index_not_smi_); |
- |
- // Put smi-tagged index into scratch register. |
- __ movq(scratch_, index_); |
- __ bind(&got_smi_index_); |
- |
- // Check for index out of range. |
- __ SmiCompare(scratch_, FieldOperand(object_, String::kLengthOffset)); |
- __ j(above_equal, index_out_of_range_); |
- |
- // We need special handling for non-flat strings. |
- STATIC_ASSERT(kSeqStringTag == 0); |
- __ testb(result_, Immediate(kStringRepresentationMask)); |
- __ j(zero, &flat_string); |
- |
- // Handle non-flat strings. |
- __ testb(result_, Immediate(kIsConsStringMask)); |
- __ j(zero, &call_runtime_); |
- |
- // ConsString. |
- // Check whether the right hand side is the empty string (i.e. if |
- // this is really a flat string in a cons string). If that is not |
- // the case we would rather go to the runtime system now to flatten |
- // the string. |
- __ CompareRoot(FieldOperand(object_, ConsString::kSecondOffset), |
- Heap::kEmptyStringRootIndex); |
- __ j(not_equal, &call_runtime_); |
- // Get the first of the two strings and load its instance type. |
- __ movq(object_, FieldOperand(object_, ConsString::kFirstOffset)); |
- __ movq(result_, FieldOperand(object_, HeapObject::kMapOffset)); |
- __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); |
- // If the first cons component is also non-flat, then go to runtime. |
- STATIC_ASSERT(kSeqStringTag == 0); |
- __ testb(result_, Immediate(kStringRepresentationMask)); |
- __ j(not_zero, &call_runtime_); |
- |
- // Check for 1-byte or 2-byte string. |
- __ bind(&flat_string); |
- STATIC_ASSERT(kAsciiStringTag != 0); |
- __ testb(result_, Immediate(kStringEncodingMask)); |
- __ j(not_zero, &ascii_string); |
- |
- // 2-byte string. |
- // Load the 2-byte character code into the result register. |
- __ SmiToInteger32(scratch_, scratch_); |
- __ movzxwl(result_, FieldOperand(object_, |
- scratch_, times_2, |
- SeqTwoByteString::kHeaderSize)); |
- __ jmp(&got_char_code); |
- |
- // ASCII string. |
- // Load the byte into the result register. |
- __ bind(&ascii_string); |
- __ SmiToInteger32(scratch_, scratch_); |
- __ movzxbl(result_, FieldOperand(object_, |
- scratch_, times_1, |
- SeqAsciiString::kHeaderSize)); |
- __ bind(&got_char_code); |
- __ Integer32ToSmi(result_, result_); |
- __ bind(&exit_); |
-} |
- |
- |
-void StringCharCodeAtGenerator::GenerateSlow( |
- MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
- __ Abort("Unexpected fallthrough to CharCodeAt slow case"); |
- |
- // Index is not a smi. |
- __ bind(&index_not_smi_); |
- // If index is a heap number, try converting it to an integer. |
- __ CheckMap(index_, Factory::heap_number_map(), index_not_number_, true); |
- call_helper.BeforeCall(masm); |
- __ push(object_); |
- __ push(index_); |
- __ push(index_); // Consumed by runtime conversion function. |
- if (index_flags_ == STRING_INDEX_IS_NUMBER) { |
- __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); |
- } else { |
- ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); |
- // NumberToSmi discards numbers that are not exact integers. |
- __ CallRuntime(Runtime::kNumberToSmi, 1); |
- } |
- if (!scratch_.is(rax)) { |
- // Save the conversion result before the pop instructions below |
- // have a chance to overwrite it. |
- __ movq(scratch_, rax); |
- } |
- __ pop(index_); |
- __ pop(object_); |
- // Reload the instance type. |
- __ movq(result_, FieldOperand(object_, HeapObject::kMapOffset)); |
- __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); |
- call_helper.AfterCall(masm); |
- // If index is still not a smi, it must be out of range. |
- __ JumpIfNotSmi(scratch_, index_out_of_range_); |
- // Otherwise, return to the fast path. |
- __ jmp(&got_smi_index_); |
- |
- // Call runtime. We get here when the receiver is a string and the |
- // index is a number, but the code of getting the actual character |
- // is too complex (e.g., when the string needs to be flattened). |
- __ bind(&call_runtime_); |
- call_helper.BeforeCall(masm); |
- __ push(object_); |
- __ push(index_); |
- __ CallRuntime(Runtime::kStringCharCodeAt, 2); |
- if (!result_.is(rax)) { |
- __ movq(result_, rax); |
- } |
- call_helper.AfterCall(masm); |
- __ jmp(&exit_); |
- |
- __ Abort("Unexpected fallthrough from CharCodeAt slow case"); |
-} |
- |
- |
-// ------------------------------------------------------------------------- |
-// StringCharFromCodeGenerator |
- |
-void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { |
- // Fast case of Heap::LookupSingleCharacterStringFromCode. |
- __ JumpIfNotSmi(code_, &slow_case_); |
- __ SmiCompare(code_, Smi::FromInt(String::kMaxAsciiCharCode)); |
- __ j(above, &slow_case_); |
- |
- __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); |
- SmiIndex index = masm->SmiToIndex(kScratchRegister, code_, kPointerSizeLog2); |
- __ movq(result_, FieldOperand(result_, index.reg, index.scale, |
- FixedArray::kHeaderSize)); |
- __ CompareRoot(result_, Heap::kUndefinedValueRootIndex); |
- __ j(equal, &slow_case_); |
- __ bind(&exit_); |
-} |
- |
- |
-void StringCharFromCodeGenerator::GenerateSlow( |
- MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
- __ Abort("Unexpected fallthrough to CharFromCode slow case"); |
- |
- __ bind(&slow_case_); |
- call_helper.BeforeCall(masm); |
- __ push(code_); |
- __ CallRuntime(Runtime::kCharFromCode, 1); |
- if (!result_.is(rax)) { |
- __ movq(result_, rax); |
- } |
- call_helper.AfterCall(masm); |
- __ jmp(&exit_); |
- |
- __ Abort("Unexpected fallthrough from CharFromCode slow case"); |
-} |
- |
- |
-// ------------------------------------------------------------------------- |
-// StringCharAtGenerator |
- |
-void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) { |
- char_code_at_generator_.GenerateFast(masm); |
- char_from_code_generator_.GenerateFast(masm); |
-} |
- |
- |
-void StringCharAtGenerator::GenerateSlow( |
- MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
- char_code_at_generator_.GenerateSlow(masm, call_helper); |
- char_from_code_generator_.GenerateSlow(masm, call_helper); |
-} |
- |
- |
-void StringAddStub::Generate(MacroAssembler* masm) { |
- Label string_add_runtime; |
- |
- // Load the two arguments. |
- __ movq(rax, Operand(rsp, 2 * kPointerSize)); // First argument. |
- __ movq(rdx, Operand(rsp, 1 * kPointerSize)); // Second argument. |
- |
- // Make sure that both arguments are strings if not known in advance. |
- if (string_check_) { |
- Condition is_smi; |
- is_smi = masm->CheckSmi(rax); |
- __ j(is_smi, &string_add_runtime); |
- __ CmpObjectType(rax, FIRST_NONSTRING_TYPE, r8); |
- __ j(above_equal, &string_add_runtime); |
- |
- // First argument is a a string, test second. |
- is_smi = masm->CheckSmi(rdx); |
- __ j(is_smi, &string_add_runtime); |
- __ CmpObjectType(rdx, FIRST_NONSTRING_TYPE, r9); |
- __ j(above_equal, &string_add_runtime); |
- } |
- |
- // Both arguments are strings. |
- // rax: first string |
- // rdx: second string |
- // Check if either of the strings are empty. In that case return the other. |
- Label second_not_zero_length, both_not_zero_length; |
- __ movq(rcx, FieldOperand(rdx, String::kLengthOffset)); |
- __ SmiTest(rcx); |
- __ j(not_zero, &second_not_zero_length); |
- // Second string is empty, result is first string which is already in rax. |
- __ IncrementCounter(&Counters::string_add_native, 1); |
- __ ret(2 * kPointerSize); |
- __ bind(&second_not_zero_length); |
- __ movq(rbx, FieldOperand(rax, String::kLengthOffset)); |
- __ SmiTest(rbx); |
- __ j(not_zero, &both_not_zero_length); |
- // First string is empty, result is second string which is in rdx. |
- __ movq(rax, rdx); |
- __ IncrementCounter(&Counters::string_add_native, 1); |
- __ ret(2 * kPointerSize); |
- |
- // Both strings are non-empty. |
- // rax: first string |
- // rbx: length of first string |
- // rcx: length of second string |
- // rdx: second string |
- // r8: map of first string if string check was performed above |
- // r9: map of second string if string check was performed above |
- Label string_add_flat_result, longer_than_two; |
- __ bind(&both_not_zero_length); |
- |
- // If arguments where known to be strings, maps are not loaded to r8 and r9 |
- // by the code above. |
- if (!string_check_) { |
- __ movq(r8, FieldOperand(rax, HeapObject::kMapOffset)); |
- __ movq(r9, FieldOperand(rdx, HeapObject::kMapOffset)); |
- } |
- // Get the instance types of the two strings as they will be needed soon. |
- __ movzxbl(r8, FieldOperand(r8, Map::kInstanceTypeOffset)); |
- __ movzxbl(r9, FieldOperand(r9, Map::kInstanceTypeOffset)); |
- |
- // Look at the length of the result of adding the two strings. |
- STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue / 2); |
- __ SmiAdd(rbx, rbx, rcx, NULL); |
- // Use the runtime system when adding two one character strings, as it |
- // contains optimizations for this specific case using the symbol table. |
- __ SmiCompare(rbx, Smi::FromInt(2)); |
- __ j(not_equal, &longer_than_two); |
- |
- // Check that both strings are non-external ascii strings. |
- __ JumpIfBothInstanceTypesAreNotSequentialAscii(r8, r9, rbx, rcx, |
- &string_add_runtime); |
- |
- // Get the two characters forming the sub string. |
- __ movzxbq(rbx, FieldOperand(rax, SeqAsciiString::kHeaderSize)); |
- __ movzxbq(rcx, FieldOperand(rdx, SeqAsciiString::kHeaderSize)); |
- |
- // Try to lookup two character string in symbol table. If it is not found |
- // just allocate a new one. |
- Label make_two_character_string, make_flat_ascii_string; |
- StringHelper::GenerateTwoCharacterSymbolTableProbe( |
- masm, rbx, rcx, r14, r11, rdi, r12, &make_two_character_string); |
- __ IncrementCounter(&Counters::string_add_native, 1); |
- __ ret(2 * kPointerSize); |
- |
- __ bind(&make_two_character_string); |
- __ Set(rbx, 2); |
- __ jmp(&make_flat_ascii_string); |
- |
- __ bind(&longer_than_two); |
- // Check if resulting string will be flat. |
- __ SmiCompare(rbx, Smi::FromInt(String::kMinNonFlatLength)); |
- __ j(below, &string_add_flat_result); |
- // Handle exceptionally long strings in the runtime system. |
- STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0); |
- __ SmiCompare(rbx, Smi::FromInt(String::kMaxLength)); |
- __ j(above, &string_add_runtime); |
- |
- // If result is not supposed to be flat, allocate a cons string object. If |
- // both strings are ascii the result is an ascii cons string. |
- // rax: first string |
- // rbx: length of resulting flat string |
- // rdx: second string |
- // r8: instance type of first string |
- // r9: instance type of second string |
- Label non_ascii, allocated, ascii_data; |
- __ movl(rcx, r8); |
- __ and_(rcx, r9); |
- STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag); |
- __ testl(rcx, Immediate(kAsciiStringTag)); |
- __ j(zero, &non_ascii); |
- __ bind(&ascii_data); |
- // Allocate an acsii cons string. |
- __ AllocateAsciiConsString(rcx, rdi, no_reg, &string_add_runtime); |
- __ bind(&allocated); |
- // Fill the fields of the cons string. |
- __ movq(FieldOperand(rcx, ConsString::kLengthOffset), rbx); |
- __ movq(FieldOperand(rcx, ConsString::kHashFieldOffset), |
- Immediate(String::kEmptyHashField)); |
- __ movq(FieldOperand(rcx, ConsString::kFirstOffset), rax); |
- __ movq(FieldOperand(rcx, ConsString::kSecondOffset), rdx); |
- __ movq(rax, rcx); |
- __ IncrementCounter(&Counters::string_add_native, 1); |
- __ ret(2 * kPointerSize); |
- __ bind(&non_ascii); |
- // At least one of the strings is two-byte. Check whether it happens |
- // to contain only ascii characters. |
- // rcx: first instance type AND second instance type. |
- // r8: first instance type. |
- // r9: second instance type. |
- __ testb(rcx, Immediate(kAsciiDataHintMask)); |
- __ j(not_zero, &ascii_data); |
- __ xor_(r8, r9); |
- STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0); |
- __ andb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag)); |
- __ cmpb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag)); |
- __ j(equal, &ascii_data); |
- // Allocate a two byte cons string. |
- __ AllocateConsString(rcx, rdi, no_reg, &string_add_runtime); |
- __ jmp(&allocated); |
- |
- // Handle creating a flat result. First check that both strings are not |
- // external strings. |
- // rax: first string |
- // rbx: length of resulting flat string as smi |
- // rdx: second string |
- // r8: instance type of first string |
- // r9: instance type of first string |
- __ bind(&string_add_flat_result); |
- __ SmiToInteger32(rbx, rbx); |
- __ movl(rcx, r8); |
- __ and_(rcx, Immediate(kStringRepresentationMask)); |
- __ cmpl(rcx, Immediate(kExternalStringTag)); |
- __ j(equal, &string_add_runtime); |
- __ movl(rcx, r9); |
- __ and_(rcx, Immediate(kStringRepresentationMask)); |
- __ cmpl(rcx, Immediate(kExternalStringTag)); |
- __ j(equal, &string_add_runtime); |
- // Now check if both strings are ascii strings. |
- // rax: first string |
- // rbx: length of resulting flat string |
- // rdx: second string |
- // r8: instance type of first string |
- // r9: instance type of second string |
- Label non_ascii_string_add_flat_result; |
- STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag); |
- __ testl(r8, Immediate(kAsciiStringTag)); |
- __ j(zero, &non_ascii_string_add_flat_result); |
- __ testl(r9, Immediate(kAsciiStringTag)); |
- __ j(zero, &string_add_runtime); |
- |
- __ bind(&make_flat_ascii_string); |
- // Both strings are ascii strings. As they are short they are both flat. |
- __ AllocateAsciiString(rcx, rbx, rdi, r14, r11, &string_add_runtime); |
- // rcx: result string |
- __ movq(rbx, rcx); |
- // Locate first character of result. |
- __ addq(rcx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
- // Locate first character of first argument |
- __ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset)); |
- __ addq(rax, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
- // rax: first char of first argument |
- // rbx: result string |
- // rcx: first character of result |
- // rdx: second string |
- // rdi: length of first argument |
- StringHelper::GenerateCopyCharacters(masm, rcx, rax, rdi, true); |
- // Locate first character of second argument. |
- __ SmiToInteger32(rdi, FieldOperand(rdx, String::kLengthOffset)); |
- __ addq(rdx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
- // rbx: result string |
- // rcx: next character of result |
- // rdx: first char of second argument |
- // rdi: length of second argument |
- StringHelper::GenerateCopyCharacters(masm, rcx, rdx, rdi, true); |
- __ movq(rax, rbx); |
- __ IncrementCounter(&Counters::string_add_native, 1); |
- __ ret(2 * kPointerSize); |
- |
- // Handle creating a flat two byte result. |
- // rax: first string - known to be two byte |
- // rbx: length of resulting flat string |
- // rdx: second string |
- // r8: instance type of first string |
- // r9: instance type of first string |
- __ bind(&non_ascii_string_add_flat_result); |
- __ and_(r9, Immediate(kAsciiStringTag)); |
- __ j(not_zero, &string_add_runtime); |
- // Both strings are two byte strings. As they are short they are both |
- // flat. |
- __ AllocateTwoByteString(rcx, rbx, rdi, r14, r11, &string_add_runtime); |
- // rcx: result string |
- __ movq(rbx, rcx); |
- // Locate first character of result. |
- __ addq(rcx, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
- // Locate first character of first argument. |
- __ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset)); |
- __ addq(rax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
- // rax: first char of first argument |
- // rbx: result string |
- // rcx: first character of result |
- // rdx: second argument |
- // rdi: length of first argument |
- StringHelper::GenerateCopyCharacters(masm, rcx, rax, rdi, false); |
- // Locate first character of second argument. |
- __ SmiToInteger32(rdi, FieldOperand(rdx, String::kLengthOffset)); |
- __ addq(rdx, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
- // rbx: result string |
- // rcx: next character of result |
- // rdx: first char of second argument |
- // rdi: length of second argument |
- StringHelper::GenerateCopyCharacters(masm, rcx, rdx, rdi, false); |
- __ movq(rax, rbx); |
- __ IncrementCounter(&Counters::string_add_native, 1); |
- __ ret(2 * kPointerSize); |
- |
- // Just jump to runtime to add the two strings. |
- __ bind(&string_add_runtime); |
- __ TailCallRuntime(Runtime::kStringAdd, 2, 1); |
-} |
- |
- |
-void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, |
- Register dest, |
- Register src, |
- Register count, |
- bool ascii) { |
- Label loop; |
- __ bind(&loop); |
- // This loop just copies one character at a time, as it is only used for very |
- // short strings. |
- if (ascii) { |
- __ movb(kScratchRegister, Operand(src, 0)); |
- __ movb(Operand(dest, 0), kScratchRegister); |
- __ incq(src); |
- __ incq(dest); |
- } else { |
- __ movzxwl(kScratchRegister, Operand(src, 0)); |
- __ movw(Operand(dest, 0), kScratchRegister); |
- __ addq(src, Immediate(2)); |
- __ addq(dest, Immediate(2)); |
- } |
- __ decl(count); |
- __ j(not_zero, &loop); |
-} |
- |
- |
-void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm, |
- Register dest, |
- Register src, |
- Register count, |
- bool ascii) { |
- // Copy characters using rep movs of doublewords. Align destination on 4 byte |
- // boundary before starting rep movs. Copy remaining characters after running |
- // rep movs. |
- // Count is positive int32, dest and src are character pointers. |
- ASSERT(dest.is(rdi)); // rep movs destination |
- ASSERT(src.is(rsi)); // rep movs source |
- ASSERT(count.is(rcx)); // rep movs count |
- |
- // Nothing to do for zero characters. |
- Label done; |
- __ testl(count, count); |
- __ j(zero, &done); |
- |
- // Make count the number of bytes to copy. |
- if (!ascii) { |
- STATIC_ASSERT(2 == sizeof(uc16)); |
- __ addl(count, count); |
- } |
- |
- // Don't enter the rep movs if there are less than 4 bytes to copy. |
- Label last_bytes; |
- __ testl(count, Immediate(~7)); |
- __ j(zero, &last_bytes); |
- |
- // Copy from edi to esi using rep movs instruction. |
- __ movl(kScratchRegister, count); |
- __ shr(count, Immediate(3)); // Number of doublewords to copy. |
- __ repmovsq(); |
- |
- // Find number of bytes left. |
- __ movl(count, kScratchRegister); |
- __ and_(count, Immediate(7)); |
- |
- // Check if there are more bytes to copy. |
- __ bind(&last_bytes); |
- __ testl(count, count); |
- __ j(zero, &done); |
- |
- // Copy remaining characters. |
- Label loop; |
- __ bind(&loop); |
- __ movb(kScratchRegister, Operand(src, 0)); |
- __ movb(Operand(dest, 0), kScratchRegister); |
- __ incq(src); |
- __ incq(dest); |
- __ decl(count); |
- __ j(not_zero, &loop); |
- |
- __ bind(&done); |
-} |
- |
-void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, |
- Register c1, |
- Register c2, |
- Register scratch1, |
- Register scratch2, |
- Register scratch3, |
- Register scratch4, |
- Label* not_found) { |
- // Register scratch3 is the general scratch register in this function. |
- Register scratch = scratch3; |
- |
- // Make sure that both characters are not digits as such strings has a |
- // different hash algorithm. Don't try to look for these in the symbol table. |
- Label not_array_index; |
- __ leal(scratch, Operand(c1, -'0')); |
- __ cmpl(scratch, Immediate(static_cast<int>('9' - '0'))); |
- __ j(above, ¬_array_index); |
- __ leal(scratch, Operand(c2, -'0')); |
- __ cmpl(scratch, Immediate(static_cast<int>('9' - '0'))); |
- __ j(below_equal, not_found); |
- |
- __ bind(¬_array_index); |
- // Calculate the two character string hash. |
- Register hash = scratch1; |
- GenerateHashInit(masm, hash, c1, scratch); |
- GenerateHashAddCharacter(masm, hash, c2, scratch); |
- GenerateHashGetHash(masm, hash, scratch); |
- |
- // Collect the two characters in a register. |
- Register chars = c1; |
- __ shl(c2, Immediate(kBitsPerByte)); |
- __ orl(chars, c2); |
- |
- // chars: two character string, char 1 in byte 0 and char 2 in byte 1. |
- // hash: hash of two character string. |
- |
- // Load the symbol table. |
- Register symbol_table = c2; |
- __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex); |
- |
- // Calculate capacity mask from the symbol table capacity. |
- Register mask = scratch2; |
- __ SmiToInteger32(mask, |
- FieldOperand(symbol_table, SymbolTable::kCapacityOffset)); |
- __ decl(mask); |
- |
- Register undefined = scratch4; |
- __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); |
- |
- // Registers |
- // chars: two character string, char 1 in byte 0 and char 2 in byte 1. |
- // hash: hash of two character string (32-bit int) |
- // symbol_table: symbol table |
- // mask: capacity mask (32-bit int) |
- // undefined: undefined value |
- // scratch: - |
- |
- // Perform a number of probes in the symbol table. |
- static const int kProbes = 4; |
- Label found_in_symbol_table; |
- Label next_probe[kProbes]; |
- for (int i = 0; i < kProbes; i++) { |
- // Calculate entry in symbol table. |
- __ movl(scratch, hash); |
- if (i > 0) { |
- __ addl(scratch, Immediate(SymbolTable::GetProbeOffset(i))); |
- } |
- __ andl(scratch, mask); |
- |
- // Load the entry from the symble table. |
- Register candidate = scratch; // Scratch register contains candidate. |
- STATIC_ASSERT(SymbolTable::kEntrySize == 1); |
- __ movq(candidate, |
- FieldOperand(symbol_table, |
- scratch, |
- times_pointer_size, |
- SymbolTable::kElementsStartOffset)); |
- |
- // If entry is undefined no string with this hash can be found. |
- __ cmpq(candidate, undefined); |
- __ j(equal, not_found); |
- |
- // If length is not 2 the string is not a candidate. |
- __ SmiCompare(FieldOperand(candidate, String::kLengthOffset), |
- Smi::FromInt(2)); |
- __ j(not_equal, &next_probe[i]); |
- |
- // We use kScratchRegister as a temporary register in assumption that |
- // JumpIfInstanceTypeIsNotSequentialAscii does not use it implicitly |
- Register temp = kScratchRegister; |
- |
- // Check that the candidate is a non-external ascii string. |
- __ movq(temp, FieldOperand(candidate, HeapObject::kMapOffset)); |
- __ movzxbl(temp, FieldOperand(temp, Map::kInstanceTypeOffset)); |
- __ JumpIfInstanceTypeIsNotSequentialAscii( |
- temp, temp, &next_probe[i]); |
- |
- // Check if the two characters match. |
- __ movl(temp, FieldOperand(candidate, SeqAsciiString::kHeaderSize)); |
- __ andl(temp, Immediate(0x0000ffff)); |
- __ cmpl(chars, temp); |
- __ j(equal, &found_in_symbol_table); |
- __ bind(&next_probe[i]); |
- } |
- |
- // No matching 2 character string found by probing. |
- __ jmp(not_found); |
- |
- // Scratch register contains result when we fall through to here. |
- Register result = scratch; |
- __ bind(&found_in_symbol_table); |
- if (!result.is(rax)) { |
- __ movq(rax, result); |
- } |
-} |
- |
- |
-void StringHelper::GenerateHashInit(MacroAssembler* masm, |
- Register hash, |
- Register character, |
- Register scratch) { |
- // hash = character + (character << 10); |
- __ movl(hash, character); |
- __ shll(hash, Immediate(10)); |
- __ addl(hash, character); |
- // hash ^= hash >> 6; |
- __ movl(scratch, hash); |
- __ sarl(scratch, Immediate(6)); |
- __ xorl(hash, scratch); |
-} |
- |
- |
-void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, |
- Register hash, |
- Register character, |
- Register scratch) { |
- // hash += character; |
- __ addl(hash, character); |
- // hash += hash << 10; |
- __ movl(scratch, hash); |
- __ shll(scratch, Immediate(10)); |
- __ addl(hash, scratch); |
- // hash ^= hash >> 6; |
- __ movl(scratch, hash); |
- __ sarl(scratch, Immediate(6)); |
- __ xorl(hash, scratch); |
-} |
- |
- |
-void StringHelper::GenerateHashGetHash(MacroAssembler* masm, |
- Register hash, |
- Register scratch) { |
- // hash += hash << 3; |
- __ leal(hash, Operand(hash, hash, times_8, 0)); |
- // hash ^= hash >> 11; |
- __ movl(scratch, hash); |
- __ sarl(scratch, Immediate(11)); |
- __ xorl(hash, scratch); |
- // hash += hash << 15; |
- __ movl(scratch, hash); |
- __ shll(scratch, Immediate(15)); |
- __ addl(hash, scratch); |
- |
- // if (hash == 0) hash = 27; |
- Label hash_not_zero; |
- __ j(not_zero, &hash_not_zero); |
- __ movl(hash, Immediate(27)); |
- __ bind(&hash_not_zero); |
-} |
- |
-void SubStringStub::Generate(MacroAssembler* masm) { |
- Label runtime; |
- |
- // Stack frame on entry. |
- // rsp[0]: return address |
- // rsp[8]: to |
- // rsp[16]: from |
- // rsp[24]: string |
- |
- const int kToOffset = 1 * kPointerSize; |
- const int kFromOffset = kToOffset + kPointerSize; |
- const int kStringOffset = kFromOffset + kPointerSize; |
- const int kArgumentsSize = (kStringOffset + kPointerSize) - kToOffset; |
- |
- // Make sure first argument is a string. |
- __ movq(rax, Operand(rsp, kStringOffset)); |
- STATIC_ASSERT(kSmiTag == 0); |
- __ testl(rax, Immediate(kSmiTagMask)); |
- __ j(zero, &runtime); |
- Condition is_string = masm->IsObjectStringType(rax, rbx, rbx); |
- __ j(NegateCondition(is_string), &runtime); |
- |
- // rax: string |
- // rbx: instance type |
- // Calculate length of sub string using the smi values. |
- Label result_longer_than_two; |
- __ movq(rcx, Operand(rsp, kToOffset)); |
- __ movq(rdx, Operand(rsp, kFromOffset)); |
- __ JumpIfNotBothPositiveSmi(rcx, rdx, &runtime); |
- |
- __ SmiSub(rcx, rcx, rdx, NULL); // Overflow doesn't happen. |
- __ cmpq(FieldOperand(rax, String::kLengthOffset), rcx); |
- Label return_rax; |
- __ j(equal, &return_rax); |
- // Special handling of sub-strings of length 1 and 2. One character strings |
- // are handled in the runtime system (looked up in the single character |
- // cache). Two character strings are looked for in the symbol cache. |
- __ SmiToInteger32(rcx, rcx); |
- __ cmpl(rcx, Immediate(2)); |
- __ j(greater, &result_longer_than_two); |
- __ j(less, &runtime); |
- |
- // Sub string of length 2 requested. |
- // rax: string |
- // rbx: instance type |
- // rcx: sub string length (value is 2) |
- // rdx: from index (smi) |
- __ JumpIfInstanceTypeIsNotSequentialAscii(rbx, rbx, &runtime); |
- |
- // Get the two characters forming the sub string. |
- __ SmiToInteger32(rdx, rdx); // From index is no longer smi. |
- __ movzxbq(rbx, FieldOperand(rax, rdx, times_1, SeqAsciiString::kHeaderSize)); |
- __ movzxbq(rcx, |
- FieldOperand(rax, rdx, times_1, SeqAsciiString::kHeaderSize + 1)); |
- |
- // Try to lookup two character string in symbol table. |
- Label make_two_character_string; |
- StringHelper::GenerateTwoCharacterSymbolTableProbe( |
- masm, rbx, rcx, rax, rdx, rdi, r14, &make_two_character_string); |
- __ ret(3 * kPointerSize); |
- |
- __ bind(&make_two_character_string); |
- // Setup registers for allocating the two character string. |
- __ movq(rax, Operand(rsp, kStringOffset)); |
- __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); |
- __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); |
- __ Set(rcx, 2); |
- |
- __ bind(&result_longer_than_two); |
- |
- // rax: string |
- // rbx: instance type |
- // rcx: result string length |
- // Check for flat ascii string |
- Label non_ascii_flat; |
- __ JumpIfInstanceTypeIsNotSequentialAscii(rbx, rbx, &non_ascii_flat); |
- |
- // Allocate the result. |
- __ AllocateAsciiString(rax, rcx, rbx, rdx, rdi, &runtime); |
- |
- // rax: result string |
- // rcx: result string length |
- __ movq(rdx, rsi); // esi used by following code. |
- // Locate first character of result. |
- __ lea(rdi, FieldOperand(rax, SeqAsciiString::kHeaderSize)); |
- // Load string argument and locate character of sub string start. |
- __ movq(rsi, Operand(rsp, kStringOffset)); |
- __ movq(rbx, Operand(rsp, kFromOffset)); |
- { |
- SmiIndex smi_as_index = masm->SmiToIndex(rbx, rbx, times_1); |
- __ lea(rsi, Operand(rsi, smi_as_index.reg, smi_as_index.scale, |
- SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
- } |
- |
- // rax: result string |
- // rcx: result length |
- // rdx: original value of rsi |
- // rdi: first character of result |
- // rsi: character of sub string start |
- StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, true); |
- __ movq(rsi, rdx); // Restore rsi. |
- __ IncrementCounter(&Counters::sub_string_native, 1); |
- __ ret(kArgumentsSize); |
- |
- __ bind(&non_ascii_flat); |
- // rax: string |
- // rbx: instance type & kStringRepresentationMask | kStringEncodingMask |
- // rcx: result string length |
- // Check for sequential two byte string |
- __ cmpb(rbx, Immediate(kSeqStringTag | kTwoByteStringTag)); |
- __ j(not_equal, &runtime); |
- |
- // Allocate the result. |
- __ AllocateTwoByteString(rax, rcx, rbx, rdx, rdi, &runtime); |
- |
- // rax: result string |
- // rcx: result string length |
- __ movq(rdx, rsi); // esi used by following code. |
- // Locate first character of result. |
- __ lea(rdi, FieldOperand(rax, SeqTwoByteString::kHeaderSize)); |
- // Load string argument and locate character of sub string start. |
- __ movq(rsi, Operand(rsp, kStringOffset)); |
- __ movq(rbx, Operand(rsp, kFromOffset)); |
- { |
- SmiIndex smi_as_index = masm->SmiToIndex(rbx, rbx, times_2); |
- __ lea(rsi, Operand(rsi, smi_as_index.reg, smi_as_index.scale, |
- SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
- } |
- |
- // rax: result string |
- // rcx: result length |
- // rdx: original value of rsi |
- // rdi: first character of result |
- // rsi: character of sub string start |
- StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, false); |
- __ movq(rsi, rdx); // Restore esi. |
- |
- __ bind(&return_rax); |
- __ IncrementCounter(&Counters::sub_string_native, 1); |
- __ ret(kArgumentsSize); |
- |
- // Just jump to runtime to create the sub string. |
- __ bind(&runtime); |
- __ TailCallRuntime(Runtime::kSubString, 3, 1); |
-} |
- |
- |
-void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, |
- Register left, |
- Register right, |
- Register scratch1, |
- Register scratch2, |
- Register scratch3, |
- Register scratch4) { |
- // Ensure that you can always subtract a string length from a non-negative |
- // number (e.g. another length). |
- STATIC_ASSERT(String::kMaxLength < 0x7fffffff); |
- |
- // Find minimum length and length difference. |
- __ movq(scratch1, FieldOperand(left, String::kLengthOffset)); |
- __ movq(scratch4, scratch1); |
- __ SmiSub(scratch4, |
- scratch4, |
- FieldOperand(right, String::kLengthOffset), |
- NULL); |
- // Register scratch4 now holds left.length - right.length. |
- const Register length_difference = scratch4; |
- Label left_shorter; |
- __ j(less, &left_shorter); |
- // The right string isn't longer that the left one. |
- // Get the right string's length by subtracting the (non-negative) difference |
- // from the left string's length. |
- __ SmiSub(scratch1, scratch1, length_difference, NULL); |
- __ bind(&left_shorter); |
- // Register scratch1 now holds Min(left.length, right.length). |
- const Register min_length = scratch1; |
- |
- Label compare_lengths; |
- // If min-length is zero, go directly to comparing lengths. |
- __ SmiTest(min_length); |
- __ j(zero, &compare_lengths); |
- |
- __ SmiToInteger32(min_length, min_length); |
- |
- // Registers scratch2 and scratch3 are free. |
- Label result_not_equal; |
- Label loop; |
- { |
- // Check characters 0 .. min_length - 1 in a loop. |
- // Use scratch3 as loop index, min_length as limit and scratch2 |
- // for computation. |
- const Register index = scratch3; |
- __ movl(index, Immediate(0)); // Index into strings. |
- __ bind(&loop); |
- // Compare characters. |
- // TODO(lrn): Could we load more than one character at a time? |
- __ movb(scratch2, FieldOperand(left, |
- index, |
- times_1, |
- SeqAsciiString::kHeaderSize)); |
- // Increment index and use -1 modifier on next load to give |
- // the previous load extra time to complete. |
- __ addl(index, Immediate(1)); |
- __ cmpb(scratch2, FieldOperand(right, |
- index, |
- times_1, |
- SeqAsciiString::kHeaderSize - 1)); |
- __ j(not_equal, &result_not_equal); |
- __ cmpl(index, min_length); |
- __ j(not_equal, &loop); |
- } |
- // Completed loop without finding different characters. |
- // Compare lengths (precomputed). |
- __ bind(&compare_lengths); |
- __ SmiTest(length_difference); |
- __ j(not_zero, &result_not_equal); |
- |
- // Result is EQUAL. |
- __ Move(rax, Smi::FromInt(EQUAL)); |
- __ ret(0); |
- |
- Label result_greater; |
- __ bind(&result_not_equal); |
- // Unequal comparison of left to right, either character or length. |
- __ j(greater, &result_greater); |
- |
- // Result is LESS. |
- __ Move(rax, Smi::FromInt(LESS)); |
- __ ret(0); |
- |
- // Result is GREATER. |
- __ bind(&result_greater); |
- __ Move(rax, Smi::FromInt(GREATER)); |
- __ ret(0); |
-} |
- |
- |
-void StringCompareStub::Generate(MacroAssembler* masm) { |
- Label runtime; |
- |
- // Stack frame on entry. |
- // rsp[0]: return address |
- // rsp[8]: right string |
- // rsp[16]: left string |
- |
- __ movq(rdx, Operand(rsp, 2 * kPointerSize)); // left |
- __ movq(rax, Operand(rsp, 1 * kPointerSize)); // right |
- |
- // Check for identity. |
- Label not_same; |
- __ cmpq(rdx, rax); |
- __ j(not_equal, ¬_same); |
- __ Move(rax, Smi::FromInt(EQUAL)); |
- __ IncrementCounter(&Counters::string_compare_native, 1); |
- __ ret(2 * kPointerSize); |
- |
- __ bind(¬_same); |
- |
- // Check that both are sequential ASCII strings. |
- __ JumpIfNotBothSequentialAsciiStrings(rdx, rax, rcx, rbx, &runtime); |
- |
- // Inline comparison of ascii strings. |
- __ IncrementCounter(&Counters::string_compare_native, 1); |
- // Drop arguments from the stack |
- __ pop(rcx); |
- __ addq(rsp, Immediate(2 * kPointerSize)); |
- __ push(rcx); |
- GenerateCompareFlatAsciiStrings(masm, rdx, rax, rcx, rbx, rdi, r8); |
- |
- // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) |
- // tagged as a small integer. |
- __ bind(&runtime); |
- __ TailCallRuntime(Runtime::kStringCompare, 2, 1); |
-} |
- |
#undef __ |
#define __ masm. |