Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1569)

Unified Diff: src/x64/codegen-x64.cc

Issue 3195022: Move code stubs from codegen*.* files to code-stub*.* files. (Closed) Base URL: http://v8.googlecode.com/svn/branches/bleeding_edge/
Patch Set: '' Created 10 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/x64/codegen-x64.h ('k') | src/x64/full-codegen-x64.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/x64/codegen-x64.cc
===================================================================
--- src/x64/codegen-x64.cc (revision 5337)
+++ src/x64/codegen-x64.cc (working copy)
@@ -30,6 +30,7 @@
#if defined(V8_TARGET_ARCH_X64)
#include "bootstrapper.h"
+#include "code-stubs-x64.h"
#include "codegen-inl.h"
#include "compiler.h"
#include "debug.h"
@@ -807,55 +808,6 @@
}
-class FloatingPointHelper : public AllStatic {
- public:
- // Load the operands from rdx and rax into xmm0 and xmm1, as doubles.
- // If the operands are not both numbers, jump to not_numbers.
- // Leaves rdx and rax unchanged. SmiOperands assumes both are smis.
- // NumberOperands assumes both are smis or heap numbers.
- static void LoadSSE2SmiOperands(MacroAssembler* masm);
- static void LoadSSE2NumberOperands(MacroAssembler* masm);
- static void LoadSSE2UnknownOperands(MacroAssembler* masm,
- Label* not_numbers);
-
- // Takes the operands in rdx and rax and loads them as integers in rax
- // and rcx.
- static void LoadAsIntegers(MacroAssembler* masm,
- Label* operand_conversion_failure,
- Register heap_number_map);
- // As above, but we know the operands to be numbers. In that case,
- // conversion can't fail.
- static void LoadNumbersAsIntegers(MacroAssembler* masm);
-};
-
-
-const char* GenericBinaryOpStub::GetName() {
- if (name_ != NULL) return name_;
- const int kMaxNameLength = 100;
- name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength);
- if (name_ == NULL) return "OOM";
- const char* op_name = Token::Name(op_);
- const char* overwrite_name;
- switch (mode_) {
- case NO_OVERWRITE: overwrite_name = "Alloc"; break;
- case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
- case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
- default: overwrite_name = "UnknownOverwrite"; break;
- }
-
- OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
- "GenericBinaryOpStub_%s_%s%s_%s%s_%s_%s",
- op_name,
- overwrite_name,
- (flags_ & NO_SMI_CODE_IN_STUB) ? "_NoSmiInStub" : "",
- args_in_registers_ ? "RegArgs" : "StackArgs",
- args_reversed_ ? "_R" : "",
- static_operands_type_.ToString(),
- BinaryOpIC::GetName(runtime_operands_type_));
- return name_;
-}
-
-
// Call the specialized stub for a binary operation.
class DeferredInlineBinaryOperation: public DeferredCode {
public:
@@ -8819,350 +8771,6 @@
}
-void FastNewClosureStub::Generate(MacroAssembler* masm) {
- // Create a new closure from the given function info in new
- // space. Set the context to the current context in rsi.
- Label gc;
- __ AllocateInNewSpace(JSFunction::kSize, rax, rbx, rcx, &gc, TAG_OBJECT);
-
- // Get the function info from the stack.
- __ movq(rdx, Operand(rsp, 1 * kPointerSize));
-
- // Compute the function map in the current global context and set that
- // as the map of the allocated object.
- __ movq(rcx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
- __ movq(rcx, FieldOperand(rcx, GlobalObject::kGlobalContextOffset));
- __ movq(rcx, Operand(rcx, Context::SlotOffset(Context::FUNCTION_MAP_INDEX)));
- __ movq(FieldOperand(rax, JSObject::kMapOffset), rcx);
-
- // Initialize the rest of the function. We don't have to update the
- // write barrier because the allocated object is in new space.
- __ LoadRoot(rbx, Heap::kEmptyFixedArrayRootIndex);
- __ LoadRoot(rcx, Heap::kTheHoleValueRootIndex);
- __ movq(FieldOperand(rax, JSObject::kPropertiesOffset), rbx);
- __ movq(FieldOperand(rax, JSObject::kElementsOffset), rbx);
- __ movq(FieldOperand(rax, JSFunction::kPrototypeOrInitialMapOffset), rcx);
- __ movq(FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset), rdx);
- __ movq(FieldOperand(rax, JSFunction::kContextOffset), rsi);
- __ movq(FieldOperand(rax, JSFunction::kLiteralsOffset), rbx);
-
- // Initialize the code pointer in the function to be the one
- // found in the shared function info object.
- __ movq(rdx, FieldOperand(rdx, SharedFunctionInfo::kCodeOffset));
- __ lea(rdx, FieldOperand(rdx, Code::kHeaderSize));
- __ movq(FieldOperand(rax, JSFunction::kCodeEntryOffset), rdx);
-
-
- // Return and remove the on-stack parameter.
- __ ret(1 * kPointerSize);
-
- // Create a new closure through the slower runtime call.
- __ bind(&gc);
- __ pop(rcx); // Temporarily remove return address.
- __ pop(rdx);
- __ push(rsi);
- __ push(rdx);
- __ push(rcx); // Restore return address.
- __ TailCallRuntime(Runtime::kNewClosure, 2, 1);
-}
-
-
-void FastNewContextStub::Generate(MacroAssembler* masm) {
- // Try to allocate the context in new space.
- Label gc;
- int length = slots_ + Context::MIN_CONTEXT_SLOTS;
- __ AllocateInNewSpace((length * kPointerSize) + FixedArray::kHeaderSize,
- rax, rbx, rcx, &gc, TAG_OBJECT);
-
- // Get the function from the stack.
- __ movq(rcx, Operand(rsp, 1 * kPointerSize));
-
- // Setup the object header.
- __ LoadRoot(kScratchRegister, Heap::kContextMapRootIndex);
- __ movq(FieldOperand(rax, HeapObject::kMapOffset), kScratchRegister);
- __ Move(FieldOperand(rax, FixedArray::kLengthOffset), Smi::FromInt(length));
-
- // Setup the fixed slots.
- __ xor_(rbx, rbx); // Set to NULL.
- __ movq(Operand(rax, Context::SlotOffset(Context::CLOSURE_INDEX)), rcx);
- __ movq(Operand(rax, Context::SlotOffset(Context::FCONTEXT_INDEX)), rax);
- __ movq(Operand(rax, Context::SlotOffset(Context::PREVIOUS_INDEX)), rbx);
- __ movq(Operand(rax, Context::SlotOffset(Context::EXTENSION_INDEX)), rbx);
-
- // Copy the global object from the surrounding context.
- __ movq(rbx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
- __ movq(Operand(rax, Context::SlotOffset(Context::GLOBAL_INDEX)), rbx);
-
- // Initialize the rest of the slots to undefined.
- __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
- for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
- __ movq(Operand(rax, Context::SlotOffset(i)), rbx);
- }
-
- // Return and remove the on-stack parameter.
- __ movq(rsi, rax);
- __ ret(1 * kPointerSize);
-
- // Need to collect. Call into runtime system.
- __ bind(&gc);
- __ TailCallRuntime(Runtime::kNewContext, 1, 1);
-}
-
-
-void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
- // Stack layout on entry:
- //
- // [rsp + kPointerSize]: constant elements.
- // [rsp + (2 * kPointerSize)]: literal index.
- // [rsp + (3 * kPointerSize)]: literals array.
-
- // All sizes here are multiples of kPointerSize.
- int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0;
- int size = JSArray::kSize + elements_size;
-
- // Load boilerplate object into rcx and check if we need to create a
- // boilerplate.
- Label slow_case;
- __ movq(rcx, Operand(rsp, 3 * kPointerSize));
- __ movq(rax, Operand(rsp, 2 * kPointerSize));
- SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2);
- __ movq(rcx,
- FieldOperand(rcx, index.reg, index.scale, FixedArray::kHeaderSize));
- __ CompareRoot(rcx, Heap::kUndefinedValueRootIndex);
- __ j(equal, &slow_case);
-
- if (FLAG_debug_code) {
- const char* message;
- Heap::RootListIndex expected_map_index;
- if (mode_ == CLONE_ELEMENTS) {
- message = "Expected (writable) fixed array";
- expected_map_index = Heap::kFixedArrayMapRootIndex;
- } else {
- ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS);
- message = "Expected copy-on-write fixed array";
- expected_map_index = Heap::kFixedCOWArrayMapRootIndex;
- }
- __ push(rcx);
- __ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset));
- __ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset),
- expected_map_index);
- __ Assert(equal, message);
- __ pop(rcx);
- }
-
- // Allocate both the JS array and the elements array in one big
- // allocation. This avoids multiple limit checks.
- __ AllocateInNewSpace(size, rax, rbx, rdx, &slow_case, TAG_OBJECT);
-
- // Copy the JS array part.
- for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
- if ((i != JSArray::kElementsOffset) || (length_ == 0)) {
- __ movq(rbx, FieldOperand(rcx, i));
- __ movq(FieldOperand(rax, i), rbx);
- }
- }
-
- if (length_ > 0) {
- // Get hold of the elements array of the boilerplate and setup the
- // elements pointer in the resulting object.
- __ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset));
- __ lea(rdx, Operand(rax, JSArray::kSize));
- __ movq(FieldOperand(rax, JSArray::kElementsOffset), rdx);
-
- // Copy the elements array.
- for (int i = 0; i < elements_size; i += kPointerSize) {
- __ movq(rbx, FieldOperand(rcx, i));
- __ movq(FieldOperand(rdx, i), rbx);
- }
- }
-
- // Return and remove the on-stack parameters.
- __ ret(3 * kPointerSize);
-
- __ bind(&slow_case);
- __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
-}
-
-
-void ToBooleanStub::Generate(MacroAssembler* masm) {
- Label false_result, true_result, not_string;
- __ movq(rax, Operand(rsp, 1 * kPointerSize));
-
- // 'null' => false.
- __ CompareRoot(rax, Heap::kNullValueRootIndex);
- __ j(equal, &false_result);
-
- // Get the map and type of the heap object.
- // We don't use CmpObjectType because we manipulate the type field.
- __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset));
- __ movzxbq(rcx, FieldOperand(rdx, Map::kInstanceTypeOffset));
-
- // Undetectable => false.
- __ movzxbq(rbx, FieldOperand(rdx, Map::kBitFieldOffset));
- __ and_(rbx, Immediate(1 << Map::kIsUndetectable));
- __ j(not_zero, &false_result);
-
- // JavaScript object => true.
- __ cmpq(rcx, Immediate(FIRST_JS_OBJECT_TYPE));
- __ j(above_equal, &true_result);
-
- // String value => false iff empty.
- __ cmpq(rcx, Immediate(FIRST_NONSTRING_TYPE));
- __ j(above_equal, &not_string);
- __ movq(rdx, FieldOperand(rax, String::kLengthOffset));
- __ SmiTest(rdx);
- __ j(zero, &false_result);
- __ jmp(&true_result);
-
- __ bind(&not_string);
- __ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex);
- __ j(not_equal, &true_result);
- // HeapNumber => false iff +0, -0, or NaN.
- // These three cases set the zero flag when compared to zero using ucomisd.
- __ xorpd(xmm0, xmm0);
- __ ucomisd(xmm0, FieldOperand(rax, HeapNumber::kValueOffset));
- __ j(zero, &false_result);
- // Fall through to |true_result|.
-
- // Return 1/0 for true/false in rax.
- __ bind(&true_result);
- __ movq(rax, Immediate(1));
- __ ret(1 * kPointerSize);
- __ bind(&false_result);
- __ xor_(rax, rax);
- __ ret(1 * kPointerSize);
-}
-
-
-void GenericBinaryOpStub::GenerateCall(
- MacroAssembler* masm,
- Register left,
- Register right) {
- if (!ArgsInRegistersSupported()) {
- // Pass arguments on the stack.
- __ push(left);
- __ push(right);
- } else {
- // The calling convention with registers is left in rdx and right in rax.
- Register left_arg = rdx;
- Register right_arg = rax;
- if (!(left.is(left_arg) && right.is(right_arg))) {
- if (left.is(right_arg) && right.is(left_arg)) {
- if (IsOperationCommutative()) {
- SetArgsReversed();
- } else {
- __ xchg(left, right);
- }
- } else if (left.is(left_arg)) {
- __ movq(right_arg, right);
- } else if (right.is(right_arg)) {
- __ movq(left_arg, left);
- } else if (left.is(right_arg)) {
- if (IsOperationCommutative()) {
- __ movq(left_arg, right);
- SetArgsReversed();
- } else {
- // Order of moves important to avoid destroying left argument.
- __ movq(left_arg, left);
- __ movq(right_arg, right);
- }
- } else if (right.is(left_arg)) {
- if (IsOperationCommutative()) {
- __ movq(right_arg, left);
- SetArgsReversed();
- } else {
- // Order of moves important to avoid destroying right argument.
- __ movq(right_arg, right);
- __ movq(left_arg, left);
- }
- } else {
- // Order of moves is not important.
- __ movq(left_arg, left);
- __ movq(right_arg, right);
- }
- }
-
- // Update flags to indicate that arguments are in registers.
- SetArgsInRegisters();
- __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
- }
-
- // Call the stub.
- __ CallStub(this);
-}
-
-
-void GenericBinaryOpStub::GenerateCall(
- MacroAssembler* masm,
- Register left,
- Smi* right) {
- if (!ArgsInRegistersSupported()) {
- // Pass arguments on the stack.
- __ push(left);
- __ Push(right);
- } else {
- // The calling convention with registers is left in rdx and right in rax.
- Register left_arg = rdx;
- Register right_arg = rax;
- if (left.is(left_arg)) {
- __ Move(right_arg, right);
- } else if (left.is(right_arg) && IsOperationCommutative()) {
- __ Move(left_arg, right);
- SetArgsReversed();
- } else {
- // For non-commutative operations, left and right_arg might be
- // the same register. Therefore, the order of the moves is
- // important here in order to not overwrite left before moving
- // it to left_arg.
- __ movq(left_arg, left);
- __ Move(right_arg, right);
- }
-
- // Update flags to indicate that arguments are in registers.
- SetArgsInRegisters();
- __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
- }
-
- // Call the stub.
- __ CallStub(this);
-}
-
-
-void GenericBinaryOpStub::GenerateCall(
- MacroAssembler* masm,
- Smi* left,
- Register right) {
- if (!ArgsInRegistersSupported()) {
- // Pass arguments on the stack.
- __ Push(left);
- __ push(right);
- } else {
- // The calling convention with registers is left in rdx and right in rax.
- Register left_arg = rdx;
- Register right_arg = rax;
- if (right.is(right_arg)) {
- __ Move(left_arg, left);
- } else if (right.is(left_arg) && IsOperationCommutative()) {
- __ Move(right_arg, left);
- SetArgsReversed();
- } else {
- // For non-commutative operations, right and left_arg might be
- // the same register. Therefore, the order of the moves is
- // important here in order to not overwrite right before moving
- // it to right_arg.
- __ movq(right_arg, right);
- __ Move(left_arg, left);
- }
- // Update flags to indicate that arguments are in registers.
- SetArgsInRegisters();
- __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
- }
-
- // Call the stub.
- __ CallStub(this);
-}
-
-
Result GenericBinaryOpStub::GenerateCall(MacroAssembler* masm,
VirtualFrame* frame,
Result* left,
@@ -9177,3585 +8785,6 @@
}
}
-
-void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) {
- // 1. Move arguments into rdx, rax except for DIV and MOD, which need the
- // dividend in rax and rdx free for the division. Use rax, rbx for those.
- Comment load_comment(masm, "-- Load arguments");
- Register left = rdx;
- Register right = rax;
- if (op_ == Token::DIV || op_ == Token::MOD) {
- left = rax;
- right = rbx;
- if (HasArgsInRegisters()) {
- __ movq(rbx, rax);
- __ movq(rax, rdx);
- }
- }
- if (!HasArgsInRegisters()) {
- __ movq(right, Operand(rsp, 1 * kPointerSize));
- __ movq(left, Operand(rsp, 2 * kPointerSize));
- }
-
- Label not_smis;
- // 2. Smi check both operands.
- if (static_operands_type_.IsSmi()) {
- // Skip smi check if we know that both arguments are smis.
- if (FLAG_debug_code) {
- __ AbortIfNotSmi(left);
- __ AbortIfNotSmi(right);
- }
- if (op_ == Token::BIT_OR) {
- // Handle OR here, since we do extra smi-checking in the or code below.
- __ SmiOr(right, right, left);
- GenerateReturn(masm);
- return;
- }
- } else {
- if (op_ != Token::BIT_OR) {
- // Skip the check for OR as it is better combined with the
- // actual operation.
- Comment smi_check_comment(masm, "-- Smi check arguments");
- __ JumpIfNotBothSmi(left, right, &not_smis);
- }
- }
-
- // 3. Operands are both smis (except for OR), perform the operation leaving
- // the result in rax and check the result if necessary.
- Comment perform_smi(masm, "-- Perform smi operation");
- Label use_fp_on_smis;
- switch (op_) {
- case Token::ADD: {
- ASSERT(right.is(rax));
- __ SmiAdd(right, right, left, &use_fp_on_smis); // ADD is commutative.
- break;
- }
-
- case Token::SUB: {
- __ SmiSub(left, left, right, &use_fp_on_smis);
- __ movq(rax, left);
- break;
- }
-
- case Token::MUL:
- ASSERT(right.is(rax));
- __ SmiMul(right, right, left, &use_fp_on_smis); // MUL is commutative.
- break;
-
- case Token::DIV:
- ASSERT(left.is(rax));
- __ SmiDiv(left, left, right, &use_fp_on_smis);
- break;
-
- case Token::MOD:
- ASSERT(left.is(rax));
- __ SmiMod(left, left, right, slow);
- break;
-
- case Token::BIT_OR:
- ASSERT(right.is(rax));
- __ movq(rcx, right); // Save the right operand.
- __ SmiOr(right, right, left); // BIT_OR is commutative.
- __ testb(right, Immediate(kSmiTagMask));
- __ j(not_zero, &not_smis);
- break;
-
- case Token::BIT_AND:
- ASSERT(right.is(rax));
- __ SmiAnd(right, right, left); // BIT_AND is commutative.
- break;
-
- case Token::BIT_XOR:
- ASSERT(right.is(rax));
- __ SmiXor(right, right, left); // BIT_XOR is commutative.
- break;
-
- case Token::SHL:
- case Token::SHR:
- case Token::SAR:
- switch (op_) {
- case Token::SAR:
- __ SmiShiftArithmeticRight(left, left, right);
- break;
- case Token::SHR:
- __ SmiShiftLogicalRight(left, left, right, slow);
- break;
- case Token::SHL:
- __ SmiShiftLeft(left, left, right);
- break;
- default:
- UNREACHABLE();
- }
- __ movq(rax, left);
- break;
-
- default:
- UNREACHABLE();
- break;
- }
-
- // 4. Emit return of result in rax.
- GenerateReturn(masm);
-
- // 5. For some operations emit inline code to perform floating point
- // operations on known smis (e.g., if the result of the operation
- // overflowed the smi range).
- switch (op_) {
- case Token::ADD:
- case Token::SUB:
- case Token::MUL:
- case Token::DIV: {
- ASSERT(use_fp_on_smis.is_linked());
- __ bind(&use_fp_on_smis);
- if (op_ == Token::DIV) {
- __ movq(rdx, rax);
- __ movq(rax, rbx);
- }
- // left is rdx, right is rax.
- __ AllocateHeapNumber(rbx, rcx, slow);
- FloatingPointHelper::LoadSSE2SmiOperands(masm);
- switch (op_) {
- case Token::ADD: __ addsd(xmm0, xmm1); break;
- case Token::SUB: __ subsd(xmm0, xmm1); break;
- case Token::MUL: __ mulsd(xmm0, xmm1); break;
- case Token::DIV: __ divsd(xmm0, xmm1); break;
- default: UNREACHABLE();
- }
- __ movsd(FieldOperand(rbx, HeapNumber::kValueOffset), xmm0);
- __ movq(rax, rbx);
- GenerateReturn(masm);
- }
- default:
- break;
- }
-
- // 6. Non-smi operands, fall out to the non-smi code with the operands in
- // rdx and rax.
- Comment done_comment(masm, "-- Enter non-smi code");
- __ bind(&not_smis);
-
- switch (op_) {
- case Token::DIV:
- case Token::MOD:
- // Operands are in rax, rbx at this point.
- __ movq(rdx, rax);
- __ movq(rax, rbx);
- break;
-
- case Token::BIT_OR:
- // Right operand is saved in rcx and rax was destroyed by the smi
- // operation.
- __ movq(rax, rcx);
- break;
-
- default:
- break;
- }
-}
-
-
-void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
- Label call_runtime;
-
- if (ShouldGenerateSmiCode()) {
- GenerateSmiCode(masm, &call_runtime);
- } else if (op_ != Token::MOD) {
- if (!HasArgsInRegisters()) {
- GenerateLoadArguments(masm);
- }
- }
- // Floating point case.
- if (ShouldGenerateFPCode()) {
- switch (op_) {
- case Token::ADD:
- case Token::SUB:
- case Token::MUL:
- case Token::DIV: {
- if (runtime_operands_type_ == BinaryOpIC::DEFAULT &&
- HasSmiCodeInStub()) {
- // Execution reaches this point when the first non-smi argument occurs
- // (and only if smi code is generated). This is the right moment to
- // patch to HEAP_NUMBERS state. The transition is attempted only for
- // the four basic operations. The stub stays in the DEFAULT state
- // forever for all other operations (also if smi code is skipped).
- GenerateTypeTransition(masm);
- break;
- }
-
- Label not_floats;
- // rax: y
- // rdx: x
- if (static_operands_type_.IsNumber()) {
- if (FLAG_debug_code) {
- // Assert at runtime that inputs are only numbers.
- __ AbortIfNotNumber(rdx);
- __ AbortIfNotNumber(rax);
- }
- FloatingPointHelper::LoadSSE2NumberOperands(masm);
- } else {
- FloatingPointHelper::LoadSSE2UnknownOperands(masm, &call_runtime);
- }
-
- switch (op_) {
- case Token::ADD: __ addsd(xmm0, xmm1); break;
- case Token::SUB: __ subsd(xmm0, xmm1); break;
- case Token::MUL: __ mulsd(xmm0, xmm1); break;
- case Token::DIV: __ divsd(xmm0, xmm1); break;
- default: UNREACHABLE();
- }
- // Allocate a heap number, if needed.
- Label skip_allocation;
- OverwriteMode mode = mode_;
- if (HasArgsReversed()) {
- if (mode == OVERWRITE_RIGHT) {
- mode = OVERWRITE_LEFT;
- } else if (mode == OVERWRITE_LEFT) {
- mode = OVERWRITE_RIGHT;
- }
- }
- switch (mode) {
- case OVERWRITE_LEFT:
- __ JumpIfNotSmi(rdx, &skip_allocation);
- __ AllocateHeapNumber(rbx, rcx, &call_runtime);
- __ movq(rdx, rbx);
- __ bind(&skip_allocation);
- __ movq(rax, rdx);
- break;
- case OVERWRITE_RIGHT:
- // If the argument in rax is already an object, we skip the
- // allocation of a heap number.
- __ JumpIfNotSmi(rax, &skip_allocation);
- // Fall through!
- case NO_OVERWRITE:
- // Allocate a heap number for the result. Keep rax and rdx intact
- // for the possible runtime call.
- __ AllocateHeapNumber(rbx, rcx, &call_runtime);
- __ movq(rax, rbx);
- __ bind(&skip_allocation);
- break;
- default: UNREACHABLE();
- }
- __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0);
- GenerateReturn(masm);
- __ bind(&not_floats);
- if (runtime_operands_type_ == BinaryOpIC::DEFAULT &&
- !HasSmiCodeInStub()) {
- // Execution reaches this point when the first non-number argument
- // occurs (and only if smi code is skipped from the stub, otherwise
- // the patching has already been done earlier in this case branch).
- // A perfect moment to try patching to STRINGS for ADD operation.
- if (op_ == Token::ADD) {
- GenerateTypeTransition(masm);
- }
- }
- break;
- }
- case Token::MOD: {
- // For MOD we go directly to runtime in the non-smi case.
- break;
- }
- case Token::BIT_OR:
- case Token::BIT_AND:
- case Token::BIT_XOR:
- case Token::SAR:
- case Token::SHL:
- case Token::SHR: {
- Label skip_allocation, non_smi_shr_result;
- Register heap_number_map = r9;
- __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
- if (static_operands_type_.IsNumber()) {
- if (FLAG_debug_code) {
- // Assert at runtime that inputs are only numbers.
- __ AbortIfNotNumber(rdx);
- __ AbortIfNotNumber(rax);
- }
- FloatingPointHelper::LoadNumbersAsIntegers(masm);
- } else {
- FloatingPointHelper::LoadAsIntegers(masm,
- &call_runtime,
- heap_number_map);
- }
- switch (op_) {
- case Token::BIT_OR: __ orl(rax, rcx); break;
- case Token::BIT_AND: __ andl(rax, rcx); break;
- case Token::BIT_XOR: __ xorl(rax, rcx); break;
- case Token::SAR: __ sarl_cl(rax); break;
- case Token::SHL: __ shll_cl(rax); break;
- case Token::SHR: {
- __ shrl_cl(rax);
- // Check if result is negative. This can only happen for a shift
- // by zero.
- __ testl(rax, rax);
- __ j(negative, &non_smi_shr_result);
- break;
- }
- default: UNREACHABLE();
- }
-
- STATIC_ASSERT(kSmiValueSize == 32);
- // Tag smi result and return.
- __ Integer32ToSmi(rax, rax);
- GenerateReturn(masm);
-
- // All bit-ops except SHR return a signed int32 that can be
- // returned immediately as a smi.
- // We might need to allocate a HeapNumber if we shift a negative
- // number right by zero (i.e., convert to UInt32).
- if (op_ == Token::SHR) {
- ASSERT(non_smi_shr_result.is_linked());
- __ bind(&non_smi_shr_result);
- // Allocate a heap number if needed.
- __ movl(rbx, rax); // rbx holds result value (uint32 value as int64).
- switch (mode_) {
- case OVERWRITE_LEFT:
- case OVERWRITE_RIGHT:
- // If the operand was an object, we skip the
- // allocation of a heap number.
- __ movq(rax, Operand(rsp, mode_ == OVERWRITE_RIGHT ?
- 1 * kPointerSize : 2 * kPointerSize));
- __ JumpIfNotSmi(rax, &skip_allocation);
- // Fall through!
- case NO_OVERWRITE:
- // Allocate heap number in new space.
- // Not using AllocateHeapNumber macro in order to reuse
- // already loaded heap_number_map.
- __ AllocateInNewSpace(HeapNumber::kSize,
- rax,
- rcx,
- no_reg,
- &call_runtime,
- TAG_OBJECT);
- // Set the map.
- if (FLAG_debug_code) {
- __ AbortIfNotRootValue(heap_number_map,
- Heap::kHeapNumberMapRootIndex,
- "HeapNumberMap register clobbered.");
- }
- __ movq(FieldOperand(rax, HeapObject::kMapOffset),
- heap_number_map);
- __ bind(&skip_allocation);
- break;
- default: UNREACHABLE();
- }
- // Store the result in the HeapNumber and return.
- __ cvtqsi2sd(xmm0, rbx);
- __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0);
- GenerateReturn(masm);
- }
-
- break;
- }
- default: UNREACHABLE(); break;
- }
- }
-
- // If all else fails, use the runtime system to get the correct
- // result. If arguments was passed in registers now place them on the
- // stack in the correct order below the return address.
- __ bind(&call_runtime);
-
- if (HasArgsInRegisters()) {
- GenerateRegisterArgsPush(masm);
- }
-
- switch (op_) {
- case Token::ADD: {
- // Registers containing left and right operands respectively.
- Register lhs, rhs;
-
- if (HasArgsReversed()) {
- lhs = rax;
- rhs = rdx;
- } else {
- lhs = rdx;
- rhs = rax;
- }
-
- // Test for string arguments before calling runtime.
- Label not_strings, both_strings, not_string1, string1, string1_smi2;
-
- // If this stub has already generated FP-specific code then the arguments
- // are already in rdx and rax.
- if (!ShouldGenerateFPCode() && !HasArgsInRegisters()) {
- GenerateLoadArguments(masm);
- }
-
- Condition is_smi;
- is_smi = masm->CheckSmi(lhs);
- __ j(is_smi, &not_string1);
- __ CmpObjectType(lhs, FIRST_NONSTRING_TYPE, r8);
- __ j(above_equal, &not_string1);
-
- // First argument is a a string, test second.
- is_smi = masm->CheckSmi(rhs);
- __ j(is_smi, &string1_smi2);
- __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, r9);
- __ j(above_equal, &string1);
-
- // First and second argument are strings.
- StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
- __ TailCallStub(&string_add_stub);
-
- __ bind(&string1_smi2);
- // First argument is a string, second is a smi. Try to lookup the number
- // string for the smi in the number string cache.
- NumberToStringStub::GenerateLookupNumberStringCache(
- masm, rhs, rbx, rcx, r8, true, &string1);
-
- // Replace second argument on stack and tailcall string add stub to make
- // the result.
- __ movq(Operand(rsp, 1 * kPointerSize), rbx);
- __ TailCallStub(&string_add_stub);
-
- // Only first argument is a string.
- __ bind(&string1);
- __ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_FUNCTION);
-
- // First argument was not a string, test second.
- __ bind(&not_string1);
- is_smi = masm->CheckSmi(rhs);
- __ j(is_smi, &not_strings);
- __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, rhs);
- __ j(above_equal, &not_strings);
-
- // Only second argument is a string.
- __ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_FUNCTION);
-
- __ bind(&not_strings);
- // Neither argument is a string.
- __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
- break;
- }
- case Token::SUB:
- __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
- break;
- case Token::MUL:
- __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
- break;
- case Token::DIV:
- __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
- break;
- case Token::MOD:
- __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
- break;
- case Token::BIT_OR:
- __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
- break;
- case Token::BIT_AND:
- __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
- break;
- case Token::BIT_XOR:
- __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
- break;
- case Token::SAR:
- __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
- break;
- case Token::SHL:
- __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
- break;
- case Token::SHR:
- __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
- break;
- default:
- UNREACHABLE();
- }
-}
-
-
-void GenericBinaryOpStub::GenerateLoadArguments(MacroAssembler* masm) {
- ASSERT(!HasArgsInRegisters());
- __ movq(rax, Operand(rsp, 1 * kPointerSize));
- __ movq(rdx, Operand(rsp, 2 * kPointerSize));
-}
-
-
-void GenericBinaryOpStub::GenerateReturn(MacroAssembler* masm) {
- // If arguments are not passed in registers remove them from the stack before
- // returning.
- if (!HasArgsInRegisters()) {
- __ ret(2 * kPointerSize); // Remove both operands
- } else {
- __ ret(0);
- }
-}
-
-
-void GenericBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
- ASSERT(HasArgsInRegisters());
- __ pop(rcx);
- if (HasArgsReversed()) {
- __ push(rax);
- __ push(rdx);
- } else {
- __ push(rdx);
- __ push(rax);
- }
- __ push(rcx);
-}
-
-
-void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
- Label get_result;
-
- // Ensure the operands are on the stack.
- if (HasArgsInRegisters()) {
- GenerateRegisterArgsPush(masm);
- }
-
- // Left and right arguments are already on stack.
- __ pop(rcx); // Save the return address.
-
- // Push this stub's key.
- __ Push(Smi::FromInt(MinorKey()));
-
- // Although the operation and the type info are encoded into the key,
- // the encoding is opaque, so push them too.
- __ Push(Smi::FromInt(op_));
-
- __ Push(Smi::FromInt(runtime_operands_type_));
-
- __ push(rcx); // The return address.
-
- // Perform patching to an appropriate fast case and return the result.
- __ TailCallExternalReference(
- ExternalReference(IC_Utility(IC::kBinaryOp_Patch)),
- 5,
- 1);
-}
-
-
-Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) {
- GenericBinaryOpStub stub(key, type_info);
- return stub.GetCode();
-}
-
-
-void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
- // Input on stack:
- // rsp[8]: argument (should be number).
- // rsp[0]: return address.
- Label runtime_call;
- Label runtime_call_clear_stack;
- Label input_not_smi;
- Label loaded;
- // Test that rax is a number.
- __ movq(rax, Operand(rsp, kPointerSize));
- __ JumpIfNotSmi(rax, &input_not_smi);
- // Input is a smi. Untag and load it onto the FPU stack.
- // Then load the bits of the double into rbx.
- __ SmiToInteger32(rax, rax);
- __ subq(rsp, Immediate(kPointerSize));
- __ cvtlsi2sd(xmm1, rax);
- __ movsd(Operand(rsp, 0), xmm1);
- __ movq(rbx, xmm1);
- __ movq(rdx, xmm1);
- __ fld_d(Operand(rsp, 0));
- __ addq(rsp, Immediate(kPointerSize));
- __ jmp(&loaded);
-
- __ bind(&input_not_smi);
- // Check if input is a HeapNumber.
- __ Move(rbx, Factory::heap_number_map());
- __ cmpq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
- __ j(not_equal, &runtime_call);
- // Input is a HeapNumber. Push it on the FPU stack and load its
- // bits into rbx.
- __ fld_d(FieldOperand(rax, HeapNumber::kValueOffset));
- __ movq(rbx, FieldOperand(rax, HeapNumber::kValueOffset));
- __ movq(rdx, rbx);
- __ bind(&loaded);
- // ST[0] == double value
- // rbx = bits of double value.
- // rdx = also bits of double value.
- // Compute hash (h is 32 bits, bits are 64 and the shifts are arithmetic):
- // h = h0 = bits ^ (bits >> 32);
- // h ^= h >> 16;
- // h ^= h >> 8;
- // h = h & (cacheSize - 1);
- // or h = (h0 ^ (h0 >> 8) ^ (h0 >> 16) ^ (h0 >> 24)) & (cacheSize - 1)
- __ sar(rdx, Immediate(32));
- __ xorl(rdx, rbx);
- __ movl(rcx, rdx);
- __ movl(rax, rdx);
- __ movl(rdi, rdx);
- __ sarl(rdx, Immediate(8));
- __ sarl(rcx, Immediate(16));
- __ sarl(rax, Immediate(24));
- __ xorl(rcx, rdx);
- __ xorl(rax, rdi);
- __ xorl(rcx, rax);
- ASSERT(IsPowerOf2(TranscendentalCache::kCacheSize));
- __ andl(rcx, Immediate(TranscendentalCache::kCacheSize - 1));
-
- // ST[0] == double value.
- // rbx = bits of double value.
- // rcx = TranscendentalCache::hash(double value).
- __ movq(rax, ExternalReference::transcendental_cache_array_address());
- // rax points to cache array.
- __ movq(rax, Operand(rax, type_ * sizeof(TranscendentalCache::caches_[0])));
- // rax points to the cache for the type type_.
- // If NULL, the cache hasn't been initialized yet, so go through runtime.
- __ testq(rax, rax);
- __ j(zero, &runtime_call_clear_stack);
-#ifdef DEBUG
- // Check that the layout of cache elements match expectations.
- { // NOLINT - doesn't like a single brace on a line.
- TranscendentalCache::Element test_elem[2];
- char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
- char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
- char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
- char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
- char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
- // Two uint_32's and a pointer per element.
- CHECK_EQ(16, static_cast<int>(elem2_start - elem_start));
- CHECK_EQ(0, static_cast<int>(elem_in0 - elem_start));
- CHECK_EQ(kIntSize, static_cast<int>(elem_in1 - elem_start));
- CHECK_EQ(2 * kIntSize, static_cast<int>(elem_out - elem_start));
- }
-#endif
- // Find the address of the rcx'th entry in the cache, i.e., &rax[rcx*16].
- __ addl(rcx, rcx);
- __ lea(rcx, Operand(rax, rcx, times_8, 0));
- // Check if cache matches: Double value is stored in uint32_t[2] array.
- Label cache_miss;
- __ cmpq(rbx, Operand(rcx, 0));
- __ j(not_equal, &cache_miss);
- // Cache hit!
- __ movq(rax, Operand(rcx, 2 * kIntSize));
- __ fstp(0); // Clear FPU stack.
- __ ret(kPointerSize);
-
- __ bind(&cache_miss);
- // Update cache with new value.
- Label nan_result;
- GenerateOperation(masm, &nan_result);
- __ AllocateHeapNumber(rax, rdi, &runtime_call_clear_stack);
- __ movq(Operand(rcx, 0), rbx);
- __ movq(Operand(rcx, 2 * kIntSize), rax);
- __ fstp_d(FieldOperand(rax, HeapNumber::kValueOffset));
- __ ret(kPointerSize);
-
- __ bind(&runtime_call_clear_stack);
- __ fstp(0);
- __ bind(&runtime_call);
- __ TailCallExternalReference(ExternalReference(RuntimeFunction()), 1, 1);
-
- __ bind(&nan_result);
- __ fstp(0); // Remove argument from FPU stack.
- __ LoadRoot(rax, Heap::kNanValueRootIndex);
- __ movq(Operand(rcx, 0), rbx);
- __ movq(Operand(rcx, 2 * kIntSize), rax);
- __ ret(kPointerSize);
-}
-
-
-Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
- switch (type_) {
- // Add more cases when necessary.
- case TranscendentalCache::SIN: return Runtime::kMath_sin;
- case TranscendentalCache::COS: return Runtime::kMath_cos;
- default:
- UNIMPLEMENTED();
- return Runtime::kAbort;
- }
-}
-
-
-void TranscendentalCacheStub::GenerateOperation(MacroAssembler* masm,
- Label* on_nan_result) {
- // Registers:
- // rbx: Bits of input double. Must be preserved.
- // rcx: Pointer to cache entry. Must be preserved.
- // st(0): Input double
- Label done;
- ASSERT(type_ == TranscendentalCache::SIN ||
- type_ == TranscendentalCache::COS);
- // More transcendental types can be added later.
-
- // Both fsin and fcos require arguments in the range +/-2^63 and
- // return NaN for infinities and NaN. They can share all code except
- // the actual fsin/fcos operation.
- Label in_range;
- // If argument is outside the range -2^63..2^63, fsin/cos doesn't
- // work. We must reduce it to the appropriate range.
- __ movq(rdi, rbx);
- // Move exponent and sign bits to low bits.
- __ shr(rdi, Immediate(HeapNumber::kMantissaBits));
- // Remove sign bit.
- __ andl(rdi, Immediate((1 << HeapNumber::kExponentBits) - 1));
- int supported_exponent_limit = (63 + HeapNumber::kExponentBias);
- __ cmpl(rdi, Immediate(supported_exponent_limit));
- __ j(below, &in_range);
- // Check for infinity and NaN. Both return NaN for sin.
- __ cmpl(rdi, Immediate(0x7ff));
- __ j(equal, on_nan_result);
-
- // Use fpmod to restrict argument to the range +/-2*PI.
- __ fldpi();
- __ fadd(0);
- __ fld(1);
- // FPU Stack: input, 2*pi, input.
- {
- Label no_exceptions;
- __ fwait();
- __ fnstsw_ax();
- // Clear if Illegal Operand or Zero Division exceptions are set.
- __ testl(rax, Immediate(5)); // #IO and #ZD flags of FPU status word.
- __ j(zero, &no_exceptions);
- __ fnclex();
- __ bind(&no_exceptions);
- }
-
- // Compute st(0) % st(1)
- {
- Label partial_remainder_loop;
- __ bind(&partial_remainder_loop);
- __ fprem1();
- __ fwait();
- __ fnstsw_ax();
- __ testl(rax, Immediate(0x400)); // Check C2 bit of FPU status word.
- // If C2 is set, computation only has partial result. Loop to
- // continue computation.
- __ j(not_zero, &partial_remainder_loop);
- }
- // FPU Stack: input, 2*pi, input % 2*pi
- __ fstp(2);
- // FPU Stack: input % 2*pi, 2*pi,
- __ fstp(0);
- // FPU Stack: input % 2*pi
- __ bind(&in_range);
- switch (type_) {
- case TranscendentalCache::SIN:
- __ fsin();
- break;
- case TranscendentalCache::COS:
- __ fcos();
- break;
- default:
- UNREACHABLE();
- }
- __ bind(&done);
-}
-
-
-// Get the integer part of a heap number.
-// Overwrites the contents of rdi, rbx and rcx. Result cannot be rdi or rbx.
-void IntegerConvert(MacroAssembler* masm,
- Register result,
- Register source) {
- // Result may be rcx. If result and source are the same register, source will
- // be overwritten.
- ASSERT(!result.is(rdi) && !result.is(rbx));
- // TODO(lrn): When type info reaches here, if value is a 32-bit integer, use
- // cvttsd2si (32-bit version) directly.
- Register double_exponent = rbx;
- Register double_value = rdi;
- Label done, exponent_63_plus;
- // Get double and extract exponent.
- __ movq(double_value, FieldOperand(source, HeapNumber::kValueOffset));
- // Clear result preemptively, in case we need to return zero.
- __ xorl(result, result);
- __ movq(xmm0, double_value); // Save copy in xmm0 in case we need it there.
- // Double to remove sign bit, shift exponent down to least significant bits.
- // and subtract bias to get the unshifted, unbiased exponent.
- __ lea(double_exponent, Operand(double_value, double_value, times_1, 0));
- __ shr(double_exponent, Immediate(64 - HeapNumber::kExponentBits));
- __ subl(double_exponent, Immediate(HeapNumber::kExponentBias));
- // Check whether the exponent is too big for a 63 bit unsigned integer.
- __ cmpl(double_exponent, Immediate(63));
- __ j(above_equal, &exponent_63_plus);
- // Handle exponent range 0..62.
- __ cvttsd2siq(result, xmm0);
- __ jmp(&done);
-
- __ bind(&exponent_63_plus);
- // Exponent negative or 63+.
- __ cmpl(double_exponent, Immediate(83));
- // If exponent negative or above 83, number contains no significant bits in
- // the range 0..2^31, so result is zero, and rcx already holds zero.
- __ j(above, &done);
-
- // Exponent in rage 63..83.
- // Mantissa * 2^exponent contains bits in the range 2^0..2^31, namely
- // the least significant exponent-52 bits.
-
- // Negate low bits of mantissa if value is negative.
- __ addq(double_value, double_value); // Move sign bit to carry.
- __ sbbl(result, result); // And convert carry to -1 in result register.
- // if scratch2 is negative, do (scratch2-1)^-1, otherwise (scratch2-0)^0.
- __ addl(double_value, result);
- // Do xor in opposite directions depending on where we want the result
- // (depending on whether result is rcx or not).
-
- if (result.is(rcx)) {
- __ xorl(double_value, result);
- // Left shift mantissa by (exponent - mantissabits - 1) to save the
- // bits that have positional values below 2^32 (the extra -1 comes from the
- // doubling done above to move the sign bit into the carry flag).
- __ leal(rcx, Operand(double_exponent, -HeapNumber::kMantissaBits - 1));
- __ shll_cl(double_value);
- __ movl(result, double_value);
- } else {
- // As the then-branch, but move double-value to result before shifting.
- __ xorl(result, double_value);
- __ leal(rcx, Operand(double_exponent, -HeapNumber::kMantissaBits - 1));
- __ shll_cl(result);
- }
-
- __ bind(&done);
-}
-
-
-// Input: rdx, rax are the left and right objects of a bit op.
-// Output: rax, rcx are left and right integers for a bit op.
-void FloatingPointHelper::LoadNumbersAsIntegers(MacroAssembler* masm) {
- // Check float operands.
- Label done;
- Label rax_is_smi;
- Label rax_is_object;
- Label rdx_is_object;
-
- __ JumpIfNotSmi(rdx, &rdx_is_object);
- __ SmiToInteger32(rdx, rdx);
- __ JumpIfSmi(rax, &rax_is_smi);
-
- __ bind(&rax_is_object);
- IntegerConvert(masm, rcx, rax); // Uses rdi, rcx and rbx.
- __ jmp(&done);
-
- __ bind(&rdx_is_object);
- IntegerConvert(masm, rdx, rdx); // Uses rdi, rcx and rbx.
- __ JumpIfNotSmi(rax, &rax_is_object);
- __ bind(&rax_is_smi);
- __ SmiToInteger32(rcx, rax);
-
- __ bind(&done);
- __ movl(rax, rdx);
-}
-
-
-// Input: rdx, rax are the left and right objects of a bit op.
-// Output: rax, rcx are left and right integers for a bit op.
-void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm,
- Label* conversion_failure,
- Register heap_number_map) {
- // Check float operands.
- Label arg1_is_object, check_undefined_arg1;
- Label arg2_is_object, check_undefined_arg2;
- Label load_arg2, done;
-
- __ JumpIfNotSmi(rdx, &arg1_is_object);
- __ SmiToInteger32(rdx, rdx);
- __ jmp(&load_arg2);
-
- // If the argument is undefined it converts to zero (ECMA-262, section 9.5).
- __ bind(&check_undefined_arg1);
- __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex);
- __ j(not_equal, conversion_failure);
- __ movl(rdx, Immediate(0));
- __ jmp(&load_arg2);
-
- __ bind(&arg1_is_object);
- __ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), heap_number_map);
- __ j(not_equal, &check_undefined_arg1);
- // Get the untagged integer version of the edx heap number in rcx.
- IntegerConvert(masm, rdx, rdx);
-
- // Here rdx has the untagged integer, rax has a Smi or a heap number.
- __ bind(&load_arg2);
- // Test if arg2 is a Smi.
- __ JumpIfNotSmi(rax, &arg2_is_object);
- __ SmiToInteger32(rax, rax);
- __ movl(rcx, rax);
- __ jmp(&done);
-
- // If the argument is undefined it converts to zero (ECMA-262, section 9.5).
- __ bind(&check_undefined_arg2);
- __ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
- __ j(not_equal, conversion_failure);
- __ movl(rcx, Immediate(0));
- __ jmp(&done);
-
- __ bind(&arg2_is_object);
- __ cmpq(FieldOperand(rax, HeapObject::kMapOffset), heap_number_map);
- __ j(not_equal, &check_undefined_arg2);
- // Get the untagged integer version of the rax heap number in rcx.
- IntegerConvert(masm, rcx, rax);
- __ bind(&done);
- __ movl(rax, rdx);
-}
-
-
-void FloatingPointHelper::LoadSSE2SmiOperands(MacroAssembler* masm) {
- __ SmiToInteger32(kScratchRegister, rdx);
- __ cvtlsi2sd(xmm0, kScratchRegister);
- __ SmiToInteger32(kScratchRegister, rax);
- __ cvtlsi2sd(xmm1, kScratchRegister);
-}
-
-
-void FloatingPointHelper::LoadSSE2NumberOperands(MacroAssembler* masm) {
- Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, done;
- // Load operand in rdx into xmm0.
- __ JumpIfSmi(rdx, &load_smi_rdx);
- __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
- // Load operand in rax into xmm1.
- __ JumpIfSmi(rax, &load_smi_rax);
- __ bind(&load_nonsmi_rax);
- __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
- __ jmp(&done);
-
- __ bind(&load_smi_rdx);
- __ SmiToInteger32(kScratchRegister, rdx);
- __ cvtlsi2sd(xmm0, kScratchRegister);
- __ JumpIfNotSmi(rax, &load_nonsmi_rax);
-
- __ bind(&load_smi_rax);
- __ SmiToInteger32(kScratchRegister, rax);
- __ cvtlsi2sd(xmm1, kScratchRegister);
-
- __ bind(&done);
-}
-
-
-void FloatingPointHelper::LoadSSE2UnknownOperands(MacroAssembler* masm,
- Label* not_numbers) {
- Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, load_float_rax, done;
- // Load operand in rdx into xmm0, or branch to not_numbers.
- __ LoadRoot(rcx, Heap::kHeapNumberMapRootIndex);
- __ JumpIfSmi(rdx, &load_smi_rdx);
- __ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), rcx);
- __ j(not_equal, not_numbers); // Argument in rdx is not a number.
- __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
- // Load operand in rax into xmm1, or branch to not_numbers.
- __ JumpIfSmi(rax, &load_smi_rax);
-
- __ bind(&load_nonsmi_rax);
- __ cmpq(FieldOperand(rax, HeapObject::kMapOffset), rcx);
- __ j(not_equal, not_numbers);
- __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
- __ jmp(&done);
-
- __ bind(&load_smi_rdx);
- __ SmiToInteger32(kScratchRegister, rdx);
- __ cvtlsi2sd(xmm0, kScratchRegister);
- __ JumpIfNotSmi(rax, &load_nonsmi_rax);
-
- __ bind(&load_smi_rax);
- __ SmiToInteger32(kScratchRegister, rax);
- __ cvtlsi2sd(xmm1, kScratchRegister);
- __ bind(&done);
-}
-
-
-void GenericUnaryOpStub::Generate(MacroAssembler* masm) {
- Label slow, done;
-
- if (op_ == Token::SUB) {
- // Check whether the value is a smi.
- Label try_float;
- __ JumpIfNotSmi(rax, &try_float);
-
- if (negative_zero_ == kIgnoreNegativeZero) {
- __ SmiCompare(rax, Smi::FromInt(0));
- __ j(equal, &done);
- }
-
- // Enter runtime system if the value of the smi is zero
- // to make sure that we switch between 0 and -0.
- // Also enter it if the value of the smi is Smi::kMinValue.
- __ SmiNeg(rax, rax, &done);
-
- // Either zero or Smi::kMinValue, neither of which become a smi when
- // negated.
- if (negative_zero_ == kStrictNegativeZero) {
- __ SmiCompare(rax, Smi::FromInt(0));
- __ j(not_equal, &slow);
- __ Move(rax, Factory::minus_zero_value());
- __ jmp(&done);
- } else {
- __ jmp(&slow);
- }
-
- // Try floating point case.
- __ bind(&try_float);
- __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset));
- __ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex);
- __ j(not_equal, &slow);
- // Operand is a float, negate its value by flipping sign bit.
- __ movq(rdx, FieldOperand(rax, HeapNumber::kValueOffset));
- __ movq(kScratchRegister, Immediate(0x01));
- __ shl(kScratchRegister, Immediate(63));
- __ xor_(rdx, kScratchRegister); // Flip sign.
- // rdx is value to store.
- if (overwrite_ == UNARY_OVERWRITE) {
- __ movq(FieldOperand(rax, HeapNumber::kValueOffset), rdx);
- } else {
- __ AllocateHeapNumber(rcx, rbx, &slow);
- // rcx: allocated 'empty' number
- __ movq(FieldOperand(rcx, HeapNumber::kValueOffset), rdx);
- __ movq(rax, rcx);
- }
- } else if (op_ == Token::BIT_NOT) {
- // Check if the operand is a heap number.
- __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset));
- __ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex);
- __ j(not_equal, &slow);
-
- // Convert the heap number in rax to an untagged integer in rcx.
- IntegerConvert(masm, rax, rax);
-
- // Do the bitwise operation and smi tag the result.
- __ notl(rax);
- __ Integer32ToSmi(rax, rax);
- }
-
- // Return from the stub.
- __ bind(&done);
- __ StubReturn(1);
-
- // Handle the slow case by jumping to the JavaScript builtin.
- __ bind(&slow);
- __ pop(rcx); // pop return address
- __ push(rax);
- __ push(rcx); // push return address
- switch (op_) {
- case Token::SUB:
- __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
- break;
- case Token::BIT_NOT:
- __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION);
- break;
- default:
- UNREACHABLE();
- }
-}
-
-
-void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
- // The key is in rdx and the parameter count is in rax.
-
- // The displacement is used for skipping the frame pointer on the
- // stack. It is the offset of the last parameter (if any) relative
- // to the frame pointer.
- static const int kDisplacement = 1 * kPointerSize;
-
- // Check that the key is a smi.
- Label slow;
- __ JumpIfNotSmi(rdx, &slow);
-
- // Check if the calling frame is an arguments adaptor frame.
- Label adaptor;
- __ movq(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
- __ SmiCompare(Operand(rbx, StandardFrameConstants::kContextOffset),
- Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
- __ j(equal, &adaptor);
-
- // Check index against formal parameters count limit passed in
- // through register rax. Use unsigned comparison to get negative
- // check for free.
- __ cmpq(rdx, rax);
- __ j(above_equal, &slow);
-
- // Read the argument from the stack and return it.
- SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2);
- __ lea(rbx, Operand(rbp, index.reg, index.scale, 0));
- index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2);
- __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement));
- __ Ret();
-
- // Arguments adaptor case: Check index against actual arguments
- // limit found in the arguments adaptor frame. Use unsigned
- // comparison to get negative check for free.
- __ bind(&adaptor);
- __ movq(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset));
- __ cmpq(rdx, rcx);
- __ j(above_equal, &slow);
-
- // Read the argument from the stack and return it.
- index = masm->SmiToIndex(rax, rcx, kPointerSizeLog2);
- __ lea(rbx, Operand(rbx, index.reg, index.scale, 0));
- index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2);
- __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement));
- __ Ret();
-
- // Slow-case: Handle non-smi or out-of-bounds access to arguments
- // by calling the runtime system.
- __ bind(&slow);
- __ pop(rbx); // Return address.
- __ push(rdx);
- __ push(rbx);
- __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
-}
-
-
-void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
- // rsp[0] : return address
- // rsp[8] : number of parameters
- // rsp[16] : receiver displacement
- // rsp[24] : function
-
- // The displacement is used for skipping the return address and the
- // frame pointer on the stack. It is the offset of the last
- // parameter (if any) relative to the frame pointer.
- static const int kDisplacement = 2 * kPointerSize;
-
- // Check if the calling frame is an arguments adaptor frame.
- Label adaptor_frame, try_allocate, runtime;
- __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
- __ SmiCompare(Operand(rdx, StandardFrameConstants::kContextOffset),
- Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
- __ j(equal, &adaptor_frame);
-
- // Get the length from the frame.
- __ SmiToInteger32(rcx, Operand(rsp, 1 * kPointerSize));
- __ jmp(&try_allocate);
-
- // Patch the arguments.length and the parameters pointer.
- __ bind(&adaptor_frame);
- __ SmiToInteger32(rcx,
- Operand(rdx,
- ArgumentsAdaptorFrameConstants::kLengthOffset));
- // Space on stack must already hold a smi.
- __ Integer32ToSmiField(Operand(rsp, 1 * kPointerSize), rcx);
- // Do not clobber the length index for the indexing operation since
- // it is used compute the size for allocation later.
- __ lea(rdx, Operand(rdx, rcx, times_pointer_size, kDisplacement));
- __ movq(Operand(rsp, 2 * kPointerSize), rdx);
-
- // Try the new space allocation. Start out with computing the size of
- // the arguments object and the elements array.
- Label add_arguments_object;
- __ bind(&try_allocate);
- __ testl(rcx, rcx);
- __ j(zero, &add_arguments_object);
- __ leal(rcx, Operand(rcx, times_pointer_size, FixedArray::kHeaderSize));
- __ bind(&add_arguments_object);
- __ addl(rcx, Immediate(Heap::kArgumentsObjectSize));
-
- // Do the allocation of both objects in one go.
- __ AllocateInNewSpace(rcx, rax, rdx, rbx, &runtime, TAG_OBJECT);
-
- // Get the arguments boilerplate from the current (global) context.
- int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX);
- __ movq(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
- __ movq(rdi, FieldOperand(rdi, GlobalObject::kGlobalContextOffset));
- __ movq(rdi, Operand(rdi, offset));
-
- // Copy the JS object part.
- STATIC_ASSERT(JSObject::kHeaderSize == 3 * kPointerSize);
- __ movq(kScratchRegister, FieldOperand(rdi, 0 * kPointerSize));
- __ movq(rdx, FieldOperand(rdi, 1 * kPointerSize));
- __ movq(rbx, FieldOperand(rdi, 2 * kPointerSize));
- __ movq(FieldOperand(rax, 0 * kPointerSize), kScratchRegister);
- __ movq(FieldOperand(rax, 1 * kPointerSize), rdx);
- __ movq(FieldOperand(rax, 2 * kPointerSize), rbx);
-
- // Setup the callee in-object property.
- ASSERT(Heap::arguments_callee_index == 0);
- __ movq(kScratchRegister, Operand(rsp, 3 * kPointerSize));
- __ movq(FieldOperand(rax, JSObject::kHeaderSize), kScratchRegister);
-
- // Get the length (smi tagged) and set that as an in-object property too.
- ASSERT(Heap::arguments_length_index == 1);
- __ movq(rcx, Operand(rsp, 1 * kPointerSize));
- __ movq(FieldOperand(rax, JSObject::kHeaderSize + kPointerSize), rcx);
-
- // If there are no actual arguments, we're done.
- Label done;
- __ SmiTest(rcx);
- __ j(zero, &done);
-
- // Get the parameters pointer from the stack and untag the length.
- __ movq(rdx, Operand(rsp, 2 * kPointerSize));
-
- // Setup the elements pointer in the allocated arguments object and
- // initialize the header in the elements fixed array.
- __ lea(rdi, Operand(rax, Heap::kArgumentsObjectSize));
- __ movq(FieldOperand(rax, JSObject::kElementsOffset), rdi);
- __ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex);
- __ movq(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister);
- __ movq(FieldOperand(rdi, FixedArray::kLengthOffset), rcx);
- __ SmiToInteger32(rcx, rcx); // Untag length for the loop below.
-
- // Copy the fixed array slots.
- Label loop;
- __ bind(&loop);
- __ movq(kScratchRegister, Operand(rdx, -1 * kPointerSize)); // Skip receiver.
- __ movq(FieldOperand(rdi, FixedArray::kHeaderSize), kScratchRegister);
- __ addq(rdi, Immediate(kPointerSize));
- __ subq(rdx, Immediate(kPointerSize));
- __ decl(rcx);
- __ j(not_zero, &loop);
-
- // Return and remove the on-stack parameters.
- __ bind(&done);
- __ ret(3 * kPointerSize);
-
- // Do the runtime call to allocate the arguments object.
- __ bind(&runtime);
- __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
-}
-
-
-void RegExpExecStub::Generate(MacroAssembler* masm) {
- // Just jump directly to runtime if native RegExp is not selected at compile
- // time or if regexp entry in generated code is turned off runtime switch or
- // at compilation.
-#ifdef V8_INTERPRETED_REGEXP
- __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
-#else // V8_INTERPRETED_REGEXP
- if (!FLAG_regexp_entry_native) {
- __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
- return;
- }
-
- // Stack frame on entry.
- // esp[0]: return address
- // esp[8]: last_match_info (expected JSArray)
- // esp[16]: previous index
- // esp[24]: subject string
- // esp[32]: JSRegExp object
-
- static const int kLastMatchInfoOffset = 1 * kPointerSize;
- static const int kPreviousIndexOffset = 2 * kPointerSize;
- static const int kSubjectOffset = 3 * kPointerSize;
- static const int kJSRegExpOffset = 4 * kPointerSize;
-
- Label runtime;
-
- // Ensure that a RegExp stack is allocated.
- ExternalReference address_of_regexp_stack_memory_address =
- ExternalReference::address_of_regexp_stack_memory_address();
- ExternalReference address_of_regexp_stack_memory_size =
- ExternalReference::address_of_regexp_stack_memory_size();
- __ movq(kScratchRegister, address_of_regexp_stack_memory_size);
- __ movq(kScratchRegister, Operand(kScratchRegister, 0));
- __ testq(kScratchRegister, kScratchRegister);
- __ j(zero, &runtime);
-
-
- // Check that the first argument is a JSRegExp object.
- __ movq(rax, Operand(rsp, kJSRegExpOffset));
- __ JumpIfSmi(rax, &runtime);
- __ CmpObjectType(rax, JS_REGEXP_TYPE, kScratchRegister);
- __ j(not_equal, &runtime);
- // Check that the RegExp has been compiled (data contains a fixed array).
- __ movq(rcx, FieldOperand(rax, JSRegExp::kDataOffset));
- if (FLAG_debug_code) {
- Condition is_smi = masm->CheckSmi(rcx);
- __ Check(NegateCondition(is_smi),
- "Unexpected type for RegExp data, FixedArray expected");
- __ CmpObjectType(rcx, FIXED_ARRAY_TYPE, kScratchRegister);
- __ Check(equal, "Unexpected type for RegExp data, FixedArray expected");
- }
-
- // rcx: RegExp data (FixedArray)
- // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
- __ SmiToInteger32(rbx, FieldOperand(rcx, JSRegExp::kDataTagOffset));
- __ cmpl(rbx, Immediate(JSRegExp::IRREGEXP));
- __ j(not_equal, &runtime);
-
- // rcx: RegExp data (FixedArray)
- // Check that the number of captures fit in the static offsets vector buffer.
- __ SmiToInteger32(rdx,
- FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset));
- // Calculate number of capture registers (number_of_captures + 1) * 2.
- __ leal(rdx, Operand(rdx, rdx, times_1, 2));
- // Check that the static offsets vector buffer is large enough.
- __ cmpl(rdx, Immediate(OffsetsVector::kStaticOffsetsVectorSize));
- __ j(above, &runtime);
-
- // rcx: RegExp data (FixedArray)
- // rdx: Number of capture registers
- // Check that the second argument is a string.
- __ movq(rax, Operand(rsp, kSubjectOffset));
- __ JumpIfSmi(rax, &runtime);
- Condition is_string = masm->IsObjectStringType(rax, rbx, rbx);
- __ j(NegateCondition(is_string), &runtime);
-
- // rax: Subject string.
- // rcx: RegExp data (FixedArray).
- // rdx: Number of capture registers.
- // Check that the third argument is a positive smi less than the string
- // length. A negative value will be greater (unsigned comparison).
- __ movq(rbx, Operand(rsp, kPreviousIndexOffset));
- __ JumpIfNotSmi(rbx, &runtime);
- __ SmiCompare(rbx, FieldOperand(rax, String::kLengthOffset));
- __ j(above_equal, &runtime);
-
- // rcx: RegExp data (FixedArray)
- // rdx: Number of capture registers
- // Check that the fourth object is a JSArray object.
- __ movq(rax, Operand(rsp, kLastMatchInfoOffset));
- __ JumpIfSmi(rax, &runtime);
- __ CmpObjectType(rax, JS_ARRAY_TYPE, kScratchRegister);
- __ j(not_equal, &runtime);
- // Check that the JSArray is in fast case.
- __ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset));
- __ movq(rax, FieldOperand(rbx, HeapObject::kMapOffset));
- __ Cmp(rax, Factory::fixed_array_map());
- __ j(not_equal, &runtime);
- // Check that the last match info has space for the capture registers and the
- // additional information. Ensure no overflow in add.
- STATIC_ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset);
- __ SmiToInteger32(rax, FieldOperand(rbx, FixedArray::kLengthOffset));
- __ addl(rdx, Immediate(RegExpImpl::kLastMatchOverhead));
- __ cmpl(rdx, rax);
- __ j(greater, &runtime);
-
- // rcx: RegExp data (FixedArray)
- // Check the representation and encoding of the subject string.
- Label seq_ascii_string, seq_two_byte_string, check_code;
- __ movq(rax, Operand(rsp, kSubjectOffset));
- __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
- __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
- // First check for flat two byte string.
- __ andb(rbx, Immediate(
- kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask));
- STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
- __ j(zero, &seq_two_byte_string);
- // Any other flat string must be a flat ascii string.
- __ testb(rbx, Immediate(kIsNotStringMask | kStringRepresentationMask));
- __ j(zero, &seq_ascii_string);
-
- // Check for flat cons string.
- // A flat cons string is a cons string where the second part is the empty
- // string. In that case the subject string is just the first part of the cons
- // string. Also in this case the first part of the cons string is known to be
- // a sequential string or an external string.
- STATIC_ASSERT(kExternalStringTag !=0);
- STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0);
- __ testb(rbx, Immediate(kIsNotStringMask | kExternalStringTag));
- __ j(not_zero, &runtime);
- // String is a cons string.
- __ movq(rdx, FieldOperand(rax, ConsString::kSecondOffset));
- __ Cmp(rdx, Factory::empty_string());
- __ j(not_equal, &runtime);
- __ movq(rax, FieldOperand(rax, ConsString::kFirstOffset));
- __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
- // String is a cons string with empty second part.
- // rax: first part of cons string.
- // rbx: map of first part of cons string.
- // Is first part a flat two byte string?
- __ testb(FieldOperand(rbx, Map::kInstanceTypeOffset),
- Immediate(kStringRepresentationMask | kStringEncodingMask));
- STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
- __ j(zero, &seq_two_byte_string);
- // Any other flat string must be ascii.
- __ testb(FieldOperand(rbx, Map::kInstanceTypeOffset),
- Immediate(kStringRepresentationMask));
- __ j(not_zero, &runtime);
-
- __ bind(&seq_ascii_string);
- // rax: subject string (sequential ascii)
- // rcx: RegExp data (FixedArray)
- __ movq(r11, FieldOperand(rcx, JSRegExp::kDataAsciiCodeOffset));
- __ Set(rdi, 1); // Type is ascii.
- __ jmp(&check_code);
-
- __ bind(&seq_two_byte_string);
- // rax: subject string (flat two-byte)
- // rcx: RegExp data (FixedArray)
- __ movq(r11, FieldOperand(rcx, JSRegExp::kDataUC16CodeOffset));
- __ Set(rdi, 0); // Type is two byte.
-
- __ bind(&check_code);
- // Check that the irregexp code has been generated for the actual string
- // encoding. If it has, the field contains a code object otherwise it contains
- // the hole.
- __ CmpObjectType(r11, CODE_TYPE, kScratchRegister);
- __ j(not_equal, &runtime);
-
- // rax: subject string
- // rdi: encoding of subject string (1 if ascii, 0 if two_byte);
- // r11: code
- // Load used arguments before starting to push arguments for call to native
- // RegExp code to avoid handling changing stack height.
- __ SmiToInteger64(rbx, Operand(rsp, kPreviousIndexOffset));
-
- // rax: subject string
- // rbx: previous index
- // rdi: encoding of subject string (1 if ascii 0 if two_byte);
- // r11: code
- // All checks done. Now push arguments for native regexp code.
- __ IncrementCounter(&Counters::regexp_entry_native, 1);
-
- // rsi is caller save on Windows and used to pass parameter on Linux.
- __ push(rsi);
-
- static const int kRegExpExecuteArguments = 7;
- __ PrepareCallCFunction(kRegExpExecuteArguments);
- int argument_slots_on_stack =
- masm->ArgumentStackSlotsForCFunctionCall(kRegExpExecuteArguments);
-
- // Argument 7: Indicate that this is a direct call from JavaScript.
- __ movq(Operand(rsp, (argument_slots_on_stack - 1) * kPointerSize),
- Immediate(1));
-
- // Argument 6: Start (high end) of backtracking stack memory area.
- __ movq(kScratchRegister, address_of_regexp_stack_memory_address);
- __ movq(r9, Operand(kScratchRegister, 0));
- __ movq(kScratchRegister, address_of_regexp_stack_memory_size);
- __ addq(r9, Operand(kScratchRegister, 0));
- // Argument 6 passed in r9 on Linux and on the stack on Windows.
-#ifdef _WIN64
- __ movq(Operand(rsp, (argument_slots_on_stack - 2) * kPointerSize), r9);
-#endif
-
- // Argument 5: static offsets vector buffer.
- __ movq(r8, ExternalReference::address_of_static_offsets_vector());
- // Argument 5 passed in r8 on Linux and on the stack on Windows.
-#ifdef _WIN64
- __ movq(Operand(rsp, (argument_slots_on_stack - 3) * kPointerSize), r8);
-#endif
-
- // First four arguments are passed in registers on both Linux and Windows.
-#ifdef _WIN64
- Register arg4 = r9;
- Register arg3 = r8;
- Register arg2 = rdx;
- Register arg1 = rcx;
-#else
- Register arg4 = rcx;
- Register arg3 = rdx;
- Register arg2 = rsi;
- Register arg1 = rdi;
-#endif
-
- // Keep track on aliasing between argX defined above and the registers used.
- // rax: subject string
- // rbx: previous index
- // rdi: encoding of subject string (1 if ascii 0 if two_byte);
- // r11: code
-
- // Argument 4: End of string data
- // Argument 3: Start of string data
- Label setup_two_byte, setup_rest;
- __ testb(rdi, rdi);
- __ j(zero, &setup_two_byte);
- __ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset));
- __ lea(arg4, FieldOperand(rax, rdi, times_1, SeqAsciiString::kHeaderSize));
- __ lea(arg3, FieldOperand(rax, rbx, times_1, SeqAsciiString::kHeaderSize));
- __ jmp(&setup_rest);
- __ bind(&setup_two_byte);
- __ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset));
- __ lea(arg4, FieldOperand(rax, rdi, times_2, SeqTwoByteString::kHeaderSize));
- __ lea(arg3, FieldOperand(rax, rbx, times_2, SeqTwoByteString::kHeaderSize));
-
- __ bind(&setup_rest);
- // Argument 2: Previous index.
- __ movq(arg2, rbx);
-
- // Argument 1: Subject string.
- __ movq(arg1, rax);
-
- // Locate the code entry and call it.
- __ addq(r11, Immediate(Code::kHeaderSize - kHeapObjectTag));
- __ CallCFunction(r11, kRegExpExecuteArguments);
-
- // rsi is caller save, as it is used to pass parameter.
- __ pop(rsi);
-
- // Check the result.
- Label success;
- __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::SUCCESS));
- __ j(equal, &success);
- Label failure;
- __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::FAILURE));
- __ j(equal, &failure);
- __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::EXCEPTION));
- // If not exception it can only be retry. Handle that in the runtime system.
- __ j(not_equal, &runtime);
- // Result must now be exception. If there is no pending exception already a
- // stack overflow (on the backtrack stack) was detected in RegExp code but
- // haven't created the exception yet. Handle that in the runtime system.
- // TODO(592): Rerunning the RegExp to get the stack overflow exception.
- ExternalReference pending_exception_address(Top::k_pending_exception_address);
- __ movq(kScratchRegister, pending_exception_address);
- __ Cmp(kScratchRegister, Factory::the_hole_value());
- __ j(equal, &runtime);
- __ bind(&failure);
- // For failure and exception return null.
- __ Move(rax, Factory::null_value());
- __ ret(4 * kPointerSize);
-
- // Load RegExp data.
- __ bind(&success);
- __ movq(rax, Operand(rsp, kJSRegExpOffset));
- __ movq(rcx, FieldOperand(rax, JSRegExp::kDataOffset));
- __ SmiToInteger32(rax,
- FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset));
- // Calculate number of capture registers (number_of_captures + 1) * 2.
- __ leal(rdx, Operand(rax, rax, times_1, 2));
-
- // rdx: Number of capture registers
- // Load last_match_info which is still known to be a fast case JSArray.
- __ movq(rax, Operand(rsp, kLastMatchInfoOffset));
- __ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset));
-
- // rbx: last_match_info backing store (FixedArray)
- // rdx: number of capture registers
- // Store the capture count.
- __ Integer32ToSmi(kScratchRegister, rdx);
- __ movq(FieldOperand(rbx, RegExpImpl::kLastCaptureCountOffset),
- kScratchRegister);
- // Store last subject and last input.
- __ movq(rax, Operand(rsp, kSubjectOffset));
- __ movq(FieldOperand(rbx, RegExpImpl::kLastSubjectOffset), rax);
- __ movq(rcx, rbx);
- __ RecordWrite(rcx, RegExpImpl::kLastSubjectOffset, rax, rdi);
- __ movq(rax, Operand(rsp, kSubjectOffset));
- __ movq(FieldOperand(rbx, RegExpImpl::kLastInputOffset), rax);
- __ movq(rcx, rbx);
- __ RecordWrite(rcx, RegExpImpl::kLastInputOffset, rax, rdi);
-
- // Get the static offsets vector filled by the native regexp code.
- __ movq(rcx, ExternalReference::address_of_static_offsets_vector());
-
- // rbx: last_match_info backing store (FixedArray)
- // rcx: offsets vector
- // rdx: number of capture registers
- Label next_capture, done;
- // Capture register counter starts from number of capture registers and
- // counts down until wraping after zero.
- __ bind(&next_capture);
- __ subq(rdx, Immediate(1));
- __ j(negative, &done);
- // Read the value from the static offsets vector buffer and make it a smi.
- __ movl(rdi, Operand(rcx, rdx, times_int_size, 0));
- __ Integer32ToSmi(rdi, rdi, &runtime);
- // Store the smi value in the last match info.
- __ movq(FieldOperand(rbx,
- rdx,
- times_pointer_size,
- RegExpImpl::kFirstCaptureOffset),
- rdi);
- __ jmp(&next_capture);
- __ bind(&done);
-
- // Return last match info.
- __ movq(rax, Operand(rsp, kLastMatchInfoOffset));
- __ ret(4 * kPointerSize);
-
- // Do the runtime call to execute the regexp.
- __ bind(&runtime);
- __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
-#endif // V8_INTERPRETED_REGEXP
-}
-
-
-void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
- Register object,
- Register result,
- Register scratch1,
- Register scratch2,
- bool object_is_smi,
- Label* not_found) {
- // Use of registers. Register result is used as a temporary.
- Register number_string_cache = result;
- Register mask = scratch1;
- Register scratch = scratch2;
-
- // Load the number string cache.
- __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
-
- // Make the hash mask from the length of the number string cache. It
- // contains two elements (number and string) for each cache entry.
- __ SmiToInteger32(
- mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset));
- __ shrl(mask, Immediate(1));
- __ subq(mask, Immediate(1)); // Make mask.
-
- // Calculate the entry in the number string cache. The hash value in the
- // number string cache for smis is just the smi value, and the hash for
- // doubles is the xor of the upper and lower words. See
- // Heap::GetNumberStringCache.
- Label is_smi;
- Label load_result_from_cache;
- if (!object_is_smi) {
- __ JumpIfSmi(object, &is_smi);
- __ CheckMap(object, Factory::heap_number_map(), not_found, true);
-
- STATIC_ASSERT(8 == kDoubleSize);
- __ movl(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4));
- __ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset));
- GenerateConvertHashCodeToIndex(masm, scratch, mask);
-
- Register index = scratch;
- Register probe = mask;
- __ movq(probe,
- FieldOperand(number_string_cache,
- index,
- times_1,
- FixedArray::kHeaderSize));
- __ JumpIfSmi(probe, not_found);
- ASSERT(CpuFeatures::IsSupported(SSE2));
- CpuFeatures::Scope fscope(SSE2);
- __ movsd(xmm0, FieldOperand(object, HeapNumber::kValueOffset));
- __ movsd(xmm1, FieldOperand(probe, HeapNumber::kValueOffset));
- __ ucomisd(xmm0, xmm1);
- __ j(parity_even, not_found); // Bail out if NaN is involved.
- __ j(not_equal, not_found); // The cache did not contain this value.
- __ jmp(&load_result_from_cache);
- }
-
- __ bind(&is_smi);
- __ SmiToInteger32(scratch, object);
- GenerateConvertHashCodeToIndex(masm, scratch, mask);
-
- Register index = scratch;
- // Check if the entry is the smi we are looking for.
- __ cmpq(object,
- FieldOperand(number_string_cache,
- index,
- times_1,
- FixedArray::kHeaderSize));
- __ j(not_equal, not_found);
-
- // Get the result from the cache.
- __ bind(&load_result_from_cache);
- __ movq(result,
- FieldOperand(number_string_cache,
- index,
- times_1,
- FixedArray::kHeaderSize + kPointerSize));
- __ IncrementCounter(&Counters::number_to_string_native, 1);
-}
-
-
-void NumberToStringStub::GenerateConvertHashCodeToIndex(MacroAssembler* masm,
- Register hash,
- Register mask) {
- __ and_(hash, mask);
- // Each entry in string cache consists of two pointer sized fields,
- // but times_twice_pointer_size (multiplication by 16) scale factor
- // is not supported by addrmode on x64 platform.
- // So we have to premultiply entry index before lookup.
- __ shl(hash, Immediate(kPointerSizeLog2 + 1));
-}
-
-
-void NumberToStringStub::Generate(MacroAssembler* masm) {
- Label runtime;
-
- __ movq(rbx, Operand(rsp, kPointerSize));
-
- // Generate code to lookup number in the number string cache.
- GenerateLookupNumberStringCache(masm, rbx, rax, r8, r9, false, &runtime);
- __ ret(1 * kPointerSize);
-
- __ bind(&runtime);
- // Handle number to string in the runtime system if not found in the cache.
- __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1);
-}
-
-
-static int NegativeComparisonResult(Condition cc) {
- ASSERT(cc != equal);
- ASSERT((cc == less) || (cc == less_equal)
- || (cc == greater) || (cc == greater_equal));
- return (cc == greater || cc == greater_equal) ? LESS : GREATER;
-}
-
-
-void CompareStub::Generate(MacroAssembler* masm) {
- ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
-
- Label check_unequal_objects, done;
- // The compare stub returns a positive, negative, or zero 64-bit integer
- // value in rax, corresponding to result of comparing the two inputs.
- // NOTICE! This code is only reached after a smi-fast-case check, so
- // it is certain that at least one operand isn't a smi.
-
- // Two identical objects are equal unless they are both NaN or undefined.
- {
- Label not_identical;
- __ cmpq(rax, rdx);
- __ j(not_equal, &not_identical);
-
- if (cc_ != equal) {
- // Check for undefined. undefined OP undefined is false even though
- // undefined == undefined.
- Label check_for_nan;
- __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex);
- __ j(not_equal, &check_for_nan);
- __ Set(rax, NegativeComparisonResult(cc_));
- __ ret(0);
- __ bind(&check_for_nan);
- }
-
- // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
- // so we do the second best thing - test it ourselves.
- // Note: if cc_ != equal, never_nan_nan_ is not used.
- // We cannot set rax to EQUAL until just before return because
- // rax must be unchanged on jump to not_identical.
-
- if (never_nan_nan_ && (cc_ == equal)) {
- __ Set(rax, EQUAL);
- __ ret(0);
- } else {
- Label heap_number;
- // If it's not a heap number, then return equal for (in)equality operator.
- __ Cmp(FieldOperand(rdx, HeapObject::kMapOffset),
- Factory::heap_number_map());
- __ j(equal, &heap_number);
- if (cc_ != equal) {
- // Call runtime on identical JSObjects. Otherwise return equal.
- __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
- __ j(above_equal, &not_identical);
- }
- __ Set(rax, EQUAL);
- __ ret(0);
-
- __ bind(&heap_number);
- // It is a heap number, so return equal if it's not NaN.
- // For NaN, return 1 for every condition except greater and
- // greater-equal. Return -1 for them, so the comparison yields
- // false for all conditions except not-equal.
- __ Set(rax, EQUAL);
- __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
- __ ucomisd(xmm0, xmm0);
- __ setcc(parity_even, rax);
- // rax is 0 for equal non-NaN heapnumbers, 1 for NaNs.
- if (cc_ == greater_equal || cc_ == greater) {
- __ neg(rax);
- }
- __ ret(0);
- }
-
- __ bind(&not_identical);
- }
-
- if (cc_ == equal) { // Both strict and non-strict.
- Label slow; // Fallthrough label.
-
- // If we're doing a strict equality comparison, we don't have to do
- // type conversion, so we generate code to do fast comparison for objects
- // and oddballs. Non-smi numbers and strings still go through the usual
- // slow-case code.
- if (strict_) {
- // If either is a Smi (we know that not both are), then they can only
- // be equal if the other is a HeapNumber. If so, use the slow case.
- {
- Label not_smis;
- __ SelectNonSmi(rbx, rax, rdx, &not_smis);
-
- // Check if the non-smi operand is a heap number.
- __ Cmp(FieldOperand(rbx, HeapObject::kMapOffset),
- Factory::heap_number_map());
- // If heap number, handle it in the slow case.
- __ j(equal, &slow);
- // Return non-equal. ebx (the lower half of rbx) is not zero.
- __ movq(rax, rbx);
- __ ret(0);
-
- __ bind(&not_smis);
- }
-
- // If either operand is a JSObject or an oddball value, then they are not
- // equal since their pointers are different
- // There is no test for undetectability in strict equality.
-
- // If the first object is a JS object, we have done pointer comparison.
- STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
- Label first_non_object;
- __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
- __ j(below, &first_non_object);
- // Return non-zero (eax (not rax) is not zero)
- Label return_not_equal;
- STATIC_ASSERT(kHeapObjectTag != 0);
- __ bind(&return_not_equal);
- __ ret(0);
-
- __ bind(&first_non_object);
- // Check for oddballs: true, false, null, undefined.
- __ CmpInstanceType(rcx, ODDBALL_TYPE);
- __ j(equal, &return_not_equal);
-
- __ CmpObjectType(rdx, FIRST_JS_OBJECT_TYPE, rcx);
- __ j(above_equal, &return_not_equal);
-
- // Check for oddballs: true, false, null, undefined.
- __ CmpInstanceType(rcx, ODDBALL_TYPE);
- __ j(equal, &return_not_equal);
-
- // Fall through to the general case.
- }
- __ bind(&slow);
- }
-
- // Generate the number comparison code.
- if (include_number_compare_) {
- Label non_number_comparison;
- Label unordered;
- FloatingPointHelper::LoadSSE2UnknownOperands(masm, &non_number_comparison);
- __ xorl(rax, rax);
- __ xorl(rcx, rcx);
- __ ucomisd(xmm0, xmm1);
-
- // Don't base result on EFLAGS when a NaN is involved.
- __ j(parity_even, &unordered);
- // Return a result of -1, 0, or 1, based on EFLAGS.
- __ setcc(above, rax);
- __ setcc(below, rcx);
- __ subq(rax, rcx);
- __ ret(0);
-
- // If one of the numbers was NaN, then the result is always false.
- // The cc is never not-equal.
- __ bind(&unordered);
- ASSERT(cc_ != not_equal);
- if (cc_ == less || cc_ == less_equal) {
- __ Set(rax, 1);
- } else {
- __ Set(rax, -1);
- }
- __ ret(0);
-
- // The number comparison code did not provide a valid result.
- __ bind(&non_number_comparison);
- }
-
- // Fast negative check for symbol-to-symbol equality.
- Label check_for_strings;
- if (cc_ == equal) {
- BranchIfNonSymbol(masm, &check_for_strings, rax, kScratchRegister);
- BranchIfNonSymbol(masm, &check_for_strings, rdx, kScratchRegister);
-
- // We've already checked for object identity, so if both operands
- // are symbols they aren't equal. Register eax (not rax) already holds a
- // non-zero value, which indicates not equal, so just return.
- __ ret(0);
- }
-
- __ bind(&check_for_strings);
-
- __ JumpIfNotBothSequentialAsciiStrings(
- rdx, rax, rcx, rbx, &check_unequal_objects);
-
- // Inline comparison of ascii strings.
- StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
- rdx,
- rax,
- rcx,
- rbx,
- rdi,
- r8);
-
-#ifdef DEBUG
- __ Abort("Unexpected fall-through from string comparison");
-#endif
-
- __ bind(&check_unequal_objects);
- if (cc_ == equal && !strict_) {
- // Not strict equality. Objects are unequal if
- // they are both JSObjects and not undetectable,
- // and their pointers are different.
- Label not_both_objects, return_unequal;
- // At most one is a smi, so we can test for smi by adding the two.
- // A smi plus a heap object has the low bit set, a heap object plus
- // a heap object has the low bit clear.
- STATIC_ASSERT(kSmiTag == 0);
- STATIC_ASSERT(kSmiTagMask == 1);
- __ lea(rcx, Operand(rax, rdx, times_1, 0));
- __ testb(rcx, Immediate(kSmiTagMask));
- __ j(not_zero, &not_both_objects);
- __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rbx);
- __ j(below, &not_both_objects);
- __ CmpObjectType(rdx, FIRST_JS_OBJECT_TYPE, rcx);
- __ j(below, &not_both_objects);
- __ testb(FieldOperand(rbx, Map::kBitFieldOffset),
- Immediate(1 << Map::kIsUndetectable));
- __ j(zero, &return_unequal);
- __ testb(FieldOperand(rcx, Map::kBitFieldOffset),
- Immediate(1 << Map::kIsUndetectable));
- __ j(zero, &return_unequal);
- // The objects are both undetectable, so they both compare as the value
- // undefined, and are equal.
- __ Set(rax, EQUAL);
- __ bind(&return_unequal);
- // Return non-equal by returning the non-zero object pointer in eax,
- // or return equal if we fell through to here.
- __ ret(0);
- __ bind(&not_both_objects);
- }
-
- // Push arguments below the return address to prepare jump to builtin.
- __ pop(rcx);
- __ push(rdx);
- __ push(rax);
-
- // Figure out which native to call and setup the arguments.
- Builtins::JavaScript builtin;
- if (cc_ == equal) {
- builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
- } else {
- builtin = Builtins::COMPARE;
- __ Push(Smi::FromInt(NegativeComparisonResult(cc_)));
- }
-
- // Restore return address on the stack.
- __ push(rcx);
-
- // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
- // tagged as a small integer.
- __ InvokeBuiltin(builtin, JUMP_FUNCTION);
-}
-
-
-void CompareStub::BranchIfNonSymbol(MacroAssembler* masm,
- Label* label,
- Register object,
- Register scratch) {
- __ JumpIfSmi(object, label);
- __ movq(scratch, FieldOperand(object, HeapObject::kMapOffset));
- __ movzxbq(scratch,
- FieldOperand(scratch, Map::kInstanceTypeOffset));
- // Ensure that no non-strings have the symbol bit set.
- STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
- STATIC_ASSERT(kSymbolTag != 0);
- __ testb(scratch, Immediate(kIsSymbolMask));
- __ j(zero, label);
-}
-
-
-void StackCheckStub::Generate(MacroAssembler* masm) {
- // Because builtins always remove the receiver from the stack, we
- // have to fake one to avoid underflowing the stack. The receiver
- // must be inserted below the return address on the stack so we
- // temporarily store that in a register.
- __ pop(rax);
- __ Push(Smi::FromInt(0));
- __ push(rax);
-
- // Do tail-call to runtime routine.
- __ TailCallRuntime(Runtime::kStackGuard, 1, 1);
-}
-
-
-void CallFunctionStub::Generate(MacroAssembler* masm) {
- Label slow;
-
- // If the receiver might be a value (string, number or boolean) check for this
- // and box it if it is.
- if (ReceiverMightBeValue()) {
- // Get the receiver from the stack.
- // +1 ~ return address
- Label receiver_is_value, receiver_is_js_object;
- __ movq(rax, Operand(rsp, (argc_ + 1) * kPointerSize));
-
- // Check if receiver is a smi (which is a number value).
- __ JumpIfSmi(rax, &receiver_is_value);
-
- // Check if the receiver is a valid JS object.
- __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rdi);
- __ j(above_equal, &receiver_is_js_object);
-
- // Call the runtime to box the value.
- __ bind(&receiver_is_value);
- __ EnterInternalFrame();
- __ push(rax);
- __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
- __ LeaveInternalFrame();
- __ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rax);
-
- __ bind(&receiver_is_js_object);
- }
-
- // Get the function to call from the stack.
- // +2 ~ receiver, return address
- __ movq(rdi, Operand(rsp, (argc_ + 2) * kPointerSize));
-
- // Check that the function really is a JavaScript function.
- __ JumpIfSmi(rdi, &slow);
- // Goto slow case if we do not have a function.
- __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
- __ j(not_equal, &slow);
-
- // Fast-case: Just invoke the function.
- ParameterCount actual(argc_);
- __ InvokeFunction(rdi, actual, JUMP_FUNCTION);
-
- // Slow-case: Non-function called.
- __ bind(&slow);
- // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
- // of the original receiver from the call site).
- __ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rdi);
- __ Set(rax, argc_);
- __ Set(rbx, 0);
- __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION);
- Handle<Code> adaptor(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline));
- __ Jump(adaptor, RelocInfo::CODE_TARGET);
-}
-
-
-void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
- // Check that stack should contain next handler, frame pointer, state and
- // return address in that order.
- STATIC_ASSERT(StackHandlerConstants::kFPOffset + kPointerSize ==
- StackHandlerConstants::kStateOffset);
- STATIC_ASSERT(StackHandlerConstants::kStateOffset + kPointerSize ==
- StackHandlerConstants::kPCOffset);
-
- ExternalReference handler_address(Top::k_handler_address);
- __ movq(kScratchRegister, handler_address);
- __ movq(rsp, Operand(kScratchRegister, 0));
- // get next in chain
- __ pop(rcx);
- __ movq(Operand(kScratchRegister, 0), rcx);
- __ pop(rbp); // pop frame pointer
- __ pop(rdx); // remove state
-
- // Before returning we restore the context from the frame pointer if not NULL.
- // The frame pointer is NULL in the exception handler of a JS entry frame.
- __ xor_(rsi, rsi); // tentatively set context pointer to NULL
- Label skip;
- __ cmpq(rbp, Immediate(0));
- __ j(equal, &skip);
- __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
- __ bind(&skip);
- __ ret(0);
-}
-
-
-void ApiGetterEntryStub::Generate(MacroAssembler* masm) {
- Label empty_result;
- Label prologue;
- Label promote_scheduled_exception;
- __ EnterApiExitFrame(ExitFrame::MODE_NORMAL, kStackSpace, 0);
- ASSERT_EQ(kArgc, 4);
-#ifdef _WIN64
- // All the parameters should be set up by a caller.
-#else
- // Set 1st parameter register with property name.
- __ movq(rsi, rdx);
- // Second parameter register rdi should be set with pointer to AccessorInfo
- // by a caller.
-#endif
- // Call the api function!
- __ movq(rax,
- reinterpret_cast<int64_t>(fun()->address()),
- RelocInfo::RUNTIME_ENTRY);
- __ call(rax);
- // Check if the function scheduled an exception.
- ExternalReference scheduled_exception_address =
- ExternalReference::scheduled_exception_address();
- __ movq(rsi, scheduled_exception_address);
- __ Cmp(Operand(rsi, 0), Factory::the_hole_value());
- __ j(not_equal, &promote_scheduled_exception);
-#ifdef _WIN64
- // rax keeps a pointer to v8::Handle, unpack it.
- __ movq(rax, Operand(rax, 0));
-#endif
- // Check if the result handle holds 0.
- __ testq(rax, rax);
- __ j(zero, &empty_result);
- // It was non-zero. Dereference to get the result value.
- __ movq(rax, Operand(rax, 0));
- __ bind(&prologue);
- __ LeaveExitFrame(ExitFrame::MODE_NORMAL);
- __ ret(0);
- __ bind(&promote_scheduled_exception);
- __ TailCallRuntime(Runtime::kPromoteScheduledException, 0, 1);
- __ bind(&empty_result);
- // It was zero; the result is undefined.
- __ Move(rax, Factory::undefined_value());
- __ jmp(&prologue);
-}
-
-
-void CEntryStub::GenerateCore(MacroAssembler* masm,
- Label* throw_normal_exception,
- Label* throw_termination_exception,
- Label* throw_out_of_memory_exception,
- bool do_gc,
- bool always_allocate_scope,
- int /* alignment_skew */) {
- // rax: result parameter for PerformGC, if any.
- // rbx: pointer to C function (C callee-saved).
- // rbp: frame pointer (restored after C call).
- // rsp: stack pointer (restored after C call).
- // r14: number of arguments including receiver (C callee-saved).
- // r12: pointer to the first argument (C callee-saved).
- // This pointer is reused in LeaveExitFrame(), so it is stored in a
- // callee-saved register.
-
- // Simple results returned in rax (both AMD64 and Win64 calling conventions).
- // Complex results must be written to address passed as first argument.
- // AMD64 calling convention: a struct of two pointers in rax+rdx
-
- // Check stack alignment.
- if (FLAG_debug_code) {
- __ CheckStackAlignment();
- }
-
- if (do_gc) {
- // Pass failure code returned from last attempt as first argument to
- // PerformGC. No need to use PrepareCallCFunction/CallCFunction here as the
- // stack is known to be aligned. This function takes one argument which is
- // passed in register.
-#ifdef _WIN64
- __ movq(rcx, rax);
-#else // _WIN64
- __ movq(rdi, rax);
-#endif
- __ movq(kScratchRegister,
- FUNCTION_ADDR(Runtime::PerformGC),
- RelocInfo::RUNTIME_ENTRY);
- __ call(kScratchRegister);
- }
-
- ExternalReference scope_depth =
- ExternalReference::heap_always_allocate_scope_depth();
- if (always_allocate_scope) {
- __ movq(kScratchRegister, scope_depth);
- __ incl(Operand(kScratchRegister, 0));
- }
-
- // Call C function.
-#ifdef _WIN64
- // Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9
- // Store Arguments object on stack, below the 4 WIN64 ABI parameter slots.
- __ movq(Operand(rsp, 4 * kPointerSize), r14); // argc.
- __ movq(Operand(rsp, 5 * kPointerSize), r12); // argv.
- if (result_size_ < 2) {
- // Pass a pointer to the Arguments object as the first argument.
- // Return result in single register (rax).
- __ lea(rcx, Operand(rsp, 4 * kPointerSize));
- } else {
- ASSERT_EQ(2, result_size_);
- // Pass a pointer to the result location as the first argument.
- __ lea(rcx, Operand(rsp, 6 * kPointerSize));
- // Pass a pointer to the Arguments object as the second argument.
- __ lea(rdx, Operand(rsp, 4 * kPointerSize));
- }
-
-#else // _WIN64
- // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9.
- __ movq(rdi, r14); // argc.
- __ movq(rsi, r12); // argv.
-#endif
- __ call(rbx);
- // Result is in rax - do not destroy this register!
-
- if (always_allocate_scope) {
- __ movq(kScratchRegister, scope_depth);
- __ decl(Operand(kScratchRegister, 0));
- }
-
- // Check for failure result.
- Label failure_returned;
- STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
-#ifdef _WIN64
- // If return value is on the stack, pop it to registers.
- if (result_size_ > 1) {
- ASSERT_EQ(2, result_size_);
- // Read result values stored on stack. Result is stored
- // above the four argument mirror slots and the two
- // Arguments object slots.
- __ movq(rax, Operand(rsp, 6 * kPointerSize));
- __ movq(rdx, Operand(rsp, 7 * kPointerSize));
- }
-#endif
- __ lea(rcx, Operand(rax, 1));
- // Lower 2 bits of rcx are 0 iff rax has failure tag.
- __ testl(rcx, Immediate(kFailureTagMask));
- __ j(zero, &failure_returned);
-
- // Exit the JavaScript to C++ exit frame.
- __ LeaveExitFrame(mode_, result_size_);
- __ ret(0);
-
- // Handling of failure.
- __ bind(&failure_returned);
-
- Label retry;
- // If the returned exception is RETRY_AFTER_GC continue at retry label
- STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
- __ testl(rax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
- __ j(zero, &retry);
-
- // Special handling of out of memory exceptions.
- __ movq(kScratchRegister, Failure::OutOfMemoryException(), RelocInfo::NONE);
- __ cmpq(rax, kScratchRegister);
- __ j(equal, throw_out_of_memory_exception);
-
- // Retrieve the pending exception and clear the variable.
- ExternalReference pending_exception_address(Top::k_pending_exception_address);
- __ movq(kScratchRegister, pending_exception_address);
- __ movq(rax, Operand(kScratchRegister, 0));
- __ movq(rdx, ExternalReference::the_hole_value_location());
- __ movq(rdx, Operand(rdx, 0));
- __ movq(Operand(kScratchRegister, 0), rdx);
-
- // Special handling of termination exceptions which are uncatchable
- // by javascript code.
- __ CompareRoot(rax, Heap::kTerminationExceptionRootIndex);
- __ j(equal, throw_termination_exception);
-
- // Handle normal exception.
- __ jmp(throw_normal_exception);
-
- // Retry.
- __ bind(&retry);
-}
-
-
-void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
- UncatchableExceptionType type) {
- // Fetch top stack handler.
- ExternalReference handler_address(Top::k_handler_address);
- __ movq(kScratchRegister, handler_address);
- __ movq(rsp, Operand(kScratchRegister, 0));
-
- // Unwind the handlers until the ENTRY handler is found.
- Label loop, done;
- __ bind(&loop);
- // Load the type of the current stack handler.
- const int kStateOffset = StackHandlerConstants::kStateOffset;
- __ cmpq(Operand(rsp, kStateOffset), Immediate(StackHandler::ENTRY));
- __ j(equal, &done);
- // Fetch the next handler in the list.
- const int kNextOffset = StackHandlerConstants::kNextOffset;
- __ movq(rsp, Operand(rsp, kNextOffset));
- __ jmp(&loop);
- __ bind(&done);
-
- // Set the top handler address to next handler past the current ENTRY handler.
- __ movq(kScratchRegister, handler_address);
- __ pop(Operand(kScratchRegister, 0));
-
- if (type == OUT_OF_MEMORY) {
- // Set external caught exception to false.
- ExternalReference external_caught(Top::k_external_caught_exception_address);
- __ movq(rax, Immediate(false));
- __ store_rax(external_caught);
-
- // Set pending exception and rax to out of memory exception.
- ExternalReference pending_exception(Top::k_pending_exception_address);
- __ movq(rax, Failure::OutOfMemoryException(), RelocInfo::NONE);
- __ store_rax(pending_exception);
- }
-
- // Clear the context pointer.
- __ xor_(rsi, rsi);
-
- // Restore registers from handler.
- STATIC_ASSERT(StackHandlerConstants::kNextOffset + kPointerSize ==
- StackHandlerConstants::kFPOffset);
- __ pop(rbp); // FP
- STATIC_ASSERT(StackHandlerConstants::kFPOffset + kPointerSize ==
- StackHandlerConstants::kStateOffset);
- __ pop(rdx); // State
-
- STATIC_ASSERT(StackHandlerConstants::kStateOffset + kPointerSize ==
- StackHandlerConstants::kPCOffset);
- __ ret(0);
-}
-
-
-void CEntryStub::Generate(MacroAssembler* masm) {
- // rax: number of arguments including receiver
- // rbx: pointer to C function (C callee-saved)
- // rbp: frame pointer of calling JS frame (restored after C call)
- // rsp: stack pointer (restored after C call)
- // rsi: current context (restored)
-
- // NOTE: Invocations of builtins may return failure objects
- // instead of a proper result. The builtin entry handles
- // this by performing a garbage collection and retrying the
- // builtin once.
-
- // Enter the exit frame that transitions from JavaScript to C++.
- __ EnterExitFrame(mode_, result_size_);
-
- // rax: Holds the context at this point, but should not be used.
- // On entry to code generated by GenerateCore, it must hold
- // a failure result if the collect_garbage argument to GenerateCore
- // is true. This failure result can be the result of code
- // generated by a previous call to GenerateCore. The value
- // of rax is then passed to Runtime::PerformGC.
- // rbx: pointer to builtin function (C callee-saved).
- // rbp: frame pointer of exit frame (restored after C call).
- // rsp: stack pointer (restored after C call).
- // r14: number of arguments including receiver (C callee-saved).
- // r12: argv pointer (C callee-saved).
-
- Label throw_normal_exception;
- Label throw_termination_exception;
- Label throw_out_of_memory_exception;
-
- // Call into the runtime system.
- GenerateCore(masm,
- &throw_normal_exception,
- &throw_termination_exception,
- &throw_out_of_memory_exception,
- false,
- false);
-
- // Do space-specific GC and retry runtime call.
- GenerateCore(masm,
- &throw_normal_exception,
- &throw_termination_exception,
- &throw_out_of_memory_exception,
- true,
- false);
-
- // Do full GC and retry runtime call one final time.
- Failure* failure = Failure::InternalError();
- __ movq(rax, failure, RelocInfo::NONE);
- GenerateCore(masm,
- &throw_normal_exception,
- &throw_termination_exception,
- &throw_out_of_memory_exception,
- true,
- true);
-
- __ bind(&throw_out_of_memory_exception);
- GenerateThrowUncatchable(masm, OUT_OF_MEMORY);
-
- __ bind(&throw_termination_exception);
- GenerateThrowUncatchable(masm, TERMINATION);
-
- __ bind(&throw_normal_exception);
- GenerateThrowTOS(masm);
-}
-
-
-void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
- Label invoke, exit;
-#ifdef ENABLE_LOGGING_AND_PROFILING
- Label not_outermost_js, not_outermost_js_2;
-#endif
-
- // Setup frame.
- __ push(rbp);
- __ movq(rbp, rsp);
-
- // Push the stack frame type marker twice.
- int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
- // Scratch register is neither callee-save, nor an argument register on any
- // platform. It's free to use at this point.
- // Cannot use smi-register for loading yet.
- __ movq(kScratchRegister,
- reinterpret_cast<uint64_t>(Smi::FromInt(marker)),
- RelocInfo::NONE);
- __ push(kScratchRegister); // context slot
- __ push(kScratchRegister); // function slot
- // Save callee-saved registers (X64/Win64 calling conventions).
- __ push(r12);
- __ push(r13);
- __ push(r14);
- __ push(r15);
-#ifdef _WIN64
- __ push(rdi); // Only callee save in Win64 ABI, argument in AMD64 ABI.
- __ push(rsi); // Only callee save in Win64 ABI, argument in AMD64 ABI.
-#endif
- __ push(rbx);
- // TODO(X64): On Win64, if we ever use XMM6-XMM15, the low low 64 bits are
- // callee save as well.
-
- // Save copies of the top frame descriptor on the stack.
- ExternalReference c_entry_fp(Top::k_c_entry_fp_address);
- __ load_rax(c_entry_fp);
- __ push(rax);
-
- // Set up the roots and smi constant registers.
- // Needs to be done before any further smi loads.
- ExternalReference roots_address = ExternalReference::roots_address();
- __ movq(kRootRegister, roots_address);
- __ InitializeSmiConstantRegister();
-
-#ifdef ENABLE_LOGGING_AND_PROFILING
- // If this is the outermost JS call, set js_entry_sp value.
- ExternalReference js_entry_sp(Top::k_js_entry_sp_address);
- __ load_rax(js_entry_sp);
- __ testq(rax, rax);
- __ j(not_zero, &not_outermost_js);
- __ movq(rax, rbp);
- __ store_rax(js_entry_sp);
- __ bind(&not_outermost_js);
-#endif
-
- // Call a faked try-block that does the invoke.
- __ call(&invoke);
-
- // Caught exception: Store result (exception) in the pending
- // exception field in the JSEnv and return a failure sentinel.
- ExternalReference pending_exception(Top::k_pending_exception_address);
- __ store_rax(pending_exception);
- __ movq(rax, Failure::Exception(), RelocInfo::NONE);
- __ jmp(&exit);
-
- // Invoke: Link this frame into the handler chain.
- __ bind(&invoke);
- __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);
-
- // Clear any pending exceptions.
- __ load_rax(ExternalReference::the_hole_value_location());
- __ store_rax(pending_exception);
-
- // Fake a receiver (NULL).
- __ push(Immediate(0)); // receiver
-
- // Invoke the function by calling through JS entry trampoline
- // builtin and pop the faked function when we return. We load the address
- // from an external reference instead of inlining the call target address
- // directly in the code, because the builtin stubs may not have been
- // generated yet at the time this code is generated.
- if (is_construct) {
- ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline);
- __ load_rax(construct_entry);
- } else {
- ExternalReference entry(Builtins::JSEntryTrampoline);
- __ load_rax(entry);
- }
- __ lea(kScratchRegister, FieldOperand(rax, Code::kHeaderSize));
- __ call(kScratchRegister);
-
- // Unlink this frame from the handler chain.
- __ movq(kScratchRegister, ExternalReference(Top::k_handler_address));
- __ pop(Operand(kScratchRegister, 0));
- // Pop next_sp.
- __ addq(rsp, Immediate(StackHandlerConstants::kSize - kPointerSize));
-
-#ifdef ENABLE_LOGGING_AND_PROFILING
- // If current EBP value is the same as js_entry_sp value, it means that
- // the current function is the outermost.
- __ movq(kScratchRegister, js_entry_sp);
- __ cmpq(rbp, Operand(kScratchRegister, 0));
- __ j(not_equal, &not_outermost_js_2);
- __ movq(Operand(kScratchRegister, 0), Immediate(0));
- __ bind(&not_outermost_js_2);
-#endif
-
- // Restore the top frame descriptor from the stack.
- __ bind(&exit);
- __ movq(kScratchRegister, ExternalReference(Top::k_c_entry_fp_address));
- __ pop(Operand(kScratchRegister, 0));
-
- // Restore callee-saved registers (X64 conventions).
- __ pop(rbx);
-#ifdef _WIN64
- // Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI.
- __ pop(rsi);
- __ pop(rdi);
-#endif
- __ pop(r15);
- __ pop(r14);
- __ pop(r13);
- __ pop(r12);
- __ addq(rsp, Immediate(2 * kPointerSize)); // remove markers
-
- // Restore frame pointer and return.
- __ pop(rbp);
- __ ret(0);
-}
-
-
-void InstanceofStub::Generate(MacroAssembler* masm) {
- // Implements "value instanceof function" operator.
- // Expected input state:
- // rsp[0] : return address
- // rsp[1] : function pointer
- // rsp[2] : value
- // Returns a bitwise zero to indicate that the value
- // is and instance of the function and anything else to
- // indicate that the value is not an instance.
-
- // Get the object - go slow case if it's a smi.
- Label slow;
- __ movq(rax, Operand(rsp, 2 * kPointerSize));
- __ JumpIfSmi(rax, &slow);
-
- // Check that the left hand is a JS object. Leave its map in rax.
- __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rax);
- __ j(below, &slow);
- __ CmpInstanceType(rax, LAST_JS_OBJECT_TYPE);
- __ j(above, &slow);
-
- // Get the prototype of the function.
- __ movq(rdx, Operand(rsp, 1 * kPointerSize));
- // rdx is function, rax is map.
-
- // Look up the function and the map in the instanceof cache.
- Label miss;
- __ CompareRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex);
- __ j(not_equal, &miss);
- __ CompareRoot(rax, Heap::kInstanceofCacheMapRootIndex);
- __ j(not_equal, &miss);
- __ LoadRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
- __ ret(2 * kPointerSize);
-
- __ bind(&miss);
- __ TryGetFunctionPrototype(rdx, rbx, &slow);
-
- // Check that the function prototype is a JS object.
- __ JumpIfSmi(rbx, &slow);
- __ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, kScratchRegister);
- __ j(below, &slow);
- __ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE);
- __ j(above, &slow);
-
- // Register mapping:
- // rax is object map.
- // rdx is function.
- // rbx is function prototype.
- __ StoreRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex);
- __ StoreRoot(rax, Heap::kInstanceofCacheMapRootIndex);
-
- __ movq(rcx, FieldOperand(rax, Map::kPrototypeOffset));
-
- // Loop through the prototype chain looking for the function prototype.
- Label loop, is_instance, is_not_instance;
- __ LoadRoot(kScratchRegister, Heap::kNullValueRootIndex);
- __ bind(&loop);
- __ cmpq(rcx, rbx);
- __ j(equal, &is_instance);
- __ cmpq(rcx, kScratchRegister);
- // The code at is_not_instance assumes that kScratchRegister contains a
- // non-zero GCable value (the null object in this case).
- __ j(equal, &is_not_instance);
- __ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset));
- __ movq(rcx, FieldOperand(rcx, Map::kPrototypeOffset));
- __ jmp(&loop);
-
- __ bind(&is_instance);
- __ xorl(rax, rax);
- // Store bitwise zero in the cache. This is a Smi in GC terms.
- STATIC_ASSERT(kSmiTag == 0);
- __ StoreRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
- __ ret(2 * kPointerSize);
-
- __ bind(&is_not_instance);
- // We have to store a non-zero value in the cache.
- __ StoreRoot(kScratchRegister, Heap::kInstanceofCacheAnswerRootIndex);
- __ ret(2 * kPointerSize);
-
- // Slow-case: Go through the JavaScript implementation.
- __ bind(&slow);
- __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
-}
-
-
-int CompareStub::MinorKey() {
- // Encode the three parameters in a unique 16 bit value. To avoid duplicate
- // stubs the never NaN NaN condition is only taken into account if the
- // condition is equals.
- ASSERT(static_cast<unsigned>(cc_) < (1 << 12));
- ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
- return ConditionField::encode(static_cast<unsigned>(cc_))
- | RegisterField::encode(false) // lhs_ and rhs_ are not used
- | StrictField::encode(strict_)
- | NeverNanNanField::encode(cc_ == equal ? never_nan_nan_ : false)
- | IncludeNumberCompareField::encode(include_number_compare_);
-}
-
-
-// Unfortunately you have to run without snapshots to see most of these
-// names in the profile since most compare stubs end up in the snapshot.
-const char* CompareStub::GetName() {
- ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
-
- if (name_ != NULL) return name_;
- const int kMaxNameLength = 100;
- name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength);
- if (name_ == NULL) return "OOM";
-
- const char* cc_name;
- switch (cc_) {
- case less: cc_name = "LT"; break;
- case greater: cc_name = "GT"; break;
- case less_equal: cc_name = "LE"; break;
- case greater_equal: cc_name = "GE"; break;
- case equal: cc_name = "EQ"; break;
- case not_equal: cc_name = "NE"; break;
- default: cc_name = "UnknownCondition"; break;
- }
-
- const char* strict_name = "";
- if (strict_ && (cc_ == equal || cc_ == not_equal)) {
- strict_name = "_STRICT";
- }
-
- const char* never_nan_nan_name = "";
- if (never_nan_nan_ && (cc_ == equal || cc_ == not_equal)) {
- never_nan_nan_name = "_NO_NAN";
- }
-
- const char* include_number_compare_name = "";
- if (!include_number_compare_) {
- include_number_compare_name = "_NO_NUMBER";
- }
-
- OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
- "CompareStub_%s%s%s%s",
- cc_name,
- strict_name,
- never_nan_nan_name,
- include_number_compare_name);
- return name_;
-}
-
-
-// -------------------------------------------------------------------------
-// StringCharCodeAtGenerator
-
-void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
- Label flat_string;
- Label ascii_string;
- Label got_char_code;
-
- // If the receiver is a smi trigger the non-string case.
- __ JumpIfSmi(object_, receiver_not_string_);
-
- // Fetch the instance type of the receiver into result register.
- __ movq(result_, FieldOperand(object_, HeapObject::kMapOffset));
- __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
- // If the receiver is not a string trigger the non-string case.
- __ testb(result_, Immediate(kIsNotStringMask));
- __ j(not_zero, receiver_not_string_);
-
- // If the index is non-smi trigger the non-smi case.
- __ JumpIfNotSmi(index_, &index_not_smi_);
-
- // Put smi-tagged index into scratch register.
- __ movq(scratch_, index_);
- __ bind(&got_smi_index_);
-
- // Check for index out of range.
- __ SmiCompare(scratch_, FieldOperand(object_, String::kLengthOffset));
- __ j(above_equal, index_out_of_range_);
-
- // We need special handling for non-flat strings.
- STATIC_ASSERT(kSeqStringTag == 0);
- __ testb(result_, Immediate(kStringRepresentationMask));
- __ j(zero, &flat_string);
-
- // Handle non-flat strings.
- __ testb(result_, Immediate(kIsConsStringMask));
- __ j(zero, &call_runtime_);
-
- // ConsString.
- // Check whether the right hand side is the empty string (i.e. if
- // this is really a flat string in a cons string). If that is not
- // the case we would rather go to the runtime system now to flatten
- // the string.
- __ CompareRoot(FieldOperand(object_, ConsString::kSecondOffset),
- Heap::kEmptyStringRootIndex);
- __ j(not_equal, &call_runtime_);
- // Get the first of the two strings and load its instance type.
- __ movq(object_, FieldOperand(object_, ConsString::kFirstOffset));
- __ movq(result_, FieldOperand(object_, HeapObject::kMapOffset));
- __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
- // If the first cons component is also non-flat, then go to runtime.
- STATIC_ASSERT(kSeqStringTag == 0);
- __ testb(result_, Immediate(kStringRepresentationMask));
- __ j(not_zero, &call_runtime_);
-
- // Check for 1-byte or 2-byte string.
- __ bind(&flat_string);
- STATIC_ASSERT(kAsciiStringTag != 0);
- __ testb(result_, Immediate(kStringEncodingMask));
- __ j(not_zero, &ascii_string);
-
- // 2-byte string.
- // Load the 2-byte character code into the result register.
- __ SmiToInteger32(scratch_, scratch_);
- __ movzxwl(result_, FieldOperand(object_,
- scratch_, times_2,
- SeqTwoByteString::kHeaderSize));
- __ jmp(&got_char_code);
-
- // ASCII string.
- // Load the byte into the result register.
- __ bind(&ascii_string);
- __ SmiToInteger32(scratch_, scratch_);
- __ movzxbl(result_, FieldOperand(object_,
- scratch_, times_1,
- SeqAsciiString::kHeaderSize));
- __ bind(&got_char_code);
- __ Integer32ToSmi(result_, result_);
- __ bind(&exit_);
-}
-
-
-void StringCharCodeAtGenerator::GenerateSlow(
- MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
- __ Abort("Unexpected fallthrough to CharCodeAt slow case");
-
- // Index is not a smi.
- __ bind(&index_not_smi_);
- // If index is a heap number, try converting it to an integer.
- __ CheckMap(index_, Factory::heap_number_map(), index_not_number_, true);
- call_helper.BeforeCall(masm);
- __ push(object_);
- __ push(index_);
- __ push(index_); // Consumed by runtime conversion function.
- if (index_flags_ == STRING_INDEX_IS_NUMBER) {
- __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
- } else {
- ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
- // NumberToSmi discards numbers that are not exact integers.
- __ CallRuntime(Runtime::kNumberToSmi, 1);
- }
- if (!scratch_.is(rax)) {
- // Save the conversion result before the pop instructions below
- // have a chance to overwrite it.
- __ movq(scratch_, rax);
- }
- __ pop(index_);
- __ pop(object_);
- // Reload the instance type.
- __ movq(result_, FieldOperand(object_, HeapObject::kMapOffset));
- __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
- call_helper.AfterCall(masm);
- // If index is still not a smi, it must be out of range.
- __ JumpIfNotSmi(scratch_, index_out_of_range_);
- // Otherwise, return to the fast path.
- __ jmp(&got_smi_index_);
-
- // Call runtime. We get here when the receiver is a string and the
- // index is a number, but the code of getting the actual character
- // is too complex (e.g., when the string needs to be flattened).
- __ bind(&call_runtime_);
- call_helper.BeforeCall(masm);
- __ push(object_);
- __ push(index_);
- __ CallRuntime(Runtime::kStringCharCodeAt, 2);
- if (!result_.is(rax)) {
- __ movq(result_, rax);
- }
- call_helper.AfterCall(masm);
- __ jmp(&exit_);
-
- __ Abort("Unexpected fallthrough from CharCodeAt slow case");
-}
-
-
-// -------------------------------------------------------------------------
-// StringCharFromCodeGenerator
-
-void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
- // Fast case of Heap::LookupSingleCharacterStringFromCode.
- __ JumpIfNotSmi(code_, &slow_case_);
- __ SmiCompare(code_, Smi::FromInt(String::kMaxAsciiCharCode));
- __ j(above, &slow_case_);
-
- __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
- SmiIndex index = masm->SmiToIndex(kScratchRegister, code_, kPointerSizeLog2);
- __ movq(result_, FieldOperand(result_, index.reg, index.scale,
- FixedArray::kHeaderSize));
- __ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
- __ j(equal, &slow_case_);
- __ bind(&exit_);
-}
-
-
-void StringCharFromCodeGenerator::GenerateSlow(
- MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
- __ Abort("Unexpected fallthrough to CharFromCode slow case");
-
- __ bind(&slow_case_);
- call_helper.BeforeCall(masm);
- __ push(code_);
- __ CallRuntime(Runtime::kCharFromCode, 1);
- if (!result_.is(rax)) {
- __ movq(result_, rax);
- }
- call_helper.AfterCall(masm);
- __ jmp(&exit_);
-
- __ Abort("Unexpected fallthrough from CharFromCode slow case");
-}
-
-
-// -------------------------------------------------------------------------
-// StringCharAtGenerator
-
-void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
- char_code_at_generator_.GenerateFast(masm);
- char_from_code_generator_.GenerateFast(masm);
-}
-
-
-void StringCharAtGenerator::GenerateSlow(
- MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
- char_code_at_generator_.GenerateSlow(masm, call_helper);
- char_from_code_generator_.GenerateSlow(masm, call_helper);
-}
-
-
-void StringAddStub::Generate(MacroAssembler* masm) {
- Label string_add_runtime;
-
- // Load the two arguments.
- __ movq(rax, Operand(rsp, 2 * kPointerSize)); // First argument.
- __ movq(rdx, Operand(rsp, 1 * kPointerSize)); // Second argument.
-
- // Make sure that both arguments are strings if not known in advance.
- if (string_check_) {
- Condition is_smi;
- is_smi = masm->CheckSmi(rax);
- __ j(is_smi, &string_add_runtime);
- __ CmpObjectType(rax, FIRST_NONSTRING_TYPE, r8);
- __ j(above_equal, &string_add_runtime);
-
- // First argument is a a string, test second.
- is_smi = masm->CheckSmi(rdx);
- __ j(is_smi, &string_add_runtime);
- __ CmpObjectType(rdx, FIRST_NONSTRING_TYPE, r9);
- __ j(above_equal, &string_add_runtime);
- }
-
- // Both arguments are strings.
- // rax: first string
- // rdx: second string
- // Check if either of the strings are empty. In that case return the other.
- Label second_not_zero_length, both_not_zero_length;
- __ movq(rcx, FieldOperand(rdx, String::kLengthOffset));
- __ SmiTest(rcx);
- __ j(not_zero, &second_not_zero_length);
- // Second string is empty, result is first string which is already in rax.
- __ IncrementCounter(&Counters::string_add_native, 1);
- __ ret(2 * kPointerSize);
- __ bind(&second_not_zero_length);
- __ movq(rbx, FieldOperand(rax, String::kLengthOffset));
- __ SmiTest(rbx);
- __ j(not_zero, &both_not_zero_length);
- // First string is empty, result is second string which is in rdx.
- __ movq(rax, rdx);
- __ IncrementCounter(&Counters::string_add_native, 1);
- __ ret(2 * kPointerSize);
-
- // Both strings are non-empty.
- // rax: first string
- // rbx: length of first string
- // rcx: length of second string
- // rdx: second string
- // r8: map of first string if string check was performed above
- // r9: map of second string if string check was performed above
- Label string_add_flat_result, longer_than_two;
- __ bind(&both_not_zero_length);
-
- // If arguments where known to be strings, maps are not loaded to r8 and r9
- // by the code above.
- if (!string_check_) {
- __ movq(r8, FieldOperand(rax, HeapObject::kMapOffset));
- __ movq(r9, FieldOperand(rdx, HeapObject::kMapOffset));
- }
- // Get the instance types of the two strings as they will be needed soon.
- __ movzxbl(r8, FieldOperand(r8, Map::kInstanceTypeOffset));
- __ movzxbl(r9, FieldOperand(r9, Map::kInstanceTypeOffset));
-
- // Look at the length of the result of adding the two strings.
- STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue / 2);
- __ SmiAdd(rbx, rbx, rcx, NULL);
- // Use the runtime system when adding two one character strings, as it
- // contains optimizations for this specific case using the symbol table.
- __ SmiCompare(rbx, Smi::FromInt(2));
- __ j(not_equal, &longer_than_two);
-
- // Check that both strings are non-external ascii strings.
- __ JumpIfBothInstanceTypesAreNotSequentialAscii(r8, r9, rbx, rcx,
- &string_add_runtime);
-
- // Get the two characters forming the sub string.
- __ movzxbq(rbx, FieldOperand(rax, SeqAsciiString::kHeaderSize));
- __ movzxbq(rcx, FieldOperand(rdx, SeqAsciiString::kHeaderSize));
-
- // Try to lookup two character string in symbol table. If it is not found
- // just allocate a new one.
- Label make_two_character_string, make_flat_ascii_string;
- StringHelper::GenerateTwoCharacterSymbolTableProbe(
- masm, rbx, rcx, r14, r11, rdi, r12, &make_two_character_string);
- __ IncrementCounter(&Counters::string_add_native, 1);
- __ ret(2 * kPointerSize);
-
- __ bind(&make_two_character_string);
- __ Set(rbx, 2);
- __ jmp(&make_flat_ascii_string);
-
- __ bind(&longer_than_two);
- // Check if resulting string will be flat.
- __ SmiCompare(rbx, Smi::FromInt(String::kMinNonFlatLength));
- __ j(below, &string_add_flat_result);
- // Handle exceptionally long strings in the runtime system.
- STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
- __ SmiCompare(rbx, Smi::FromInt(String::kMaxLength));
- __ j(above, &string_add_runtime);
-
- // If result is not supposed to be flat, allocate a cons string object. If
- // both strings are ascii the result is an ascii cons string.
- // rax: first string
- // rbx: length of resulting flat string
- // rdx: second string
- // r8: instance type of first string
- // r9: instance type of second string
- Label non_ascii, allocated, ascii_data;
- __ movl(rcx, r8);
- __ and_(rcx, r9);
- STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag);
- __ testl(rcx, Immediate(kAsciiStringTag));
- __ j(zero, &non_ascii);
- __ bind(&ascii_data);
- // Allocate an acsii cons string.
- __ AllocateAsciiConsString(rcx, rdi, no_reg, &string_add_runtime);
- __ bind(&allocated);
- // Fill the fields of the cons string.
- __ movq(FieldOperand(rcx, ConsString::kLengthOffset), rbx);
- __ movq(FieldOperand(rcx, ConsString::kHashFieldOffset),
- Immediate(String::kEmptyHashField));
- __ movq(FieldOperand(rcx, ConsString::kFirstOffset), rax);
- __ movq(FieldOperand(rcx, ConsString::kSecondOffset), rdx);
- __ movq(rax, rcx);
- __ IncrementCounter(&Counters::string_add_native, 1);
- __ ret(2 * kPointerSize);
- __ bind(&non_ascii);
- // At least one of the strings is two-byte. Check whether it happens
- // to contain only ascii characters.
- // rcx: first instance type AND second instance type.
- // r8: first instance type.
- // r9: second instance type.
- __ testb(rcx, Immediate(kAsciiDataHintMask));
- __ j(not_zero, &ascii_data);
- __ xor_(r8, r9);
- STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
- __ andb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag));
- __ cmpb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag));
- __ j(equal, &ascii_data);
- // Allocate a two byte cons string.
- __ AllocateConsString(rcx, rdi, no_reg, &string_add_runtime);
- __ jmp(&allocated);
-
- // Handle creating a flat result. First check that both strings are not
- // external strings.
- // rax: first string
- // rbx: length of resulting flat string as smi
- // rdx: second string
- // r8: instance type of first string
- // r9: instance type of first string
- __ bind(&string_add_flat_result);
- __ SmiToInteger32(rbx, rbx);
- __ movl(rcx, r8);
- __ and_(rcx, Immediate(kStringRepresentationMask));
- __ cmpl(rcx, Immediate(kExternalStringTag));
- __ j(equal, &string_add_runtime);
- __ movl(rcx, r9);
- __ and_(rcx, Immediate(kStringRepresentationMask));
- __ cmpl(rcx, Immediate(kExternalStringTag));
- __ j(equal, &string_add_runtime);
- // Now check if both strings are ascii strings.
- // rax: first string
- // rbx: length of resulting flat string
- // rdx: second string
- // r8: instance type of first string
- // r9: instance type of second string
- Label non_ascii_string_add_flat_result;
- STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag);
- __ testl(r8, Immediate(kAsciiStringTag));
- __ j(zero, &non_ascii_string_add_flat_result);
- __ testl(r9, Immediate(kAsciiStringTag));
- __ j(zero, &string_add_runtime);
-
- __ bind(&make_flat_ascii_string);
- // Both strings are ascii strings. As they are short they are both flat.
- __ AllocateAsciiString(rcx, rbx, rdi, r14, r11, &string_add_runtime);
- // rcx: result string
- __ movq(rbx, rcx);
- // Locate first character of result.
- __ addq(rcx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
- // Locate first character of first argument
- __ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset));
- __ addq(rax, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
- // rax: first char of first argument
- // rbx: result string
- // rcx: first character of result
- // rdx: second string
- // rdi: length of first argument
- StringHelper::GenerateCopyCharacters(masm, rcx, rax, rdi, true);
- // Locate first character of second argument.
- __ SmiToInteger32(rdi, FieldOperand(rdx, String::kLengthOffset));
- __ addq(rdx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
- // rbx: result string
- // rcx: next character of result
- // rdx: first char of second argument
- // rdi: length of second argument
- StringHelper::GenerateCopyCharacters(masm, rcx, rdx, rdi, true);
- __ movq(rax, rbx);
- __ IncrementCounter(&Counters::string_add_native, 1);
- __ ret(2 * kPointerSize);
-
- // Handle creating a flat two byte result.
- // rax: first string - known to be two byte
- // rbx: length of resulting flat string
- // rdx: second string
- // r8: instance type of first string
- // r9: instance type of first string
- __ bind(&non_ascii_string_add_flat_result);
- __ and_(r9, Immediate(kAsciiStringTag));
- __ j(not_zero, &string_add_runtime);
- // Both strings are two byte strings. As they are short they are both
- // flat.
- __ AllocateTwoByteString(rcx, rbx, rdi, r14, r11, &string_add_runtime);
- // rcx: result string
- __ movq(rbx, rcx);
- // Locate first character of result.
- __ addq(rcx, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
- // Locate first character of first argument.
- __ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset));
- __ addq(rax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
- // rax: first char of first argument
- // rbx: result string
- // rcx: first character of result
- // rdx: second argument
- // rdi: length of first argument
- StringHelper::GenerateCopyCharacters(masm, rcx, rax, rdi, false);
- // Locate first character of second argument.
- __ SmiToInteger32(rdi, FieldOperand(rdx, String::kLengthOffset));
- __ addq(rdx, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
- // rbx: result string
- // rcx: next character of result
- // rdx: first char of second argument
- // rdi: length of second argument
- StringHelper::GenerateCopyCharacters(masm, rcx, rdx, rdi, false);
- __ movq(rax, rbx);
- __ IncrementCounter(&Counters::string_add_native, 1);
- __ ret(2 * kPointerSize);
-
- // Just jump to runtime to add the two strings.
- __ bind(&string_add_runtime);
- __ TailCallRuntime(Runtime::kStringAdd, 2, 1);
-}
-
-
-void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
- Register dest,
- Register src,
- Register count,
- bool ascii) {
- Label loop;
- __ bind(&loop);
- // This loop just copies one character at a time, as it is only used for very
- // short strings.
- if (ascii) {
- __ movb(kScratchRegister, Operand(src, 0));
- __ movb(Operand(dest, 0), kScratchRegister);
- __ incq(src);
- __ incq(dest);
- } else {
- __ movzxwl(kScratchRegister, Operand(src, 0));
- __ movw(Operand(dest, 0), kScratchRegister);
- __ addq(src, Immediate(2));
- __ addq(dest, Immediate(2));
- }
- __ decl(count);
- __ j(not_zero, &loop);
-}
-
-
-void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm,
- Register dest,
- Register src,
- Register count,
- bool ascii) {
- // Copy characters using rep movs of doublewords. Align destination on 4 byte
- // boundary before starting rep movs. Copy remaining characters after running
- // rep movs.
- // Count is positive int32, dest and src are character pointers.
- ASSERT(dest.is(rdi)); // rep movs destination
- ASSERT(src.is(rsi)); // rep movs source
- ASSERT(count.is(rcx)); // rep movs count
-
- // Nothing to do for zero characters.
- Label done;
- __ testl(count, count);
- __ j(zero, &done);
-
- // Make count the number of bytes to copy.
- if (!ascii) {
- STATIC_ASSERT(2 == sizeof(uc16));
- __ addl(count, count);
- }
-
- // Don't enter the rep movs if there are less than 4 bytes to copy.
- Label last_bytes;
- __ testl(count, Immediate(~7));
- __ j(zero, &last_bytes);
-
- // Copy from edi to esi using rep movs instruction.
- __ movl(kScratchRegister, count);
- __ shr(count, Immediate(3)); // Number of doublewords to copy.
- __ repmovsq();
-
- // Find number of bytes left.
- __ movl(count, kScratchRegister);
- __ and_(count, Immediate(7));
-
- // Check if there are more bytes to copy.
- __ bind(&last_bytes);
- __ testl(count, count);
- __ j(zero, &done);
-
- // Copy remaining characters.
- Label loop;
- __ bind(&loop);
- __ movb(kScratchRegister, Operand(src, 0));
- __ movb(Operand(dest, 0), kScratchRegister);
- __ incq(src);
- __ incq(dest);
- __ decl(count);
- __ j(not_zero, &loop);
-
- __ bind(&done);
-}
-
-void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
- Register c1,
- Register c2,
- Register scratch1,
- Register scratch2,
- Register scratch3,
- Register scratch4,
- Label* not_found) {
- // Register scratch3 is the general scratch register in this function.
- Register scratch = scratch3;
-
- // Make sure that both characters are not digits as such strings has a
- // different hash algorithm. Don't try to look for these in the symbol table.
- Label not_array_index;
- __ leal(scratch, Operand(c1, -'0'));
- __ cmpl(scratch, Immediate(static_cast<int>('9' - '0')));
- __ j(above, &not_array_index);
- __ leal(scratch, Operand(c2, -'0'));
- __ cmpl(scratch, Immediate(static_cast<int>('9' - '0')));
- __ j(below_equal, not_found);
-
- __ bind(&not_array_index);
- // Calculate the two character string hash.
- Register hash = scratch1;
- GenerateHashInit(masm, hash, c1, scratch);
- GenerateHashAddCharacter(masm, hash, c2, scratch);
- GenerateHashGetHash(masm, hash, scratch);
-
- // Collect the two characters in a register.
- Register chars = c1;
- __ shl(c2, Immediate(kBitsPerByte));
- __ orl(chars, c2);
-
- // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
- // hash: hash of two character string.
-
- // Load the symbol table.
- Register symbol_table = c2;
- __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex);
-
- // Calculate capacity mask from the symbol table capacity.
- Register mask = scratch2;
- __ SmiToInteger32(mask,
- FieldOperand(symbol_table, SymbolTable::kCapacityOffset));
- __ decl(mask);
-
- Register undefined = scratch4;
- __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
-
- // Registers
- // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
- // hash: hash of two character string (32-bit int)
- // symbol_table: symbol table
- // mask: capacity mask (32-bit int)
- // undefined: undefined value
- // scratch: -
-
- // Perform a number of probes in the symbol table.
- static const int kProbes = 4;
- Label found_in_symbol_table;
- Label next_probe[kProbes];
- for (int i = 0; i < kProbes; i++) {
- // Calculate entry in symbol table.
- __ movl(scratch, hash);
- if (i > 0) {
- __ addl(scratch, Immediate(SymbolTable::GetProbeOffset(i)));
- }
- __ andl(scratch, mask);
-
- // Load the entry from the symble table.
- Register candidate = scratch; // Scratch register contains candidate.
- STATIC_ASSERT(SymbolTable::kEntrySize == 1);
- __ movq(candidate,
- FieldOperand(symbol_table,
- scratch,
- times_pointer_size,
- SymbolTable::kElementsStartOffset));
-
- // If entry is undefined no string with this hash can be found.
- __ cmpq(candidate, undefined);
- __ j(equal, not_found);
-
- // If length is not 2 the string is not a candidate.
- __ SmiCompare(FieldOperand(candidate, String::kLengthOffset),
- Smi::FromInt(2));
- __ j(not_equal, &next_probe[i]);
-
- // We use kScratchRegister as a temporary register in assumption that
- // JumpIfInstanceTypeIsNotSequentialAscii does not use it implicitly
- Register temp = kScratchRegister;
-
- // Check that the candidate is a non-external ascii string.
- __ movq(temp, FieldOperand(candidate, HeapObject::kMapOffset));
- __ movzxbl(temp, FieldOperand(temp, Map::kInstanceTypeOffset));
- __ JumpIfInstanceTypeIsNotSequentialAscii(
- temp, temp, &next_probe[i]);
-
- // Check if the two characters match.
- __ movl(temp, FieldOperand(candidate, SeqAsciiString::kHeaderSize));
- __ andl(temp, Immediate(0x0000ffff));
- __ cmpl(chars, temp);
- __ j(equal, &found_in_symbol_table);
- __ bind(&next_probe[i]);
- }
-
- // No matching 2 character string found by probing.
- __ jmp(not_found);
-
- // Scratch register contains result when we fall through to here.
- Register result = scratch;
- __ bind(&found_in_symbol_table);
- if (!result.is(rax)) {
- __ movq(rax, result);
- }
-}
-
-
-void StringHelper::GenerateHashInit(MacroAssembler* masm,
- Register hash,
- Register character,
- Register scratch) {
- // hash = character + (character << 10);
- __ movl(hash, character);
- __ shll(hash, Immediate(10));
- __ addl(hash, character);
- // hash ^= hash >> 6;
- __ movl(scratch, hash);
- __ sarl(scratch, Immediate(6));
- __ xorl(hash, scratch);
-}
-
-
-void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
- Register hash,
- Register character,
- Register scratch) {
- // hash += character;
- __ addl(hash, character);
- // hash += hash << 10;
- __ movl(scratch, hash);
- __ shll(scratch, Immediate(10));
- __ addl(hash, scratch);
- // hash ^= hash >> 6;
- __ movl(scratch, hash);
- __ sarl(scratch, Immediate(6));
- __ xorl(hash, scratch);
-}
-
-
-void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
- Register hash,
- Register scratch) {
- // hash += hash << 3;
- __ leal(hash, Operand(hash, hash, times_8, 0));
- // hash ^= hash >> 11;
- __ movl(scratch, hash);
- __ sarl(scratch, Immediate(11));
- __ xorl(hash, scratch);
- // hash += hash << 15;
- __ movl(scratch, hash);
- __ shll(scratch, Immediate(15));
- __ addl(hash, scratch);
-
- // if (hash == 0) hash = 27;
- Label hash_not_zero;
- __ j(not_zero, &hash_not_zero);
- __ movl(hash, Immediate(27));
- __ bind(&hash_not_zero);
-}
-
-void SubStringStub::Generate(MacroAssembler* masm) {
- Label runtime;
-
- // Stack frame on entry.
- // rsp[0]: return address
- // rsp[8]: to
- // rsp[16]: from
- // rsp[24]: string
-
- const int kToOffset = 1 * kPointerSize;
- const int kFromOffset = kToOffset + kPointerSize;
- const int kStringOffset = kFromOffset + kPointerSize;
- const int kArgumentsSize = (kStringOffset + kPointerSize) - kToOffset;
-
- // Make sure first argument is a string.
- __ movq(rax, Operand(rsp, kStringOffset));
- STATIC_ASSERT(kSmiTag == 0);
- __ testl(rax, Immediate(kSmiTagMask));
- __ j(zero, &runtime);
- Condition is_string = masm->IsObjectStringType(rax, rbx, rbx);
- __ j(NegateCondition(is_string), &runtime);
-
- // rax: string
- // rbx: instance type
- // Calculate length of sub string using the smi values.
- Label result_longer_than_two;
- __ movq(rcx, Operand(rsp, kToOffset));
- __ movq(rdx, Operand(rsp, kFromOffset));
- __ JumpIfNotBothPositiveSmi(rcx, rdx, &runtime);
-
- __ SmiSub(rcx, rcx, rdx, NULL); // Overflow doesn't happen.
- __ cmpq(FieldOperand(rax, String::kLengthOffset), rcx);
- Label return_rax;
- __ j(equal, &return_rax);
- // Special handling of sub-strings of length 1 and 2. One character strings
- // are handled in the runtime system (looked up in the single character
- // cache). Two character strings are looked for in the symbol cache.
- __ SmiToInteger32(rcx, rcx);
- __ cmpl(rcx, Immediate(2));
- __ j(greater, &result_longer_than_two);
- __ j(less, &runtime);
-
- // Sub string of length 2 requested.
- // rax: string
- // rbx: instance type
- // rcx: sub string length (value is 2)
- // rdx: from index (smi)
- __ JumpIfInstanceTypeIsNotSequentialAscii(rbx, rbx, &runtime);
-
- // Get the two characters forming the sub string.
- __ SmiToInteger32(rdx, rdx); // From index is no longer smi.
- __ movzxbq(rbx, FieldOperand(rax, rdx, times_1, SeqAsciiString::kHeaderSize));
- __ movzxbq(rcx,
- FieldOperand(rax, rdx, times_1, SeqAsciiString::kHeaderSize + 1));
-
- // Try to lookup two character string in symbol table.
- Label make_two_character_string;
- StringHelper::GenerateTwoCharacterSymbolTableProbe(
- masm, rbx, rcx, rax, rdx, rdi, r14, &make_two_character_string);
- __ ret(3 * kPointerSize);
-
- __ bind(&make_two_character_string);
- // Setup registers for allocating the two character string.
- __ movq(rax, Operand(rsp, kStringOffset));
- __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
- __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
- __ Set(rcx, 2);
-
- __ bind(&result_longer_than_two);
-
- // rax: string
- // rbx: instance type
- // rcx: result string length
- // Check for flat ascii string
- Label non_ascii_flat;
- __ JumpIfInstanceTypeIsNotSequentialAscii(rbx, rbx, &non_ascii_flat);
-
- // Allocate the result.
- __ AllocateAsciiString(rax, rcx, rbx, rdx, rdi, &runtime);
-
- // rax: result string
- // rcx: result string length
- __ movq(rdx, rsi); // esi used by following code.
- // Locate first character of result.
- __ lea(rdi, FieldOperand(rax, SeqAsciiString::kHeaderSize));
- // Load string argument and locate character of sub string start.
- __ movq(rsi, Operand(rsp, kStringOffset));
- __ movq(rbx, Operand(rsp, kFromOffset));
- {
- SmiIndex smi_as_index = masm->SmiToIndex(rbx, rbx, times_1);
- __ lea(rsi, Operand(rsi, smi_as_index.reg, smi_as_index.scale,
- SeqAsciiString::kHeaderSize - kHeapObjectTag));
- }
-
- // rax: result string
- // rcx: result length
- // rdx: original value of rsi
- // rdi: first character of result
- // rsi: character of sub string start
- StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, true);
- __ movq(rsi, rdx); // Restore rsi.
- __ IncrementCounter(&Counters::sub_string_native, 1);
- __ ret(kArgumentsSize);
-
- __ bind(&non_ascii_flat);
- // rax: string
- // rbx: instance type & kStringRepresentationMask | kStringEncodingMask
- // rcx: result string length
- // Check for sequential two byte string
- __ cmpb(rbx, Immediate(kSeqStringTag | kTwoByteStringTag));
- __ j(not_equal, &runtime);
-
- // Allocate the result.
- __ AllocateTwoByteString(rax, rcx, rbx, rdx, rdi, &runtime);
-
- // rax: result string
- // rcx: result string length
- __ movq(rdx, rsi); // esi used by following code.
- // Locate first character of result.
- __ lea(rdi, FieldOperand(rax, SeqTwoByteString::kHeaderSize));
- // Load string argument and locate character of sub string start.
- __ movq(rsi, Operand(rsp, kStringOffset));
- __ movq(rbx, Operand(rsp, kFromOffset));
- {
- SmiIndex smi_as_index = masm->SmiToIndex(rbx, rbx, times_2);
- __ lea(rsi, Operand(rsi, smi_as_index.reg, smi_as_index.scale,
- SeqAsciiString::kHeaderSize - kHeapObjectTag));
- }
-
- // rax: result string
- // rcx: result length
- // rdx: original value of rsi
- // rdi: first character of result
- // rsi: character of sub string start
- StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, false);
- __ movq(rsi, rdx); // Restore esi.
-
- __ bind(&return_rax);
- __ IncrementCounter(&Counters::sub_string_native, 1);
- __ ret(kArgumentsSize);
-
- // Just jump to runtime to create the sub string.
- __ bind(&runtime);
- __ TailCallRuntime(Runtime::kSubString, 3, 1);
-}
-
-
-void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
- Register left,
- Register right,
- Register scratch1,
- Register scratch2,
- Register scratch3,
- Register scratch4) {
- // Ensure that you can always subtract a string length from a non-negative
- // number (e.g. another length).
- STATIC_ASSERT(String::kMaxLength < 0x7fffffff);
-
- // Find minimum length and length difference.
- __ movq(scratch1, FieldOperand(left, String::kLengthOffset));
- __ movq(scratch4, scratch1);
- __ SmiSub(scratch4,
- scratch4,
- FieldOperand(right, String::kLengthOffset),
- NULL);
- // Register scratch4 now holds left.length - right.length.
- const Register length_difference = scratch4;
- Label left_shorter;
- __ j(less, &left_shorter);
- // The right string isn't longer that the left one.
- // Get the right string's length by subtracting the (non-negative) difference
- // from the left string's length.
- __ SmiSub(scratch1, scratch1, length_difference, NULL);
- __ bind(&left_shorter);
- // Register scratch1 now holds Min(left.length, right.length).
- const Register min_length = scratch1;
-
- Label compare_lengths;
- // If min-length is zero, go directly to comparing lengths.
- __ SmiTest(min_length);
- __ j(zero, &compare_lengths);
-
- __ SmiToInteger32(min_length, min_length);
-
- // Registers scratch2 and scratch3 are free.
- Label result_not_equal;
- Label loop;
- {
- // Check characters 0 .. min_length - 1 in a loop.
- // Use scratch3 as loop index, min_length as limit and scratch2
- // for computation.
- const Register index = scratch3;
- __ movl(index, Immediate(0)); // Index into strings.
- __ bind(&loop);
- // Compare characters.
- // TODO(lrn): Could we load more than one character at a time?
- __ movb(scratch2, FieldOperand(left,
- index,
- times_1,
- SeqAsciiString::kHeaderSize));
- // Increment index and use -1 modifier on next load to give
- // the previous load extra time to complete.
- __ addl(index, Immediate(1));
- __ cmpb(scratch2, FieldOperand(right,
- index,
- times_1,
- SeqAsciiString::kHeaderSize - 1));
- __ j(not_equal, &result_not_equal);
- __ cmpl(index, min_length);
- __ j(not_equal, &loop);
- }
- // Completed loop without finding different characters.
- // Compare lengths (precomputed).
- __ bind(&compare_lengths);
- __ SmiTest(length_difference);
- __ j(not_zero, &result_not_equal);
-
- // Result is EQUAL.
- __ Move(rax, Smi::FromInt(EQUAL));
- __ ret(0);
-
- Label result_greater;
- __ bind(&result_not_equal);
- // Unequal comparison of left to right, either character or length.
- __ j(greater, &result_greater);
-
- // Result is LESS.
- __ Move(rax, Smi::FromInt(LESS));
- __ ret(0);
-
- // Result is GREATER.
- __ bind(&result_greater);
- __ Move(rax, Smi::FromInt(GREATER));
- __ ret(0);
-}
-
-
-void StringCompareStub::Generate(MacroAssembler* masm) {
- Label runtime;
-
- // Stack frame on entry.
- // rsp[0]: return address
- // rsp[8]: right string
- // rsp[16]: left string
-
- __ movq(rdx, Operand(rsp, 2 * kPointerSize)); // left
- __ movq(rax, Operand(rsp, 1 * kPointerSize)); // right
-
- // Check for identity.
- Label not_same;
- __ cmpq(rdx, rax);
- __ j(not_equal, &not_same);
- __ Move(rax, Smi::FromInt(EQUAL));
- __ IncrementCounter(&Counters::string_compare_native, 1);
- __ ret(2 * kPointerSize);
-
- __ bind(&not_same);
-
- // Check that both are sequential ASCII strings.
- __ JumpIfNotBothSequentialAsciiStrings(rdx, rax, rcx, rbx, &runtime);
-
- // Inline comparison of ascii strings.
- __ IncrementCounter(&Counters::string_compare_native, 1);
- // Drop arguments from the stack
- __ pop(rcx);
- __ addq(rsp, Immediate(2 * kPointerSize));
- __ push(rcx);
- GenerateCompareFlatAsciiStrings(masm, rdx, rax, rcx, rbx, rdi, r8);
-
- // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
- // tagged as a small integer.
- __ bind(&runtime);
- __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
-}
-
#undef __
#define __ masm.
« no previous file with comments | « src/x64/codegen-x64.h ('k') | src/x64/full-codegen-x64.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698