Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(63)

Side by Side Diff: src/arm/codegen-arm.cc

Issue 3195022: Move code stubs from codegen*.* files to code-stub*.* files. (Closed) Base URL: http://v8.googlecode.com/svn/branches/bleeding_edge/
Patch Set: '' Created 10 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « src/arm/codegen-arm.h ('k') | src/arm/full-codegen-arm.cc » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright 2010 the V8 project authors. All rights reserved. 1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without 2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are 3 // modification, are permitted provided that the following conditions are
4 // met: 4 // met:
5 // 5 //
6 // * Redistributions of source code must retain the above copyright 6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer. 7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above 8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following 9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided 10 // disclaimer in the documentation and/or other materials provided
(...skipping 12 matching lines...) Expand all
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 27
28 #include "v8.h" 28 #include "v8.h"
29 29
30 #if defined(V8_TARGET_ARCH_ARM) 30 #if defined(V8_TARGET_ARCH_ARM)
31 31
32 #include "bootstrapper.h" 32 #include "bootstrapper.h"
33 #include "code-stubs-arm.h"
33 #include "codegen-inl.h" 34 #include "codegen-inl.h"
34 #include "compiler.h" 35 #include "compiler.h"
35 #include "debug.h" 36 #include "debug.h"
36 #include "ic-inl.h" 37 #include "ic-inl.h"
37 #include "jsregexp.h" 38 #include "jsregexp.h"
38 #include "jump-target-light-inl.h" 39 #include "jump-target-light-inl.h"
39 #include "parser.h" 40 #include "parser.h"
40 #include "regexp-macro-assembler.h" 41 #include "regexp-macro-assembler.h"
41 #include "regexp-stack.h" 42 #include "regexp-stack.h"
42 #include "register-allocator-inl.h" 43 #include "register-allocator-inl.h"
43 #include "runtime.h" 44 #include "runtime.h"
44 #include "scopes.h" 45 #include "scopes.h"
45 #include "virtual-frame-inl.h" 46 #include "virtual-frame-inl.h"
46 #include "virtual-frame-arm-inl.h" 47 #include "virtual-frame-arm-inl.h"
47 48
48 namespace v8 { 49 namespace v8 {
49 namespace internal { 50 namespace internal {
50 51
51 52
52 static void EmitIdenticalObjectComparison(MacroAssembler* masm,
53 Label* slow,
54 Condition cc,
55 bool never_nan_nan);
56 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
57 Register lhs,
58 Register rhs,
59 Label* lhs_not_nan,
60 Label* slow,
61 bool strict);
62 static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc);
63 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
64 Register lhs,
65 Register rhs);
66 static void MultiplyByKnownInt(MacroAssembler* masm,
67 Register source,
68 Register destination,
69 int known_int);
70 static bool IsEasyToMultiplyBy(int x);
71
72
73 #define __ ACCESS_MASM(masm_) 53 #define __ ACCESS_MASM(masm_)
74 54
75 // ------------------------------------------------------------------------- 55 // -------------------------------------------------------------------------
76 // Platform-specific DeferredCode functions. 56 // Platform-specific DeferredCode functions.
77 57
78 void DeferredCode::SaveRegisters() { 58 void DeferredCode::SaveRegisters() {
79 // On ARM you either have a completely spilled frame or you 59 // On ARM you either have a completely spilled frame or you
80 // handle it yourself, but at the moment there's no automation 60 // handle it yourself, but at the moment there's no automation
81 // of registers and deferred code. 61 // of registers and deferred code.
82 } 62 }
(...skipping 959 matching lines...) Expand 10 before | Expand all | Expand 10 after
1042 x >>= 4; 1022 x >>= 4;
1043 } 1023 }
1044 while ((x & 1) == 0) { 1024 while ((x & 1) == 0) {
1045 bit_posn++; 1025 bit_posn++;
1046 x >>= 1; 1026 x >>= 1;
1047 } 1027 }
1048 return bit_posn; 1028 return bit_posn;
1049 } 1029 }
1050 1030
1051 1031
1032 // Can we multiply by x with max two shifts and an add.
1033 // This answers yes to all integers from 2 to 10.
1034 static bool IsEasyToMultiplyBy(int x) {
1035 if (x < 2) return false; // Avoid special cases.
1036 if (x > (Smi::kMaxValue + 1) >> 2) return false; // Almost always overflows.
1037 if (IsPowerOf2(x)) return true; // Simple shift.
1038 if (PopCountLessThanEqual2(x)) return true; // Shift and add and shift.
1039 if (IsPowerOf2(x + 1)) return true; // Patterns like 11111.
1040 return false;
1041 }
1042
1043
1044 // Can multiply by anything that IsEasyToMultiplyBy returns true for.
1045 // Source and destination may be the same register. This routine does
1046 // not set carry and overflow the way a mul instruction would.
1047 static void InlineMultiplyByKnownInt(MacroAssembler* masm,
1048 Register source,
1049 Register destination,
1050 int known_int) {
1051 if (IsPowerOf2(known_int)) {
1052 masm->mov(destination, Operand(source, LSL, BitPosition(known_int)));
1053 } else if (PopCountLessThanEqual2(known_int)) {
1054 int first_bit = BitPosition(known_int);
1055 int second_bit = BitPosition(known_int ^ (1 << first_bit));
1056 masm->add(destination, source,
1057 Operand(source, LSL, second_bit - first_bit));
1058 if (first_bit != 0) {
1059 masm->mov(destination, Operand(destination, LSL, first_bit));
1060 }
1061 } else {
1062 ASSERT(IsPowerOf2(known_int + 1)); // Patterns like 1111.
1063 int the_bit = BitPosition(known_int + 1);
1064 masm->rsb(destination, source, Operand(source, LSL, the_bit));
1065 }
1066 }
1067
1068
1052 void CodeGenerator::SmiOperation(Token::Value op, 1069 void CodeGenerator::SmiOperation(Token::Value op,
1053 Handle<Object> value, 1070 Handle<Object> value,
1054 bool reversed, 1071 bool reversed,
1055 OverwriteMode mode) { 1072 OverwriteMode mode) {
1056 int int_value = Smi::cast(*value)->value(); 1073 int int_value = Smi::cast(*value)->value();
1057 1074
1058 bool both_sides_are_smi = frame_->KnownSmiAt(0); 1075 bool both_sides_are_smi = frame_->KnownSmiAt(0);
1059 1076
1060 bool something_to_inline; 1077 bool something_to_inline;
1061 switch (op) { 1078 switch (op) {
(...skipping 290 matching lines...) Expand 10 before | Expand all | Expand 10 after
1352 while ((mask & max_smi_that_wont_overflow) == 0) { 1369 while ((mask & max_smi_that_wont_overflow) == 0) {
1353 mask |= mask >> 1; 1370 mask |= mask >> 1;
1354 } 1371 }
1355 mask |= kSmiTagMask; 1372 mask |= kSmiTagMask;
1356 // This does a single mask that checks for a too high value in a 1373 // This does a single mask that checks for a too high value in a
1357 // conservative way and for a non-Smi. It also filters out negative 1374 // conservative way and for a non-Smi. It also filters out negative
1358 // numbers, unfortunately, but since this code is inline we prefer 1375 // numbers, unfortunately, but since this code is inline we prefer
1359 // brevity to comprehensiveness. 1376 // brevity to comprehensiveness.
1360 __ tst(tos, Operand(mask)); 1377 __ tst(tos, Operand(mask));
1361 deferred->Branch(ne); 1378 deferred->Branch(ne);
1362 MultiplyByKnownInt(masm_, tos, tos, int_value); 1379 InlineMultiplyByKnownInt(masm_, tos, tos, int_value);
1363 deferred->BindExit(); 1380 deferred->BindExit();
1364 frame_->EmitPush(tos); 1381 frame_->EmitPush(tos);
1365 break; 1382 break;
1366 } 1383 }
1367 1384
1368 default: 1385 default:
1369 UNREACHABLE(); 1386 UNREACHABLE();
1370 break; 1387 break;
1371 } 1388 }
1372 } 1389 }
(...skipping 5676 matching lines...) Expand 10 before | Expand all | Expand 10 after
7049 set_unloaded(); 7066 set_unloaded();
7050 break; 7067 break;
7051 } 7068 }
7052 7069
7053 default: 7070 default:
7054 UNREACHABLE(); 7071 UNREACHABLE();
7055 } 7072 }
7056 } 7073 }
7057 7074
7058 7075
7059 void FastNewClosureStub::Generate(MacroAssembler* masm) {
7060 // Create a new closure from the given function info in new
7061 // space. Set the context to the current context in cp.
7062 Label gc;
7063
7064 // Pop the function info from the stack.
7065 __ pop(r3);
7066
7067 // Attempt to allocate new JSFunction in new space.
7068 __ AllocateInNewSpace(JSFunction::kSize,
7069 r0,
7070 r1,
7071 r2,
7072 &gc,
7073 TAG_OBJECT);
7074
7075 // Compute the function map in the current global context and set that
7076 // as the map of the allocated object.
7077 __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
7078 __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset));
7079 __ ldr(r2, MemOperand(r2, Context::SlotOffset(Context::FUNCTION_MAP_INDEX)));
7080 __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
7081
7082 // Initialize the rest of the function. We don't have to update the
7083 // write barrier because the allocated object is in new space.
7084 __ LoadRoot(r1, Heap::kEmptyFixedArrayRootIndex);
7085 __ LoadRoot(r2, Heap::kTheHoleValueRootIndex);
7086 __ str(r1, FieldMemOperand(r0, JSObject::kPropertiesOffset));
7087 __ str(r1, FieldMemOperand(r0, JSObject::kElementsOffset));
7088 __ str(r2, FieldMemOperand(r0, JSFunction::kPrototypeOrInitialMapOffset));
7089 __ str(r3, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset));
7090 __ str(cp, FieldMemOperand(r0, JSFunction::kContextOffset));
7091 __ str(r1, FieldMemOperand(r0, JSFunction::kLiteralsOffset));
7092
7093 // Initialize the code pointer in the function to be the one
7094 // found in the shared function info object.
7095 __ ldr(r3, FieldMemOperand(r3, SharedFunctionInfo::kCodeOffset));
7096 __ add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
7097 __ str(r3, FieldMemOperand(r0, JSFunction::kCodeEntryOffset));
7098
7099 // Return result. The argument function info has been popped already.
7100 __ Ret();
7101
7102 // Create a new closure through the slower runtime call.
7103 __ bind(&gc);
7104 __ Push(cp, r3);
7105 __ TailCallRuntime(Runtime::kNewClosure, 2, 1);
7106 }
7107
7108
7109 void FastNewContextStub::Generate(MacroAssembler* masm) {
7110 // Try to allocate the context in new space.
7111 Label gc;
7112 int length = slots_ + Context::MIN_CONTEXT_SLOTS;
7113
7114 // Attempt to allocate the context in new space.
7115 __ AllocateInNewSpace(FixedArray::SizeFor(length),
7116 r0,
7117 r1,
7118 r2,
7119 &gc,
7120 TAG_OBJECT);
7121
7122 // Load the function from the stack.
7123 __ ldr(r3, MemOperand(sp, 0));
7124
7125 // Setup the object header.
7126 __ LoadRoot(r2, Heap::kContextMapRootIndex);
7127 __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
7128 __ mov(r2, Operand(Smi::FromInt(length)));
7129 __ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset));
7130
7131 // Setup the fixed slots.
7132 __ mov(r1, Operand(Smi::FromInt(0)));
7133 __ str(r3, MemOperand(r0, Context::SlotOffset(Context::CLOSURE_INDEX)));
7134 __ str(r0, MemOperand(r0, Context::SlotOffset(Context::FCONTEXT_INDEX)));
7135 __ str(r1, MemOperand(r0, Context::SlotOffset(Context::PREVIOUS_INDEX)));
7136 __ str(r1, MemOperand(r0, Context::SlotOffset(Context::EXTENSION_INDEX)));
7137
7138 // Copy the global object from the surrounding context.
7139 __ ldr(r1, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
7140 __ str(r1, MemOperand(r0, Context::SlotOffset(Context::GLOBAL_INDEX)));
7141
7142 // Initialize the rest of the slots to undefined.
7143 __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
7144 for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
7145 __ str(r1, MemOperand(r0, Context::SlotOffset(i)));
7146 }
7147
7148 // Remove the on-stack argument and return.
7149 __ mov(cp, r0);
7150 __ pop();
7151 __ Ret();
7152
7153 // Need to collect. Call into runtime system.
7154 __ bind(&gc);
7155 __ TailCallRuntime(Runtime::kNewContext, 1, 1);
7156 }
7157
7158
7159 void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
7160 // Stack layout on entry:
7161 //
7162 // [sp]: constant elements.
7163 // [sp + kPointerSize]: literal index.
7164 // [sp + (2 * kPointerSize)]: literals array.
7165
7166 // All sizes here are multiples of kPointerSize.
7167 int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0;
7168 int size = JSArray::kSize + elements_size;
7169
7170 // Load boilerplate object into r3 and check if we need to create a
7171 // boilerplate.
7172 Label slow_case;
7173 __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
7174 __ ldr(r0, MemOperand(sp, 1 * kPointerSize));
7175 __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
7176 __ ldr(r3, MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
7177 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
7178 __ cmp(r3, ip);
7179 __ b(eq, &slow_case);
7180
7181 if (FLAG_debug_code) {
7182 const char* message;
7183 Heap::RootListIndex expected_map_index;
7184 if (mode_ == CLONE_ELEMENTS) {
7185 message = "Expected (writable) fixed array";
7186 expected_map_index = Heap::kFixedArrayMapRootIndex;
7187 } else {
7188 ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS);
7189 message = "Expected copy-on-write fixed array";
7190 expected_map_index = Heap::kFixedCOWArrayMapRootIndex;
7191 }
7192 __ push(r3);
7193 __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset));
7194 __ ldr(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
7195 __ LoadRoot(ip, expected_map_index);
7196 __ cmp(r3, ip);
7197 __ Assert(eq, message);
7198 __ pop(r3);
7199 }
7200
7201 // Allocate both the JS array and the elements array in one big
7202 // allocation. This avoids multiple limit checks.
7203 __ AllocateInNewSpace(size,
7204 r0,
7205 r1,
7206 r2,
7207 &slow_case,
7208 TAG_OBJECT);
7209
7210 // Copy the JS array part.
7211 for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
7212 if ((i != JSArray::kElementsOffset) || (length_ == 0)) {
7213 __ ldr(r1, FieldMemOperand(r3, i));
7214 __ str(r1, FieldMemOperand(r0, i));
7215 }
7216 }
7217
7218 if (length_ > 0) {
7219 // Get hold of the elements array of the boilerplate and setup the
7220 // elements pointer in the resulting object.
7221 __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset));
7222 __ add(r2, r0, Operand(JSArray::kSize));
7223 __ str(r2, FieldMemOperand(r0, JSArray::kElementsOffset));
7224
7225 // Copy the elements array.
7226 __ CopyFields(r2, r3, r1.bit(), elements_size / kPointerSize);
7227 }
7228
7229 // Return and remove the on-stack parameters.
7230 __ add(sp, sp, Operand(3 * kPointerSize));
7231 __ Ret();
7232
7233 __ bind(&slow_case);
7234 __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
7235 }
7236
7237
7238 // Takes a Smi and converts to an IEEE 64 bit floating point value in two
7239 // registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and
7240 // 52 fraction bits (20 in the first word, 32 in the second). Zeros is a
7241 // scratch register. Destroys the source register. No GC occurs during this
7242 // stub so you don't have to set up the frame.
7243 class ConvertToDoubleStub : public CodeStub {
7244 public:
7245 ConvertToDoubleStub(Register result_reg_1,
7246 Register result_reg_2,
7247 Register source_reg,
7248 Register scratch_reg)
7249 : result1_(result_reg_1),
7250 result2_(result_reg_2),
7251 source_(source_reg),
7252 zeros_(scratch_reg) { }
7253
7254 private:
7255 Register result1_;
7256 Register result2_;
7257 Register source_;
7258 Register zeros_;
7259
7260 // Minor key encoding in 16 bits.
7261 class ModeBits: public BitField<OverwriteMode, 0, 2> {};
7262 class OpBits: public BitField<Token::Value, 2, 14> {};
7263
7264 Major MajorKey() { return ConvertToDouble; }
7265 int MinorKey() {
7266 // Encode the parameters in a unique 16 bit value.
7267 return result1_.code() +
7268 (result2_.code() << 4) +
7269 (source_.code() << 8) +
7270 (zeros_.code() << 12);
7271 }
7272
7273 void Generate(MacroAssembler* masm);
7274
7275 const char* GetName() { return "ConvertToDoubleStub"; }
7276
7277 #ifdef DEBUG
7278 void Print() { PrintF("ConvertToDoubleStub\n"); }
7279 #endif
7280 };
7281
7282
7283 void ConvertToDoubleStub::Generate(MacroAssembler* masm) {
7284 #ifndef BIG_ENDIAN_FLOATING_POINT
7285 Register exponent = result1_;
7286 Register mantissa = result2_;
7287 #else
7288 Register exponent = result2_;
7289 Register mantissa = result1_;
7290 #endif
7291 Label not_special;
7292 // Convert from Smi to integer.
7293 __ mov(source_, Operand(source_, ASR, kSmiTagSize));
7294 // Move sign bit from source to destination. This works because the sign bit
7295 // in the exponent word of the double has the same position and polarity as
7296 // the 2's complement sign bit in a Smi.
7297 STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
7298 __ and_(exponent, source_, Operand(HeapNumber::kSignMask), SetCC);
7299 // Subtract from 0 if source was negative.
7300 __ rsb(source_, source_, Operand(0), LeaveCC, ne);
7301
7302 // We have -1, 0 or 1, which we treat specially. Register source_ contains
7303 // absolute value: it is either equal to 1 (special case of -1 and 1),
7304 // greater than 1 (not a special case) or less than 1 (special case of 0).
7305 __ cmp(source_, Operand(1));
7306 __ b(gt, &not_special);
7307
7308 // For 1 or -1 we need to or in the 0 exponent (biased to 1023).
7309 static const uint32_t exponent_word_for_1 =
7310 HeapNumber::kExponentBias << HeapNumber::kExponentShift;
7311 __ orr(exponent, exponent, Operand(exponent_word_for_1), LeaveCC, eq);
7312 // 1, 0 and -1 all have 0 for the second word.
7313 __ mov(mantissa, Operand(0));
7314 __ Ret();
7315
7316 __ bind(&not_special);
7317 // Count leading zeros. Uses mantissa for a scratch register on pre-ARM5.
7318 // Gets the wrong answer for 0, but we already checked for that case above.
7319 __ CountLeadingZeros(zeros_, source_, mantissa);
7320 // Compute exponent and or it into the exponent register.
7321 // We use mantissa as a scratch register here. Use a fudge factor to
7322 // divide the constant 31 + HeapNumber::kExponentBias, 0x41d, into two parts
7323 // that fit in the ARM's constant field.
7324 int fudge = 0x400;
7325 __ rsb(mantissa, zeros_, Operand(31 + HeapNumber::kExponentBias - fudge));
7326 __ add(mantissa, mantissa, Operand(fudge));
7327 __ orr(exponent,
7328 exponent,
7329 Operand(mantissa, LSL, HeapNumber::kExponentShift));
7330 // Shift up the source chopping the top bit off.
7331 __ add(zeros_, zeros_, Operand(1));
7332 // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0.
7333 __ mov(source_, Operand(source_, LSL, zeros_));
7334 // Compute lower part of fraction (last 12 bits).
7335 __ mov(mantissa, Operand(source_, LSL, HeapNumber::kMantissaBitsInTopWord));
7336 // And the top (top 20 bits).
7337 __ orr(exponent,
7338 exponent,
7339 Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord));
7340 __ Ret();
7341 }
7342
7343
7344 // See comment for class.
7345 void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
7346 Label max_negative_int;
7347 // the_int_ has the answer which is a signed int32 but not a Smi.
7348 // We test for the special value that has a different exponent. This test
7349 // has the neat side effect of setting the flags according to the sign.
7350 STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
7351 __ cmp(the_int_, Operand(0x80000000u));
7352 __ b(eq, &max_negative_int);
7353 // Set up the correct exponent in scratch_. All non-Smi int32s have the same.
7354 // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
7355 uint32_t non_smi_exponent =
7356 (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
7357 __ mov(scratch_, Operand(non_smi_exponent));
7358 // Set the sign bit in scratch_ if the value was negative.
7359 __ orr(scratch_, scratch_, Operand(HeapNumber::kSignMask), LeaveCC, cs);
7360 // Subtract from 0 if the value was negative.
7361 __ rsb(the_int_, the_int_, Operand(0), LeaveCC, cs);
7362 // We should be masking the implict first digit of the mantissa away here,
7363 // but it just ends up combining harmlessly with the last digit of the
7364 // exponent that happens to be 1. The sign bit is 0 so we shift 10 to get
7365 // the most significant 1 to hit the last bit of the 12 bit sign and exponent.
7366 ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
7367 const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
7368 __ orr(scratch_, scratch_, Operand(the_int_, LSR, shift_distance));
7369 __ str(scratch_, FieldMemOperand(the_heap_number_,
7370 HeapNumber::kExponentOffset));
7371 __ mov(scratch_, Operand(the_int_, LSL, 32 - shift_distance));
7372 __ str(scratch_, FieldMemOperand(the_heap_number_,
7373 HeapNumber::kMantissaOffset));
7374 __ Ret();
7375
7376 __ bind(&max_negative_int);
7377 // The max negative int32 is stored as a positive number in the mantissa of
7378 // a double because it uses a sign bit instead of using two's complement.
7379 // The actual mantissa bits stored are all 0 because the implicit most
7380 // significant 1 bit is not stored.
7381 non_smi_exponent += 1 << HeapNumber::kExponentShift;
7382 __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent));
7383 __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset));
7384 __ mov(ip, Operand(0));
7385 __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset));
7386 __ Ret();
7387 }
7388
7389
7390 // Handle the case where the lhs and rhs are the same object.
7391 // Equality is almost reflexive (everything but NaN), so this is a test
7392 // for "identity and not NaN".
7393 static void EmitIdenticalObjectComparison(MacroAssembler* masm,
7394 Label* slow,
7395 Condition cc,
7396 bool never_nan_nan) {
7397 Label not_identical;
7398 Label heap_number, return_equal;
7399 __ cmp(r0, r1);
7400 __ b(ne, &not_identical);
7401
7402 // The two objects are identical. If we know that one of them isn't NaN then
7403 // we now know they test equal.
7404 if (cc != eq || !never_nan_nan) {
7405 // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
7406 // so we do the second best thing - test it ourselves.
7407 // They are both equal and they are not both Smis so both of them are not
7408 // Smis. If it's not a heap number, then return equal.
7409 if (cc == lt || cc == gt) {
7410 __ CompareObjectType(r0, r4, r4, FIRST_JS_OBJECT_TYPE);
7411 __ b(ge, slow);
7412 } else {
7413 __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
7414 __ b(eq, &heap_number);
7415 // Comparing JS objects with <=, >= is complicated.
7416 if (cc != eq) {
7417 __ cmp(r4, Operand(FIRST_JS_OBJECT_TYPE));
7418 __ b(ge, slow);
7419 // Normally here we fall through to return_equal, but undefined is
7420 // special: (undefined == undefined) == true, but
7421 // (undefined <= undefined) == false! See ECMAScript 11.8.5.
7422 if (cc == le || cc == ge) {
7423 __ cmp(r4, Operand(ODDBALL_TYPE));
7424 __ b(ne, &return_equal);
7425 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
7426 __ cmp(r0, r2);
7427 __ b(ne, &return_equal);
7428 if (cc == le) {
7429 // undefined <= undefined should fail.
7430 __ mov(r0, Operand(GREATER));
7431 } else {
7432 // undefined >= undefined should fail.
7433 __ mov(r0, Operand(LESS));
7434 }
7435 __ Ret();
7436 }
7437 }
7438 }
7439 }
7440
7441 __ bind(&return_equal);
7442 if (cc == lt) {
7443 __ mov(r0, Operand(GREATER)); // Things aren't less than themselves.
7444 } else if (cc == gt) {
7445 __ mov(r0, Operand(LESS)); // Things aren't greater than themselves.
7446 } else {
7447 __ mov(r0, Operand(EQUAL)); // Things are <=, >=, ==, === themselves.
7448 }
7449 __ Ret();
7450
7451 if (cc != eq || !never_nan_nan) {
7452 // For less and greater we don't have to check for NaN since the result of
7453 // x < x is false regardless. For the others here is some code to check
7454 // for NaN.
7455 if (cc != lt && cc != gt) {
7456 __ bind(&heap_number);
7457 // It is a heap number, so return non-equal if it's NaN and equal if it's
7458 // not NaN.
7459
7460 // The representation of NaN values has all exponent bits (52..62) set,
7461 // and not all mantissa bits (0..51) clear.
7462 // Read top bits of double representation (second word of value).
7463 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
7464 // Test that exponent bits are all set.
7465 __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
7466 // NaNs have all-one exponents so they sign extend to -1.
7467 __ cmp(r3, Operand(-1));
7468 __ b(ne, &return_equal);
7469
7470 // Shift out flag and all exponent bits, retaining only mantissa.
7471 __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord));
7472 // Or with all low-bits of mantissa.
7473 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
7474 __ orr(r0, r3, Operand(r2), SetCC);
7475 // For equal we already have the right value in r0: Return zero (equal)
7476 // if all bits in mantissa are zero (it's an Infinity) and non-zero if
7477 // not (it's a NaN). For <= and >= we need to load r0 with the failing
7478 // value if it's a NaN.
7479 if (cc != eq) {
7480 // All-zero means Infinity means equal.
7481 __ Ret(eq);
7482 if (cc == le) {
7483 __ mov(r0, Operand(GREATER)); // NaN <= NaN should fail.
7484 } else {
7485 __ mov(r0, Operand(LESS)); // NaN >= NaN should fail.
7486 }
7487 }
7488 __ Ret();
7489 }
7490 // No fall through here.
7491 }
7492
7493 __ bind(&not_identical);
7494 }
7495
7496
7497 // See comment at call site.
7498 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
7499 Register lhs,
7500 Register rhs,
7501 Label* lhs_not_nan,
7502 Label* slow,
7503 bool strict) {
7504 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
7505 (lhs.is(r1) && rhs.is(r0)));
7506
7507 Label rhs_is_smi;
7508 __ tst(rhs, Operand(kSmiTagMask));
7509 __ b(eq, &rhs_is_smi);
7510
7511 // Lhs is a Smi. Check whether the rhs is a heap number.
7512 __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE);
7513 if (strict) {
7514 // If rhs is not a number and lhs is a Smi then strict equality cannot
7515 // succeed. Return non-equal
7516 // If rhs is r0 then there is already a non zero value in it.
7517 if (!rhs.is(r0)) {
7518 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
7519 }
7520 __ Ret(ne);
7521 } else {
7522 // Smi compared non-strictly with a non-Smi non-heap-number. Call
7523 // the runtime.
7524 __ b(ne, slow);
7525 }
7526
7527 // Lhs is a smi, rhs is a number.
7528 if (CpuFeatures::IsSupported(VFP3)) {
7529 // Convert lhs to a double in d7.
7530 CpuFeatures::Scope scope(VFP3);
7531 __ SmiToDoubleVFPRegister(lhs, d7, r7, s15);
7532 // Load the double from rhs, tagged HeapNumber r0, to d6.
7533 __ sub(r7, rhs, Operand(kHeapObjectTag));
7534 __ vldr(d6, r7, HeapNumber::kValueOffset);
7535 } else {
7536 __ push(lr);
7537 // Convert lhs to a double in r2, r3.
7538 __ mov(r7, Operand(lhs));
7539 ConvertToDoubleStub stub1(r3, r2, r7, r6);
7540 __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET);
7541 // Load rhs to a double in r0, r1.
7542 __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset));
7543 __ pop(lr);
7544 }
7545
7546 // We now have both loaded as doubles but we can skip the lhs nan check
7547 // since it's a smi.
7548 __ jmp(lhs_not_nan);
7549
7550 __ bind(&rhs_is_smi);
7551 // Rhs is a smi. Check whether the non-smi lhs is a heap number.
7552 __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE);
7553 if (strict) {
7554 // If lhs is not a number and rhs is a smi then strict equality cannot
7555 // succeed. Return non-equal.
7556 // If lhs is r0 then there is already a non zero value in it.
7557 if (!lhs.is(r0)) {
7558 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
7559 }
7560 __ Ret(ne);
7561 } else {
7562 // Smi compared non-strictly with a non-smi non-heap-number. Call
7563 // the runtime.
7564 __ b(ne, slow);
7565 }
7566
7567 // Rhs is a smi, lhs is a heap number.
7568 if (CpuFeatures::IsSupported(VFP3)) {
7569 CpuFeatures::Scope scope(VFP3);
7570 // Load the double from lhs, tagged HeapNumber r1, to d7.
7571 __ sub(r7, lhs, Operand(kHeapObjectTag));
7572 __ vldr(d7, r7, HeapNumber::kValueOffset);
7573 // Convert rhs to a double in d6 .
7574 __ SmiToDoubleVFPRegister(rhs, d6, r7, s13);
7575 } else {
7576 __ push(lr);
7577 // Load lhs to a double in r2, r3.
7578 __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset));
7579 // Convert rhs to a double in r0, r1.
7580 __ mov(r7, Operand(rhs));
7581 ConvertToDoubleStub stub2(r1, r0, r7, r6);
7582 __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET);
7583 __ pop(lr);
7584 }
7585 // Fall through to both_loaded_as_doubles.
7586 }
7587
7588
7589 void EmitNanCheck(MacroAssembler* masm, Label* lhs_not_nan, Condition cc) {
7590 bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
7591 Register rhs_exponent = exp_first ? r0 : r1;
7592 Register lhs_exponent = exp_first ? r2 : r3;
7593 Register rhs_mantissa = exp_first ? r1 : r0;
7594 Register lhs_mantissa = exp_first ? r3 : r2;
7595 Label one_is_nan, neither_is_nan;
7596
7597 __ Sbfx(r4,
7598 lhs_exponent,
7599 HeapNumber::kExponentShift,
7600 HeapNumber::kExponentBits);
7601 // NaNs have all-one exponents so they sign extend to -1.
7602 __ cmp(r4, Operand(-1));
7603 __ b(ne, lhs_not_nan);
7604 __ mov(r4,
7605 Operand(lhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
7606 SetCC);
7607 __ b(ne, &one_is_nan);
7608 __ cmp(lhs_mantissa, Operand(0));
7609 __ b(ne, &one_is_nan);
7610
7611 __ bind(lhs_not_nan);
7612 __ Sbfx(r4,
7613 rhs_exponent,
7614 HeapNumber::kExponentShift,
7615 HeapNumber::kExponentBits);
7616 // NaNs have all-one exponents so they sign extend to -1.
7617 __ cmp(r4, Operand(-1));
7618 __ b(ne, &neither_is_nan);
7619 __ mov(r4,
7620 Operand(rhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
7621 SetCC);
7622 __ b(ne, &one_is_nan);
7623 __ cmp(rhs_mantissa, Operand(0));
7624 __ b(eq, &neither_is_nan);
7625
7626 __ bind(&one_is_nan);
7627 // NaN comparisons always fail.
7628 // Load whatever we need in r0 to make the comparison fail.
7629 if (cc == lt || cc == le) {
7630 __ mov(r0, Operand(GREATER));
7631 } else {
7632 __ mov(r0, Operand(LESS));
7633 }
7634 __ Ret();
7635
7636 __ bind(&neither_is_nan);
7637 }
7638
7639
7640 // See comment at call site.
7641 static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc) {
7642 bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
7643 Register rhs_exponent = exp_first ? r0 : r1;
7644 Register lhs_exponent = exp_first ? r2 : r3;
7645 Register rhs_mantissa = exp_first ? r1 : r0;
7646 Register lhs_mantissa = exp_first ? r3 : r2;
7647
7648 // r0, r1, r2, r3 have the two doubles. Neither is a NaN.
7649 if (cc == eq) {
7650 // Doubles are not equal unless they have the same bit pattern.
7651 // Exception: 0 and -0.
7652 __ cmp(rhs_mantissa, Operand(lhs_mantissa));
7653 __ orr(r0, rhs_mantissa, Operand(lhs_mantissa), LeaveCC, ne);
7654 // Return non-zero if the numbers are unequal.
7655 __ Ret(ne);
7656
7657 __ sub(r0, rhs_exponent, Operand(lhs_exponent), SetCC);
7658 // If exponents are equal then return 0.
7659 __ Ret(eq);
7660
7661 // Exponents are unequal. The only way we can return that the numbers
7662 // are equal is if one is -0 and the other is 0. We already dealt
7663 // with the case where both are -0 or both are 0.
7664 // We start by seeing if the mantissas (that are equal) or the bottom
7665 // 31 bits of the rhs exponent are non-zero. If so we return not
7666 // equal.
7667 __ orr(r4, lhs_mantissa, Operand(lhs_exponent, LSL, kSmiTagSize), SetCC);
7668 __ mov(r0, Operand(r4), LeaveCC, ne);
7669 __ Ret(ne);
7670 // Now they are equal if and only if the lhs exponent is zero in its
7671 // low 31 bits.
7672 __ mov(r0, Operand(rhs_exponent, LSL, kSmiTagSize));
7673 __ Ret();
7674 } else {
7675 // Call a native function to do a comparison between two non-NaNs.
7676 // Call C routine that may not cause GC or other trouble.
7677 __ push(lr);
7678 __ PrepareCallCFunction(4, r5); // Two doubles count as 4 arguments.
7679 __ CallCFunction(ExternalReference::compare_doubles(), 4);
7680 __ pop(pc); // Return.
7681 }
7682 }
7683
7684
7685 // See comment at call site.
7686 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
7687 Register lhs,
7688 Register rhs) {
7689 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
7690 (lhs.is(r1) && rhs.is(r0)));
7691
7692 // If either operand is a JSObject or an oddball value, then they are
7693 // not equal since their pointers are different.
7694 // There is no test for undetectability in strict equality.
7695 STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
7696 Label first_non_object;
7697 // Get the type of the first operand into r2 and compare it with
7698 // FIRST_JS_OBJECT_TYPE.
7699 __ CompareObjectType(rhs, r2, r2, FIRST_JS_OBJECT_TYPE);
7700 __ b(lt, &first_non_object);
7701
7702 // Return non-zero (r0 is not zero)
7703 Label return_not_equal;
7704 __ bind(&return_not_equal);
7705 __ Ret();
7706
7707 __ bind(&first_non_object);
7708 // Check for oddballs: true, false, null, undefined.
7709 __ cmp(r2, Operand(ODDBALL_TYPE));
7710 __ b(eq, &return_not_equal);
7711
7712 __ CompareObjectType(lhs, r3, r3, FIRST_JS_OBJECT_TYPE);
7713 __ b(ge, &return_not_equal);
7714
7715 // Check for oddballs: true, false, null, undefined.
7716 __ cmp(r3, Operand(ODDBALL_TYPE));
7717 __ b(eq, &return_not_equal);
7718
7719 // Now that we have the types we might as well check for symbol-symbol.
7720 // Ensure that no non-strings have the symbol bit set.
7721 STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
7722 STATIC_ASSERT(kSymbolTag != 0);
7723 __ and_(r2, r2, Operand(r3));
7724 __ tst(r2, Operand(kIsSymbolMask));
7725 __ b(ne, &return_not_equal);
7726 }
7727
7728
7729 // See comment at call site.
7730 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
7731 Register lhs,
7732 Register rhs,
7733 Label* both_loaded_as_doubles,
7734 Label* not_heap_numbers,
7735 Label* slow) {
7736 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
7737 (lhs.is(r1) && rhs.is(r0)));
7738
7739 __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE);
7740 __ b(ne, not_heap_numbers);
7741 __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset));
7742 __ cmp(r2, r3);
7743 __ b(ne, slow); // First was a heap number, second wasn't. Go slow case.
7744
7745 // Both are heap numbers. Load them up then jump to the code we have
7746 // for that.
7747 if (CpuFeatures::IsSupported(VFP3)) {
7748 CpuFeatures::Scope scope(VFP3);
7749 __ sub(r7, rhs, Operand(kHeapObjectTag));
7750 __ vldr(d6, r7, HeapNumber::kValueOffset);
7751 __ sub(r7, lhs, Operand(kHeapObjectTag));
7752 __ vldr(d7, r7, HeapNumber::kValueOffset);
7753 } else {
7754 __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset));
7755 __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset));
7756 }
7757 __ jmp(both_loaded_as_doubles);
7758 }
7759
7760
7761 // Fast negative check for symbol-to-symbol equality.
7762 static void EmitCheckForSymbolsOrObjects(MacroAssembler* masm,
7763 Register lhs,
7764 Register rhs,
7765 Label* possible_strings,
7766 Label* not_both_strings) {
7767 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
7768 (lhs.is(r1) && rhs.is(r0)));
7769
7770 // r2 is object type of rhs.
7771 // Ensure that no non-strings have the symbol bit set.
7772 Label object_test;
7773 STATIC_ASSERT(kSymbolTag != 0);
7774 __ tst(r2, Operand(kIsNotStringMask));
7775 __ b(ne, &object_test);
7776 __ tst(r2, Operand(kIsSymbolMask));
7777 __ b(eq, possible_strings);
7778 __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE);
7779 __ b(ge, not_both_strings);
7780 __ tst(r3, Operand(kIsSymbolMask));
7781 __ b(eq, possible_strings);
7782
7783 // Both are symbols. We already checked they weren't the same pointer
7784 // so they are not equal.
7785 __ mov(r0, Operand(NOT_EQUAL));
7786 __ Ret();
7787
7788 __ bind(&object_test);
7789 __ cmp(r2, Operand(FIRST_JS_OBJECT_TYPE));
7790 __ b(lt, not_both_strings);
7791 __ CompareObjectType(lhs, r2, r3, FIRST_JS_OBJECT_TYPE);
7792 __ b(lt, not_both_strings);
7793 // If both objects are undetectable, they are equal. Otherwise, they
7794 // are not equal, since they are different objects and an object is not
7795 // equal to undefined.
7796 __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset));
7797 __ ldrb(r2, FieldMemOperand(r2, Map::kBitFieldOffset));
7798 __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset));
7799 __ and_(r0, r2, Operand(r3));
7800 __ and_(r0, r0, Operand(1 << Map::kIsUndetectable));
7801 __ eor(r0, r0, Operand(1 << Map::kIsUndetectable));
7802 __ Ret();
7803 }
7804
7805
7806 void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
7807 Register object,
7808 Register result,
7809 Register scratch1,
7810 Register scratch2,
7811 Register scratch3,
7812 bool object_is_smi,
7813 Label* not_found) {
7814 // Use of registers. Register result is used as a temporary.
7815 Register number_string_cache = result;
7816 Register mask = scratch3;
7817
7818 // Load the number string cache.
7819 __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
7820
7821 // Make the hash mask from the length of the number string cache. It
7822 // contains two elements (number and string) for each cache entry.
7823 __ ldr(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset));
7824 // Divide length by two (length is a smi).
7825 __ mov(mask, Operand(mask, ASR, kSmiTagSize + 1));
7826 __ sub(mask, mask, Operand(1)); // Make mask.
7827
7828 // Calculate the entry in the number string cache. The hash value in the
7829 // number string cache for smis is just the smi value, and the hash for
7830 // doubles is the xor of the upper and lower words. See
7831 // Heap::GetNumberStringCache.
7832 Label is_smi;
7833 Label load_result_from_cache;
7834 if (!object_is_smi) {
7835 __ BranchOnSmi(object, &is_smi);
7836 if (CpuFeatures::IsSupported(VFP3)) {
7837 CpuFeatures::Scope scope(VFP3);
7838 __ CheckMap(object,
7839 scratch1,
7840 Heap::kHeapNumberMapRootIndex,
7841 not_found,
7842 true);
7843
7844 STATIC_ASSERT(8 == kDoubleSize);
7845 __ add(scratch1,
7846 object,
7847 Operand(HeapNumber::kValueOffset - kHeapObjectTag));
7848 __ ldm(ia, scratch1, scratch1.bit() | scratch2.bit());
7849 __ eor(scratch1, scratch1, Operand(scratch2));
7850 __ and_(scratch1, scratch1, Operand(mask));
7851
7852 // Calculate address of entry in string cache: each entry consists
7853 // of two pointer sized fields.
7854 __ add(scratch1,
7855 number_string_cache,
7856 Operand(scratch1, LSL, kPointerSizeLog2 + 1));
7857
7858 Register probe = mask;
7859 __ ldr(probe,
7860 FieldMemOperand(scratch1, FixedArray::kHeaderSize));
7861 __ BranchOnSmi(probe, not_found);
7862 __ sub(scratch2, object, Operand(kHeapObjectTag));
7863 __ vldr(d0, scratch2, HeapNumber::kValueOffset);
7864 __ sub(probe, probe, Operand(kHeapObjectTag));
7865 __ vldr(d1, probe, HeapNumber::kValueOffset);
7866 __ vcmp(d0, d1);
7867 __ vmrs(pc);
7868 __ b(ne, not_found); // The cache did not contain this value.
7869 __ b(&load_result_from_cache);
7870 } else {
7871 __ b(not_found);
7872 }
7873 }
7874
7875 __ bind(&is_smi);
7876 Register scratch = scratch1;
7877 __ and_(scratch, mask, Operand(object, ASR, 1));
7878 // Calculate address of entry in string cache: each entry consists
7879 // of two pointer sized fields.
7880 __ add(scratch,
7881 number_string_cache,
7882 Operand(scratch, LSL, kPointerSizeLog2 + 1));
7883
7884 // Check if the entry is the smi we are looking for.
7885 Register probe = mask;
7886 __ ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
7887 __ cmp(object, probe);
7888 __ b(ne, not_found);
7889
7890 // Get the result from the cache.
7891 __ bind(&load_result_from_cache);
7892 __ ldr(result,
7893 FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
7894 __ IncrementCounter(&Counters::number_to_string_native,
7895 1,
7896 scratch1,
7897 scratch2);
7898 }
7899
7900
7901 void NumberToStringStub::Generate(MacroAssembler* masm) {
7902 Label runtime;
7903
7904 __ ldr(r1, MemOperand(sp, 0));
7905
7906 // Generate code to lookup number in the number string cache.
7907 GenerateLookupNumberStringCache(masm, r1, r0, r2, r3, r4, false, &runtime);
7908 __ add(sp, sp, Operand(1 * kPointerSize));
7909 __ Ret();
7910
7911 __ bind(&runtime);
7912 // Handle number to string in the runtime system if not found in the cache.
7913 __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1);
7914 }
7915
7916
7917 void RecordWriteStub::Generate(MacroAssembler* masm) {
7918 __ add(offset_, object_, Operand(offset_));
7919 __ RecordWriteHelper(object_, offset_, scratch_);
7920 __ Ret();
7921 }
7922
7923
7924 // On entry lhs_ and rhs_ are the values to be compared.
7925 // On exit r0 is 0, positive or negative to indicate the result of
7926 // the comparison.
7927 void CompareStub::Generate(MacroAssembler* masm) {
7928 ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
7929 (lhs_.is(r1) && rhs_.is(r0)));
7930
7931 Label slow; // Call builtin.
7932 Label not_smis, both_loaded_as_doubles, lhs_not_nan;
7933
7934 // NOTICE! This code is only reached after a smi-fast-case check, so
7935 // it is certain that at least one operand isn't a smi.
7936
7937 // Handle the case where the objects are identical. Either returns the answer
7938 // or goes to slow. Only falls through if the objects were not identical.
7939 EmitIdenticalObjectComparison(masm, &slow, cc_, never_nan_nan_);
7940
7941 // If either is a Smi (we know that not both are), then they can only
7942 // be strictly equal if the other is a HeapNumber.
7943 STATIC_ASSERT(kSmiTag == 0);
7944 ASSERT_EQ(0, Smi::FromInt(0));
7945 __ and_(r2, lhs_, Operand(rhs_));
7946 __ tst(r2, Operand(kSmiTagMask));
7947 __ b(ne, &not_smis);
7948 // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
7949 // 1) Return the answer.
7950 // 2) Go to slow.
7951 // 3) Fall through to both_loaded_as_doubles.
7952 // 4) Jump to lhs_not_nan.
7953 // In cases 3 and 4 we have found out we were dealing with a number-number
7954 // comparison. If VFP3 is supported the double values of the numbers have
7955 // been loaded into d7 and d6. Otherwise, the double values have been loaded
7956 // into r0, r1, r2, and r3.
7957 EmitSmiNonsmiComparison(masm, lhs_, rhs_, &lhs_not_nan, &slow, strict_);
7958
7959 __ bind(&both_loaded_as_doubles);
7960 // The arguments have been converted to doubles and stored in d6 and d7, if
7961 // VFP3 is supported, or in r0, r1, r2, and r3.
7962 if (CpuFeatures::IsSupported(VFP3)) {
7963 __ bind(&lhs_not_nan);
7964 CpuFeatures::Scope scope(VFP3);
7965 Label no_nan;
7966 // ARMv7 VFP3 instructions to implement double precision comparison.
7967 __ vcmp(d7, d6);
7968 __ vmrs(pc); // Move vector status bits to normal status bits.
7969 Label nan;
7970 __ b(vs, &nan);
7971 __ mov(r0, Operand(EQUAL), LeaveCC, eq);
7972 __ mov(r0, Operand(LESS), LeaveCC, lt);
7973 __ mov(r0, Operand(GREATER), LeaveCC, gt);
7974 __ Ret();
7975
7976 __ bind(&nan);
7977 // If one of the sides was a NaN then the v flag is set. Load r0 with
7978 // whatever it takes to make the comparison fail, since comparisons with NaN
7979 // always fail.
7980 if (cc_ == lt || cc_ == le) {
7981 __ mov(r0, Operand(GREATER));
7982 } else {
7983 __ mov(r0, Operand(LESS));
7984 }
7985 __ Ret();
7986 } else {
7987 // Checks for NaN in the doubles we have loaded. Can return the answer or
7988 // fall through if neither is a NaN. Also binds lhs_not_nan.
7989 EmitNanCheck(masm, &lhs_not_nan, cc_);
7990 // Compares two doubles in r0, r1, r2, r3 that are not NaNs. Returns the
7991 // answer. Never falls through.
7992 EmitTwoNonNanDoubleComparison(masm, cc_);
7993 }
7994
7995 __ bind(&not_smis);
7996 // At this point we know we are dealing with two different objects,
7997 // and neither of them is a Smi. The objects are in rhs_ and lhs_.
7998 if (strict_) {
7999 // This returns non-equal for some object types, or falls through if it
8000 // was not lucky.
8001 EmitStrictTwoHeapObjectCompare(masm, lhs_, rhs_);
8002 }
8003
8004 Label check_for_symbols;
8005 Label flat_string_check;
8006 // Check for heap-number-heap-number comparison. Can jump to slow case,
8007 // or load both doubles into r0, r1, r2, r3 and jump to the code that handles
8008 // that case. If the inputs are not doubles then jumps to check_for_symbols.
8009 // In this case r2 will contain the type of rhs_. Never falls through.
8010 EmitCheckForTwoHeapNumbers(masm,
8011 lhs_,
8012 rhs_,
8013 &both_loaded_as_doubles,
8014 &check_for_symbols,
8015 &flat_string_check);
8016
8017 __ bind(&check_for_symbols);
8018 // In the strict case the EmitStrictTwoHeapObjectCompare already took care of
8019 // symbols.
8020 if (cc_ == eq && !strict_) {
8021 // Returns an answer for two symbols or two detectable objects.
8022 // Otherwise jumps to string case or not both strings case.
8023 // Assumes that r2 is the type of rhs_ on entry.
8024 EmitCheckForSymbolsOrObjects(masm, lhs_, rhs_, &flat_string_check, &slow);
8025 }
8026
8027 // Check for both being sequential ASCII strings, and inline if that is the
8028 // case.
8029 __ bind(&flat_string_check);
8030
8031 __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs_, rhs_, r2, r3, &slow);
8032
8033 __ IncrementCounter(&Counters::string_compare_native, 1, r2, r3);
8034 StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
8035 lhs_,
8036 rhs_,
8037 r2,
8038 r3,
8039 r4,
8040 r5);
8041 // Never falls through to here.
8042
8043 __ bind(&slow);
8044
8045 __ Push(lhs_, rhs_);
8046 // Figure out which native to call and setup the arguments.
8047 Builtins::JavaScript native;
8048 if (cc_ == eq) {
8049 native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
8050 } else {
8051 native = Builtins::COMPARE;
8052 int ncr; // NaN compare result
8053 if (cc_ == lt || cc_ == le) {
8054 ncr = GREATER;
8055 } else {
8056 ASSERT(cc_ == gt || cc_ == ge); // remaining cases
8057 ncr = LESS;
8058 }
8059 __ mov(r0, Operand(Smi::FromInt(ncr)));
8060 __ push(r0);
8061 }
8062
8063 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
8064 // tagged as a small integer.
8065 __ InvokeBuiltin(native, JUMP_JS);
8066 }
8067
8068
8069 // This stub does not handle the inlined cases (Smis, Booleans, undefined).
8070 // The stub returns zero for false, and a non-zero value for true.
8071 void ToBooleanStub::Generate(MacroAssembler* masm) {
8072 Label false_result;
8073 Label not_heap_number;
8074 Register scratch0 = VirtualFrame::scratch0();
8075
8076 // HeapNumber => false iff +0, -0, or NaN.
8077 __ ldr(scratch0, FieldMemOperand(tos_, HeapObject::kMapOffset));
8078 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
8079 __ cmp(scratch0, ip);
8080 __ b(&not_heap_number, ne);
8081
8082 __ sub(ip, tos_, Operand(kHeapObjectTag));
8083 __ vldr(d1, ip, HeapNumber::kValueOffset);
8084 __ vcmp(d1, 0.0);
8085 __ vmrs(pc);
8086 // "tos_" is a register, and contains a non zero value by default.
8087 // Hence we only need to overwrite "tos_" with zero to return false for
8088 // FP_ZERO or FP_NAN cases. Otherwise, by default it returns true.
8089 __ mov(tos_, Operand(0), LeaveCC, eq); // for FP_ZERO
8090 __ mov(tos_, Operand(0), LeaveCC, vs); // for FP_NAN
8091 __ Ret();
8092
8093 __ bind(&not_heap_number);
8094
8095 // Check if the value is 'null'.
8096 // 'null' => false.
8097 __ LoadRoot(ip, Heap::kNullValueRootIndex);
8098 __ cmp(tos_, ip);
8099 __ b(&false_result, eq);
8100
8101 // It can be an undetectable object.
8102 // Undetectable => false.
8103 __ ldr(ip, FieldMemOperand(tos_, HeapObject::kMapOffset));
8104 __ ldrb(scratch0, FieldMemOperand(ip, Map::kBitFieldOffset));
8105 __ and_(scratch0, scratch0, Operand(1 << Map::kIsUndetectable));
8106 __ cmp(scratch0, Operand(1 << Map::kIsUndetectable));
8107 __ b(&false_result, eq);
8108
8109 // JavaScript object => true.
8110 __ ldr(scratch0, FieldMemOperand(tos_, HeapObject::kMapOffset));
8111 __ ldrb(scratch0, FieldMemOperand(scratch0, Map::kInstanceTypeOffset));
8112 __ cmp(scratch0, Operand(FIRST_JS_OBJECT_TYPE));
8113 // "tos_" is a register and contains a non-zero value.
8114 // Hence we implicitly return true if the greater than
8115 // condition is satisfied.
8116 __ Ret(gt);
8117
8118 // Check for string
8119 __ ldr(scratch0, FieldMemOperand(tos_, HeapObject::kMapOffset));
8120 __ ldrb(scratch0, FieldMemOperand(scratch0, Map::kInstanceTypeOffset));
8121 __ cmp(scratch0, Operand(FIRST_NONSTRING_TYPE));
8122 // "tos_" is a register and contains a non-zero value.
8123 // Hence we implicitly return true if the greater than
8124 // condition is satisfied.
8125 __ Ret(gt);
8126
8127 // String value => false iff empty, i.e., length is zero
8128 __ ldr(tos_, FieldMemOperand(tos_, String::kLengthOffset));
8129 // If length is zero, "tos_" contains zero ==> false.
8130 // If length is not zero, "tos_" contains a non-zero value ==> true.
8131 __ Ret();
8132
8133 // Return 0 in "tos_" for false .
8134 __ bind(&false_result);
8135 __ mov(tos_, Operand(0));
8136 __ Ret();
8137 }
8138
8139
8140 // We fall into this code if the operands were Smis, but the result was
8141 // not (eg. overflow). We branch into this code (to the not_smi label) if
8142 // the operands were not both Smi. The operands are in r0 and r1. In order
8143 // to call the C-implemented binary fp operation routines we need to end up
8144 // with the double precision floating point operands in r0 and r1 (for the
8145 // value in r1) and r2 and r3 (for the value in r0).
8146 void GenericBinaryOpStub::HandleBinaryOpSlowCases(
8147 MacroAssembler* masm,
8148 Label* not_smi,
8149 Register lhs,
8150 Register rhs,
8151 const Builtins::JavaScript& builtin) {
8152 Label slow, slow_reverse, do_the_call;
8153 bool use_fp_registers = CpuFeatures::IsSupported(VFP3) && Token::MOD != op_;
8154
8155 ASSERT((lhs.is(r0) && rhs.is(r1)) || (lhs.is(r1) && rhs.is(r0)));
8156 Register heap_number_map = r6;
8157
8158 if (ShouldGenerateSmiCode()) {
8159 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
8160
8161 // Smi-smi case (overflow).
8162 // Since both are Smis there is no heap number to overwrite, so allocate.
8163 // The new heap number is in r5. r3 and r7 are scratch.
8164 __ AllocateHeapNumber(
8165 r5, r3, r7, heap_number_map, lhs.is(r0) ? &slow_reverse : &slow);
8166
8167 // If we have floating point hardware, inline ADD, SUB, MUL, and DIV,
8168 // using registers d7 and d6 for the double values.
8169 if (CpuFeatures::IsSupported(VFP3)) {
8170 CpuFeatures::Scope scope(VFP3);
8171 __ mov(r7, Operand(rhs, ASR, kSmiTagSize));
8172 __ vmov(s15, r7);
8173 __ vcvt_f64_s32(d7, s15);
8174 __ mov(r7, Operand(lhs, ASR, kSmiTagSize));
8175 __ vmov(s13, r7);
8176 __ vcvt_f64_s32(d6, s13);
8177 if (!use_fp_registers) {
8178 __ vmov(r2, r3, d7);
8179 __ vmov(r0, r1, d6);
8180 }
8181 } else {
8182 // Write Smi from rhs to r3 and r2 in double format. r9 is scratch.
8183 __ mov(r7, Operand(rhs));
8184 ConvertToDoubleStub stub1(r3, r2, r7, r9);
8185 __ push(lr);
8186 __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET);
8187 // Write Smi from lhs to r1 and r0 in double format. r9 is scratch.
8188 __ mov(r7, Operand(lhs));
8189 ConvertToDoubleStub stub2(r1, r0, r7, r9);
8190 __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET);
8191 __ pop(lr);
8192 }
8193 __ jmp(&do_the_call); // Tail call. No return.
8194 }
8195
8196 // We branch here if at least one of r0 and r1 is not a Smi.
8197 __ bind(not_smi);
8198 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
8199
8200 // After this point we have the left hand side in r1 and the right hand side
8201 // in r0.
8202 if (lhs.is(r0)) {
8203 __ Swap(r0, r1, ip);
8204 }
8205
8206 // The type transition also calculates the answer.
8207 bool generate_code_to_calculate_answer = true;
8208
8209 if (ShouldGenerateFPCode()) {
8210 if (runtime_operands_type_ == BinaryOpIC::DEFAULT) {
8211 switch (op_) {
8212 case Token::ADD:
8213 case Token::SUB:
8214 case Token::MUL:
8215 case Token::DIV:
8216 GenerateTypeTransition(masm); // Tail call.
8217 generate_code_to_calculate_answer = false;
8218 break;
8219
8220 default:
8221 break;
8222 }
8223 }
8224
8225 if (generate_code_to_calculate_answer) {
8226 Label r0_is_smi, r1_is_smi, finished_loading_r0, finished_loading_r1;
8227 if (mode_ == NO_OVERWRITE) {
8228 // In the case where there is no chance of an overwritable float we may
8229 // as well do the allocation immediately while r0 and r1 are untouched.
8230 __ AllocateHeapNumber(r5, r3, r7, heap_number_map, &slow);
8231 }
8232
8233 // Move r0 to a double in r2-r3.
8234 __ tst(r0, Operand(kSmiTagMask));
8235 __ b(eq, &r0_is_smi); // It's a Smi so don't check it's a heap number.
8236 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
8237 __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
8238 __ cmp(r4, heap_number_map);
8239 __ b(ne, &slow);
8240 if (mode_ == OVERWRITE_RIGHT) {
8241 __ mov(r5, Operand(r0)); // Overwrite this heap number.
8242 }
8243 if (use_fp_registers) {
8244 CpuFeatures::Scope scope(VFP3);
8245 // Load the double from tagged HeapNumber r0 to d7.
8246 __ sub(r7, r0, Operand(kHeapObjectTag));
8247 __ vldr(d7, r7, HeapNumber::kValueOffset);
8248 } else {
8249 // Calling convention says that second double is in r2 and r3.
8250 __ Ldrd(r2, r3, FieldMemOperand(r0, HeapNumber::kValueOffset));
8251 }
8252 __ jmp(&finished_loading_r0);
8253 __ bind(&r0_is_smi);
8254 if (mode_ == OVERWRITE_RIGHT) {
8255 // We can't overwrite a Smi so get address of new heap number into r5.
8256 __ AllocateHeapNumber(r5, r4, r7, heap_number_map, &slow);
8257 }
8258
8259 if (CpuFeatures::IsSupported(VFP3)) {
8260 CpuFeatures::Scope scope(VFP3);
8261 // Convert smi in r0 to double in d7.
8262 __ mov(r7, Operand(r0, ASR, kSmiTagSize));
8263 __ vmov(s15, r7);
8264 __ vcvt_f64_s32(d7, s15);
8265 if (!use_fp_registers) {
8266 __ vmov(r2, r3, d7);
8267 }
8268 } else {
8269 // Write Smi from r0 to r3 and r2 in double format.
8270 __ mov(r7, Operand(r0));
8271 ConvertToDoubleStub stub3(r3, r2, r7, r4);
8272 __ push(lr);
8273 __ Call(stub3.GetCode(), RelocInfo::CODE_TARGET);
8274 __ pop(lr);
8275 }
8276
8277 // HEAP_NUMBERS stub is slower than GENERIC on a pair of smis.
8278 // r0 is known to be a smi. If r1 is also a smi then switch to GENERIC.
8279 Label r1_is_not_smi;
8280 if (runtime_operands_type_ == BinaryOpIC::HEAP_NUMBERS) {
8281 __ tst(r1, Operand(kSmiTagMask));
8282 __ b(ne, &r1_is_not_smi);
8283 GenerateTypeTransition(masm); // Tail call.
8284 }
8285
8286 __ bind(&finished_loading_r0);
8287
8288 // Move r1 to a double in r0-r1.
8289 __ tst(r1, Operand(kSmiTagMask));
8290 __ b(eq, &r1_is_smi); // It's a Smi so don't check it's a heap number.
8291 __ bind(&r1_is_not_smi);
8292 __ ldr(r4, FieldMemOperand(r1, HeapNumber::kMapOffset));
8293 __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
8294 __ cmp(r4, heap_number_map);
8295 __ b(ne, &slow);
8296 if (mode_ == OVERWRITE_LEFT) {
8297 __ mov(r5, Operand(r1)); // Overwrite this heap number.
8298 }
8299 if (use_fp_registers) {
8300 CpuFeatures::Scope scope(VFP3);
8301 // Load the double from tagged HeapNumber r1 to d6.
8302 __ sub(r7, r1, Operand(kHeapObjectTag));
8303 __ vldr(d6, r7, HeapNumber::kValueOffset);
8304 } else {
8305 // Calling convention says that first double is in r0 and r1.
8306 __ Ldrd(r0, r1, FieldMemOperand(r1, HeapNumber::kValueOffset));
8307 }
8308 __ jmp(&finished_loading_r1);
8309 __ bind(&r1_is_smi);
8310 if (mode_ == OVERWRITE_LEFT) {
8311 // We can't overwrite a Smi so get address of new heap number into r5.
8312 __ AllocateHeapNumber(r5, r4, r7, heap_number_map, &slow);
8313 }
8314
8315 if (CpuFeatures::IsSupported(VFP3)) {
8316 CpuFeatures::Scope scope(VFP3);
8317 // Convert smi in r1 to double in d6.
8318 __ mov(r7, Operand(r1, ASR, kSmiTagSize));
8319 __ vmov(s13, r7);
8320 __ vcvt_f64_s32(d6, s13);
8321 if (!use_fp_registers) {
8322 __ vmov(r0, r1, d6);
8323 }
8324 } else {
8325 // Write Smi from r1 to r1 and r0 in double format.
8326 __ mov(r7, Operand(r1));
8327 ConvertToDoubleStub stub4(r1, r0, r7, r9);
8328 __ push(lr);
8329 __ Call(stub4.GetCode(), RelocInfo::CODE_TARGET);
8330 __ pop(lr);
8331 }
8332
8333 __ bind(&finished_loading_r1);
8334 }
8335
8336 if (generate_code_to_calculate_answer || do_the_call.is_linked()) {
8337 __ bind(&do_the_call);
8338 // If we are inlining the operation using VFP3 instructions for
8339 // add, subtract, multiply, or divide, the arguments are in d6 and d7.
8340 if (use_fp_registers) {
8341 CpuFeatures::Scope scope(VFP3);
8342 // ARMv7 VFP3 instructions to implement
8343 // double precision, add, subtract, multiply, divide.
8344
8345 if (Token::MUL == op_) {
8346 __ vmul(d5, d6, d7);
8347 } else if (Token::DIV == op_) {
8348 __ vdiv(d5, d6, d7);
8349 } else if (Token::ADD == op_) {
8350 __ vadd(d5, d6, d7);
8351 } else if (Token::SUB == op_) {
8352 __ vsub(d5, d6, d7);
8353 } else {
8354 UNREACHABLE();
8355 }
8356 __ sub(r0, r5, Operand(kHeapObjectTag));
8357 __ vstr(d5, r0, HeapNumber::kValueOffset);
8358 __ add(r0, r0, Operand(kHeapObjectTag));
8359 __ mov(pc, lr);
8360 } else {
8361 // If we did not inline the operation, then the arguments are in:
8362 // r0: Left value (least significant part of mantissa).
8363 // r1: Left value (sign, exponent, top of mantissa).
8364 // r2: Right value (least significant part of mantissa).
8365 // r3: Right value (sign, exponent, top of mantissa).
8366 // r5: Address of heap number for result.
8367
8368 __ push(lr); // For later.
8369 __ PrepareCallCFunction(4, r4); // Two doubles count as 4 arguments.
8370 // Call C routine that may not cause GC or other trouble. r5 is callee
8371 // save.
8372 __ CallCFunction(ExternalReference::double_fp_operation(op_), 4);
8373 // Store answer in the overwritable heap number.
8374 #if !defined(USE_ARM_EABI)
8375 // Double returned in fp coprocessor register 0 and 1, encoded as
8376 // register cr8. Offsets must be divisible by 4 for coprocessor so we
8377 // need to substract the tag from r5.
8378 __ sub(r4, r5, Operand(kHeapObjectTag));
8379 __ stc(p1, cr8, MemOperand(r4, HeapNumber::kValueOffset));
8380 #else
8381 // Double returned in registers 0 and 1.
8382 __ Strd(r0, r1, FieldMemOperand(r5, HeapNumber::kValueOffset));
8383 #endif
8384 __ mov(r0, Operand(r5));
8385 // And we are done.
8386 __ pop(pc);
8387 }
8388 }
8389 }
8390
8391 if (!generate_code_to_calculate_answer &&
8392 !slow_reverse.is_linked() &&
8393 !slow.is_linked()) {
8394 return;
8395 }
8396
8397 if (lhs.is(r0)) {
8398 __ b(&slow);
8399 __ bind(&slow_reverse);
8400 __ Swap(r0, r1, ip);
8401 }
8402
8403 heap_number_map = no_reg; // Don't use this any more from here on.
8404
8405 // We jump to here if something goes wrong (one param is not a number of any
8406 // sort or new-space allocation fails).
8407 __ bind(&slow);
8408
8409 // Push arguments to the stack
8410 __ Push(r1, r0);
8411
8412 if (Token::ADD == op_) {
8413 // Test for string arguments before calling runtime.
8414 // r1 : first argument
8415 // r0 : second argument
8416 // sp[0] : second argument
8417 // sp[4] : first argument
8418
8419 Label not_strings, not_string1, string1, string1_smi2;
8420 __ tst(r1, Operand(kSmiTagMask));
8421 __ b(eq, &not_string1);
8422 __ CompareObjectType(r1, r2, r2, FIRST_NONSTRING_TYPE);
8423 __ b(ge, &not_string1);
8424
8425 // First argument is a a string, test second.
8426 __ tst(r0, Operand(kSmiTagMask));
8427 __ b(eq, &string1_smi2);
8428 __ CompareObjectType(r0, r2, r2, FIRST_NONSTRING_TYPE);
8429 __ b(ge, &string1);
8430
8431 // First and second argument are strings.
8432 StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
8433 __ TailCallStub(&string_add_stub);
8434
8435 __ bind(&string1_smi2);
8436 // First argument is a string, second is a smi. Try to lookup the number
8437 // string for the smi in the number string cache.
8438 NumberToStringStub::GenerateLookupNumberStringCache(
8439 masm, r0, r2, r4, r5, r6, true, &string1);
8440
8441 // Replace second argument on stack and tailcall string add stub to make
8442 // the result.
8443 __ str(r2, MemOperand(sp, 0));
8444 __ TailCallStub(&string_add_stub);
8445
8446 // Only first argument is a string.
8447 __ bind(&string1);
8448 __ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_JS);
8449
8450 // First argument was not a string, test second.
8451 __ bind(&not_string1);
8452 __ tst(r0, Operand(kSmiTagMask));
8453 __ b(eq, &not_strings);
8454 __ CompareObjectType(r0, r2, r2, FIRST_NONSTRING_TYPE);
8455 __ b(ge, &not_strings);
8456
8457 // Only second argument is a string.
8458 __ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_JS);
8459
8460 __ bind(&not_strings);
8461 }
8462
8463 __ InvokeBuiltin(builtin, JUMP_JS); // Tail call. No return.
8464 }
8465
8466
8467 // Tries to get a signed int32 out of a double precision floating point heap
8468 // number. Rounds towards 0. Fastest for doubles that are in the ranges
8469 // -0x7fffffff to -0x40000000 or 0x40000000 to 0x7fffffff. This corresponds
8470 // almost to the range of signed int32 values that are not Smis. Jumps to the
8471 // label 'slow' if the double isn't in the range -0x80000000.0 to 0x80000000.0
8472 // (excluding the endpoints).
8473 static void GetInt32(MacroAssembler* masm,
8474 Register source,
8475 Register dest,
8476 Register scratch,
8477 Register scratch2,
8478 Label* slow) {
8479 Label right_exponent, done;
8480 // Get exponent word.
8481 __ ldr(scratch, FieldMemOperand(source, HeapNumber::kExponentOffset));
8482 // Get exponent alone in scratch2.
8483 __ Ubfx(scratch2,
8484 scratch,
8485 HeapNumber::kExponentShift,
8486 HeapNumber::kExponentBits);
8487 // Load dest with zero. We use this either for the final shift or
8488 // for the answer.
8489 __ mov(dest, Operand(0));
8490 // Check whether the exponent matches a 32 bit signed int that is not a Smi.
8491 // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). This is
8492 // the exponent that we are fastest at and also the highest exponent we can
8493 // handle here.
8494 const uint32_t non_smi_exponent = HeapNumber::kExponentBias + 30;
8495 // The non_smi_exponent, 0x41d, is too big for ARM's immediate field so we
8496 // split it up to avoid a constant pool entry. You can't do that in general
8497 // for cmp because of the overflow flag, but we know the exponent is in the
8498 // range 0-2047 so there is no overflow.
8499 int fudge_factor = 0x400;
8500 __ sub(scratch2, scratch2, Operand(fudge_factor));
8501 __ cmp(scratch2, Operand(non_smi_exponent - fudge_factor));
8502 // If we have a match of the int32-but-not-Smi exponent then skip some logic.
8503 __ b(eq, &right_exponent);
8504 // If the exponent is higher than that then go to slow case. This catches
8505 // numbers that don't fit in a signed int32, infinities and NaNs.
8506 __ b(gt, slow);
8507
8508 // We know the exponent is smaller than 30 (biased). If it is less than
8509 // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie
8510 // it rounds to zero.
8511 const uint32_t zero_exponent = HeapNumber::kExponentBias + 0;
8512 __ sub(scratch2, scratch2, Operand(zero_exponent - fudge_factor), SetCC);
8513 // Dest already has a Smi zero.
8514 __ b(lt, &done);
8515 if (!CpuFeatures::IsSupported(VFP3)) {
8516 // We have an exponent between 0 and 30 in scratch2. Subtract from 30 to
8517 // get how much to shift down.
8518 __ rsb(dest, scratch2, Operand(30));
8519 }
8520 __ bind(&right_exponent);
8521 if (CpuFeatures::IsSupported(VFP3)) {
8522 CpuFeatures::Scope scope(VFP3);
8523 // ARMv7 VFP3 instructions implementing double precision to integer
8524 // conversion using round to zero.
8525 __ ldr(scratch2, FieldMemOperand(source, HeapNumber::kMantissaOffset));
8526 __ vmov(d7, scratch2, scratch);
8527 __ vcvt_s32_f64(s15, d7);
8528 __ vmov(dest, s15);
8529 } else {
8530 // Get the top bits of the mantissa.
8531 __ and_(scratch2, scratch, Operand(HeapNumber::kMantissaMask));
8532 // Put back the implicit 1.
8533 __ orr(scratch2, scratch2, Operand(1 << HeapNumber::kExponentShift));
8534 // Shift up the mantissa bits to take up the space the exponent used to
8535 // take. We just orred in the implicit bit so that took care of one and
8536 // we want to leave the sign bit 0 so we subtract 2 bits from the shift
8537 // distance.
8538 const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
8539 __ mov(scratch2, Operand(scratch2, LSL, shift_distance));
8540 // Put sign in zero flag.
8541 __ tst(scratch, Operand(HeapNumber::kSignMask));
8542 // Get the second half of the double. For some exponents we don't
8543 // actually need this because the bits get shifted out again, but
8544 // it's probably slower to test than just to do it.
8545 __ ldr(scratch, FieldMemOperand(source, HeapNumber::kMantissaOffset));
8546 // Shift down 22 bits to get the last 10 bits.
8547 __ orr(scratch, scratch2, Operand(scratch, LSR, 32 - shift_distance));
8548 // Move down according to the exponent.
8549 __ mov(dest, Operand(scratch, LSR, dest));
8550 // Fix sign if sign bit was set.
8551 __ rsb(dest, dest, Operand(0), LeaveCC, ne);
8552 }
8553 __ bind(&done);
8554 }
8555
8556 // For bitwise ops where the inputs are not both Smis we here try to determine
8557 // whether both inputs are either Smis or at least heap numbers that can be
8558 // represented by a 32 bit signed value. We truncate towards zero as required
8559 // by the ES spec. If this is the case we do the bitwise op and see if the
8560 // result is a Smi. If so, great, otherwise we try to find a heap number to
8561 // write the answer into (either by allocating or by overwriting).
8562 // On entry the operands are in lhs and rhs. On exit the answer is in r0.
8563 void GenericBinaryOpStub::HandleNonSmiBitwiseOp(MacroAssembler* masm,
8564 Register lhs,
8565 Register rhs) {
8566 Label slow, result_not_a_smi;
8567 Label rhs_is_smi, lhs_is_smi;
8568 Label done_checking_rhs, done_checking_lhs;
8569
8570 Register heap_number_map = r6;
8571 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
8572
8573 __ tst(lhs, Operand(kSmiTagMask));
8574 __ b(eq, &lhs_is_smi); // It's a Smi so don't check it's a heap number.
8575 __ ldr(r4, FieldMemOperand(lhs, HeapNumber::kMapOffset));
8576 __ cmp(r4, heap_number_map);
8577 __ b(ne, &slow);
8578 GetInt32(masm, lhs, r3, r5, r4, &slow);
8579 __ jmp(&done_checking_lhs);
8580 __ bind(&lhs_is_smi);
8581 __ mov(r3, Operand(lhs, ASR, 1));
8582 __ bind(&done_checking_lhs);
8583
8584 __ tst(rhs, Operand(kSmiTagMask));
8585 __ b(eq, &rhs_is_smi); // It's a Smi so don't check it's a heap number.
8586 __ ldr(r4, FieldMemOperand(rhs, HeapNumber::kMapOffset));
8587 __ cmp(r4, heap_number_map);
8588 __ b(ne, &slow);
8589 GetInt32(masm, rhs, r2, r5, r4, &slow);
8590 __ jmp(&done_checking_rhs);
8591 __ bind(&rhs_is_smi);
8592 __ mov(r2, Operand(rhs, ASR, 1));
8593 __ bind(&done_checking_rhs);
8594
8595 ASSERT(((lhs.is(r0) && rhs.is(r1)) || (lhs.is(r1) && rhs.is(r0))));
8596
8597 // r0 and r1: Original operands (Smi or heap numbers).
8598 // r2 and r3: Signed int32 operands.
8599 switch (op_) {
8600 case Token::BIT_OR: __ orr(r2, r2, Operand(r3)); break;
8601 case Token::BIT_XOR: __ eor(r2, r2, Operand(r3)); break;
8602 case Token::BIT_AND: __ and_(r2, r2, Operand(r3)); break;
8603 case Token::SAR:
8604 // Use only the 5 least significant bits of the shift count.
8605 __ and_(r2, r2, Operand(0x1f));
8606 __ mov(r2, Operand(r3, ASR, r2));
8607 break;
8608 case Token::SHR:
8609 // Use only the 5 least significant bits of the shift count.
8610 __ and_(r2, r2, Operand(0x1f));
8611 __ mov(r2, Operand(r3, LSR, r2), SetCC);
8612 // SHR is special because it is required to produce a positive answer.
8613 // The code below for writing into heap numbers isn't capable of writing
8614 // the register as an unsigned int so we go to slow case if we hit this
8615 // case.
8616 if (CpuFeatures::IsSupported(VFP3)) {
8617 __ b(mi, &result_not_a_smi);
8618 } else {
8619 __ b(mi, &slow);
8620 }
8621 break;
8622 case Token::SHL:
8623 // Use only the 5 least significant bits of the shift count.
8624 __ and_(r2, r2, Operand(0x1f));
8625 __ mov(r2, Operand(r3, LSL, r2));
8626 break;
8627 default: UNREACHABLE();
8628 }
8629 // check that the *signed* result fits in a smi
8630 __ add(r3, r2, Operand(0x40000000), SetCC);
8631 __ b(mi, &result_not_a_smi);
8632 __ mov(r0, Operand(r2, LSL, kSmiTagSize));
8633 __ Ret();
8634
8635 Label have_to_allocate, got_a_heap_number;
8636 __ bind(&result_not_a_smi);
8637 switch (mode_) {
8638 case OVERWRITE_RIGHT: {
8639 __ tst(rhs, Operand(kSmiTagMask));
8640 __ b(eq, &have_to_allocate);
8641 __ mov(r5, Operand(rhs));
8642 break;
8643 }
8644 case OVERWRITE_LEFT: {
8645 __ tst(lhs, Operand(kSmiTagMask));
8646 __ b(eq, &have_to_allocate);
8647 __ mov(r5, Operand(lhs));
8648 break;
8649 }
8650 case NO_OVERWRITE: {
8651 // Get a new heap number in r5. r4 and r7 are scratch.
8652 __ AllocateHeapNumber(r5, r4, r7, heap_number_map, &slow);
8653 }
8654 default: break;
8655 }
8656 __ bind(&got_a_heap_number);
8657 // r2: Answer as signed int32.
8658 // r5: Heap number to write answer into.
8659
8660 // Nothing can go wrong now, so move the heap number to r0, which is the
8661 // result.
8662 __ mov(r0, Operand(r5));
8663
8664 if (CpuFeatures::IsSupported(VFP3)) {
8665 // Convert the int32 in r2 to the heap number in r0. r3 is corrupted.
8666 CpuFeatures::Scope scope(VFP3);
8667 __ vmov(s0, r2);
8668 if (op_ == Token::SHR) {
8669 __ vcvt_f64_u32(d0, s0);
8670 } else {
8671 __ vcvt_f64_s32(d0, s0);
8672 }
8673 __ sub(r3, r0, Operand(kHeapObjectTag));
8674 __ vstr(d0, r3, HeapNumber::kValueOffset);
8675 __ Ret();
8676 } else {
8677 // Tail call that writes the int32 in r2 to the heap number in r0, using
8678 // r3 as scratch. r0 is preserved and returned.
8679 WriteInt32ToHeapNumberStub stub(r2, r0, r3);
8680 __ TailCallStub(&stub);
8681 }
8682
8683 if (mode_ != NO_OVERWRITE) {
8684 __ bind(&have_to_allocate);
8685 // Get a new heap number in r5. r4 and r7 are scratch.
8686 __ AllocateHeapNumber(r5, r4, r7, heap_number_map, &slow);
8687 __ jmp(&got_a_heap_number);
8688 }
8689
8690 // If all else failed then we go to the runtime system.
8691 __ bind(&slow);
8692 __ Push(lhs, rhs); // Restore stack.
8693 switch (op_) {
8694 case Token::BIT_OR:
8695 __ InvokeBuiltin(Builtins::BIT_OR, JUMP_JS);
8696 break;
8697 case Token::BIT_AND:
8698 __ InvokeBuiltin(Builtins::BIT_AND, JUMP_JS);
8699 break;
8700 case Token::BIT_XOR:
8701 __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_JS);
8702 break;
8703 case Token::SAR:
8704 __ InvokeBuiltin(Builtins::SAR, JUMP_JS);
8705 break;
8706 case Token::SHR:
8707 __ InvokeBuiltin(Builtins::SHR, JUMP_JS);
8708 break;
8709 case Token::SHL:
8710 __ InvokeBuiltin(Builtins::SHL, JUMP_JS);
8711 break;
8712 default:
8713 UNREACHABLE();
8714 }
8715 }
8716
8717
8718 // Can we multiply by x with max two shifts and an add.
8719 // This answers yes to all integers from 2 to 10.
8720 static bool IsEasyToMultiplyBy(int x) {
8721 if (x < 2) return false; // Avoid special cases.
8722 if (x > (Smi::kMaxValue + 1) >> 2) return false; // Almost always overflows.
8723 if (IsPowerOf2(x)) return true; // Simple shift.
8724 if (PopCountLessThanEqual2(x)) return true; // Shift and add and shift.
8725 if (IsPowerOf2(x + 1)) return true; // Patterns like 11111.
8726 return false;
8727 }
8728
8729
8730 // Can multiply by anything that IsEasyToMultiplyBy returns true for.
8731 // Source and destination may be the same register. This routine does
8732 // not set carry and overflow the way a mul instruction would.
8733 static void MultiplyByKnownInt(MacroAssembler* masm,
8734 Register source,
8735 Register destination,
8736 int known_int) {
8737 if (IsPowerOf2(known_int)) {
8738 __ mov(destination, Operand(source, LSL, BitPosition(known_int)));
8739 } else if (PopCountLessThanEqual2(known_int)) {
8740 int first_bit = BitPosition(known_int);
8741 int second_bit = BitPosition(known_int ^ (1 << first_bit));
8742 __ add(destination, source, Operand(source, LSL, second_bit - first_bit));
8743 if (first_bit != 0) {
8744 __ mov(destination, Operand(destination, LSL, first_bit));
8745 }
8746 } else {
8747 ASSERT(IsPowerOf2(known_int + 1)); // Patterns like 1111.
8748 int the_bit = BitPosition(known_int + 1);
8749 __ rsb(destination, source, Operand(source, LSL, the_bit));
8750 }
8751 }
8752
8753
8754 // This function (as opposed to MultiplyByKnownInt) takes the known int in a
8755 // a register for the cases where it doesn't know a good trick, and may deliver
8756 // a result that needs shifting.
8757 static void MultiplyByKnownInt2(
8758 MacroAssembler* masm,
8759 Register result,
8760 Register source,
8761 Register known_int_register, // Smi tagged.
8762 int known_int,
8763 int* required_shift) { // Including Smi tag shift
8764 switch (known_int) {
8765 case 3:
8766 __ add(result, source, Operand(source, LSL, 1));
8767 *required_shift = 1;
8768 break;
8769 case 5:
8770 __ add(result, source, Operand(source, LSL, 2));
8771 *required_shift = 1;
8772 break;
8773 case 6:
8774 __ add(result, source, Operand(source, LSL, 1));
8775 *required_shift = 2;
8776 break;
8777 case 7:
8778 __ rsb(result, source, Operand(source, LSL, 3));
8779 *required_shift = 1;
8780 break;
8781 case 9:
8782 __ add(result, source, Operand(source, LSL, 3));
8783 *required_shift = 1;
8784 break;
8785 case 10:
8786 __ add(result, source, Operand(source, LSL, 2));
8787 *required_shift = 2;
8788 break;
8789 default:
8790 ASSERT(!IsPowerOf2(known_int)); // That would be very inefficient.
8791 __ mul(result, source, known_int_register);
8792 *required_shift = 0;
8793 }
8794 }
8795
8796
8797 // This uses versions of the sum-of-digits-to-see-if-a-number-is-divisible-by-3
8798 // trick. See http://en.wikipedia.org/wiki/Divisibility_rule
8799 // Takes the sum of the digits base (mask + 1) repeatedly until we have a
8800 // number from 0 to mask. On exit the 'eq' condition flags are set if the
8801 // answer is exactly the mask.
8802 void IntegerModStub::DigitSum(MacroAssembler* masm,
8803 Register lhs,
8804 int mask,
8805 int shift,
8806 Label* entry) {
8807 ASSERT(mask > 0);
8808 ASSERT(mask <= 0xff); // This ensures we don't need ip to use it.
8809 Label loop;
8810 __ bind(&loop);
8811 __ and_(ip, lhs, Operand(mask));
8812 __ add(lhs, ip, Operand(lhs, LSR, shift));
8813 __ bind(entry);
8814 __ cmp(lhs, Operand(mask));
8815 __ b(gt, &loop);
8816 }
8817
8818
8819 void IntegerModStub::DigitSum(MacroAssembler* masm,
8820 Register lhs,
8821 Register scratch,
8822 int mask,
8823 int shift1,
8824 int shift2,
8825 Label* entry) {
8826 ASSERT(mask > 0);
8827 ASSERT(mask <= 0xff); // This ensures we don't need ip to use it.
8828 Label loop;
8829 __ bind(&loop);
8830 __ bic(scratch, lhs, Operand(mask));
8831 __ and_(ip, lhs, Operand(mask));
8832 __ add(lhs, ip, Operand(lhs, LSR, shift1));
8833 __ add(lhs, lhs, Operand(scratch, LSR, shift2));
8834 __ bind(entry);
8835 __ cmp(lhs, Operand(mask));
8836 __ b(gt, &loop);
8837 }
8838
8839
8840 // Splits the number into two halves (bottom half has shift bits). The top
8841 // half is subtracted from the bottom half. If the result is negative then
8842 // rhs is added.
8843 void IntegerModStub::ModGetInRangeBySubtraction(MacroAssembler* masm,
8844 Register lhs,
8845 int shift,
8846 int rhs) {
8847 int mask = (1 << shift) - 1;
8848 __ and_(ip, lhs, Operand(mask));
8849 __ sub(lhs, ip, Operand(lhs, LSR, shift), SetCC);
8850 __ add(lhs, lhs, Operand(rhs), LeaveCC, mi);
8851 }
8852
8853
8854 void IntegerModStub::ModReduce(MacroAssembler* masm,
8855 Register lhs,
8856 int max,
8857 int denominator) {
8858 int limit = denominator;
8859 while (limit * 2 <= max) limit *= 2;
8860 while (limit >= denominator) {
8861 __ cmp(lhs, Operand(limit));
8862 __ sub(lhs, lhs, Operand(limit), LeaveCC, ge);
8863 limit >>= 1;
8864 }
8865 }
8866
8867
8868 void IntegerModStub::ModAnswer(MacroAssembler* masm,
8869 Register result,
8870 Register shift_distance,
8871 Register mask_bits,
8872 Register sum_of_digits) {
8873 __ add(result, mask_bits, Operand(sum_of_digits, LSL, shift_distance));
8874 __ Ret();
8875 }
8876
8877
8878 // See comment for class.
8879 void IntegerModStub::Generate(MacroAssembler* masm) {
8880 __ mov(lhs_, Operand(lhs_, LSR, shift_distance_));
8881 __ bic(odd_number_, odd_number_, Operand(1));
8882 __ mov(odd_number_, Operand(odd_number_, LSL, 1));
8883 // We now have (odd_number_ - 1) * 2 in the register.
8884 // Build a switch out of branches instead of data because it avoids
8885 // having to teach the assembler about intra-code-object pointers
8886 // that are not in relative branch instructions.
8887 Label mod3, mod5, mod7, mod9, mod11, mod13, mod15, mod17, mod19;
8888 Label mod21, mod23, mod25;
8889 { Assembler::BlockConstPoolScope block_const_pool(masm);
8890 __ add(pc, pc, Operand(odd_number_));
8891 // When you read pc it is always 8 ahead, but when you write it you always
8892 // write the actual value. So we put in two nops to take up the slack.
8893 __ nop();
8894 __ nop();
8895 __ b(&mod3);
8896 __ b(&mod5);
8897 __ b(&mod7);
8898 __ b(&mod9);
8899 __ b(&mod11);
8900 __ b(&mod13);
8901 __ b(&mod15);
8902 __ b(&mod17);
8903 __ b(&mod19);
8904 __ b(&mod21);
8905 __ b(&mod23);
8906 __ b(&mod25);
8907 }
8908
8909 // For each denominator we find a multiple that is almost only ones
8910 // when expressed in binary. Then we do the sum-of-digits trick for
8911 // that number. If the multiple is not 1 then we have to do a little
8912 // more work afterwards to get the answer into the 0-denominator-1
8913 // range.
8914 DigitSum(masm, lhs_, 3, 2, &mod3); // 3 = b11.
8915 __ sub(lhs_, lhs_, Operand(3), LeaveCC, eq);
8916 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
8917
8918 DigitSum(masm, lhs_, 0xf, 4, &mod5); // 5 * 3 = b1111.
8919 ModGetInRangeBySubtraction(masm, lhs_, 2, 5);
8920 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
8921
8922 DigitSum(masm, lhs_, 7, 3, &mod7); // 7 = b111.
8923 __ sub(lhs_, lhs_, Operand(7), LeaveCC, eq);
8924 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
8925
8926 DigitSum(masm, lhs_, 0x3f, 6, &mod9); // 7 * 9 = b111111.
8927 ModGetInRangeBySubtraction(masm, lhs_, 3, 9);
8928 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
8929
8930 DigitSum(masm, lhs_, r5, 0x3f, 6, 3, &mod11); // 5 * 11 = b110111.
8931 ModReduce(masm, lhs_, 0x3f, 11);
8932 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
8933
8934 DigitSum(masm, lhs_, r5, 0xff, 8, 5, &mod13); // 19 * 13 = b11110111.
8935 ModReduce(masm, lhs_, 0xff, 13);
8936 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
8937
8938 DigitSum(masm, lhs_, 0xf, 4, &mod15); // 15 = b1111.
8939 __ sub(lhs_, lhs_, Operand(15), LeaveCC, eq);
8940 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
8941
8942 DigitSum(masm, lhs_, 0xff, 8, &mod17); // 15 * 17 = b11111111.
8943 ModGetInRangeBySubtraction(masm, lhs_, 4, 17);
8944 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
8945
8946 DigitSum(masm, lhs_, r5, 0xff, 8, 5, &mod19); // 13 * 19 = b11110111.
8947 ModReduce(masm, lhs_, 0xff, 19);
8948 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
8949
8950 DigitSum(masm, lhs_, 0x3f, 6, &mod21); // 3 * 21 = b111111.
8951 ModReduce(masm, lhs_, 0x3f, 21);
8952 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
8953
8954 DigitSum(masm, lhs_, r5, 0xff, 8, 7, &mod23); // 11 * 23 = b11111101.
8955 ModReduce(masm, lhs_, 0xff, 23);
8956 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
8957
8958 DigitSum(masm, lhs_, r5, 0x7f, 7, 6, &mod25); // 5 * 25 = b1111101.
8959 ModReduce(masm, lhs_, 0x7f, 25);
8960 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
8961 }
8962
8963
8964 const char* GenericBinaryOpStub::GetName() { 7076 const char* GenericBinaryOpStub::GetName() {
8965 if (name_ != NULL) return name_; 7077 if (name_ != NULL) return name_;
8966 const int len = 100; 7078 const int len = 100;
8967 name_ = Bootstrapper::AllocateAutoDeletedArray(len); 7079 name_ = Bootstrapper::AllocateAutoDeletedArray(len);
8968 if (name_ == NULL) return "OOM"; 7080 if (name_ == NULL) return "OOM";
8969 const char* op_name = Token::Name(op_); 7081 const char* op_name = Token::Name(op_);
8970 const char* overwrite_name; 7082 const char* overwrite_name;
8971 switch (mode_) { 7083 switch (mode_) {
8972 case NO_OVERWRITE: overwrite_name = "Alloc"; break; 7084 case NO_OVERWRITE: overwrite_name = "Alloc"; break;
8973 case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; 7085 case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
8974 case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; 7086 case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
8975 default: overwrite_name = "UnknownOverwrite"; break; 7087 default: overwrite_name = "UnknownOverwrite"; break;
8976 } 7088 }
8977 7089
8978 OS::SNPrintF(Vector<char>(name_, len), 7090 OS::SNPrintF(Vector<char>(name_, len),
8979 "GenericBinaryOpStub_%s_%s%s_%s", 7091 "GenericBinaryOpStub_%s_%s%s_%s",
8980 op_name, 7092 op_name,
8981 overwrite_name, 7093 overwrite_name,
8982 specialized_on_rhs_ ? "_ConstantRhs" : "", 7094 specialized_on_rhs_ ? "_ConstantRhs" : "",
8983 BinaryOpIC::GetName(runtime_operands_type_)); 7095 BinaryOpIC::GetName(runtime_operands_type_));
8984 return name_; 7096 return name_;
8985 } 7097 }
8986 7098
8987 7099
8988
8989 void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
8990 // lhs_ : x
8991 // rhs_ : y
8992 // r0 : result
8993
8994 Register result = r0;
8995 Register lhs = lhs_;
8996 Register rhs = rhs_;
8997
8998 // This code can't cope with other register allocations yet.
8999 ASSERT(result.is(r0) &&
9000 ((lhs.is(r0) && rhs.is(r1)) ||
9001 (lhs.is(r1) && rhs.is(r0))));
9002
9003 Register smi_test_reg = VirtualFrame::scratch0();
9004 Register scratch = VirtualFrame::scratch1();
9005
9006 // All ops need to know whether we are dealing with two Smis. Set up
9007 // smi_test_reg to tell us that.
9008 if (ShouldGenerateSmiCode()) {
9009 __ orr(smi_test_reg, lhs, Operand(rhs));
9010 }
9011
9012 switch (op_) {
9013 case Token::ADD: {
9014 Label not_smi;
9015 // Fast path.
9016 if (ShouldGenerateSmiCode()) {
9017 STATIC_ASSERT(kSmiTag == 0); // Adjust code below.
9018 __ tst(smi_test_reg, Operand(kSmiTagMask));
9019 __ b(ne, &not_smi);
9020 __ add(r0, r1, Operand(r0), SetCC); // Add y optimistically.
9021 // Return if no overflow.
9022 __ Ret(vc);
9023 __ sub(r0, r0, Operand(r1)); // Revert optimistic add.
9024 }
9025 HandleBinaryOpSlowCases(masm, &not_smi, lhs, rhs, Builtins::ADD);
9026 break;
9027 }
9028
9029 case Token::SUB: {
9030 Label not_smi;
9031 // Fast path.
9032 if (ShouldGenerateSmiCode()) {
9033 STATIC_ASSERT(kSmiTag == 0); // Adjust code below.
9034 __ tst(smi_test_reg, Operand(kSmiTagMask));
9035 __ b(ne, &not_smi);
9036 if (lhs.is(r1)) {
9037 __ sub(r0, r1, Operand(r0), SetCC); // Subtract y optimistically.
9038 // Return if no overflow.
9039 __ Ret(vc);
9040 __ sub(r0, r1, Operand(r0)); // Revert optimistic subtract.
9041 } else {
9042 __ sub(r0, r0, Operand(r1), SetCC); // Subtract y optimistically.
9043 // Return if no overflow.
9044 __ Ret(vc);
9045 __ add(r0, r0, Operand(r1)); // Revert optimistic subtract.
9046 }
9047 }
9048 HandleBinaryOpSlowCases(masm, &not_smi, lhs, rhs, Builtins::SUB);
9049 break;
9050 }
9051
9052 case Token::MUL: {
9053 Label not_smi, slow;
9054 if (ShouldGenerateSmiCode()) {
9055 STATIC_ASSERT(kSmiTag == 0); // adjust code below
9056 __ tst(smi_test_reg, Operand(kSmiTagMask));
9057 Register scratch2 = smi_test_reg;
9058 smi_test_reg = no_reg;
9059 __ b(ne, &not_smi);
9060 // Remove tag from one operand (but keep sign), so that result is Smi.
9061 __ mov(ip, Operand(rhs, ASR, kSmiTagSize));
9062 // Do multiplication
9063 // scratch = lower 32 bits of ip * lhs.
9064 __ smull(scratch, scratch2, lhs, ip);
9065 // Go slow on overflows (overflow bit is not set).
9066 __ mov(ip, Operand(scratch, ASR, 31));
9067 // No overflow if higher 33 bits are identical.
9068 __ cmp(ip, Operand(scratch2));
9069 __ b(ne, &slow);
9070 // Go slow on zero result to handle -0.
9071 __ tst(scratch, Operand(scratch));
9072 __ mov(result, Operand(scratch), LeaveCC, ne);
9073 __ Ret(ne);
9074 // We need -0 if we were multiplying a negative number with 0 to get 0.
9075 // We know one of them was zero.
9076 __ add(scratch2, rhs, Operand(lhs), SetCC);
9077 __ mov(result, Operand(Smi::FromInt(0)), LeaveCC, pl);
9078 __ Ret(pl); // Return Smi 0 if the non-zero one was positive.
9079 // Slow case. We fall through here if we multiplied a negative number
9080 // with 0, because that would mean we should produce -0.
9081 __ bind(&slow);
9082 }
9083 HandleBinaryOpSlowCases(masm, &not_smi, lhs, rhs, Builtins::MUL);
9084 break;
9085 }
9086
9087 case Token::DIV:
9088 case Token::MOD: {
9089 Label not_smi;
9090 if (ShouldGenerateSmiCode() && specialized_on_rhs_) {
9091 Label lhs_is_unsuitable;
9092 __ BranchOnNotSmi(lhs, &not_smi);
9093 if (IsPowerOf2(constant_rhs_)) {
9094 if (op_ == Token::MOD) {
9095 __ and_(rhs,
9096 lhs,
9097 Operand(0x80000000u | ((constant_rhs_ << kSmiTagSize) - 1)),
9098 SetCC);
9099 // We now have the answer, but if the input was negative we also
9100 // have the sign bit. Our work is done if the result is
9101 // positive or zero:
9102 if (!rhs.is(r0)) {
9103 __ mov(r0, rhs, LeaveCC, pl);
9104 }
9105 __ Ret(pl);
9106 // A mod of a negative left hand side must return a negative number.
9107 // Unfortunately if the answer is 0 then we must return -0. And we
9108 // already optimistically trashed rhs so we may need to restore it.
9109 __ eor(rhs, rhs, Operand(0x80000000u), SetCC);
9110 // Next two instructions are conditional on the answer being -0.
9111 __ mov(rhs, Operand(Smi::FromInt(constant_rhs_)), LeaveCC, eq);
9112 __ b(eq, &lhs_is_unsuitable);
9113 // We need to subtract the dividend. Eg. -3 % 4 == -3.
9114 __ sub(result, rhs, Operand(Smi::FromInt(constant_rhs_)));
9115 } else {
9116 ASSERT(op_ == Token::DIV);
9117 __ tst(lhs,
9118 Operand(0x80000000u | ((constant_rhs_ << kSmiTagSize) - 1)));
9119 __ b(ne, &lhs_is_unsuitable); // Go slow on negative or remainder.
9120 int shift = 0;
9121 int d = constant_rhs_;
9122 while ((d & 1) == 0) {
9123 d >>= 1;
9124 shift++;
9125 }
9126 __ mov(r0, Operand(lhs, LSR, shift));
9127 __ bic(r0, r0, Operand(kSmiTagMask));
9128 }
9129 } else {
9130 // Not a power of 2.
9131 __ tst(lhs, Operand(0x80000000u));
9132 __ b(ne, &lhs_is_unsuitable);
9133 // Find a fixed point reciprocal of the divisor so we can divide by
9134 // multiplying.
9135 double divisor = 1.0 / constant_rhs_;
9136 int shift = 32;
9137 double scale = 4294967296.0; // 1 << 32.
9138 uint32_t mul;
9139 // Maximise the precision of the fixed point reciprocal.
9140 while (true) {
9141 mul = static_cast<uint32_t>(scale * divisor);
9142 if (mul >= 0x7fffffff) break;
9143 scale *= 2.0;
9144 shift++;
9145 }
9146 mul++;
9147 Register scratch2 = smi_test_reg;
9148 smi_test_reg = no_reg;
9149 __ mov(scratch2, Operand(mul));
9150 __ umull(scratch, scratch2, scratch2, lhs);
9151 __ mov(scratch2, Operand(scratch2, LSR, shift - 31));
9152 // scratch2 is lhs / rhs. scratch2 is not Smi tagged.
9153 // rhs is still the known rhs. rhs is Smi tagged.
9154 // lhs is still the unkown lhs. lhs is Smi tagged.
9155 int required_scratch_shift = 0; // Including the Smi tag shift of 1.
9156 // scratch = scratch2 * rhs.
9157 MultiplyByKnownInt2(masm,
9158 scratch,
9159 scratch2,
9160 rhs,
9161 constant_rhs_,
9162 &required_scratch_shift);
9163 // scratch << required_scratch_shift is now the Smi tagged rhs *
9164 // (lhs / rhs) where / indicates integer division.
9165 if (op_ == Token::DIV) {
9166 __ cmp(lhs, Operand(scratch, LSL, required_scratch_shift));
9167 __ b(ne, &lhs_is_unsuitable); // There was a remainder.
9168 __ mov(result, Operand(scratch2, LSL, kSmiTagSize));
9169 } else {
9170 ASSERT(op_ == Token::MOD);
9171 __ sub(result, lhs, Operand(scratch, LSL, required_scratch_shift));
9172 }
9173 }
9174 __ Ret();
9175 __ bind(&lhs_is_unsuitable);
9176 } else if (op_ == Token::MOD &&
9177 runtime_operands_type_ != BinaryOpIC::HEAP_NUMBERS &&
9178 runtime_operands_type_ != BinaryOpIC::STRINGS) {
9179 // Do generate a bit of smi code for modulus even though the default for
9180 // modulus is not to do it, but as the ARM processor has no coprocessor
9181 // support for modulus checking for smis makes sense. We can handle
9182 // 1 to 25 times any power of 2. This covers over half the numbers from
9183 // 1 to 100 including all of the first 25. (Actually the constants < 10
9184 // are handled above by reciprocal multiplication. We only get here for
9185 // those cases if the right hand side is not a constant or for cases
9186 // like 192 which is 3*2^6 and ends up in the 3 case in the integer mod
9187 // stub.)
9188 Label slow;
9189 Label not_power_of_2;
9190 ASSERT(!ShouldGenerateSmiCode());
9191 STATIC_ASSERT(kSmiTag == 0); // Adjust code below.
9192 // Check for two positive smis.
9193 __ orr(smi_test_reg, lhs, Operand(rhs));
9194 __ tst(smi_test_reg, Operand(0x80000000u | kSmiTagMask));
9195 __ b(ne, &slow);
9196 // Check that rhs is a power of two and not zero.
9197 Register mask_bits = r3;
9198 __ sub(scratch, rhs, Operand(1), SetCC);
9199 __ b(mi, &slow);
9200 __ and_(mask_bits, rhs, Operand(scratch), SetCC);
9201 __ b(ne, &not_power_of_2);
9202 // Calculate power of two modulus.
9203 __ and_(result, lhs, Operand(scratch));
9204 __ Ret();
9205
9206 __ bind(&not_power_of_2);
9207 __ eor(scratch, scratch, Operand(mask_bits));
9208 // At least two bits are set in the modulus. The high one(s) are in
9209 // mask_bits and the low one is scratch + 1.
9210 __ and_(mask_bits, scratch, Operand(lhs));
9211 Register shift_distance = scratch;
9212 scratch = no_reg;
9213
9214 // The rhs consists of a power of 2 multiplied by some odd number.
9215 // The power-of-2 part we handle by putting the corresponding bits
9216 // from the lhs in the mask_bits register, and the power in the
9217 // shift_distance register. Shift distance is never 0 due to Smi
9218 // tagging.
9219 __ CountLeadingZeros(r4, shift_distance, shift_distance);
9220 __ rsb(shift_distance, r4, Operand(32));
9221
9222 // Now we need to find out what the odd number is. The last bit is
9223 // always 1.
9224 Register odd_number = r4;
9225 __ mov(odd_number, Operand(rhs, LSR, shift_distance));
9226 __ cmp(odd_number, Operand(25));
9227 __ b(gt, &slow);
9228
9229 IntegerModStub stub(
9230 result, shift_distance, odd_number, mask_bits, lhs, r5);
9231 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); // Tail call.
9232
9233 __ bind(&slow);
9234 }
9235 HandleBinaryOpSlowCases(
9236 masm,
9237 &not_smi,
9238 lhs,
9239 rhs,
9240 op_ == Token::MOD ? Builtins::MOD : Builtins::DIV);
9241 break;
9242 }
9243
9244 case Token::BIT_OR:
9245 case Token::BIT_AND:
9246 case Token::BIT_XOR:
9247 case Token::SAR:
9248 case Token::SHR:
9249 case Token::SHL: {
9250 Label slow;
9251 STATIC_ASSERT(kSmiTag == 0); // adjust code below
9252 __ tst(smi_test_reg, Operand(kSmiTagMask));
9253 __ b(ne, &slow);
9254 Register scratch2 = smi_test_reg;
9255 smi_test_reg = no_reg;
9256 switch (op_) {
9257 case Token::BIT_OR: __ orr(result, rhs, Operand(lhs)); break;
9258 case Token::BIT_AND: __ and_(result, rhs, Operand(lhs)); break;
9259 case Token::BIT_XOR: __ eor(result, rhs, Operand(lhs)); break;
9260 case Token::SAR:
9261 // Remove tags from right operand.
9262 __ GetLeastBitsFromSmi(scratch2, rhs, 5);
9263 __ mov(result, Operand(lhs, ASR, scratch2));
9264 // Smi tag result.
9265 __ bic(result, result, Operand(kSmiTagMask));
9266 break;
9267 case Token::SHR:
9268 // Remove tags from operands. We can't do this on a 31 bit number
9269 // because then the 0s get shifted into bit 30 instead of bit 31.
9270 __ mov(scratch, Operand(lhs, ASR, kSmiTagSize)); // x
9271 __ GetLeastBitsFromSmi(scratch2, rhs, 5);
9272 __ mov(scratch, Operand(scratch, LSR, scratch2));
9273 // Unsigned shift is not allowed to produce a negative number, so
9274 // check the sign bit and the sign bit after Smi tagging.
9275 __ tst(scratch, Operand(0xc0000000));
9276 __ b(ne, &slow);
9277 // Smi tag result.
9278 __ mov(result, Operand(scratch, LSL, kSmiTagSize));
9279 break;
9280 case Token::SHL:
9281 // Remove tags from operands.
9282 __ mov(scratch, Operand(lhs, ASR, kSmiTagSize)); // x
9283 __ GetLeastBitsFromSmi(scratch2, rhs, 5);
9284 __ mov(scratch, Operand(scratch, LSL, scratch2));
9285 // Check that the signed result fits in a Smi.
9286 __ add(scratch2, scratch, Operand(0x40000000), SetCC);
9287 __ b(mi, &slow);
9288 __ mov(result, Operand(scratch, LSL, kSmiTagSize));
9289 break;
9290 default: UNREACHABLE();
9291 }
9292 __ Ret();
9293 __ bind(&slow);
9294 HandleNonSmiBitwiseOp(masm, lhs, rhs);
9295 break;
9296 }
9297
9298 default: UNREACHABLE();
9299 }
9300 // This code should be unreachable.
9301 __ stop("Unreachable");
9302
9303 // Generate an unreachable reference to the DEFAULT stub so that it can be
9304 // found at the end of this stub when clearing ICs at GC.
9305 // TODO(kaznacheev): Check performance impact and get rid of this.
9306 if (runtime_operands_type_ != BinaryOpIC::DEFAULT) {
9307 GenericBinaryOpStub uninit(MinorKey(), BinaryOpIC::DEFAULT);
9308 __ CallStub(&uninit);
9309 }
9310 }
9311
9312
9313 void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
9314 Label get_result;
9315
9316 __ Push(r1, r0);
9317
9318 __ mov(r2, Operand(Smi::FromInt(MinorKey())));
9319 __ mov(r1, Operand(Smi::FromInt(op_)));
9320 __ mov(r0, Operand(Smi::FromInt(runtime_operands_type_)));
9321 __ Push(r2, r1, r0);
9322
9323 __ TailCallExternalReference(
9324 ExternalReference(IC_Utility(IC::kBinaryOp_Patch)),
9325 5,
9326 1);
9327 }
9328
9329
9330 Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) {
9331 GenericBinaryOpStub stub(key, type_info);
9332 return stub.GetCode();
9333 }
9334
9335
9336 void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
9337 // Argument is a number and is on stack and in r0.
9338 Label runtime_call;
9339 Label input_not_smi;
9340 Label loaded;
9341
9342 if (CpuFeatures::IsSupported(VFP3)) {
9343 // Load argument and check if it is a smi.
9344 __ BranchOnNotSmi(r0, &input_not_smi);
9345
9346 CpuFeatures::Scope scope(VFP3);
9347 // Input is a smi. Convert to double and load the low and high words
9348 // of the double into r2, r3.
9349 __ IntegerToDoubleConversionWithVFP3(r0, r3, r2);
9350 __ b(&loaded);
9351
9352 __ bind(&input_not_smi);
9353 // Check if input is a HeapNumber.
9354 __ CheckMap(r0,
9355 r1,
9356 Heap::kHeapNumberMapRootIndex,
9357 &runtime_call,
9358 true);
9359 // Input is a HeapNumber. Load it to a double register and store the
9360 // low and high words into r2, r3.
9361 __ Ldrd(r2, r3, FieldMemOperand(r0, HeapNumber::kValueOffset));
9362
9363 __ bind(&loaded);
9364 // r2 = low 32 bits of double value
9365 // r3 = high 32 bits of double value
9366 // Compute hash (the shifts are arithmetic):
9367 // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1);
9368 __ eor(r1, r2, Operand(r3));
9369 __ eor(r1, r1, Operand(r1, ASR, 16));
9370 __ eor(r1, r1, Operand(r1, ASR, 8));
9371 ASSERT(IsPowerOf2(TranscendentalCache::kCacheSize));
9372 __ And(r1, r1, Operand(TranscendentalCache::kCacheSize - 1));
9373
9374 // r2 = low 32 bits of double value.
9375 // r3 = high 32 bits of double value.
9376 // r1 = TranscendentalCache::hash(double value).
9377 __ mov(r0,
9378 Operand(ExternalReference::transcendental_cache_array_address()));
9379 // r0 points to cache array.
9380 __ ldr(r0, MemOperand(r0, type_ * sizeof(TranscendentalCache::caches_[0])));
9381 // r0 points to the cache for the type type_.
9382 // If NULL, the cache hasn't been initialized yet, so go through runtime.
9383 __ cmp(r0, Operand(0));
9384 __ b(eq, &runtime_call);
9385
9386 #ifdef DEBUG
9387 // Check that the layout of cache elements match expectations.
9388 { TranscendentalCache::Element test_elem[2];
9389 char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
9390 char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
9391 char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
9392 char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
9393 char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
9394 CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer.
9395 CHECK_EQ(0, elem_in0 - elem_start);
9396 CHECK_EQ(kIntSize, elem_in1 - elem_start);
9397 CHECK_EQ(2 * kIntSize, elem_out - elem_start);
9398 }
9399 #endif
9400
9401 // Find the address of the r1'st entry in the cache, i.e., &r0[r1*12].
9402 __ add(r1, r1, Operand(r1, LSL, 1));
9403 __ add(r0, r0, Operand(r1, LSL, 2));
9404 // Check if cache matches: Double value is stored in uint32_t[2] array.
9405 __ ldm(ia, r0, r4.bit()| r5.bit() | r6.bit());
9406 __ cmp(r2, r4);
9407 __ b(ne, &runtime_call);
9408 __ cmp(r3, r5);
9409 __ b(ne, &runtime_call);
9410 // Cache hit. Load result, pop argument and return.
9411 __ mov(r0, Operand(r6));
9412 __ pop();
9413 __ Ret();
9414 }
9415
9416 __ bind(&runtime_call);
9417 __ TailCallExternalReference(ExternalReference(RuntimeFunction()), 1, 1);
9418 }
9419
9420
9421 Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
9422 switch (type_) {
9423 // Add more cases when necessary.
9424 case TranscendentalCache::SIN: return Runtime::kMath_sin;
9425 case TranscendentalCache::COS: return Runtime::kMath_cos;
9426 default:
9427 UNIMPLEMENTED();
9428 return Runtime::kAbort;
9429 }
9430 }
9431
9432
9433 void StackCheckStub::Generate(MacroAssembler* masm) {
9434 // Do tail-call to runtime routine. Runtime routines expect at least one
9435 // argument, so give it a Smi.
9436 __ mov(r0, Operand(Smi::FromInt(0)));
9437 __ push(r0);
9438 __ TailCallRuntime(Runtime::kStackGuard, 1, 1);
9439
9440 __ StubReturn(1);
9441 }
9442
9443
9444 void GenericUnaryOpStub::Generate(MacroAssembler* masm) {
9445 Label slow, done;
9446
9447 Register heap_number_map = r6;
9448 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
9449
9450 if (op_ == Token::SUB) {
9451 // Check whether the value is a smi.
9452 Label try_float;
9453 __ tst(r0, Operand(kSmiTagMask));
9454 __ b(ne, &try_float);
9455
9456 // Go slow case if the value of the expression is zero
9457 // to make sure that we switch between 0 and -0.
9458 if (negative_zero_ == kStrictNegativeZero) {
9459 // If we have to check for zero, then we can check for the max negative
9460 // smi while we are at it.
9461 __ bic(ip, r0, Operand(0x80000000), SetCC);
9462 __ b(eq, &slow);
9463 __ rsb(r0, r0, Operand(0));
9464 __ StubReturn(1);
9465 } else {
9466 // The value of the expression is a smi and 0 is OK for -0. Try
9467 // optimistic subtraction '0 - value'.
9468 __ rsb(r0, r0, Operand(0), SetCC);
9469 __ StubReturn(1, vc);
9470 // We don't have to reverse the optimistic neg since the only case
9471 // where we fall through is the minimum negative Smi, which is the case
9472 // where the neg leaves the register unchanged.
9473 __ jmp(&slow); // Go slow on max negative Smi.
9474 }
9475
9476 __ bind(&try_float);
9477 __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
9478 __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
9479 __ cmp(r1, heap_number_map);
9480 __ b(ne, &slow);
9481 // r0 is a heap number. Get a new heap number in r1.
9482 if (overwrite_ == UNARY_OVERWRITE) {
9483 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
9484 __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign.
9485 __ str(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
9486 } else {
9487 __ AllocateHeapNumber(r1, r2, r3, r6, &slow);
9488 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
9489 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
9490 __ str(r3, FieldMemOperand(r1, HeapNumber::kMantissaOffset));
9491 __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign.
9492 __ str(r2, FieldMemOperand(r1, HeapNumber::kExponentOffset));
9493 __ mov(r0, Operand(r1));
9494 }
9495 } else if (op_ == Token::BIT_NOT) {
9496 // Check if the operand is a heap number.
9497 __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
9498 __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
9499 __ cmp(r1, heap_number_map);
9500 __ b(ne, &slow);
9501
9502 // Convert the heap number is r0 to an untagged integer in r1.
9503 GetInt32(masm, r0, r1, r2, r3, &slow);
9504
9505 // Do the bitwise operation (move negated) and check if the result
9506 // fits in a smi.
9507 Label try_float;
9508 __ mvn(r1, Operand(r1));
9509 __ add(r2, r1, Operand(0x40000000), SetCC);
9510 __ b(mi, &try_float);
9511 __ mov(r0, Operand(r1, LSL, kSmiTagSize));
9512 __ b(&done);
9513
9514 __ bind(&try_float);
9515 if (!overwrite_ == UNARY_OVERWRITE) {
9516 // Allocate a fresh heap number, but don't overwrite r0 until
9517 // we're sure we can do it without going through the slow case
9518 // that needs the value in r0.
9519 __ AllocateHeapNumber(r2, r3, r4, r6, &slow);
9520 __ mov(r0, Operand(r2));
9521 }
9522
9523 if (CpuFeatures::IsSupported(VFP3)) {
9524 // Convert the int32 in r1 to the heap number in r0. r2 is corrupted.
9525 CpuFeatures::Scope scope(VFP3);
9526 __ vmov(s0, r1);
9527 __ vcvt_f64_s32(d0, s0);
9528 __ sub(r2, r0, Operand(kHeapObjectTag));
9529 __ vstr(d0, r2, HeapNumber::kValueOffset);
9530 } else {
9531 // WriteInt32ToHeapNumberStub does not trigger GC, so we do not
9532 // have to set up a frame.
9533 WriteInt32ToHeapNumberStub stub(r1, r0, r2);
9534 __ push(lr);
9535 __ Call(stub.GetCode(), RelocInfo::CODE_TARGET);
9536 __ pop(lr);
9537 }
9538 } else {
9539 UNIMPLEMENTED();
9540 }
9541
9542 __ bind(&done);
9543 __ StubReturn(1);
9544
9545 // Handle the slow case by jumping to the JavaScript builtin.
9546 __ bind(&slow);
9547 __ push(r0);
9548 switch (op_) {
9549 case Token::SUB:
9550 __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_JS);
9551 break;
9552 case Token::BIT_NOT:
9553 __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_JS);
9554 break;
9555 default:
9556 UNREACHABLE();
9557 }
9558 }
9559
9560
9561 void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
9562 // r0 holds the exception.
9563
9564 // Adjust this code if not the case.
9565 STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
9566
9567 // Drop the sp to the top of the handler.
9568 __ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
9569 __ ldr(sp, MemOperand(r3));
9570
9571 // Restore the next handler and frame pointer, discard handler state.
9572 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
9573 __ pop(r2);
9574 __ str(r2, MemOperand(r3));
9575 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize);
9576 __ ldm(ia_w, sp, r3.bit() | fp.bit()); // r3: discarded state.
9577
9578 // Before returning we restore the context from the frame pointer if
9579 // not NULL. The frame pointer is NULL in the exception handler of a
9580 // JS entry frame.
9581 __ cmp(fp, Operand(0));
9582 // Set cp to NULL if fp is NULL.
9583 __ mov(cp, Operand(0), LeaveCC, eq);
9584 // Restore cp otherwise.
9585 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
9586 #ifdef DEBUG
9587 if (FLAG_debug_code) {
9588 __ mov(lr, Operand(pc));
9589 }
9590 #endif
9591 STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
9592 __ pop(pc);
9593 }
9594
9595
9596 void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
9597 UncatchableExceptionType type) {
9598 // Adjust this code if not the case.
9599 STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
9600
9601 // Drop sp to the top stack handler.
9602 __ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
9603 __ ldr(sp, MemOperand(r3));
9604
9605 // Unwind the handlers until the ENTRY handler is found.
9606 Label loop, done;
9607 __ bind(&loop);
9608 // Load the type of the current stack handler.
9609 const int kStateOffset = StackHandlerConstants::kStateOffset;
9610 __ ldr(r2, MemOperand(sp, kStateOffset));
9611 __ cmp(r2, Operand(StackHandler::ENTRY));
9612 __ b(eq, &done);
9613 // Fetch the next handler in the list.
9614 const int kNextOffset = StackHandlerConstants::kNextOffset;
9615 __ ldr(sp, MemOperand(sp, kNextOffset));
9616 __ jmp(&loop);
9617 __ bind(&done);
9618
9619 // Set the top handler address to next handler past the current ENTRY handler.
9620 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
9621 __ pop(r2);
9622 __ str(r2, MemOperand(r3));
9623
9624 if (type == OUT_OF_MEMORY) {
9625 // Set external caught exception to false.
9626 ExternalReference external_caught(Top::k_external_caught_exception_address);
9627 __ mov(r0, Operand(false));
9628 __ mov(r2, Operand(external_caught));
9629 __ str(r0, MemOperand(r2));
9630
9631 // Set pending exception and r0 to out of memory exception.
9632 Failure* out_of_memory = Failure::OutOfMemoryException();
9633 __ mov(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
9634 __ mov(r2, Operand(ExternalReference(Top::k_pending_exception_address)));
9635 __ str(r0, MemOperand(r2));
9636 }
9637
9638 // Stack layout at this point. See also StackHandlerConstants.
9639 // sp -> state (ENTRY)
9640 // fp
9641 // lr
9642
9643 // Discard handler state (r2 is not used) and restore frame pointer.
9644 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize);
9645 __ ldm(ia_w, sp, r2.bit() | fp.bit()); // r2: discarded state.
9646 // Before returning we restore the context from the frame pointer if
9647 // not NULL. The frame pointer is NULL in the exception handler of a
9648 // JS entry frame.
9649 __ cmp(fp, Operand(0));
9650 // Set cp to NULL if fp is NULL.
9651 __ mov(cp, Operand(0), LeaveCC, eq);
9652 // Restore cp otherwise.
9653 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
9654 #ifdef DEBUG
9655 if (FLAG_debug_code) {
9656 __ mov(lr, Operand(pc));
9657 }
9658 #endif
9659 STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
9660 __ pop(pc);
9661 }
9662
9663
9664 void CEntryStub::GenerateCore(MacroAssembler* masm,
9665 Label* throw_normal_exception,
9666 Label* throw_termination_exception,
9667 Label* throw_out_of_memory_exception,
9668 bool do_gc,
9669 bool always_allocate,
9670 int frame_alignment_skew) {
9671 // r0: result parameter for PerformGC, if any
9672 // r4: number of arguments including receiver (C callee-saved)
9673 // r5: pointer to builtin function (C callee-saved)
9674 // r6: pointer to the first argument (C callee-saved)
9675
9676 if (do_gc) {
9677 // Passing r0.
9678 __ PrepareCallCFunction(1, r1);
9679 __ CallCFunction(ExternalReference::perform_gc_function(), 1);
9680 }
9681
9682 ExternalReference scope_depth =
9683 ExternalReference::heap_always_allocate_scope_depth();
9684 if (always_allocate) {
9685 __ mov(r0, Operand(scope_depth));
9686 __ ldr(r1, MemOperand(r0));
9687 __ add(r1, r1, Operand(1));
9688 __ str(r1, MemOperand(r0));
9689 }
9690
9691 // Call C built-in.
9692 // r0 = argc, r1 = argv
9693 __ mov(r0, Operand(r4));
9694 __ mov(r1, Operand(r6));
9695
9696 int frame_alignment = MacroAssembler::ActivationFrameAlignment();
9697 int frame_alignment_mask = frame_alignment - 1;
9698 #if defined(V8_HOST_ARCH_ARM)
9699 if (FLAG_debug_code) {
9700 if (frame_alignment > kPointerSize) {
9701 Label alignment_as_expected;
9702 ASSERT(IsPowerOf2(frame_alignment));
9703 __ sub(r2, sp, Operand(frame_alignment_skew));
9704 __ tst(r2, Operand(frame_alignment_mask));
9705 __ b(eq, &alignment_as_expected);
9706 // Don't use Check here, as it will call Runtime_Abort re-entering here.
9707 __ stop("Unexpected alignment");
9708 __ bind(&alignment_as_expected);
9709 }
9710 }
9711 #endif
9712
9713 // Just before the call (jump) below lr is pushed, so the actual alignment is
9714 // adding one to the current skew.
9715 int alignment_before_call =
9716 (frame_alignment_skew + kPointerSize) & frame_alignment_mask;
9717 if (alignment_before_call > 0) {
9718 // Push until the alignment before the call is met.
9719 __ mov(r2, Operand(0));
9720 for (int i = alignment_before_call;
9721 (i & frame_alignment_mask) != 0;
9722 i += kPointerSize) {
9723 __ push(r2);
9724 }
9725 }
9726
9727 // TODO(1242173): To let the GC traverse the return address of the exit
9728 // frames, we need to know where the return address is. Right now,
9729 // we push it on the stack to be able to find it again, but we never
9730 // restore from it in case of changes, which makes it impossible to
9731 // support moving the C entry code stub. This should be fixed, but currently
9732 // this is OK because the CEntryStub gets generated so early in the V8 boot
9733 // sequence that it is not moving ever.
9734 masm->add(lr, pc, Operand(4)); // Compute return address: (pc + 8) + 4
9735 masm->push(lr);
9736 masm->Jump(r5);
9737
9738 // Restore sp back to before aligning the stack.
9739 if (alignment_before_call > 0) {
9740 __ add(sp, sp, Operand(alignment_before_call));
9741 }
9742
9743 if (always_allocate) {
9744 // It's okay to clobber r2 and r3 here. Don't mess with r0 and r1
9745 // though (contain the result).
9746 __ mov(r2, Operand(scope_depth));
9747 __ ldr(r3, MemOperand(r2));
9748 __ sub(r3, r3, Operand(1));
9749 __ str(r3, MemOperand(r2));
9750 }
9751
9752 // check for failure result
9753 Label failure_returned;
9754 STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
9755 // Lower 2 bits of r2 are 0 iff r0 has failure tag.
9756 __ add(r2, r0, Operand(1));
9757 __ tst(r2, Operand(kFailureTagMask));
9758 __ b(eq, &failure_returned);
9759
9760 // Exit C frame and return.
9761 // r0:r1: result
9762 // sp: stack pointer
9763 // fp: frame pointer
9764 __ LeaveExitFrame(mode_);
9765
9766 // check if we should retry or throw exception
9767 Label retry;
9768 __ bind(&failure_returned);
9769 STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
9770 __ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
9771 __ b(eq, &retry);
9772
9773 // Special handling of out of memory exceptions.
9774 Failure* out_of_memory = Failure::OutOfMemoryException();
9775 __ cmp(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
9776 __ b(eq, throw_out_of_memory_exception);
9777
9778 // Retrieve the pending exception and clear the variable.
9779 __ mov(ip, Operand(ExternalReference::the_hole_value_location()));
9780 __ ldr(r3, MemOperand(ip));
9781 __ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address)));
9782 __ ldr(r0, MemOperand(ip));
9783 __ str(r3, MemOperand(ip));
9784
9785 // Special handling of termination exceptions which are uncatchable
9786 // by javascript code.
9787 __ cmp(r0, Operand(Factory::termination_exception()));
9788 __ b(eq, throw_termination_exception);
9789
9790 // Handle normal exception.
9791 __ jmp(throw_normal_exception);
9792
9793 __ bind(&retry); // pass last failure (r0) as parameter (r0) when retrying
9794 }
9795
9796
9797 void CEntryStub::Generate(MacroAssembler* masm) {
9798 // Called from JavaScript; parameters are on stack as if calling JS function
9799 // r0: number of arguments including receiver
9800 // r1: pointer to builtin function
9801 // fp: frame pointer (restored after C call)
9802 // sp: stack pointer (restored as callee's sp after C call)
9803 // cp: current context (C callee-saved)
9804
9805 // Result returned in r0 or r0+r1 by default.
9806
9807 // NOTE: Invocations of builtins may return failure objects
9808 // instead of a proper result. The builtin entry handles
9809 // this by performing a garbage collection and retrying the
9810 // builtin once.
9811
9812 // Enter the exit frame that transitions from JavaScript to C++.
9813 __ EnterExitFrame(mode_);
9814
9815 // r4: number of arguments (C callee-saved)
9816 // r5: pointer to builtin function (C callee-saved)
9817 // r6: pointer to first argument (C callee-saved)
9818
9819 Label throw_normal_exception;
9820 Label throw_termination_exception;
9821 Label throw_out_of_memory_exception;
9822
9823 // Call into the runtime system.
9824 GenerateCore(masm,
9825 &throw_normal_exception,
9826 &throw_termination_exception,
9827 &throw_out_of_memory_exception,
9828 false,
9829 false,
9830 -kPointerSize);
9831
9832 // Do space-specific GC and retry runtime call.
9833 GenerateCore(masm,
9834 &throw_normal_exception,
9835 &throw_termination_exception,
9836 &throw_out_of_memory_exception,
9837 true,
9838 false,
9839 0);
9840
9841 // Do full GC and retry runtime call one final time.
9842 Failure* failure = Failure::InternalError();
9843 __ mov(r0, Operand(reinterpret_cast<int32_t>(failure)));
9844 GenerateCore(masm,
9845 &throw_normal_exception,
9846 &throw_termination_exception,
9847 &throw_out_of_memory_exception,
9848 true,
9849 true,
9850 kPointerSize);
9851
9852 __ bind(&throw_out_of_memory_exception);
9853 GenerateThrowUncatchable(masm, OUT_OF_MEMORY);
9854
9855 __ bind(&throw_termination_exception);
9856 GenerateThrowUncatchable(masm, TERMINATION);
9857
9858 __ bind(&throw_normal_exception);
9859 GenerateThrowTOS(masm);
9860 }
9861
9862
9863 void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
9864 // r0: code entry
9865 // r1: function
9866 // r2: receiver
9867 // r3: argc
9868 // [sp+0]: argv
9869
9870 Label invoke, exit;
9871
9872 // Called from C, so do not pop argc and args on exit (preserve sp)
9873 // No need to save register-passed args
9874 // Save callee-saved registers (incl. cp and fp), sp, and lr
9875 __ stm(db_w, sp, kCalleeSaved | lr.bit());
9876
9877 // Get address of argv, see stm above.
9878 // r0: code entry
9879 // r1: function
9880 // r2: receiver
9881 // r3: argc
9882 __ ldr(r4, MemOperand(sp, (kNumCalleeSaved + 1) * kPointerSize)); // argv
9883
9884 // Push a frame with special values setup to mark it as an entry frame.
9885 // r0: code entry
9886 // r1: function
9887 // r2: receiver
9888 // r3: argc
9889 // r4: argv
9890 __ mov(r8, Operand(-1)); // Push a bad frame pointer to fail if it is used.
9891 int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
9892 __ mov(r7, Operand(Smi::FromInt(marker)));
9893 __ mov(r6, Operand(Smi::FromInt(marker)));
9894 __ mov(r5, Operand(ExternalReference(Top::k_c_entry_fp_address)));
9895 __ ldr(r5, MemOperand(r5));
9896 __ Push(r8, r7, r6, r5);
9897
9898 // Setup frame pointer for the frame to be pushed.
9899 __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
9900
9901 // Call a faked try-block that does the invoke.
9902 __ bl(&invoke);
9903
9904 // Caught exception: Store result (exception) in the pending
9905 // exception field in the JSEnv and return a failure sentinel.
9906 // Coming in here the fp will be invalid because the PushTryHandler below
9907 // sets it to 0 to signal the existence of the JSEntry frame.
9908 __ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address)));
9909 __ str(r0, MemOperand(ip));
9910 __ mov(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception())));
9911 __ b(&exit);
9912
9913 // Invoke: Link this frame into the handler chain.
9914 __ bind(&invoke);
9915 // Must preserve r0-r4, r5-r7 are available.
9916 __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);
9917 // If an exception not caught by another handler occurs, this handler
9918 // returns control to the code after the bl(&invoke) above, which
9919 // restores all kCalleeSaved registers (including cp and fp) to their
9920 // saved values before returning a failure to C.
9921
9922 // Clear any pending exceptions.
9923 __ mov(ip, Operand(ExternalReference::the_hole_value_location()));
9924 __ ldr(r5, MemOperand(ip));
9925 __ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address)));
9926 __ str(r5, MemOperand(ip));
9927
9928 // Invoke the function by calling through JS entry trampoline builtin.
9929 // Notice that we cannot store a reference to the trampoline code directly in
9930 // this stub, because runtime stubs are not traversed when doing GC.
9931
9932 // Expected registers by Builtins::JSEntryTrampoline
9933 // r0: code entry
9934 // r1: function
9935 // r2: receiver
9936 // r3: argc
9937 // r4: argv
9938 if (is_construct) {
9939 ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline);
9940 __ mov(ip, Operand(construct_entry));
9941 } else {
9942 ExternalReference entry(Builtins::JSEntryTrampoline);
9943 __ mov(ip, Operand(entry));
9944 }
9945 __ ldr(ip, MemOperand(ip)); // deref address
9946
9947 // Branch and link to JSEntryTrampoline. We don't use the double underscore
9948 // macro for the add instruction because we don't want the coverage tool
9949 // inserting instructions here after we read the pc.
9950 __ mov(lr, Operand(pc));
9951 masm->add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
9952
9953 // Unlink this frame from the handler chain. When reading the
9954 // address of the next handler, there is no need to use the address
9955 // displacement since the current stack pointer (sp) points directly
9956 // to the stack handler.
9957 __ ldr(r3, MemOperand(sp, StackHandlerConstants::kNextOffset));
9958 __ mov(ip, Operand(ExternalReference(Top::k_handler_address)));
9959 __ str(r3, MemOperand(ip));
9960 // No need to restore registers
9961 __ add(sp, sp, Operand(StackHandlerConstants::kSize));
9962
9963
9964 __ bind(&exit); // r0 holds result
9965 // Restore the top frame descriptors from the stack.
9966 __ pop(r3);
9967 __ mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address)));
9968 __ str(r3, MemOperand(ip));
9969
9970 // Reset the stack to the callee saved registers.
9971 __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
9972
9973 // Restore callee-saved registers and return.
9974 #ifdef DEBUG
9975 if (FLAG_debug_code) {
9976 __ mov(lr, Operand(pc));
9977 }
9978 #endif
9979 __ ldm(ia_w, sp, kCalleeSaved | pc.bit());
9980 }
9981
9982
9983 // This stub performs an instanceof, calling the builtin function if
9984 // necessary. Uses r1 for the object, r0 for the function that it may
9985 // be an instance of (these are fetched from the stack).
9986 void InstanceofStub::Generate(MacroAssembler* masm) {
9987 // Get the object - slow case for smis (we may need to throw an exception
9988 // depending on the rhs).
9989 Label slow, loop, is_instance, is_not_instance;
9990 __ ldr(r0, MemOperand(sp, 1 * kPointerSize));
9991 __ BranchOnSmi(r0, &slow);
9992
9993 // Check that the left hand is a JS object and put map in r3.
9994 __ CompareObjectType(r0, r3, r2, FIRST_JS_OBJECT_TYPE);
9995 __ b(lt, &slow);
9996 __ cmp(r2, Operand(LAST_JS_OBJECT_TYPE));
9997 __ b(gt, &slow);
9998
9999 // Get the prototype of the function (r4 is result, r2 is scratch).
10000 __ ldr(r1, MemOperand(sp, 0));
10001 // r1 is function, r3 is map.
10002
10003 // Look up the function and the map in the instanceof cache.
10004 Label miss;
10005 __ LoadRoot(ip, Heap::kInstanceofCacheFunctionRootIndex);
10006 __ cmp(r1, ip);
10007 __ b(ne, &miss);
10008 __ LoadRoot(ip, Heap::kInstanceofCacheMapRootIndex);
10009 __ cmp(r3, ip);
10010 __ b(ne, &miss);
10011 __ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
10012 __ pop();
10013 __ pop();
10014 __ mov(pc, Operand(lr));
10015
10016 __ bind(&miss);
10017 __ TryGetFunctionPrototype(r1, r4, r2, &slow);
10018
10019 // Check that the function prototype is a JS object.
10020 __ BranchOnSmi(r4, &slow);
10021 __ CompareObjectType(r4, r5, r5, FIRST_JS_OBJECT_TYPE);
10022 __ b(lt, &slow);
10023 __ cmp(r5, Operand(LAST_JS_OBJECT_TYPE));
10024 __ b(gt, &slow);
10025
10026 __ StoreRoot(r1, Heap::kInstanceofCacheFunctionRootIndex);
10027 __ StoreRoot(r3, Heap::kInstanceofCacheMapRootIndex);
10028
10029 // Register mapping: r3 is object map and r4 is function prototype.
10030 // Get prototype of object into r2.
10031 __ ldr(r2, FieldMemOperand(r3, Map::kPrototypeOffset));
10032
10033 // Loop through the prototype chain looking for the function prototype.
10034 __ bind(&loop);
10035 __ cmp(r2, Operand(r4));
10036 __ b(eq, &is_instance);
10037 __ LoadRoot(ip, Heap::kNullValueRootIndex);
10038 __ cmp(r2, ip);
10039 __ b(eq, &is_not_instance);
10040 __ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
10041 __ ldr(r2, FieldMemOperand(r2, Map::kPrototypeOffset));
10042 __ jmp(&loop);
10043
10044 __ bind(&is_instance);
10045 __ mov(r0, Operand(Smi::FromInt(0)));
10046 __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
10047 __ pop();
10048 __ pop();
10049 __ mov(pc, Operand(lr)); // Return.
10050
10051 __ bind(&is_not_instance);
10052 __ mov(r0, Operand(Smi::FromInt(1)));
10053 __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
10054 __ pop();
10055 __ pop();
10056 __ mov(pc, Operand(lr)); // Return.
10057
10058 // Slow-case. Tail call builtin.
10059 __ bind(&slow);
10060 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_JS);
10061 }
10062
10063
10064 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
10065 // The displacement is the offset of the last parameter (if any)
10066 // relative to the frame pointer.
10067 static const int kDisplacement =
10068 StandardFrameConstants::kCallerSPOffset - kPointerSize;
10069
10070 // Check that the key is a smi.
10071 Label slow;
10072 __ BranchOnNotSmi(r1, &slow);
10073
10074 // Check if the calling frame is an arguments adaptor frame.
10075 Label adaptor;
10076 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
10077 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
10078 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
10079 __ b(eq, &adaptor);
10080
10081 // Check index against formal parameters count limit passed in
10082 // through register r0. Use unsigned comparison to get negative
10083 // check for free.
10084 __ cmp(r1, r0);
10085 __ b(cs, &slow);
10086
10087 // Read the argument from the stack and return it.
10088 __ sub(r3, r0, r1);
10089 __ add(r3, fp, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
10090 __ ldr(r0, MemOperand(r3, kDisplacement));
10091 __ Jump(lr);
10092
10093 // Arguments adaptor case: Check index against actual arguments
10094 // limit found in the arguments adaptor frame. Use unsigned
10095 // comparison to get negative check for free.
10096 __ bind(&adaptor);
10097 __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
10098 __ cmp(r1, r0);
10099 __ b(cs, &slow);
10100
10101 // Read the argument from the adaptor frame and return it.
10102 __ sub(r3, r0, r1);
10103 __ add(r3, r2, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
10104 __ ldr(r0, MemOperand(r3, kDisplacement));
10105 __ Jump(lr);
10106
10107 // Slow-case: Handle non-smi or out-of-bounds access to arguments
10108 // by calling the runtime system.
10109 __ bind(&slow);
10110 __ push(r1);
10111 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
10112 }
10113
10114
10115 void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
10116 // sp[0] : number of parameters
10117 // sp[4] : receiver displacement
10118 // sp[8] : function
10119
10120 // Check if the calling frame is an arguments adaptor frame.
10121 Label adaptor_frame, try_allocate, runtime;
10122 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
10123 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
10124 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
10125 __ b(eq, &adaptor_frame);
10126
10127 // Get the length from the frame.
10128 __ ldr(r1, MemOperand(sp, 0));
10129 __ b(&try_allocate);
10130
10131 // Patch the arguments.length and the parameters pointer.
10132 __ bind(&adaptor_frame);
10133 __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
10134 __ str(r1, MemOperand(sp, 0));
10135 __ add(r3, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
10136 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
10137 __ str(r3, MemOperand(sp, 1 * kPointerSize));
10138
10139 // Try the new space allocation. Start out with computing the size
10140 // of the arguments object and the elements array in words.
10141 Label add_arguments_object;
10142 __ bind(&try_allocate);
10143 __ cmp(r1, Operand(0));
10144 __ b(eq, &add_arguments_object);
10145 __ mov(r1, Operand(r1, LSR, kSmiTagSize));
10146 __ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize));
10147 __ bind(&add_arguments_object);
10148 __ add(r1, r1, Operand(Heap::kArgumentsObjectSize / kPointerSize));
10149
10150 // Do the allocation of both objects in one go.
10151 __ AllocateInNewSpace(
10152 r1,
10153 r0,
10154 r2,
10155 r3,
10156 &runtime,
10157 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
10158
10159 // Get the arguments boilerplate from the current (global) context.
10160 int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX);
10161 __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
10162 __ ldr(r4, FieldMemOperand(r4, GlobalObject::kGlobalContextOffset));
10163 __ ldr(r4, MemOperand(r4, offset));
10164
10165 // Copy the JS object part.
10166 __ CopyFields(r0, r4, r3.bit(), JSObject::kHeaderSize / kPointerSize);
10167
10168 // Setup the callee in-object property.
10169 STATIC_ASSERT(Heap::arguments_callee_index == 0);
10170 __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
10171 __ str(r3, FieldMemOperand(r0, JSObject::kHeaderSize));
10172
10173 // Get the length (smi tagged) and set that as an in-object property too.
10174 STATIC_ASSERT(Heap::arguments_length_index == 1);
10175 __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
10176 __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize + kPointerSize));
10177
10178 // If there are no actual arguments, we're done.
10179 Label done;
10180 __ cmp(r1, Operand(0));
10181 __ b(eq, &done);
10182
10183 // Get the parameters pointer from the stack.
10184 __ ldr(r2, MemOperand(sp, 1 * kPointerSize));
10185
10186 // Setup the elements pointer in the allocated arguments object and
10187 // initialize the header in the elements fixed array.
10188 __ add(r4, r0, Operand(Heap::kArgumentsObjectSize));
10189 __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
10190 __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex);
10191 __ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset));
10192 __ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset));
10193 __ mov(r1, Operand(r1, LSR, kSmiTagSize)); // Untag the length for the loop.
10194
10195 // Copy the fixed array slots.
10196 Label loop;
10197 // Setup r4 to point to the first array slot.
10198 __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
10199 __ bind(&loop);
10200 // Pre-decrement r2 with kPointerSize on each iteration.
10201 // Pre-decrement in order to skip receiver.
10202 __ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex));
10203 // Post-increment r4 with kPointerSize on each iteration.
10204 __ str(r3, MemOperand(r4, kPointerSize, PostIndex));
10205 __ sub(r1, r1, Operand(1));
10206 __ cmp(r1, Operand(0));
10207 __ b(ne, &loop);
10208
10209 // Return and remove the on-stack parameters.
10210 __ bind(&done);
10211 __ add(sp, sp, Operand(3 * kPointerSize));
10212 __ Ret();
10213
10214 // Do the runtime call to allocate the arguments object.
10215 __ bind(&runtime);
10216 __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
10217 }
10218
10219
10220 void RegExpExecStub::Generate(MacroAssembler* masm) {
10221 // Just jump directly to runtime if native RegExp is not selected at compile
10222 // time or if regexp entry in generated code is turned off runtime switch or
10223 // at compilation.
10224 #ifdef V8_INTERPRETED_REGEXP
10225 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
10226 #else // V8_INTERPRETED_REGEXP
10227 if (!FLAG_regexp_entry_native) {
10228 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
10229 return;
10230 }
10231
10232 // Stack frame on entry.
10233 // sp[0]: last_match_info (expected JSArray)
10234 // sp[4]: previous index
10235 // sp[8]: subject string
10236 // sp[12]: JSRegExp object
10237
10238 static const int kLastMatchInfoOffset = 0 * kPointerSize;
10239 static const int kPreviousIndexOffset = 1 * kPointerSize;
10240 static const int kSubjectOffset = 2 * kPointerSize;
10241 static const int kJSRegExpOffset = 3 * kPointerSize;
10242
10243 Label runtime, invoke_regexp;
10244
10245 // Allocation of registers for this function. These are in callee save
10246 // registers and will be preserved by the call to the native RegExp code, as
10247 // this code is called using the normal C calling convention. When calling
10248 // directly from generated code the native RegExp code will not do a GC and
10249 // therefore the content of these registers are safe to use after the call.
10250 Register subject = r4;
10251 Register regexp_data = r5;
10252 Register last_match_info_elements = r6;
10253
10254 // Ensure that a RegExp stack is allocated.
10255 ExternalReference address_of_regexp_stack_memory_address =
10256 ExternalReference::address_of_regexp_stack_memory_address();
10257 ExternalReference address_of_regexp_stack_memory_size =
10258 ExternalReference::address_of_regexp_stack_memory_size();
10259 __ mov(r0, Operand(address_of_regexp_stack_memory_size));
10260 __ ldr(r0, MemOperand(r0, 0));
10261 __ tst(r0, Operand(r0));
10262 __ b(eq, &runtime);
10263
10264 // Check that the first argument is a JSRegExp object.
10265 __ ldr(r0, MemOperand(sp, kJSRegExpOffset));
10266 STATIC_ASSERT(kSmiTag == 0);
10267 __ tst(r0, Operand(kSmiTagMask));
10268 __ b(eq, &runtime);
10269 __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE);
10270 __ b(ne, &runtime);
10271
10272 // Check that the RegExp has been compiled (data contains a fixed array).
10273 __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset));
10274 if (FLAG_debug_code) {
10275 __ tst(regexp_data, Operand(kSmiTagMask));
10276 __ Check(nz, "Unexpected type for RegExp data, FixedArray expected");
10277 __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE);
10278 __ Check(eq, "Unexpected type for RegExp data, FixedArray expected");
10279 }
10280
10281 // regexp_data: RegExp data (FixedArray)
10282 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
10283 __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
10284 __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
10285 __ b(ne, &runtime);
10286
10287 // regexp_data: RegExp data (FixedArray)
10288 // Check that the number of captures fit in the static offsets vector buffer.
10289 __ ldr(r2,
10290 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
10291 // Calculate number of capture registers (number_of_captures + 1) * 2. This
10292 // uses the asumption that smis are 2 * their untagged value.
10293 STATIC_ASSERT(kSmiTag == 0);
10294 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
10295 __ add(r2, r2, Operand(2)); // r2 was a smi.
10296 // Check that the static offsets vector buffer is large enough.
10297 __ cmp(r2, Operand(OffsetsVector::kStaticOffsetsVectorSize));
10298 __ b(hi, &runtime);
10299
10300 // r2: Number of capture registers
10301 // regexp_data: RegExp data (FixedArray)
10302 // Check that the second argument is a string.
10303 __ ldr(subject, MemOperand(sp, kSubjectOffset));
10304 __ tst(subject, Operand(kSmiTagMask));
10305 __ b(eq, &runtime);
10306 Condition is_string = masm->IsObjectStringType(subject, r0);
10307 __ b(NegateCondition(is_string), &runtime);
10308 // Get the length of the string to r3.
10309 __ ldr(r3, FieldMemOperand(subject, String::kLengthOffset));
10310
10311 // r2: Number of capture registers
10312 // r3: Length of subject string as a smi
10313 // subject: Subject string
10314 // regexp_data: RegExp data (FixedArray)
10315 // Check that the third argument is a positive smi less than the subject
10316 // string length. A negative value will be greater (unsigned comparison).
10317 __ ldr(r0, MemOperand(sp, kPreviousIndexOffset));
10318 __ tst(r0, Operand(kSmiTagMask));
10319 __ b(ne, &runtime);
10320 __ cmp(r3, Operand(r0));
10321 __ b(ls, &runtime);
10322
10323 // r2: Number of capture registers
10324 // subject: Subject string
10325 // regexp_data: RegExp data (FixedArray)
10326 // Check that the fourth object is a JSArray object.
10327 __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
10328 __ tst(r0, Operand(kSmiTagMask));
10329 __ b(eq, &runtime);
10330 __ CompareObjectType(r0, r1, r1, JS_ARRAY_TYPE);
10331 __ b(ne, &runtime);
10332 // Check that the JSArray is in fast case.
10333 __ ldr(last_match_info_elements,
10334 FieldMemOperand(r0, JSArray::kElementsOffset));
10335 __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
10336 __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex);
10337 __ cmp(r0, ip);
10338 __ b(ne, &runtime);
10339 // Check that the last match info has space for the capture registers and the
10340 // additional information.
10341 __ ldr(r0,
10342 FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
10343 __ add(r2, r2, Operand(RegExpImpl::kLastMatchOverhead));
10344 __ cmp(r2, Operand(r0, ASR, kSmiTagSize));
10345 __ b(gt, &runtime);
10346
10347 // subject: Subject string
10348 // regexp_data: RegExp data (FixedArray)
10349 // Check the representation and encoding of the subject string.
10350 Label seq_string;
10351 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
10352 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
10353 // First check for flat string.
10354 __ tst(r0, Operand(kIsNotStringMask | kStringRepresentationMask));
10355 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
10356 __ b(eq, &seq_string);
10357
10358 // subject: Subject string
10359 // regexp_data: RegExp data (FixedArray)
10360 // Check for flat cons string.
10361 // A flat cons string is a cons string where the second part is the empty
10362 // string. In that case the subject string is just the first part of the cons
10363 // string. Also in this case the first part of the cons string is known to be
10364 // a sequential string or an external string.
10365 STATIC_ASSERT(kExternalStringTag !=0);
10366 STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0);
10367 __ tst(r0, Operand(kIsNotStringMask | kExternalStringTag));
10368 __ b(ne, &runtime);
10369 __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset));
10370 __ LoadRoot(r1, Heap::kEmptyStringRootIndex);
10371 __ cmp(r0, r1);
10372 __ b(ne, &runtime);
10373 __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
10374 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
10375 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
10376 // Is first part a flat string?
10377 STATIC_ASSERT(kSeqStringTag == 0);
10378 __ tst(r0, Operand(kStringRepresentationMask));
10379 __ b(nz, &runtime);
10380
10381 __ bind(&seq_string);
10382 // subject: Subject string
10383 // regexp_data: RegExp data (FixedArray)
10384 // r0: Instance type of subject string
10385 STATIC_ASSERT(4 == kAsciiStringTag);
10386 STATIC_ASSERT(kTwoByteStringTag == 0);
10387 // Find the code object based on the assumptions above.
10388 __ and_(r0, r0, Operand(kStringEncodingMask));
10389 __ mov(r3, Operand(r0, ASR, 2), SetCC);
10390 __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset), ne);
10391 __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq);
10392
10393 // Check that the irregexp code has been generated for the actual string
10394 // encoding. If it has, the field contains a code object otherwise it contains
10395 // the hole.
10396 __ CompareObjectType(r7, r0, r0, CODE_TYPE);
10397 __ b(ne, &runtime);
10398
10399 // r3: encoding of subject string (1 if ascii, 0 if two_byte);
10400 // r7: code
10401 // subject: Subject string
10402 // regexp_data: RegExp data (FixedArray)
10403 // Load used arguments before starting to push arguments for call to native
10404 // RegExp code to avoid handling changing stack height.
10405 __ ldr(r1, MemOperand(sp, kPreviousIndexOffset));
10406 __ mov(r1, Operand(r1, ASR, kSmiTagSize));
10407
10408 // r1: previous index
10409 // r3: encoding of subject string (1 if ascii, 0 if two_byte);
10410 // r7: code
10411 // subject: Subject string
10412 // regexp_data: RegExp data (FixedArray)
10413 // All checks done. Now push arguments for native regexp code.
10414 __ IncrementCounter(&Counters::regexp_entry_native, 1, r0, r2);
10415
10416 static const int kRegExpExecuteArguments = 7;
10417 __ push(lr);
10418 __ PrepareCallCFunction(kRegExpExecuteArguments, r0);
10419
10420 // Argument 7 (sp[8]): Indicate that this is a direct call from JavaScript.
10421 __ mov(r0, Operand(1));
10422 __ str(r0, MemOperand(sp, 2 * kPointerSize));
10423
10424 // Argument 6 (sp[4]): Start (high end) of backtracking stack memory area.
10425 __ mov(r0, Operand(address_of_regexp_stack_memory_address));
10426 __ ldr(r0, MemOperand(r0, 0));
10427 __ mov(r2, Operand(address_of_regexp_stack_memory_size));
10428 __ ldr(r2, MemOperand(r2, 0));
10429 __ add(r0, r0, Operand(r2));
10430 __ str(r0, MemOperand(sp, 1 * kPointerSize));
10431
10432 // Argument 5 (sp[0]): static offsets vector buffer.
10433 __ mov(r0, Operand(ExternalReference::address_of_static_offsets_vector()));
10434 __ str(r0, MemOperand(sp, 0 * kPointerSize));
10435
10436 // For arguments 4 and 3 get string length, calculate start of string data and
10437 // calculate the shift of the index (0 for ASCII and 1 for two byte).
10438 __ ldr(r0, FieldMemOperand(subject, String::kLengthOffset));
10439 __ mov(r0, Operand(r0, ASR, kSmiTagSize));
10440 STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
10441 __ add(r9, subject, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
10442 __ eor(r3, r3, Operand(1));
10443 // Argument 4 (r3): End of string data
10444 // Argument 3 (r2): Start of string data
10445 __ add(r2, r9, Operand(r1, LSL, r3));
10446 __ add(r3, r9, Operand(r0, LSL, r3));
10447
10448 // Argument 2 (r1): Previous index.
10449 // Already there
10450
10451 // Argument 1 (r0): Subject string.
10452 __ mov(r0, subject);
10453
10454 // Locate the code entry and call it.
10455 __ add(r7, r7, Operand(Code::kHeaderSize - kHeapObjectTag));
10456 __ CallCFunction(r7, kRegExpExecuteArguments);
10457 __ pop(lr);
10458
10459 // r0: result
10460 // subject: subject string (callee saved)
10461 // regexp_data: RegExp data (callee saved)
10462 // last_match_info_elements: Last match info elements (callee saved)
10463
10464 // Check the result.
10465 Label success;
10466 __ cmp(r0, Operand(NativeRegExpMacroAssembler::SUCCESS));
10467 __ b(eq, &success);
10468 Label failure;
10469 __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE));
10470 __ b(eq, &failure);
10471 __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
10472 // If not exception it can only be retry. Handle that in the runtime system.
10473 __ b(ne, &runtime);
10474 // Result must now be exception. If there is no pending exception already a
10475 // stack overflow (on the backtrack stack) was detected in RegExp code but
10476 // haven't created the exception yet. Handle that in the runtime system.
10477 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
10478 __ mov(r0, Operand(ExternalReference::the_hole_value_location()));
10479 __ ldr(r0, MemOperand(r0, 0));
10480 __ mov(r1, Operand(ExternalReference(Top::k_pending_exception_address)));
10481 __ ldr(r1, MemOperand(r1, 0));
10482 __ cmp(r0, r1);
10483 __ b(eq, &runtime);
10484 __ bind(&failure);
10485 // For failure and exception return null.
10486 __ mov(r0, Operand(Factory::null_value()));
10487 __ add(sp, sp, Operand(4 * kPointerSize));
10488 __ Ret();
10489
10490 // Process the result from the native regexp code.
10491 __ bind(&success);
10492 __ ldr(r1,
10493 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
10494 // Calculate number of capture registers (number_of_captures + 1) * 2.
10495 STATIC_ASSERT(kSmiTag == 0);
10496 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
10497 __ add(r1, r1, Operand(2)); // r1 was a smi.
10498
10499 // r1: number of capture registers
10500 // r4: subject string
10501 // Store the capture count.
10502 __ mov(r2, Operand(r1, LSL, kSmiTagSize + kSmiShiftSize)); // To smi.
10503 __ str(r2, FieldMemOperand(last_match_info_elements,
10504 RegExpImpl::kLastCaptureCountOffset));
10505 // Store last subject and last input.
10506 __ mov(r3, last_match_info_elements); // Moved up to reduce latency.
10507 __ str(subject,
10508 FieldMemOperand(last_match_info_elements,
10509 RegExpImpl::kLastSubjectOffset));
10510 __ RecordWrite(r3, Operand(RegExpImpl::kLastSubjectOffset), r2, r7);
10511 __ str(subject,
10512 FieldMemOperand(last_match_info_elements,
10513 RegExpImpl::kLastInputOffset));
10514 __ mov(r3, last_match_info_elements);
10515 __ RecordWrite(r3, Operand(RegExpImpl::kLastInputOffset), r2, r7);
10516
10517 // Get the static offsets vector filled by the native regexp code.
10518 ExternalReference address_of_static_offsets_vector =
10519 ExternalReference::address_of_static_offsets_vector();
10520 __ mov(r2, Operand(address_of_static_offsets_vector));
10521
10522 // r1: number of capture registers
10523 // r2: offsets vector
10524 Label next_capture, done;
10525 // Capture register counter starts from number of capture registers and
10526 // counts down until wraping after zero.
10527 __ add(r0,
10528 last_match_info_elements,
10529 Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
10530 __ bind(&next_capture);
10531 __ sub(r1, r1, Operand(1), SetCC);
10532 __ b(mi, &done);
10533 // Read the value from the static offsets vector buffer.
10534 __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex));
10535 // Store the smi value in the last match info.
10536 __ mov(r3, Operand(r3, LSL, kSmiTagSize));
10537 __ str(r3, MemOperand(r0, kPointerSize, PostIndex));
10538 __ jmp(&next_capture);
10539 __ bind(&done);
10540
10541 // Return last match info.
10542 __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
10543 __ add(sp, sp, Operand(4 * kPointerSize));
10544 __ Ret();
10545
10546 // Do the runtime call to execute the regexp.
10547 __ bind(&runtime);
10548 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
10549 #endif // V8_INTERPRETED_REGEXP
10550 }
10551
10552
10553 void CallFunctionStub::Generate(MacroAssembler* masm) {
10554 Label slow;
10555
10556 // If the receiver might be a value (string, number or boolean) check for this
10557 // and box it if it is.
10558 if (ReceiverMightBeValue()) {
10559 // Get the receiver from the stack.
10560 // function, receiver [, arguments]
10561 Label receiver_is_value, receiver_is_js_object;
10562 __ ldr(r1, MemOperand(sp, argc_ * kPointerSize));
10563
10564 // Check if receiver is a smi (which is a number value).
10565 __ BranchOnSmi(r1, &receiver_is_value);
10566
10567 // Check if the receiver is a valid JS object.
10568 __ CompareObjectType(r1, r2, r2, FIRST_JS_OBJECT_TYPE);
10569 __ b(ge, &receiver_is_js_object);
10570
10571 // Call the runtime to box the value.
10572 __ bind(&receiver_is_value);
10573 __ EnterInternalFrame();
10574 __ push(r1);
10575 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS);
10576 __ LeaveInternalFrame();
10577 __ str(r0, MemOperand(sp, argc_ * kPointerSize));
10578
10579 __ bind(&receiver_is_js_object);
10580 }
10581
10582 // Get the function to call from the stack.
10583 // function, receiver [, arguments]
10584 __ ldr(r1, MemOperand(sp, (argc_ + 1) * kPointerSize));
10585
10586 // Check that the function is really a JavaScript function.
10587 // r1: pushed function (to be verified)
10588 __ BranchOnSmi(r1, &slow);
10589 // Get the map of the function object.
10590 __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
10591 __ b(ne, &slow);
10592
10593 // Fast-case: Invoke the function now.
10594 // r1: pushed function
10595 ParameterCount actual(argc_);
10596 __ InvokeFunction(r1, actual, JUMP_FUNCTION);
10597
10598 // Slow-case: Non-function called.
10599 __ bind(&slow);
10600 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
10601 // of the original receiver from the call site).
10602 __ str(r1, MemOperand(sp, argc_ * kPointerSize));
10603 __ mov(r0, Operand(argc_)); // Setup the number of arguments.
10604 __ mov(r2, Operand(0));
10605 __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION);
10606 __ Jump(Handle<Code>(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)),
10607 RelocInfo::CODE_TARGET);
10608 }
10609
10610
10611 // Unfortunately you have to run without snapshots to see most of these
10612 // names in the profile since most compare stubs end up in the snapshot.
10613 const char* CompareStub::GetName() {
10614 ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
10615 (lhs_.is(r1) && rhs_.is(r0)));
10616
10617 if (name_ != NULL) return name_;
10618 const int kMaxNameLength = 100;
10619 name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength);
10620 if (name_ == NULL) return "OOM";
10621
10622 const char* cc_name;
10623 switch (cc_) {
10624 case lt: cc_name = "LT"; break;
10625 case gt: cc_name = "GT"; break;
10626 case le: cc_name = "LE"; break;
10627 case ge: cc_name = "GE"; break;
10628 case eq: cc_name = "EQ"; break;
10629 case ne: cc_name = "NE"; break;
10630 default: cc_name = "UnknownCondition"; break;
10631 }
10632
10633 const char* lhs_name = lhs_.is(r0) ? "_r0" : "_r1";
10634 const char* rhs_name = rhs_.is(r0) ? "_r0" : "_r1";
10635
10636 const char* strict_name = "";
10637 if (strict_ && (cc_ == eq || cc_ == ne)) {
10638 strict_name = "_STRICT";
10639 }
10640
10641 const char* never_nan_nan_name = "";
10642 if (never_nan_nan_ && (cc_ == eq || cc_ == ne)) {
10643 never_nan_nan_name = "_NO_NAN";
10644 }
10645
10646 const char* include_number_compare_name = "";
10647 if (!include_number_compare_) {
10648 include_number_compare_name = "_NO_NUMBER";
10649 }
10650
10651 OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
10652 "CompareStub_%s%s%s%s%s%s",
10653 cc_name,
10654 lhs_name,
10655 rhs_name,
10656 strict_name,
10657 never_nan_nan_name,
10658 include_number_compare_name);
10659 return name_;
10660 }
10661
10662
10663 int CompareStub::MinorKey() {
10664 // Encode the three parameters in a unique 16 bit value. To avoid duplicate
10665 // stubs the never NaN NaN condition is only taken into account if the
10666 // condition is equals.
10667 ASSERT((static_cast<unsigned>(cc_) >> 28) < (1 << 12));
10668 ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
10669 (lhs_.is(r1) && rhs_.is(r0)));
10670 return ConditionField::encode(static_cast<unsigned>(cc_) >> 28)
10671 | RegisterField::encode(lhs_.is(r0))
10672 | StrictField::encode(strict_)
10673 | NeverNanNanField::encode(cc_ == eq ? never_nan_nan_ : false)
10674 | IncludeNumberCompareField::encode(include_number_compare_);
10675 }
10676
10677
10678 // StringCharCodeAtGenerator
10679
10680 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
10681 Label flat_string;
10682 Label ascii_string;
10683 Label got_char_code;
10684
10685 // If the receiver is a smi trigger the non-string case.
10686 __ BranchOnSmi(object_, receiver_not_string_);
10687
10688 // Fetch the instance type of the receiver into result register.
10689 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
10690 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
10691 // If the receiver is not a string trigger the non-string case.
10692 __ tst(result_, Operand(kIsNotStringMask));
10693 __ b(ne, receiver_not_string_);
10694
10695 // If the index is non-smi trigger the non-smi case.
10696 __ BranchOnNotSmi(index_, &index_not_smi_);
10697
10698 // Put smi-tagged index into scratch register.
10699 __ mov(scratch_, index_);
10700 __ bind(&got_smi_index_);
10701
10702 // Check for index out of range.
10703 __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset));
10704 __ cmp(ip, Operand(scratch_));
10705 __ b(ls, index_out_of_range_);
10706
10707 // We need special handling for non-flat strings.
10708 STATIC_ASSERT(kSeqStringTag == 0);
10709 __ tst(result_, Operand(kStringRepresentationMask));
10710 __ b(eq, &flat_string);
10711
10712 // Handle non-flat strings.
10713 __ tst(result_, Operand(kIsConsStringMask));
10714 __ b(eq, &call_runtime_);
10715
10716 // ConsString.
10717 // Check whether the right hand side is the empty string (i.e. if
10718 // this is really a flat string in a cons string). If that is not
10719 // the case we would rather go to the runtime system now to flatten
10720 // the string.
10721 __ ldr(result_, FieldMemOperand(object_, ConsString::kSecondOffset));
10722 __ LoadRoot(ip, Heap::kEmptyStringRootIndex);
10723 __ cmp(result_, Operand(ip));
10724 __ b(ne, &call_runtime_);
10725 // Get the first of the two strings and load its instance type.
10726 __ ldr(object_, FieldMemOperand(object_, ConsString::kFirstOffset));
10727 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
10728 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
10729 // If the first cons component is also non-flat, then go to runtime.
10730 STATIC_ASSERT(kSeqStringTag == 0);
10731 __ tst(result_, Operand(kStringRepresentationMask));
10732 __ b(nz, &call_runtime_);
10733
10734 // Check for 1-byte or 2-byte string.
10735 __ bind(&flat_string);
10736 STATIC_ASSERT(kAsciiStringTag != 0);
10737 __ tst(result_, Operand(kStringEncodingMask));
10738 __ b(nz, &ascii_string);
10739
10740 // 2-byte string.
10741 // Load the 2-byte character code into the result register. We can
10742 // add without shifting since the smi tag size is the log2 of the
10743 // number of bytes in a two-byte character.
10744 STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1 && kSmiShiftSize == 0);
10745 __ add(scratch_, object_, Operand(scratch_));
10746 __ ldrh(result_, FieldMemOperand(scratch_, SeqTwoByteString::kHeaderSize));
10747 __ jmp(&got_char_code);
10748
10749 // ASCII string.
10750 // Load the byte into the result register.
10751 __ bind(&ascii_string);
10752 __ add(scratch_, object_, Operand(scratch_, LSR, kSmiTagSize));
10753 __ ldrb(result_, FieldMemOperand(scratch_, SeqAsciiString::kHeaderSize));
10754
10755 __ bind(&got_char_code);
10756 __ mov(result_, Operand(result_, LSL, kSmiTagSize));
10757 __ bind(&exit_);
10758 }
10759
10760
10761 void StringCharCodeAtGenerator::GenerateSlow(
10762 MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
10763 __ Abort("Unexpected fallthrough to CharCodeAt slow case");
10764
10765 // Index is not a smi.
10766 __ bind(&index_not_smi_);
10767 // If index is a heap number, try converting it to an integer.
10768 __ CheckMap(index_,
10769 scratch_,
10770 Heap::kHeapNumberMapRootIndex,
10771 index_not_number_,
10772 true);
10773 call_helper.BeforeCall(masm);
10774 __ Push(object_, index_);
10775 __ push(index_); // Consumed by runtime conversion function.
10776 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
10777 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
10778 } else {
10779 ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
10780 // NumberToSmi discards numbers that are not exact integers.
10781 __ CallRuntime(Runtime::kNumberToSmi, 1);
10782 }
10783 // Save the conversion result before the pop instructions below
10784 // have a chance to overwrite it.
10785 __ Move(scratch_, r0);
10786 __ pop(index_);
10787 __ pop(object_);
10788 // Reload the instance type.
10789 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
10790 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
10791 call_helper.AfterCall(masm);
10792 // If index is still not a smi, it must be out of range.
10793 __ BranchOnNotSmi(scratch_, index_out_of_range_);
10794 // Otherwise, return to the fast path.
10795 __ jmp(&got_smi_index_);
10796
10797 // Call runtime. We get here when the receiver is a string and the
10798 // index is a number, but the code of getting the actual character
10799 // is too complex (e.g., when the string needs to be flattened).
10800 __ bind(&call_runtime_);
10801 call_helper.BeforeCall(masm);
10802 __ Push(object_, index_);
10803 __ CallRuntime(Runtime::kStringCharCodeAt, 2);
10804 __ Move(result_, r0);
10805 call_helper.AfterCall(masm);
10806 __ jmp(&exit_);
10807
10808 __ Abort("Unexpected fallthrough from CharCodeAt slow case");
10809 }
10810
10811
10812 // -------------------------------------------------------------------------
10813 // StringCharFromCodeGenerator
10814
10815 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
10816 // Fast case of Heap::LookupSingleCharacterStringFromCode.
10817 STATIC_ASSERT(kSmiTag == 0);
10818 STATIC_ASSERT(kSmiShiftSize == 0);
10819 ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1));
10820 __ tst(code_,
10821 Operand(kSmiTagMask |
10822 ((~String::kMaxAsciiCharCode) << kSmiTagSize)));
10823 __ b(nz, &slow_case_);
10824
10825 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
10826 // At this point code register contains smi tagged ascii char code.
10827 STATIC_ASSERT(kSmiTag == 0);
10828 __ add(result_, result_, Operand(code_, LSL, kPointerSizeLog2 - kSmiTagSize));
10829 __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
10830 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
10831 __ cmp(result_, Operand(ip));
10832 __ b(eq, &slow_case_);
10833 __ bind(&exit_);
10834 }
10835
10836
10837 void StringCharFromCodeGenerator::GenerateSlow(
10838 MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
10839 __ Abort("Unexpected fallthrough to CharFromCode slow case");
10840
10841 __ bind(&slow_case_);
10842 call_helper.BeforeCall(masm);
10843 __ push(code_);
10844 __ CallRuntime(Runtime::kCharFromCode, 1);
10845 __ Move(result_, r0);
10846 call_helper.AfterCall(masm);
10847 __ jmp(&exit_);
10848
10849 __ Abort("Unexpected fallthrough from CharFromCode slow case");
10850 }
10851
10852
10853 // -------------------------------------------------------------------------
10854 // StringCharAtGenerator
10855
10856 void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
10857 char_code_at_generator_.GenerateFast(masm);
10858 char_from_code_generator_.GenerateFast(masm);
10859 }
10860
10861
10862 void StringCharAtGenerator::GenerateSlow(
10863 MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
10864 char_code_at_generator_.GenerateSlow(masm, call_helper);
10865 char_from_code_generator_.GenerateSlow(masm, call_helper);
10866 }
10867
10868
10869 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
10870 Register dest,
10871 Register src,
10872 Register count,
10873 Register scratch,
10874 bool ascii) {
10875 Label loop;
10876 Label done;
10877 // This loop just copies one character at a time, as it is only used for very
10878 // short strings.
10879 if (!ascii) {
10880 __ add(count, count, Operand(count), SetCC);
10881 } else {
10882 __ cmp(count, Operand(0));
10883 }
10884 __ b(eq, &done);
10885
10886 __ bind(&loop);
10887 __ ldrb(scratch, MemOperand(src, 1, PostIndex));
10888 // Perform sub between load and dependent store to get the load time to
10889 // complete.
10890 __ sub(count, count, Operand(1), SetCC);
10891 __ strb(scratch, MemOperand(dest, 1, PostIndex));
10892 // last iteration.
10893 __ b(gt, &loop);
10894
10895 __ bind(&done);
10896 }
10897
10898
10899 enum CopyCharactersFlags {
10900 COPY_ASCII = 1,
10901 DEST_ALWAYS_ALIGNED = 2
10902 };
10903
10904
10905 void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm,
10906 Register dest,
10907 Register src,
10908 Register count,
10909 Register scratch1,
10910 Register scratch2,
10911 Register scratch3,
10912 Register scratch4,
10913 Register scratch5,
10914 int flags) {
10915 bool ascii = (flags & COPY_ASCII) != 0;
10916 bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0;
10917
10918 if (dest_always_aligned && FLAG_debug_code) {
10919 // Check that destination is actually word aligned if the flag says
10920 // that it is.
10921 __ tst(dest, Operand(kPointerAlignmentMask));
10922 __ Check(eq, "Destination of copy not aligned.");
10923 }
10924
10925 const int kReadAlignment = 4;
10926 const int kReadAlignmentMask = kReadAlignment - 1;
10927 // Ensure that reading an entire aligned word containing the last character
10928 // of a string will not read outside the allocated area (because we pad up
10929 // to kObjectAlignment).
10930 STATIC_ASSERT(kObjectAlignment >= kReadAlignment);
10931 // Assumes word reads and writes are little endian.
10932 // Nothing to do for zero characters.
10933 Label done;
10934 if (!ascii) {
10935 __ add(count, count, Operand(count), SetCC);
10936 } else {
10937 __ cmp(count, Operand(0));
10938 }
10939 __ b(eq, &done);
10940
10941 // Assume that you cannot read (or write) unaligned.
10942 Label byte_loop;
10943 // Must copy at least eight bytes, otherwise just do it one byte at a time.
10944 __ cmp(count, Operand(8));
10945 __ add(count, dest, Operand(count));
10946 Register limit = count; // Read until src equals this.
10947 __ b(lt, &byte_loop);
10948
10949 if (!dest_always_aligned) {
10950 // Align dest by byte copying. Copies between zero and three bytes.
10951 __ and_(scratch4, dest, Operand(kReadAlignmentMask), SetCC);
10952 Label dest_aligned;
10953 __ b(eq, &dest_aligned);
10954 __ cmp(scratch4, Operand(2));
10955 __ ldrb(scratch1, MemOperand(src, 1, PostIndex));
10956 __ ldrb(scratch2, MemOperand(src, 1, PostIndex), le);
10957 __ ldrb(scratch3, MemOperand(src, 1, PostIndex), lt);
10958 __ strb(scratch1, MemOperand(dest, 1, PostIndex));
10959 __ strb(scratch2, MemOperand(dest, 1, PostIndex), le);
10960 __ strb(scratch3, MemOperand(dest, 1, PostIndex), lt);
10961 __ bind(&dest_aligned);
10962 }
10963
10964 Label simple_loop;
10965
10966 __ sub(scratch4, dest, Operand(src));
10967 __ and_(scratch4, scratch4, Operand(0x03), SetCC);
10968 __ b(eq, &simple_loop);
10969 // Shift register is number of bits in a source word that
10970 // must be combined with bits in the next source word in order
10971 // to create a destination word.
10972
10973 // Complex loop for src/dst that are not aligned the same way.
10974 {
10975 Label loop;
10976 __ mov(scratch4, Operand(scratch4, LSL, 3));
10977 Register left_shift = scratch4;
10978 __ and_(src, src, Operand(~3)); // Round down to load previous word.
10979 __ ldr(scratch1, MemOperand(src, 4, PostIndex));
10980 // Store the "shift" most significant bits of scratch in the least
10981 // signficant bits (i.e., shift down by (32-shift)).
10982 __ rsb(scratch2, left_shift, Operand(32));
10983 Register right_shift = scratch2;
10984 __ mov(scratch1, Operand(scratch1, LSR, right_shift));
10985
10986 __ bind(&loop);
10987 __ ldr(scratch3, MemOperand(src, 4, PostIndex));
10988 __ sub(scratch5, limit, Operand(dest));
10989 __ orr(scratch1, scratch1, Operand(scratch3, LSL, left_shift));
10990 __ str(scratch1, MemOperand(dest, 4, PostIndex));
10991 __ mov(scratch1, Operand(scratch3, LSR, right_shift));
10992 // Loop if four or more bytes left to copy.
10993 // Compare to eight, because we did the subtract before increasing dst.
10994 __ sub(scratch5, scratch5, Operand(8), SetCC);
10995 __ b(ge, &loop);
10996 }
10997 // There is now between zero and three bytes left to copy (negative that
10998 // number is in scratch5), and between one and three bytes already read into
10999 // scratch1 (eight times that number in scratch4). We may have read past
11000 // the end of the string, but because objects are aligned, we have not read
11001 // past the end of the object.
11002 // Find the minimum of remaining characters to move and preloaded characters
11003 // and write those as bytes.
11004 __ add(scratch5, scratch5, Operand(4), SetCC);
11005 __ b(eq, &done);
11006 __ cmp(scratch4, Operand(scratch5, LSL, 3), ne);
11007 // Move minimum of bytes read and bytes left to copy to scratch4.
11008 __ mov(scratch5, Operand(scratch4, LSR, 3), LeaveCC, lt);
11009 // Between one and three (value in scratch5) characters already read into
11010 // scratch ready to write.
11011 __ cmp(scratch5, Operand(2));
11012 __ strb(scratch1, MemOperand(dest, 1, PostIndex));
11013 __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, ge);
11014 __ strb(scratch1, MemOperand(dest, 1, PostIndex), ge);
11015 __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, gt);
11016 __ strb(scratch1, MemOperand(dest, 1, PostIndex), gt);
11017 // Copy any remaining bytes.
11018 __ b(&byte_loop);
11019
11020 // Simple loop.
11021 // Copy words from src to dst, until less than four bytes left.
11022 // Both src and dest are word aligned.
11023 __ bind(&simple_loop);
11024 {
11025 Label loop;
11026 __ bind(&loop);
11027 __ ldr(scratch1, MemOperand(src, 4, PostIndex));
11028 __ sub(scratch3, limit, Operand(dest));
11029 __ str(scratch1, MemOperand(dest, 4, PostIndex));
11030 // Compare to 8, not 4, because we do the substraction before increasing
11031 // dest.
11032 __ cmp(scratch3, Operand(8));
11033 __ b(ge, &loop);
11034 }
11035
11036 // Copy bytes from src to dst until dst hits limit.
11037 __ bind(&byte_loop);
11038 __ cmp(dest, Operand(limit));
11039 __ ldrb(scratch1, MemOperand(src, 1, PostIndex), lt);
11040 __ b(ge, &done);
11041 __ strb(scratch1, MemOperand(dest, 1, PostIndex));
11042 __ b(&byte_loop);
11043
11044 __ bind(&done);
11045 }
11046
11047
11048 void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
11049 Register c1,
11050 Register c2,
11051 Register scratch1,
11052 Register scratch2,
11053 Register scratch3,
11054 Register scratch4,
11055 Register scratch5,
11056 Label* not_found) {
11057 // Register scratch3 is the general scratch register in this function.
11058 Register scratch = scratch3;
11059
11060 // Make sure that both characters are not digits as such strings has a
11061 // different hash algorithm. Don't try to look for these in the symbol table.
11062 Label not_array_index;
11063 __ sub(scratch, c1, Operand(static_cast<int>('0')));
11064 __ cmp(scratch, Operand(static_cast<int>('9' - '0')));
11065 __ b(hi, &not_array_index);
11066 __ sub(scratch, c2, Operand(static_cast<int>('0')));
11067 __ cmp(scratch, Operand(static_cast<int>('9' - '0')));
11068
11069 // If check failed combine both characters into single halfword.
11070 // This is required by the contract of the method: code at the
11071 // not_found branch expects this combination in c1 register
11072 __ orr(c1, c1, Operand(c2, LSL, kBitsPerByte), LeaveCC, ls);
11073 __ b(ls, not_found);
11074
11075 __ bind(&not_array_index);
11076 // Calculate the two character string hash.
11077 Register hash = scratch1;
11078 StringHelper::GenerateHashInit(masm, hash, c1);
11079 StringHelper::GenerateHashAddCharacter(masm, hash, c2);
11080 StringHelper::GenerateHashGetHash(masm, hash);
11081
11082 // Collect the two characters in a register.
11083 Register chars = c1;
11084 __ orr(chars, chars, Operand(c2, LSL, kBitsPerByte));
11085
11086 // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
11087 // hash: hash of two character string.
11088
11089 // Load symbol table
11090 // Load address of first element of the symbol table.
11091 Register symbol_table = c2;
11092 __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex);
11093
11094 // Load undefined value
11095 Register undefined = scratch4;
11096 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
11097
11098 // Calculate capacity mask from the symbol table capacity.
11099 Register mask = scratch2;
11100 __ ldr(mask, FieldMemOperand(symbol_table, SymbolTable::kCapacityOffset));
11101 __ mov(mask, Operand(mask, ASR, 1));
11102 __ sub(mask, mask, Operand(1));
11103
11104 // Calculate untagged address of the first element of the symbol table.
11105 Register first_symbol_table_element = symbol_table;
11106 __ add(first_symbol_table_element, symbol_table,
11107 Operand(SymbolTable::kElementsStartOffset - kHeapObjectTag));
11108
11109 // Registers
11110 // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
11111 // hash: hash of two character string
11112 // mask: capacity mask
11113 // first_symbol_table_element: address of the first element of
11114 // the symbol table
11115 // scratch: -
11116
11117 // Perform a number of probes in the symbol table.
11118 static const int kProbes = 4;
11119 Label found_in_symbol_table;
11120 Label next_probe[kProbes];
11121 for (int i = 0; i < kProbes; i++) {
11122 Register candidate = scratch5; // Scratch register contains candidate.
11123
11124 // Calculate entry in symbol table.
11125 if (i > 0) {
11126 __ add(candidate, hash, Operand(SymbolTable::GetProbeOffset(i)));
11127 } else {
11128 __ mov(candidate, hash);
11129 }
11130
11131 __ and_(candidate, candidate, Operand(mask));
11132
11133 // Load the entry from the symble table.
11134 STATIC_ASSERT(SymbolTable::kEntrySize == 1);
11135 __ ldr(candidate,
11136 MemOperand(first_symbol_table_element,
11137 candidate,
11138 LSL,
11139 kPointerSizeLog2));
11140
11141 // If entry is undefined no string with this hash can be found.
11142 __ cmp(candidate, undefined);
11143 __ b(eq, not_found);
11144
11145 // If length is not 2 the string is not a candidate.
11146 __ ldr(scratch, FieldMemOperand(candidate, String::kLengthOffset));
11147 __ cmp(scratch, Operand(Smi::FromInt(2)));
11148 __ b(ne, &next_probe[i]);
11149
11150 // Check that the candidate is a non-external ascii string.
11151 __ ldr(scratch, FieldMemOperand(candidate, HeapObject::kMapOffset));
11152 __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
11153 __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch,
11154 &next_probe[i]);
11155
11156 // Check if the two characters match.
11157 // Assumes that word load is little endian.
11158 __ ldrh(scratch, FieldMemOperand(candidate, SeqAsciiString::kHeaderSize));
11159 __ cmp(chars, scratch);
11160 __ b(eq, &found_in_symbol_table);
11161 __ bind(&next_probe[i]);
11162 }
11163
11164 // No matching 2 character string found by probing.
11165 __ jmp(not_found);
11166
11167 // Scratch register contains result when we fall through to here.
11168 Register result = scratch;
11169 __ bind(&found_in_symbol_table);
11170 __ Move(r0, result);
11171 }
11172
11173
11174 void StringHelper::GenerateHashInit(MacroAssembler* masm,
11175 Register hash,
11176 Register character) {
11177 // hash = character + (character << 10);
11178 __ add(hash, character, Operand(character, LSL, 10));
11179 // hash ^= hash >> 6;
11180 __ eor(hash, hash, Operand(hash, ASR, 6));
11181 }
11182
11183
11184 void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
11185 Register hash,
11186 Register character) {
11187 // hash += character;
11188 __ add(hash, hash, Operand(character));
11189 // hash += hash << 10;
11190 __ add(hash, hash, Operand(hash, LSL, 10));
11191 // hash ^= hash >> 6;
11192 __ eor(hash, hash, Operand(hash, ASR, 6));
11193 }
11194
11195
11196 void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
11197 Register hash) {
11198 // hash += hash << 3;
11199 __ add(hash, hash, Operand(hash, LSL, 3));
11200 // hash ^= hash >> 11;
11201 __ eor(hash, hash, Operand(hash, ASR, 11));
11202 // hash += hash << 15;
11203 __ add(hash, hash, Operand(hash, LSL, 15), SetCC);
11204
11205 // if (hash == 0) hash = 27;
11206 __ mov(hash, Operand(27), LeaveCC, nz);
11207 }
11208
11209
11210 void SubStringStub::Generate(MacroAssembler* masm) {
11211 Label runtime;
11212
11213 // Stack frame on entry.
11214 // lr: return address
11215 // sp[0]: to
11216 // sp[4]: from
11217 // sp[8]: string
11218
11219 // This stub is called from the native-call %_SubString(...), so
11220 // nothing can be assumed about the arguments. It is tested that:
11221 // "string" is a sequential string,
11222 // both "from" and "to" are smis, and
11223 // 0 <= from <= to <= string.length.
11224 // If any of these assumptions fail, we call the runtime system.
11225
11226 static const int kToOffset = 0 * kPointerSize;
11227 static const int kFromOffset = 1 * kPointerSize;
11228 static const int kStringOffset = 2 * kPointerSize;
11229
11230
11231 // Check bounds and smi-ness.
11232 __ ldr(r7, MemOperand(sp, kToOffset));
11233 __ ldr(r6, MemOperand(sp, kFromOffset));
11234 STATIC_ASSERT(kSmiTag == 0);
11235 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
11236 // I.e., arithmetic shift right by one un-smi-tags.
11237 __ mov(r2, Operand(r7, ASR, 1), SetCC);
11238 __ mov(r3, Operand(r6, ASR, 1), SetCC, cc);
11239 // If either r2 or r6 had the smi tag bit set, then carry is set now.
11240 __ b(cs, &runtime); // Either "from" or "to" is not a smi.
11241 __ b(mi, &runtime); // From is negative.
11242
11243 __ sub(r2, r2, Operand(r3), SetCC);
11244 __ b(mi, &runtime); // Fail if from > to.
11245 // Special handling of sub-strings of length 1 and 2. One character strings
11246 // are handled in the runtime system (looked up in the single character
11247 // cache). Two character strings are looked for in the symbol cache.
11248 __ cmp(r2, Operand(2));
11249 __ b(lt, &runtime);
11250
11251 // r2: length
11252 // r3: from index (untaged smi)
11253 // r6: from (smi)
11254 // r7: to (smi)
11255
11256 // Make sure first argument is a sequential (or flat) string.
11257 __ ldr(r5, MemOperand(sp, kStringOffset));
11258 STATIC_ASSERT(kSmiTag == 0);
11259 __ tst(r5, Operand(kSmiTagMask));
11260 __ b(eq, &runtime);
11261 Condition is_string = masm->IsObjectStringType(r5, r1);
11262 __ b(NegateCondition(is_string), &runtime);
11263
11264 // r1: instance type
11265 // r2: length
11266 // r3: from index (untaged smi)
11267 // r5: string
11268 // r6: from (smi)
11269 // r7: to (smi)
11270 Label seq_string;
11271 __ and_(r4, r1, Operand(kStringRepresentationMask));
11272 STATIC_ASSERT(kSeqStringTag < kConsStringTag);
11273 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
11274 __ cmp(r4, Operand(kConsStringTag));
11275 __ b(gt, &runtime); // External strings go to runtime.
11276 __ b(lt, &seq_string); // Sequential strings are handled directly.
11277
11278 // Cons string. Try to recurse (once) on the first substring.
11279 // (This adds a little more generality than necessary to handle flattened
11280 // cons strings, but not much).
11281 __ ldr(r5, FieldMemOperand(r5, ConsString::kFirstOffset));
11282 __ ldr(r4, FieldMemOperand(r5, HeapObject::kMapOffset));
11283 __ ldrb(r1, FieldMemOperand(r4, Map::kInstanceTypeOffset));
11284 __ tst(r1, Operand(kStringRepresentationMask));
11285 STATIC_ASSERT(kSeqStringTag == 0);
11286 __ b(ne, &runtime); // Cons and External strings go to runtime.
11287
11288 // Definitly a sequential string.
11289 __ bind(&seq_string);
11290
11291 // r1: instance type.
11292 // r2: length
11293 // r3: from index (untaged smi)
11294 // r5: string
11295 // r6: from (smi)
11296 // r7: to (smi)
11297 __ ldr(r4, FieldMemOperand(r5, String::kLengthOffset));
11298 __ cmp(r4, Operand(r7));
11299 __ b(lt, &runtime); // Fail if to > length.
11300
11301 // r1: instance type.
11302 // r2: result string length.
11303 // r3: from index (untaged smi)
11304 // r5: string.
11305 // r6: from offset (smi)
11306 // Check for flat ascii string.
11307 Label non_ascii_flat;
11308 __ tst(r1, Operand(kStringEncodingMask));
11309 STATIC_ASSERT(kTwoByteStringTag == 0);
11310 __ b(eq, &non_ascii_flat);
11311
11312 Label result_longer_than_two;
11313 __ cmp(r2, Operand(2));
11314 __ b(gt, &result_longer_than_two);
11315
11316 // Sub string of length 2 requested.
11317 // Get the two characters forming the sub string.
11318 __ add(r5, r5, Operand(r3));
11319 __ ldrb(r3, FieldMemOperand(r5, SeqAsciiString::kHeaderSize));
11320 __ ldrb(r4, FieldMemOperand(r5, SeqAsciiString::kHeaderSize + 1));
11321
11322 // Try to lookup two character string in symbol table.
11323 Label make_two_character_string;
11324 StringHelper::GenerateTwoCharacterSymbolTableProbe(
11325 masm, r3, r4, r1, r5, r6, r7, r9, &make_two_character_string);
11326 __ IncrementCounter(&Counters::sub_string_native, 1, r3, r4);
11327 __ add(sp, sp, Operand(3 * kPointerSize));
11328 __ Ret();
11329
11330 // r2: result string length.
11331 // r3: two characters combined into halfword in little endian byte order.
11332 __ bind(&make_two_character_string);
11333 __ AllocateAsciiString(r0, r2, r4, r5, r9, &runtime);
11334 __ strh(r3, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
11335 __ IncrementCounter(&Counters::sub_string_native, 1, r3, r4);
11336 __ add(sp, sp, Operand(3 * kPointerSize));
11337 __ Ret();
11338
11339 __ bind(&result_longer_than_two);
11340
11341 // Allocate the result.
11342 __ AllocateAsciiString(r0, r2, r3, r4, r1, &runtime);
11343
11344 // r0: result string.
11345 // r2: result string length.
11346 // r5: string.
11347 // r6: from offset (smi)
11348 // Locate first character of result.
11349 __ add(r1, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
11350 // Locate 'from' character of string.
11351 __ add(r5, r5, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
11352 __ add(r5, r5, Operand(r6, ASR, 1));
11353
11354 // r0: result string.
11355 // r1: first character of result string.
11356 // r2: result string length.
11357 // r5: first character of sub string to copy.
11358 STATIC_ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
11359 StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9,
11360 COPY_ASCII | DEST_ALWAYS_ALIGNED);
11361 __ IncrementCounter(&Counters::sub_string_native, 1, r3, r4);
11362 __ add(sp, sp, Operand(3 * kPointerSize));
11363 __ Ret();
11364
11365 __ bind(&non_ascii_flat);
11366 // r2: result string length.
11367 // r5: string.
11368 // r6: from offset (smi)
11369 // Check for flat two byte string.
11370
11371 // Allocate the result.
11372 __ AllocateTwoByteString(r0, r2, r1, r3, r4, &runtime);
11373
11374 // r0: result string.
11375 // r2: result string length.
11376 // r5: string.
11377 // Locate first character of result.
11378 __ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
11379 // Locate 'from' character of string.
11380 __ add(r5, r5, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
11381 // As "from" is a smi it is 2 times the value which matches the size of a two
11382 // byte character.
11383 __ add(r5, r5, Operand(r6));
11384
11385 // r0: result string.
11386 // r1: first character of result.
11387 // r2: result length.
11388 // r5: first character of string to copy.
11389 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
11390 StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9,
11391 DEST_ALWAYS_ALIGNED);
11392 __ IncrementCounter(&Counters::sub_string_native, 1, r3, r4);
11393 __ add(sp, sp, Operand(3 * kPointerSize));
11394 __ Ret();
11395
11396 // Just jump to runtime to create the sub string.
11397 __ bind(&runtime);
11398 __ TailCallRuntime(Runtime::kSubString, 3, 1);
11399 }
11400
11401
11402 void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
11403 Register left,
11404 Register right,
11405 Register scratch1,
11406 Register scratch2,
11407 Register scratch3,
11408 Register scratch4) {
11409 Label compare_lengths;
11410 // Find minimum length and length difference.
11411 __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
11412 __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
11413 __ sub(scratch3, scratch1, Operand(scratch2), SetCC);
11414 Register length_delta = scratch3;
11415 __ mov(scratch1, scratch2, LeaveCC, gt);
11416 Register min_length = scratch1;
11417 STATIC_ASSERT(kSmiTag == 0);
11418 __ tst(min_length, Operand(min_length));
11419 __ b(eq, &compare_lengths);
11420
11421 // Untag smi.
11422 __ mov(min_length, Operand(min_length, ASR, kSmiTagSize));
11423
11424 // Setup registers so that we only need to increment one register
11425 // in the loop.
11426 __ add(scratch2, min_length,
11427 Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
11428 __ add(left, left, Operand(scratch2));
11429 __ add(right, right, Operand(scratch2));
11430 // Registers left and right points to the min_length character of strings.
11431 __ rsb(min_length, min_length, Operand(-1));
11432 Register index = min_length;
11433 // Index starts at -min_length.
11434
11435 {
11436 // Compare loop.
11437 Label loop;
11438 __ bind(&loop);
11439 // Compare characters.
11440 __ add(index, index, Operand(1), SetCC);
11441 __ ldrb(scratch2, MemOperand(left, index), ne);
11442 __ ldrb(scratch4, MemOperand(right, index), ne);
11443 // Skip to compare lengths with eq condition true.
11444 __ b(eq, &compare_lengths);
11445 __ cmp(scratch2, scratch4);
11446 __ b(eq, &loop);
11447 // Fallthrough with eq condition false.
11448 }
11449 // Compare lengths - strings up to min-length are equal.
11450 __ bind(&compare_lengths);
11451 ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
11452 // Use zero length_delta as result.
11453 __ mov(r0, Operand(length_delta), SetCC, eq);
11454 // Fall through to here if characters compare not-equal.
11455 __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt);
11456 __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt);
11457 __ Ret();
11458 }
11459
11460
11461 void StringCompareStub::Generate(MacroAssembler* masm) {
11462 Label runtime;
11463
11464 // Stack frame on entry.
11465 // sp[0]: right string
11466 // sp[4]: left string
11467 __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); // left
11468 __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); // right
11469
11470 Label not_same;
11471 __ cmp(r0, r1);
11472 __ b(ne, &not_same);
11473 STATIC_ASSERT(EQUAL == 0);
11474 STATIC_ASSERT(kSmiTag == 0);
11475 __ mov(r0, Operand(Smi::FromInt(EQUAL)));
11476 __ IncrementCounter(&Counters::string_compare_native, 1, r1, r2);
11477 __ add(sp, sp, Operand(2 * kPointerSize));
11478 __ Ret();
11479
11480 __ bind(&not_same);
11481
11482 // Check that both objects are sequential ascii strings.
11483 __ JumpIfNotBothSequentialAsciiStrings(r0, r1, r2, r3, &runtime);
11484
11485 // Compare flat ascii strings natively. Remove arguments from stack first.
11486 __ IncrementCounter(&Counters::string_compare_native, 1, r2, r3);
11487 __ add(sp, sp, Operand(2 * kPointerSize));
11488 GenerateCompareFlatAsciiStrings(masm, r0, r1, r2, r3, r4, r5);
11489
11490 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
11491 // tagged as a small integer.
11492 __ bind(&runtime);
11493 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
11494 }
11495
11496
11497 void StringAddStub::Generate(MacroAssembler* masm) {
11498 Label string_add_runtime;
11499 // Stack on entry:
11500 // sp[0]: second argument.
11501 // sp[4]: first argument.
11502
11503 // Load the two arguments.
11504 __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); // First argument.
11505 __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); // Second argument.
11506
11507 // Make sure that both arguments are strings if not known in advance.
11508 if (string_check_) {
11509 STATIC_ASSERT(kSmiTag == 0);
11510 __ JumpIfEitherSmi(r0, r1, &string_add_runtime);
11511 // Load instance types.
11512 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
11513 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
11514 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
11515 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
11516 STATIC_ASSERT(kStringTag == 0);
11517 // If either is not a string, go to runtime.
11518 __ tst(r4, Operand(kIsNotStringMask));
11519 __ tst(r5, Operand(kIsNotStringMask), eq);
11520 __ b(ne, &string_add_runtime);
11521 }
11522
11523 // Both arguments are strings.
11524 // r0: first string
11525 // r1: second string
11526 // r4: first string instance type (if string_check_)
11527 // r5: second string instance type (if string_check_)
11528 {
11529 Label strings_not_empty;
11530 // Check if either of the strings are empty. In that case return the other.
11531 __ ldr(r2, FieldMemOperand(r0, String::kLengthOffset));
11532 __ ldr(r3, FieldMemOperand(r1, String::kLengthOffset));
11533 STATIC_ASSERT(kSmiTag == 0);
11534 __ cmp(r2, Operand(Smi::FromInt(0))); // Test if first string is empty.
11535 __ mov(r0, Operand(r1), LeaveCC, eq); // If first is empty, return second.
11536 STATIC_ASSERT(kSmiTag == 0);
11537 // Else test if second string is empty.
11538 __ cmp(r3, Operand(Smi::FromInt(0)), ne);
11539 __ b(ne, &strings_not_empty); // If either string was empty, return r0.
11540
11541 __ IncrementCounter(&Counters::string_add_native, 1, r2, r3);
11542 __ add(sp, sp, Operand(2 * kPointerSize));
11543 __ Ret();
11544
11545 __ bind(&strings_not_empty);
11546 }
11547
11548 __ mov(r2, Operand(r2, ASR, kSmiTagSize));
11549 __ mov(r3, Operand(r3, ASR, kSmiTagSize));
11550 // Both strings are non-empty.
11551 // r0: first string
11552 // r1: second string
11553 // r2: length of first string
11554 // r3: length of second string
11555 // r4: first string instance type (if string_check_)
11556 // r5: second string instance type (if string_check_)
11557 // Look at the length of the result of adding the two strings.
11558 Label string_add_flat_result, longer_than_two;
11559 // Adding two lengths can't overflow.
11560 STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2);
11561 __ add(r6, r2, Operand(r3));
11562 // Use the runtime system when adding two one character strings, as it
11563 // contains optimizations for this specific case using the symbol table.
11564 __ cmp(r6, Operand(2));
11565 __ b(ne, &longer_than_two);
11566
11567 // Check that both strings are non-external ascii strings.
11568 if (!string_check_) {
11569 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
11570 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
11571 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
11572 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
11573 }
11574 __ JumpIfBothInstanceTypesAreNotSequentialAscii(r4, r5, r6, r7,
11575 &string_add_runtime);
11576
11577 // Get the two characters forming the sub string.
11578 __ ldrb(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
11579 __ ldrb(r3, FieldMemOperand(r1, SeqAsciiString::kHeaderSize));
11580
11581 // Try to lookup two character string in symbol table. If it is not found
11582 // just allocate a new one.
11583 Label make_two_character_string;
11584 StringHelper::GenerateTwoCharacterSymbolTableProbe(
11585 masm, r2, r3, r6, r7, r4, r5, r9, &make_two_character_string);
11586 __ IncrementCounter(&Counters::string_add_native, 1, r2, r3);
11587 __ add(sp, sp, Operand(2 * kPointerSize));
11588 __ Ret();
11589
11590 __ bind(&make_two_character_string);
11591 // Resulting string has length 2 and first chars of two strings
11592 // are combined into single halfword in r2 register.
11593 // So we can fill resulting string without two loops by a single
11594 // halfword store instruction (which assumes that processor is
11595 // in a little endian mode)
11596 __ mov(r6, Operand(2));
11597 __ AllocateAsciiString(r0, r6, r4, r5, r9, &string_add_runtime);
11598 __ strh(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
11599 __ IncrementCounter(&Counters::string_add_native, 1, r2, r3);
11600 __ add(sp, sp, Operand(2 * kPointerSize));
11601 __ Ret();
11602
11603 __ bind(&longer_than_two);
11604 // Check if resulting string will be flat.
11605 __ cmp(r6, Operand(String::kMinNonFlatLength));
11606 __ b(lt, &string_add_flat_result);
11607 // Handle exceptionally long strings in the runtime system.
11608 STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
11609 ASSERT(IsPowerOf2(String::kMaxLength + 1));
11610 // kMaxLength + 1 is representable as shifted literal, kMaxLength is not.
11611 __ cmp(r6, Operand(String::kMaxLength + 1));
11612 __ b(hs, &string_add_runtime);
11613
11614 // If result is not supposed to be flat, allocate a cons string object.
11615 // If both strings are ascii the result is an ascii cons string.
11616 if (!string_check_) {
11617 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
11618 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
11619 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
11620 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
11621 }
11622 Label non_ascii, allocated, ascii_data;
11623 STATIC_ASSERT(kTwoByteStringTag == 0);
11624 __ tst(r4, Operand(kStringEncodingMask));
11625 __ tst(r5, Operand(kStringEncodingMask), ne);
11626 __ b(eq, &non_ascii);
11627
11628 // Allocate an ASCII cons string.
11629 __ bind(&ascii_data);
11630 __ AllocateAsciiConsString(r7, r6, r4, r5, &string_add_runtime);
11631 __ bind(&allocated);
11632 // Fill the fields of the cons string.
11633 __ str(r0, FieldMemOperand(r7, ConsString::kFirstOffset));
11634 __ str(r1, FieldMemOperand(r7, ConsString::kSecondOffset));
11635 __ mov(r0, Operand(r7));
11636 __ IncrementCounter(&Counters::string_add_native, 1, r2, r3);
11637 __ add(sp, sp, Operand(2 * kPointerSize));
11638 __ Ret();
11639
11640 __ bind(&non_ascii);
11641 // At least one of the strings is two-byte. Check whether it happens
11642 // to contain only ascii characters.
11643 // r4: first instance type.
11644 // r5: second instance type.
11645 __ tst(r4, Operand(kAsciiDataHintMask));
11646 __ tst(r5, Operand(kAsciiDataHintMask), ne);
11647 __ b(ne, &ascii_data);
11648 __ eor(r4, r4, Operand(r5));
11649 STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
11650 __ and_(r4, r4, Operand(kAsciiStringTag | kAsciiDataHintTag));
11651 __ cmp(r4, Operand(kAsciiStringTag | kAsciiDataHintTag));
11652 __ b(eq, &ascii_data);
11653
11654 // Allocate a two byte cons string.
11655 __ AllocateTwoByteConsString(r7, r6, r4, r5, &string_add_runtime);
11656 __ jmp(&allocated);
11657
11658 // Handle creating a flat result. First check that both strings are
11659 // sequential and that they have the same encoding.
11660 // r0: first string
11661 // r1: second string
11662 // r2: length of first string
11663 // r3: length of second string
11664 // r4: first string instance type (if string_check_)
11665 // r5: second string instance type (if string_check_)
11666 // r6: sum of lengths.
11667 __ bind(&string_add_flat_result);
11668 if (!string_check_) {
11669 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
11670 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
11671 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
11672 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
11673 }
11674 // Check that both strings are sequential.
11675 STATIC_ASSERT(kSeqStringTag == 0);
11676 __ tst(r4, Operand(kStringRepresentationMask));
11677 __ tst(r5, Operand(kStringRepresentationMask), eq);
11678 __ b(ne, &string_add_runtime);
11679 // Now check if both strings have the same encoding (ASCII/Two-byte).
11680 // r0: first string.
11681 // r1: second string.
11682 // r2: length of first string.
11683 // r3: length of second string.
11684 // r6: sum of lengths..
11685 Label non_ascii_string_add_flat_result;
11686 ASSERT(IsPowerOf2(kStringEncodingMask)); // Just one bit to test.
11687 __ eor(r7, r4, Operand(r5));
11688 __ tst(r7, Operand(kStringEncodingMask));
11689 __ b(ne, &string_add_runtime);
11690 // And see if it's ASCII or two-byte.
11691 __ tst(r4, Operand(kStringEncodingMask));
11692 __ b(eq, &non_ascii_string_add_flat_result);
11693
11694 // Both strings are sequential ASCII strings. We also know that they are
11695 // short (since the sum of the lengths is less than kMinNonFlatLength).
11696 // r6: length of resulting flat string
11697 __ AllocateAsciiString(r7, r6, r4, r5, r9, &string_add_runtime);
11698 // Locate first character of result.
11699 __ add(r6, r7, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
11700 // Locate first character of first argument.
11701 __ add(r0, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
11702 // r0: first character of first string.
11703 // r1: second string.
11704 // r2: length of first string.
11705 // r3: length of second string.
11706 // r6: first character of result.
11707 // r7: result string.
11708 StringHelper::GenerateCopyCharacters(masm, r6, r0, r2, r4, true);
11709
11710 // Load second argument and locate first character.
11711 __ add(r1, r1, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
11712 // r1: first character of second string.
11713 // r3: length of second string.
11714 // r6: next character of result.
11715 // r7: result string.
11716 StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, true);
11717 __ mov(r0, Operand(r7));
11718 __ IncrementCounter(&Counters::string_add_native, 1, r2, r3);
11719 __ add(sp, sp, Operand(2 * kPointerSize));
11720 __ Ret();
11721
11722 __ bind(&non_ascii_string_add_flat_result);
11723 // Both strings are sequential two byte strings.
11724 // r0: first string.
11725 // r1: second string.
11726 // r2: length of first string.
11727 // r3: length of second string.
11728 // r6: sum of length of strings.
11729 __ AllocateTwoByteString(r7, r6, r4, r5, r9, &string_add_runtime);
11730 // r0: first string.
11731 // r1: second string.
11732 // r2: length of first string.
11733 // r3: length of second string.
11734 // r7: result string.
11735
11736 // Locate first character of result.
11737 __ add(r6, r7, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
11738 // Locate first character of first argument.
11739 __ add(r0, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
11740
11741 // r0: first character of first string.
11742 // r1: second string.
11743 // r2: length of first string.
11744 // r3: length of second string.
11745 // r6: first character of result.
11746 // r7: result string.
11747 StringHelper::GenerateCopyCharacters(masm, r6, r0, r2, r4, false);
11748
11749 // Locate first character of second argument.
11750 __ add(r1, r1, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
11751
11752 // r1: first character of second string.
11753 // r3: length of second string.
11754 // r6: next character of result (after copy of first string).
11755 // r7: result string.
11756 StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, false);
11757
11758 __ mov(r0, Operand(r7));
11759 __ IncrementCounter(&Counters::string_add_native, 1, r2, r3);
11760 __ add(sp, sp, Operand(2 * kPointerSize));
11761 __ Ret();
11762
11763 // Just jump to runtime to add the two strings.
11764 __ bind(&string_add_runtime);
11765 __ TailCallRuntime(Runtime::kStringAdd, 2, 1);
11766 }
11767
11768
11769 #undef __ 7100 #undef __
11770 7101
11771 } } // namespace v8::internal 7102 } } // namespace v8::internal
11772 7103
11773 #endif // V8_TARGET_ARCH_ARM 7104 #endif // V8_TARGET_ARCH_ARM
OLDNEW
« no previous file with comments | « src/arm/codegen-arm.h ('k') | src/arm/full-codegen-arm.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698