OLD | NEW |
(Empty) | |
| 1 // Copyright 2010 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are |
| 4 // met: |
| 5 // |
| 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided |
| 11 // with the distribution. |
| 12 // * Neither the name of Google Inc. nor the names of its |
| 13 // contributors may be used to endorse or promote products derived |
| 14 // from this software without specific prior written permission. |
| 15 // |
| 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 |
| 28 #include "v8.h" |
| 29 |
| 30 #if defined(V8_TARGET_ARCH_ARM) |
| 31 |
| 32 #include "bootstrapper.h" |
| 33 #include "code-stubs-arm.h" |
| 34 #include "codegen-inl.h" |
| 35 #include "regexp-macro-assembler.h" |
| 36 |
| 37 namespace v8 { |
| 38 namespace internal { |
| 39 |
| 40 |
| 41 #define __ ACCESS_MASM(masm) |
| 42 |
| 43 static void EmitIdenticalObjectComparison(MacroAssembler* masm, |
| 44 Label* slow, |
| 45 Condition cc, |
| 46 bool never_nan_nan); |
| 47 static void EmitSmiNonsmiComparison(MacroAssembler* masm, |
| 48 Register lhs, |
| 49 Register rhs, |
| 50 Label* lhs_not_nan, |
| 51 Label* slow, |
| 52 bool strict); |
| 53 static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc); |
| 54 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, |
| 55 Register lhs, |
| 56 Register rhs); |
| 57 |
| 58 |
| 59 void FastNewClosureStub::Generate(MacroAssembler* masm) { |
| 60 // Create a new closure from the given function info in new |
| 61 // space. Set the context to the current context in cp. |
| 62 Label gc; |
| 63 |
| 64 // Pop the function info from the stack. |
| 65 __ pop(r3); |
| 66 |
| 67 // Attempt to allocate new JSFunction in new space. |
| 68 __ AllocateInNewSpace(JSFunction::kSize, |
| 69 r0, |
| 70 r1, |
| 71 r2, |
| 72 &gc, |
| 73 TAG_OBJECT); |
| 74 |
| 75 // Compute the function map in the current global context and set that |
| 76 // as the map of the allocated object. |
| 77 __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| 78 __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset)); |
| 79 __ ldr(r2, MemOperand(r2, Context::SlotOffset(Context::FUNCTION_MAP_INDEX))); |
| 80 __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| 81 |
| 82 // Initialize the rest of the function. We don't have to update the |
| 83 // write barrier because the allocated object is in new space. |
| 84 __ LoadRoot(r1, Heap::kEmptyFixedArrayRootIndex); |
| 85 __ LoadRoot(r2, Heap::kTheHoleValueRootIndex); |
| 86 __ str(r1, FieldMemOperand(r0, JSObject::kPropertiesOffset)); |
| 87 __ str(r1, FieldMemOperand(r0, JSObject::kElementsOffset)); |
| 88 __ str(r2, FieldMemOperand(r0, JSFunction::kPrototypeOrInitialMapOffset)); |
| 89 __ str(r3, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset)); |
| 90 __ str(cp, FieldMemOperand(r0, JSFunction::kContextOffset)); |
| 91 __ str(r1, FieldMemOperand(r0, JSFunction::kLiteralsOffset)); |
| 92 |
| 93 // Initialize the code pointer in the function to be the one |
| 94 // found in the shared function info object. |
| 95 __ ldr(r3, FieldMemOperand(r3, SharedFunctionInfo::kCodeOffset)); |
| 96 __ add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| 97 __ str(r3, FieldMemOperand(r0, JSFunction::kCodeEntryOffset)); |
| 98 |
| 99 // Return result. The argument function info has been popped already. |
| 100 __ Ret(); |
| 101 |
| 102 // Create a new closure through the slower runtime call. |
| 103 __ bind(&gc); |
| 104 __ Push(cp, r3); |
| 105 __ TailCallRuntime(Runtime::kNewClosure, 2, 1); |
| 106 } |
| 107 |
| 108 |
| 109 void FastNewContextStub::Generate(MacroAssembler* masm) { |
| 110 // Try to allocate the context in new space. |
| 111 Label gc; |
| 112 int length = slots_ + Context::MIN_CONTEXT_SLOTS; |
| 113 |
| 114 // Attempt to allocate the context in new space. |
| 115 __ AllocateInNewSpace(FixedArray::SizeFor(length), |
| 116 r0, |
| 117 r1, |
| 118 r2, |
| 119 &gc, |
| 120 TAG_OBJECT); |
| 121 |
| 122 // Load the function from the stack. |
| 123 __ ldr(r3, MemOperand(sp, 0)); |
| 124 |
| 125 // Setup the object header. |
| 126 __ LoadRoot(r2, Heap::kContextMapRootIndex); |
| 127 __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| 128 __ mov(r2, Operand(Smi::FromInt(length))); |
| 129 __ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset)); |
| 130 |
| 131 // Setup the fixed slots. |
| 132 __ mov(r1, Operand(Smi::FromInt(0))); |
| 133 __ str(r3, MemOperand(r0, Context::SlotOffset(Context::CLOSURE_INDEX))); |
| 134 __ str(r0, MemOperand(r0, Context::SlotOffset(Context::FCONTEXT_INDEX))); |
| 135 __ str(r1, MemOperand(r0, Context::SlotOffset(Context::PREVIOUS_INDEX))); |
| 136 __ str(r1, MemOperand(r0, Context::SlotOffset(Context::EXTENSION_INDEX))); |
| 137 |
| 138 // Copy the global object from the surrounding context. |
| 139 __ ldr(r1, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| 140 __ str(r1, MemOperand(r0, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| 141 |
| 142 // Initialize the rest of the slots to undefined. |
| 143 __ LoadRoot(r1, Heap::kUndefinedValueRootIndex); |
| 144 for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) { |
| 145 __ str(r1, MemOperand(r0, Context::SlotOffset(i))); |
| 146 } |
| 147 |
| 148 // Remove the on-stack argument and return. |
| 149 __ mov(cp, r0); |
| 150 __ pop(); |
| 151 __ Ret(); |
| 152 |
| 153 // Need to collect. Call into runtime system. |
| 154 __ bind(&gc); |
| 155 __ TailCallRuntime(Runtime::kNewContext, 1, 1); |
| 156 } |
| 157 |
| 158 |
| 159 void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) { |
| 160 // Stack layout on entry: |
| 161 // |
| 162 // [sp]: constant elements. |
| 163 // [sp + kPointerSize]: literal index. |
| 164 // [sp + (2 * kPointerSize)]: literals array. |
| 165 |
| 166 // All sizes here are multiples of kPointerSize. |
| 167 int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0; |
| 168 int size = JSArray::kSize + elements_size; |
| 169 |
| 170 // Load boilerplate object into r3 and check if we need to create a |
| 171 // boilerplate. |
| 172 Label slow_case; |
| 173 __ ldr(r3, MemOperand(sp, 2 * kPointerSize)); |
| 174 __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); |
| 175 __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| 176 __ ldr(r3, MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| 177 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); |
| 178 __ cmp(r3, ip); |
| 179 __ b(eq, &slow_case); |
| 180 |
| 181 if (FLAG_debug_code) { |
| 182 const char* message; |
| 183 Heap::RootListIndex expected_map_index; |
| 184 if (mode_ == CLONE_ELEMENTS) { |
| 185 message = "Expected (writable) fixed array"; |
| 186 expected_map_index = Heap::kFixedArrayMapRootIndex; |
| 187 } else { |
| 188 ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS); |
| 189 message = "Expected copy-on-write fixed array"; |
| 190 expected_map_index = Heap::kFixedCOWArrayMapRootIndex; |
| 191 } |
| 192 __ push(r3); |
| 193 __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset)); |
| 194 __ ldr(r3, FieldMemOperand(r3, HeapObject::kMapOffset)); |
| 195 __ LoadRoot(ip, expected_map_index); |
| 196 __ cmp(r3, ip); |
| 197 __ Assert(eq, message); |
| 198 __ pop(r3); |
| 199 } |
| 200 |
| 201 // Allocate both the JS array and the elements array in one big |
| 202 // allocation. This avoids multiple limit checks. |
| 203 __ AllocateInNewSpace(size, |
| 204 r0, |
| 205 r1, |
| 206 r2, |
| 207 &slow_case, |
| 208 TAG_OBJECT); |
| 209 |
| 210 // Copy the JS array part. |
| 211 for (int i = 0; i < JSArray::kSize; i += kPointerSize) { |
| 212 if ((i != JSArray::kElementsOffset) || (length_ == 0)) { |
| 213 __ ldr(r1, FieldMemOperand(r3, i)); |
| 214 __ str(r1, FieldMemOperand(r0, i)); |
| 215 } |
| 216 } |
| 217 |
| 218 if (length_ > 0) { |
| 219 // Get hold of the elements array of the boilerplate and setup the |
| 220 // elements pointer in the resulting object. |
| 221 __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset)); |
| 222 __ add(r2, r0, Operand(JSArray::kSize)); |
| 223 __ str(r2, FieldMemOperand(r0, JSArray::kElementsOffset)); |
| 224 |
| 225 // Copy the elements array. |
| 226 __ CopyFields(r2, r3, r1.bit(), elements_size / kPointerSize); |
| 227 } |
| 228 |
| 229 // Return and remove the on-stack parameters. |
| 230 __ add(sp, sp, Operand(3 * kPointerSize)); |
| 231 __ Ret(); |
| 232 |
| 233 __ bind(&slow_case); |
| 234 __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1); |
| 235 } |
| 236 |
| 237 |
| 238 // Takes a Smi and converts to an IEEE 64 bit floating point value in two |
| 239 // registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and |
| 240 // 52 fraction bits (20 in the first word, 32 in the second). Zeros is a |
| 241 // scratch register. Destroys the source register. No GC occurs during this |
| 242 // stub so you don't have to set up the frame. |
| 243 class ConvertToDoubleStub : public CodeStub { |
| 244 public: |
| 245 ConvertToDoubleStub(Register result_reg_1, |
| 246 Register result_reg_2, |
| 247 Register source_reg, |
| 248 Register scratch_reg) |
| 249 : result1_(result_reg_1), |
| 250 result2_(result_reg_2), |
| 251 source_(source_reg), |
| 252 zeros_(scratch_reg) { } |
| 253 |
| 254 private: |
| 255 Register result1_; |
| 256 Register result2_; |
| 257 Register source_; |
| 258 Register zeros_; |
| 259 |
| 260 // Minor key encoding in 16 bits. |
| 261 class ModeBits: public BitField<OverwriteMode, 0, 2> {}; |
| 262 class OpBits: public BitField<Token::Value, 2, 14> {}; |
| 263 |
| 264 Major MajorKey() { return ConvertToDouble; } |
| 265 int MinorKey() { |
| 266 // Encode the parameters in a unique 16 bit value. |
| 267 return result1_.code() + |
| 268 (result2_.code() << 4) + |
| 269 (source_.code() << 8) + |
| 270 (zeros_.code() << 12); |
| 271 } |
| 272 |
| 273 void Generate(MacroAssembler* masm); |
| 274 |
| 275 const char* GetName() { return "ConvertToDoubleStub"; } |
| 276 |
| 277 #ifdef DEBUG |
| 278 void Print() { PrintF("ConvertToDoubleStub\n"); } |
| 279 #endif |
| 280 }; |
| 281 |
| 282 |
| 283 void ConvertToDoubleStub::Generate(MacroAssembler* masm) { |
| 284 #ifndef BIG_ENDIAN_FLOATING_POINT |
| 285 Register exponent = result1_; |
| 286 Register mantissa = result2_; |
| 287 #else |
| 288 Register exponent = result2_; |
| 289 Register mantissa = result1_; |
| 290 #endif |
| 291 Label not_special; |
| 292 // Convert from Smi to integer. |
| 293 __ mov(source_, Operand(source_, ASR, kSmiTagSize)); |
| 294 // Move sign bit from source to destination. This works because the sign bit |
| 295 // in the exponent word of the double has the same position and polarity as |
| 296 // the 2's complement sign bit in a Smi. |
| 297 STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u); |
| 298 __ and_(exponent, source_, Operand(HeapNumber::kSignMask), SetCC); |
| 299 // Subtract from 0 if source was negative. |
| 300 __ rsb(source_, source_, Operand(0), LeaveCC, ne); |
| 301 |
| 302 // We have -1, 0 or 1, which we treat specially. Register source_ contains |
| 303 // absolute value: it is either equal to 1 (special case of -1 and 1), |
| 304 // greater than 1 (not a special case) or less than 1 (special case of 0). |
| 305 __ cmp(source_, Operand(1)); |
| 306 __ b(gt, ¬_special); |
| 307 |
| 308 // For 1 or -1 we need to or in the 0 exponent (biased to 1023). |
| 309 static const uint32_t exponent_word_for_1 = |
| 310 HeapNumber::kExponentBias << HeapNumber::kExponentShift; |
| 311 __ orr(exponent, exponent, Operand(exponent_word_for_1), LeaveCC, eq); |
| 312 // 1, 0 and -1 all have 0 for the second word. |
| 313 __ mov(mantissa, Operand(0)); |
| 314 __ Ret(); |
| 315 |
| 316 __ bind(¬_special); |
| 317 // Count leading zeros. Uses mantissa for a scratch register on pre-ARM5. |
| 318 // Gets the wrong answer for 0, but we already checked for that case above. |
| 319 __ CountLeadingZeros(zeros_, source_, mantissa); |
| 320 // Compute exponent and or it into the exponent register. |
| 321 // We use mantissa as a scratch register here. Use a fudge factor to |
| 322 // divide the constant 31 + HeapNumber::kExponentBias, 0x41d, into two parts |
| 323 // that fit in the ARM's constant field. |
| 324 int fudge = 0x400; |
| 325 __ rsb(mantissa, zeros_, Operand(31 + HeapNumber::kExponentBias - fudge)); |
| 326 __ add(mantissa, mantissa, Operand(fudge)); |
| 327 __ orr(exponent, |
| 328 exponent, |
| 329 Operand(mantissa, LSL, HeapNumber::kExponentShift)); |
| 330 // Shift up the source chopping the top bit off. |
| 331 __ add(zeros_, zeros_, Operand(1)); |
| 332 // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0. |
| 333 __ mov(source_, Operand(source_, LSL, zeros_)); |
| 334 // Compute lower part of fraction (last 12 bits). |
| 335 __ mov(mantissa, Operand(source_, LSL, HeapNumber::kMantissaBitsInTopWord)); |
| 336 // And the top (top 20 bits). |
| 337 __ orr(exponent, |
| 338 exponent, |
| 339 Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord)); |
| 340 __ Ret(); |
| 341 } |
| 342 |
| 343 |
| 344 // See comment for class. |
| 345 void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) { |
| 346 Label max_negative_int; |
| 347 // the_int_ has the answer which is a signed int32 but not a Smi. |
| 348 // We test for the special value that has a different exponent. This test |
| 349 // has the neat side effect of setting the flags according to the sign. |
| 350 STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u); |
| 351 __ cmp(the_int_, Operand(0x80000000u)); |
| 352 __ b(eq, &max_negative_int); |
| 353 // Set up the correct exponent in scratch_. All non-Smi int32s have the same. |
| 354 // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). |
| 355 uint32_t non_smi_exponent = |
| 356 (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift; |
| 357 __ mov(scratch_, Operand(non_smi_exponent)); |
| 358 // Set the sign bit in scratch_ if the value was negative. |
| 359 __ orr(scratch_, scratch_, Operand(HeapNumber::kSignMask), LeaveCC, cs); |
| 360 // Subtract from 0 if the value was negative. |
| 361 __ rsb(the_int_, the_int_, Operand(0), LeaveCC, cs); |
| 362 // We should be masking the implict first digit of the mantissa away here, |
| 363 // but it just ends up combining harmlessly with the last digit of the |
| 364 // exponent that happens to be 1. The sign bit is 0 so we shift 10 to get |
| 365 // the most significant 1 to hit the last bit of the 12 bit sign and exponent. |
| 366 ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0); |
| 367 const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; |
| 368 __ orr(scratch_, scratch_, Operand(the_int_, LSR, shift_distance)); |
| 369 __ str(scratch_, FieldMemOperand(the_heap_number_, |
| 370 HeapNumber::kExponentOffset)); |
| 371 __ mov(scratch_, Operand(the_int_, LSL, 32 - shift_distance)); |
| 372 __ str(scratch_, FieldMemOperand(the_heap_number_, |
| 373 HeapNumber::kMantissaOffset)); |
| 374 __ Ret(); |
| 375 |
| 376 __ bind(&max_negative_int); |
| 377 // The max negative int32 is stored as a positive number in the mantissa of |
| 378 // a double because it uses a sign bit instead of using two's complement. |
| 379 // The actual mantissa bits stored are all 0 because the implicit most |
| 380 // significant 1 bit is not stored. |
| 381 non_smi_exponent += 1 << HeapNumber::kExponentShift; |
| 382 __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent)); |
| 383 __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset)); |
| 384 __ mov(ip, Operand(0)); |
| 385 __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset)); |
| 386 __ Ret(); |
| 387 } |
| 388 |
| 389 |
| 390 // Handle the case where the lhs and rhs are the same object. |
| 391 // Equality is almost reflexive (everything but NaN), so this is a test |
| 392 // for "identity and not NaN". |
| 393 static void EmitIdenticalObjectComparison(MacroAssembler* masm, |
| 394 Label* slow, |
| 395 Condition cc, |
| 396 bool never_nan_nan) { |
| 397 Label not_identical; |
| 398 Label heap_number, return_equal; |
| 399 __ cmp(r0, r1); |
| 400 __ b(ne, ¬_identical); |
| 401 |
| 402 // The two objects are identical. If we know that one of them isn't NaN then |
| 403 // we now know they test equal. |
| 404 if (cc != eq || !never_nan_nan) { |
| 405 // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), |
| 406 // so we do the second best thing - test it ourselves. |
| 407 // They are both equal and they are not both Smis so both of them are not |
| 408 // Smis. If it's not a heap number, then return equal. |
| 409 if (cc == lt || cc == gt) { |
| 410 __ CompareObjectType(r0, r4, r4, FIRST_JS_OBJECT_TYPE); |
| 411 __ b(ge, slow); |
| 412 } else { |
| 413 __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE); |
| 414 __ b(eq, &heap_number); |
| 415 // Comparing JS objects with <=, >= is complicated. |
| 416 if (cc != eq) { |
| 417 __ cmp(r4, Operand(FIRST_JS_OBJECT_TYPE)); |
| 418 __ b(ge, slow); |
| 419 // Normally here we fall through to return_equal, but undefined is |
| 420 // special: (undefined == undefined) == true, but |
| 421 // (undefined <= undefined) == false! See ECMAScript 11.8.5. |
| 422 if (cc == le || cc == ge) { |
| 423 __ cmp(r4, Operand(ODDBALL_TYPE)); |
| 424 __ b(ne, &return_equal); |
| 425 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); |
| 426 __ cmp(r0, r2); |
| 427 __ b(ne, &return_equal); |
| 428 if (cc == le) { |
| 429 // undefined <= undefined should fail. |
| 430 __ mov(r0, Operand(GREATER)); |
| 431 } else { |
| 432 // undefined >= undefined should fail. |
| 433 __ mov(r0, Operand(LESS)); |
| 434 } |
| 435 __ Ret(); |
| 436 } |
| 437 } |
| 438 } |
| 439 } |
| 440 |
| 441 __ bind(&return_equal); |
| 442 if (cc == lt) { |
| 443 __ mov(r0, Operand(GREATER)); // Things aren't less than themselves. |
| 444 } else if (cc == gt) { |
| 445 __ mov(r0, Operand(LESS)); // Things aren't greater than themselves. |
| 446 } else { |
| 447 __ mov(r0, Operand(EQUAL)); // Things are <=, >=, ==, === themselves. |
| 448 } |
| 449 __ Ret(); |
| 450 |
| 451 if (cc != eq || !never_nan_nan) { |
| 452 // For less and greater we don't have to check for NaN since the result of |
| 453 // x < x is false regardless. For the others here is some code to check |
| 454 // for NaN. |
| 455 if (cc != lt && cc != gt) { |
| 456 __ bind(&heap_number); |
| 457 // It is a heap number, so return non-equal if it's NaN and equal if it's |
| 458 // not NaN. |
| 459 |
| 460 // The representation of NaN values has all exponent bits (52..62) set, |
| 461 // and not all mantissa bits (0..51) clear. |
| 462 // Read top bits of double representation (second word of value). |
| 463 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); |
| 464 // Test that exponent bits are all set. |
| 465 __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits); |
| 466 // NaNs have all-one exponents so they sign extend to -1. |
| 467 __ cmp(r3, Operand(-1)); |
| 468 __ b(ne, &return_equal); |
| 469 |
| 470 // Shift out flag and all exponent bits, retaining only mantissa. |
| 471 __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord)); |
| 472 // Or with all low-bits of mantissa. |
| 473 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); |
| 474 __ orr(r0, r3, Operand(r2), SetCC); |
| 475 // For equal we already have the right value in r0: Return zero (equal) |
| 476 // if all bits in mantissa are zero (it's an Infinity) and non-zero if |
| 477 // not (it's a NaN). For <= and >= we need to load r0 with the failing |
| 478 // value if it's a NaN. |
| 479 if (cc != eq) { |
| 480 // All-zero means Infinity means equal. |
| 481 __ Ret(eq); |
| 482 if (cc == le) { |
| 483 __ mov(r0, Operand(GREATER)); // NaN <= NaN should fail. |
| 484 } else { |
| 485 __ mov(r0, Operand(LESS)); // NaN >= NaN should fail. |
| 486 } |
| 487 } |
| 488 __ Ret(); |
| 489 } |
| 490 // No fall through here. |
| 491 } |
| 492 |
| 493 __ bind(¬_identical); |
| 494 } |
| 495 |
| 496 |
| 497 // See comment at call site. |
| 498 static void EmitSmiNonsmiComparison(MacroAssembler* masm, |
| 499 Register lhs, |
| 500 Register rhs, |
| 501 Label* lhs_not_nan, |
| 502 Label* slow, |
| 503 bool strict) { |
| 504 ASSERT((lhs.is(r0) && rhs.is(r1)) || |
| 505 (lhs.is(r1) && rhs.is(r0))); |
| 506 |
| 507 Label rhs_is_smi; |
| 508 __ tst(rhs, Operand(kSmiTagMask)); |
| 509 __ b(eq, &rhs_is_smi); |
| 510 |
| 511 // Lhs is a Smi. Check whether the rhs is a heap number. |
| 512 __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE); |
| 513 if (strict) { |
| 514 // If rhs is not a number and lhs is a Smi then strict equality cannot |
| 515 // succeed. Return non-equal |
| 516 // If rhs is r0 then there is already a non zero value in it. |
| 517 if (!rhs.is(r0)) { |
| 518 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne); |
| 519 } |
| 520 __ Ret(ne); |
| 521 } else { |
| 522 // Smi compared non-strictly with a non-Smi non-heap-number. Call |
| 523 // the runtime. |
| 524 __ b(ne, slow); |
| 525 } |
| 526 |
| 527 // Lhs is a smi, rhs is a number. |
| 528 if (CpuFeatures::IsSupported(VFP3)) { |
| 529 // Convert lhs to a double in d7. |
| 530 CpuFeatures::Scope scope(VFP3); |
| 531 __ SmiToDoubleVFPRegister(lhs, d7, r7, s15); |
| 532 // Load the double from rhs, tagged HeapNumber r0, to d6. |
| 533 __ sub(r7, rhs, Operand(kHeapObjectTag)); |
| 534 __ vldr(d6, r7, HeapNumber::kValueOffset); |
| 535 } else { |
| 536 __ push(lr); |
| 537 // Convert lhs to a double in r2, r3. |
| 538 __ mov(r7, Operand(lhs)); |
| 539 ConvertToDoubleStub stub1(r3, r2, r7, r6); |
| 540 __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET); |
| 541 // Load rhs to a double in r0, r1. |
| 542 __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset)); |
| 543 __ pop(lr); |
| 544 } |
| 545 |
| 546 // We now have both loaded as doubles but we can skip the lhs nan check |
| 547 // since it's a smi. |
| 548 __ jmp(lhs_not_nan); |
| 549 |
| 550 __ bind(&rhs_is_smi); |
| 551 // Rhs is a smi. Check whether the non-smi lhs is a heap number. |
| 552 __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE); |
| 553 if (strict) { |
| 554 // If lhs is not a number and rhs is a smi then strict equality cannot |
| 555 // succeed. Return non-equal. |
| 556 // If lhs is r0 then there is already a non zero value in it. |
| 557 if (!lhs.is(r0)) { |
| 558 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne); |
| 559 } |
| 560 __ Ret(ne); |
| 561 } else { |
| 562 // Smi compared non-strictly with a non-smi non-heap-number. Call |
| 563 // the runtime. |
| 564 __ b(ne, slow); |
| 565 } |
| 566 |
| 567 // Rhs is a smi, lhs is a heap number. |
| 568 if (CpuFeatures::IsSupported(VFP3)) { |
| 569 CpuFeatures::Scope scope(VFP3); |
| 570 // Load the double from lhs, tagged HeapNumber r1, to d7. |
| 571 __ sub(r7, lhs, Operand(kHeapObjectTag)); |
| 572 __ vldr(d7, r7, HeapNumber::kValueOffset); |
| 573 // Convert rhs to a double in d6 . |
| 574 __ SmiToDoubleVFPRegister(rhs, d6, r7, s13); |
| 575 } else { |
| 576 __ push(lr); |
| 577 // Load lhs to a double in r2, r3. |
| 578 __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset)); |
| 579 // Convert rhs to a double in r0, r1. |
| 580 __ mov(r7, Operand(rhs)); |
| 581 ConvertToDoubleStub stub2(r1, r0, r7, r6); |
| 582 __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET); |
| 583 __ pop(lr); |
| 584 } |
| 585 // Fall through to both_loaded_as_doubles. |
| 586 } |
| 587 |
| 588 |
| 589 void EmitNanCheck(MacroAssembler* masm, Label* lhs_not_nan, Condition cc) { |
| 590 bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset); |
| 591 Register rhs_exponent = exp_first ? r0 : r1; |
| 592 Register lhs_exponent = exp_first ? r2 : r3; |
| 593 Register rhs_mantissa = exp_first ? r1 : r0; |
| 594 Register lhs_mantissa = exp_first ? r3 : r2; |
| 595 Label one_is_nan, neither_is_nan; |
| 596 |
| 597 __ Sbfx(r4, |
| 598 lhs_exponent, |
| 599 HeapNumber::kExponentShift, |
| 600 HeapNumber::kExponentBits); |
| 601 // NaNs have all-one exponents so they sign extend to -1. |
| 602 __ cmp(r4, Operand(-1)); |
| 603 __ b(ne, lhs_not_nan); |
| 604 __ mov(r4, |
| 605 Operand(lhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord), |
| 606 SetCC); |
| 607 __ b(ne, &one_is_nan); |
| 608 __ cmp(lhs_mantissa, Operand(0)); |
| 609 __ b(ne, &one_is_nan); |
| 610 |
| 611 __ bind(lhs_not_nan); |
| 612 __ Sbfx(r4, |
| 613 rhs_exponent, |
| 614 HeapNumber::kExponentShift, |
| 615 HeapNumber::kExponentBits); |
| 616 // NaNs have all-one exponents so they sign extend to -1. |
| 617 __ cmp(r4, Operand(-1)); |
| 618 __ b(ne, &neither_is_nan); |
| 619 __ mov(r4, |
| 620 Operand(rhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord), |
| 621 SetCC); |
| 622 __ b(ne, &one_is_nan); |
| 623 __ cmp(rhs_mantissa, Operand(0)); |
| 624 __ b(eq, &neither_is_nan); |
| 625 |
| 626 __ bind(&one_is_nan); |
| 627 // NaN comparisons always fail. |
| 628 // Load whatever we need in r0 to make the comparison fail. |
| 629 if (cc == lt || cc == le) { |
| 630 __ mov(r0, Operand(GREATER)); |
| 631 } else { |
| 632 __ mov(r0, Operand(LESS)); |
| 633 } |
| 634 __ Ret(); |
| 635 |
| 636 __ bind(&neither_is_nan); |
| 637 } |
| 638 |
| 639 |
| 640 // See comment at call site. |
| 641 static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc) { |
| 642 bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset); |
| 643 Register rhs_exponent = exp_first ? r0 : r1; |
| 644 Register lhs_exponent = exp_first ? r2 : r3; |
| 645 Register rhs_mantissa = exp_first ? r1 : r0; |
| 646 Register lhs_mantissa = exp_first ? r3 : r2; |
| 647 |
| 648 // r0, r1, r2, r3 have the two doubles. Neither is a NaN. |
| 649 if (cc == eq) { |
| 650 // Doubles are not equal unless they have the same bit pattern. |
| 651 // Exception: 0 and -0. |
| 652 __ cmp(rhs_mantissa, Operand(lhs_mantissa)); |
| 653 __ orr(r0, rhs_mantissa, Operand(lhs_mantissa), LeaveCC, ne); |
| 654 // Return non-zero if the numbers are unequal. |
| 655 __ Ret(ne); |
| 656 |
| 657 __ sub(r0, rhs_exponent, Operand(lhs_exponent), SetCC); |
| 658 // If exponents are equal then return 0. |
| 659 __ Ret(eq); |
| 660 |
| 661 // Exponents are unequal. The only way we can return that the numbers |
| 662 // are equal is if one is -0 and the other is 0. We already dealt |
| 663 // with the case where both are -0 or both are 0. |
| 664 // We start by seeing if the mantissas (that are equal) or the bottom |
| 665 // 31 bits of the rhs exponent are non-zero. If so we return not |
| 666 // equal. |
| 667 __ orr(r4, lhs_mantissa, Operand(lhs_exponent, LSL, kSmiTagSize), SetCC); |
| 668 __ mov(r0, Operand(r4), LeaveCC, ne); |
| 669 __ Ret(ne); |
| 670 // Now they are equal if and only if the lhs exponent is zero in its |
| 671 // low 31 bits. |
| 672 __ mov(r0, Operand(rhs_exponent, LSL, kSmiTagSize)); |
| 673 __ Ret(); |
| 674 } else { |
| 675 // Call a native function to do a comparison between two non-NaNs. |
| 676 // Call C routine that may not cause GC or other trouble. |
| 677 __ push(lr); |
| 678 __ PrepareCallCFunction(4, r5); // Two doubles count as 4 arguments. |
| 679 __ CallCFunction(ExternalReference::compare_doubles(), 4); |
| 680 __ pop(pc); // Return. |
| 681 } |
| 682 } |
| 683 |
| 684 |
| 685 // See comment at call site. |
| 686 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, |
| 687 Register lhs, |
| 688 Register rhs) { |
| 689 ASSERT((lhs.is(r0) && rhs.is(r1)) || |
| 690 (lhs.is(r1) && rhs.is(r0))); |
| 691 |
| 692 // If either operand is a JSObject or an oddball value, then they are |
| 693 // not equal since their pointers are different. |
| 694 // There is no test for undetectability in strict equality. |
| 695 STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); |
| 696 Label first_non_object; |
| 697 // Get the type of the first operand into r2 and compare it with |
| 698 // FIRST_JS_OBJECT_TYPE. |
| 699 __ CompareObjectType(rhs, r2, r2, FIRST_JS_OBJECT_TYPE); |
| 700 __ b(lt, &first_non_object); |
| 701 |
| 702 // Return non-zero (r0 is not zero) |
| 703 Label return_not_equal; |
| 704 __ bind(&return_not_equal); |
| 705 __ Ret(); |
| 706 |
| 707 __ bind(&first_non_object); |
| 708 // Check for oddballs: true, false, null, undefined. |
| 709 __ cmp(r2, Operand(ODDBALL_TYPE)); |
| 710 __ b(eq, &return_not_equal); |
| 711 |
| 712 __ CompareObjectType(lhs, r3, r3, FIRST_JS_OBJECT_TYPE); |
| 713 __ b(ge, &return_not_equal); |
| 714 |
| 715 // Check for oddballs: true, false, null, undefined. |
| 716 __ cmp(r3, Operand(ODDBALL_TYPE)); |
| 717 __ b(eq, &return_not_equal); |
| 718 |
| 719 // Now that we have the types we might as well check for symbol-symbol. |
| 720 // Ensure that no non-strings have the symbol bit set. |
| 721 STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask); |
| 722 STATIC_ASSERT(kSymbolTag != 0); |
| 723 __ and_(r2, r2, Operand(r3)); |
| 724 __ tst(r2, Operand(kIsSymbolMask)); |
| 725 __ b(ne, &return_not_equal); |
| 726 } |
| 727 |
| 728 |
| 729 // See comment at call site. |
| 730 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, |
| 731 Register lhs, |
| 732 Register rhs, |
| 733 Label* both_loaded_as_doubles, |
| 734 Label* not_heap_numbers, |
| 735 Label* slow) { |
| 736 ASSERT((lhs.is(r0) && rhs.is(r1)) || |
| 737 (lhs.is(r1) && rhs.is(r0))); |
| 738 |
| 739 __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE); |
| 740 __ b(ne, not_heap_numbers); |
| 741 __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset)); |
| 742 __ cmp(r2, r3); |
| 743 __ b(ne, slow); // First was a heap number, second wasn't. Go slow case. |
| 744 |
| 745 // Both are heap numbers. Load them up then jump to the code we have |
| 746 // for that. |
| 747 if (CpuFeatures::IsSupported(VFP3)) { |
| 748 CpuFeatures::Scope scope(VFP3); |
| 749 __ sub(r7, rhs, Operand(kHeapObjectTag)); |
| 750 __ vldr(d6, r7, HeapNumber::kValueOffset); |
| 751 __ sub(r7, lhs, Operand(kHeapObjectTag)); |
| 752 __ vldr(d7, r7, HeapNumber::kValueOffset); |
| 753 } else { |
| 754 __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset)); |
| 755 __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset)); |
| 756 } |
| 757 __ jmp(both_loaded_as_doubles); |
| 758 } |
| 759 |
| 760 |
| 761 // Fast negative check for symbol-to-symbol equality. |
| 762 static void EmitCheckForSymbolsOrObjects(MacroAssembler* masm, |
| 763 Register lhs, |
| 764 Register rhs, |
| 765 Label* possible_strings, |
| 766 Label* not_both_strings) { |
| 767 ASSERT((lhs.is(r0) && rhs.is(r1)) || |
| 768 (lhs.is(r1) && rhs.is(r0))); |
| 769 |
| 770 // r2 is object type of rhs. |
| 771 // Ensure that no non-strings have the symbol bit set. |
| 772 Label object_test; |
| 773 STATIC_ASSERT(kSymbolTag != 0); |
| 774 __ tst(r2, Operand(kIsNotStringMask)); |
| 775 __ b(ne, &object_test); |
| 776 __ tst(r2, Operand(kIsSymbolMask)); |
| 777 __ b(eq, possible_strings); |
| 778 __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE); |
| 779 __ b(ge, not_both_strings); |
| 780 __ tst(r3, Operand(kIsSymbolMask)); |
| 781 __ b(eq, possible_strings); |
| 782 |
| 783 // Both are symbols. We already checked they weren't the same pointer |
| 784 // so they are not equal. |
| 785 __ mov(r0, Operand(NOT_EQUAL)); |
| 786 __ Ret(); |
| 787 |
| 788 __ bind(&object_test); |
| 789 __ cmp(r2, Operand(FIRST_JS_OBJECT_TYPE)); |
| 790 __ b(lt, not_both_strings); |
| 791 __ CompareObjectType(lhs, r2, r3, FIRST_JS_OBJECT_TYPE); |
| 792 __ b(lt, not_both_strings); |
| 793 // If both objects are undetectable, they are equal. Otherwise, they |
| 794 // are not equal, since they are different objects and an object is not |
| 795 // equal to undefined. |
| 796 __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset)); |
| 797 __ ldrb(r2, FieldMemOperand(r2, Map::kBitFieldOffset)); |
| 798 __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset)); |
| 799 __ and_(r0, r2, Operand(r3)); |
| 800 __ and_(r0, r0, Operand(1 << Map::kIsUndetectable)); |
| 801 __ eor(r0, r0, Operand(1 << Map::kIsUndetectable)); |
| 802 __ Ret(); |
| 803 } |
| 804 |
| 805 |
| 806 void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm, |
| 807 Register object, |
| 808 Register result, |
| 809 Register scratch1, |
| 810 Register scratch2, |
| 811 Register scratch3, |
| 812 bool object_is_smi, |
| 813 Label* not_found) { |
| 814 // Use of registers. Register result is used as a temporary. |
| 815 Register number_string_cache = result; |
| 816 Register mask = scratch3; |
| 817 |
| 818 // Load the number string cache. |
| 819 __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex); |
| 820 |
| 821 // Make the hash mask from the length of the number string cache. It |
| 822 // contains two elements (number and string) for each cache entry. |
| 823 __ ldr(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset)); |
| 824 // Divide length by two (length is a smi). |
| 825 __ mov(mask, Operand(mask, ASR, kSmiTagSize + 1)); |
| 826 __ sub(mask, mask, Operand(1)); // Make mask. |
| 827 |
| 828 // Calculate the entry in the number string cache. The hash value in the |
| 829 // number string cache for smis is just the smi value, and the hash for |
| 830 // doubles is the xor of the upper and lower words. See |
| 831 // Heap::GetNumberStringCache. |
| 832 Label is_smi; |
| 833 Label load_result_from_cache; |
| 834 if (!object_is_smi) { |
| 835 __ BranchOnSmi(object, &is_smi); |
| 836 if (CpuFeatures::IsSupported(VFP3)) { |
| 837 CpuFeatures::Scope scope(VFP3); |
| 838 __ CheckMap(object, |
| 839 scratch1, |
| 840 Heap::kHeapNumberMapRootIndex, |
| 841 not_found, |
| 842 true); |
| 843 |
| 844 STATIC_ASSERT(8 == kDoubleSize); |
| 845 __ add(scratch1, |
| 846 object, |
| 847 Operand(HeapNumber::kValueOffset - kHeapObjectTag)); |
| 848 __ ldm(ia, scratch1, scratch1.bit() | scratch2.bit()); |
| 849 __ eor(scratch1, scratch1, Operand(scratch2)); |
| 850 __ and_(scratch1, scratch1, Operand(mask)); |
| 851 |
| 852 // Calculate address of entry in string cache: each entry consists |
| 853 // of two pointer sized fields. |
| 854 __ add(scratch1, |
| 855 number_string_cache, |
| 856 Operand(scratch1, LSL, kPointerSizeLog2 + 1)); |
| 857 |
| 858 Register probe = mask; |
| 859 __ ldr(probe, |
| 860 FieldMemOperand(scratch1, FixedArray::kHeaderSize)); |
| 861 __ BranchOnSmi(probe, not_found); |
| 862 __ sub(scratch2, object, Operand(kHeapObjectTag)); |
| 863 __ vldr(d0, scratch2, HeapNumber::kValueOffset); |
| 864 __ sub(probe, probe, Operand(kHeapObjectTag)); |
| 865 __ vldr(d1, probe, HeapNumber::kValueOffset); |
| 866 __ vcmp(d0, d1); |
| 867 __ vmrs(pc); |
| 868 __ b(ne, not_found); // The cache did not contain this value. |
| 869 __ b(&load_result_from_cache); |
| 870 } else { |
| 871 __ b(not_found); |
| 872 } |
| 873 } |
| 874 |
| 875 __ bind(&is_smi); |
| 876 Register scratch = scratch1; |
| 877 __ and_(scratch, mask, Operand(object, ASR, 1)); |
| 878 // Calculate address of entry in string cache: each entry consists |
| 879 // of two pointer sized fields. |
| 880 __ add(scratch, |
| 881 number_string_cache, |
| 882 Operand(scratch, LSL, kPointerSizeLog2 + 1)); |
| 883 |
| 884 // Check if the entry is the smi we are looking for. |
| 885 Register probe = mask; |
| 886 __ ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize)); |
| 887 __ cmp(object, probe); |
| 888 __ b(ne, not_found); |
| 889 |
| 890 // Get the result from the cache. |
| 891 __ bind(&load_result_from_cache); |
| 892 __ ldr(result, |
| 893 FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize)); |
| 894 __ IncrementCounter(&Counters::number_to_string_native, |
| 895 1, |
| 896 scratch1, |
| 897 scratch2); |
| 898 } |
| 899 |
| 900 |
| 901 void NumberToStringStub::Generate(MacroAssembler* masm) { |
| 902 Label runtime; |
| 903 |
| 904 __ ldr(r1, MemOperand(sp, 0)); |
| 905 |
| 906 // Generate code to lookup number in the number string cache. |
| 907 GenerateLookupNumberStringCache(masm, r1, r0, r2, r3, r4, false, &runtime); |
| 908 __ add(sp, sp, Operand(1 * kPointerSize)); |
| 909 __ Ret(); |
| 910 |
| 911 __ bind(&runtime); |
| 912 // Handle number to string in the runtime system if not found in the cache. |
| 913 __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1); |
| 914 } |
| 915 |
| 916 |
| 917 void RecordWriteStub::Generate(MacroAssembler* masm) { |
| 918 __ add(offset_, object_, Operand(offset_)); |
| 919 __ RecordWriteHelper(object_, offset_, scratch_); |
| 920 __ Ret(); |
| 921 } |
| 922 |
| 923 |
| 924 // On entry lhs_ and rhs_ are the values to be compared. |
| 925 // On exit r0 is 0, positive or negative to indicate the result of |
| 926 // the comparison. |
| 927 void CompareStub::Generate(MacroAssembler* masm) { |
| 928 ASSERT((lhs_.is(r0) && rhs_.is(r1)) || |
| 929 (lhs_.is(r1) && rhs_.is(r0))); |
| 930 |
| 931 Label slow; // Call builtin. |
| 932 Label not_smis, both_loaded_as_doubles, lhs_not_nan; |
| 933 |
| 934 // NOTICE! This code is only reached after a smi-fast-case check, so |
| 935 // it is certain that at least one operand isn't a smi. |
| 936 |
| 937 // Handle the case where the objects are identical. Either returns the answer |
| 938 // or goes to slow. Only falls through if the objects were not identical. |
| 939 EmitIdenticalObjectComparison(masm, &slow, cc_, never_nan_nan_); |
| 940 |
| 941 // If either is a Smi (we know that not both are), then they can only |
| 942 // be strictly equal if the other is a HeapNumber. |
| 943 STATIC_ASSERT(kSmiTag == 0); |
| 944 ASSERT_EQ(0, Smi::FromInt(0)); |
| 945 __ and_(r2, lhs_, Operand(rhs_)); |
| 946 __ tst(r2, Operand(kSmiTagMask)); |
| 947 __ b(ne, ¬_smis); |
| 948 // One operand is a smi. EmitSmiNonsmiComparison generates code that can: |
| 949 // 1) Return the answer. |
| 950 // 2) Go to slow. |
| 951 // 3) Fall through to both_loaded_as_doubles. |
| 952 // 4) Jump to lhs_not_nan. |
| 953 // In cases 3 and 4 we have found out we were dealing with a number-number |
| 954 // comparison. If VFP3 is supported the double values of the numbers have |
| 955 // been loaded into d7 and d6. Otherwise, the double values have been loaded |
| 956 // into r0, r1, r2, and r3. |
| 957 EmitSmiNonsmiComparison(masm, lhs_, rhs_, &lhs_not_nan, &slow, strict_); |
| 958 |
| 959 __ bind(&both_loaded_as_doubles); |
| 960 // The arguments have been converted to doubles and stored in d6 and d7, if |
| 961 // VFP3 is supported, or in r0, r1, r2, and r3. |
| 962 if (CpuFeatures::IsSupported(VFP3)) { |
| 963 __ bind(&lhs_not_nan); |
| 964 CpuFeatures::Scope scope(VFP3); |
| 965 Label no_nan; |
| 966 // ARMv7 VFP3 instructions to implement double precision comparison. |
| 967 __ vcmp(d7, d6); |
| 968 __ vmrs(pc); // Move vector status bits to normal status bits. |
| 969 Label nan; |
| 970 __ b(vs, &nan); |
| 971 __ mov(r0, Operand(EQUAL), LeaveCC, eq); |
| 972 __ mov(r0, Operand(LESS), LeaveCC, lt); |
| 973 __ mov(r0, Operand(GREATER), LeaveCC, gt); |
| 974 __ Ret(); |
| 975 |
| 976 __ bind(&nan); |
| 977 // If one of the sides was a NaN then the v flag is set. Load r0 with |
| 978 // whatever it takes to make the comparison fail, since comparisons with NaN |
| 979 // always fail. |
| 980 if (cc_ == lt || cc_ == le) { |
| 981 __ mov(r0, Operand(GREATER)); |
| 982 } else { |
| 983 __ mov(r0, Operand(LESS)); |
| 984 } |
| 985 __ Ret(); |
| 986 } else { |
| 987 // Checks for NaN in the doubles we have loaded. Can return the answer or |
| 988 // fall through if neither is a NaN. Also binds lhs_not_nan. |
| 989 EmitNanCheck(masm, &lhs_not_nan, cc_); |
| 990 // Compares two doubles in r0, r1, r2, r3 that are not NaNs. Returns the |
| 991 // answer. Never falls through. |
| 992 EmitTwoNonNanDoubleComparison(masm, cc_); |
| 993 } |
| 994 |
| 995 __ bind(¬_smis); |
| 996 // At this point we know we are dealing with two different objects, |
| 997 // and neither of them is a Smi. The objects are in rhs_ and lhs_. |
| 998 if (strict_) { |
| 999 // This returns non-equal for some object types, or falls through if it |
| 1000 // was not lucky. |
| 1001 EmitStrictTwoHeapObjectCompare(masm, lhs_, rhs_); |
| 1002 } |
| 1003 |
| 1004 Label check_for_symbols; |
| 1005 Label flat_string_check; |
| 1006 // Check for heap-number-heap-number comparison. Can jump to slow case, |
| 1007 // or load both doubles into r0, r1, r2, r3 and jump to the code that handles |
| 1008 // that case. If the inputs are not doubles then jumps to check_for_symbols. |
| 1009 // In this case r2 will contain the type of rhs_. Never falls through. |
| 1010 EmitCheckForTwoHeapNumbers(masm, |
| 1011 lhs_, |
| 1012 rhs_, |
| 1013 &both_loaded_as_doubles, |
| 1014 &check_for_symbols, |
| 1015 &flat_string_check); |
| 1016 |
| 1017 __ bind(&check_for_symbols); |
| 1018 // In the strict case the EmitStrictTwoHeapObjectCompare already took care of |
| 1019 // symbols. |
| 1020 if (cc_ == eq && !strict_) { |
| 1021 // Returns an answer for two symbols or two detectable objects. |
| 1022 // Otherwise jumps to string case or not both strings case. |
| 1023 // Assumes that r2 is the type of rhs_ on entry. |
| 1024 EmitCheckForSymbolsOrObjects(masm, lhs_, rhs_, &flat_string_check, &slow); |
| 1025 } |
| 1026 |
| 1027 // Check for both being sequential ASCII strings, and inline if that is the |
| 1028 // case. |
| 1029 __ bind(&flat_string_check); |
| 1030 |
| 1031 __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs_, rhs_, r2, r3, &slow); |
| 1032 |
| 1033 __ IncrementCounter(&Counters::string_compare_native, 1, r2, r3); |
| 1034 StringCompareStub::GenerateCompareFlatAsciiStrings(masm, |
| 1035 lhs_, |
| 1036 rhs_, |
| 1037 r2, |
| 1038 r3, |
| 1039 r4, |
| 1040 r5); |
| 1041 // Never falls through to here. |
| 1042 |
| 1043 __ bind(&slow); |
| 1044 |
| 1045 __ Push(lhs_, rhs_); |
| 1046 // Figure out which native to call and setup the arguments. |
| 1047 Builtins::JavaScript native; |
| 1048 if (cc_ == eq) { |
| 1049 native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS; |
| 1050 } else { |
| 1051 native = Builtins::COMPARE; |
| 1052 int ncr; // NaN compare result |
| 1053 if (cc_ == lt || cc_ == le) { |
| 1054 ncr = GREATER; |
| 1055 } else { |
| 1056 ASSERT(cc_ == gt || cc_ == ge); // remaining cases |
| 1057 ncr = LESS; |
| 1058 } |
| 1059 __ mov(r0, Operand(Smi::FromInt(ncr))); |
| 1060 __ push(r0); |
| 1061 } |
| 1062 |
| 1063 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) |
| 1064 // tagged as a small integer. |
| 1065 __ InvokeBuiltin(native, JUMP_JS); |
| 1066 } |
| 1067 |
| 1068 |
| 1069 // This stub does not handle the inlined cases (Smis, Booleans, undefined). |
| 1070 // The stub returns zero for false, and a non-zero value for true. |
| 1071 void ToBooleanStub::Generate(MacroAssembler* masm) { |
| 1072 Label false_result; |
| 1073 Label not_heap_number; |
| 1074 Register scratch = r7; |
| 1075 |
| 1076 // HeapNumber => false iff +0, -0, or NaN. |
| 1077 __ ldr(scratch, FieldMemOperand(tos_, HeapObject::kMapOffset)); |
| 1078 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); |
| 1079 __ cmp(scratch, ip); |
| 1080 __ b(¬_heap_number, ne); |
| 1081 |
| 1082 __ sub(ip, tos_, Operand(kHeapObjectTag)); |
| 1083 __ vldr(d1, ip, HeapNumber::kValueOffset); |
| 1084 __ vcmp(d1, 0.0); |
| 1085 __ vmrs(pc); |
| 1086 // "tos_" is a register, and contains a non zero value by default. |
| 1087 // Hence we only need to overwrite "tos_" with zero to return false for |
| 1088 // FP_ZERO or FP_NAN cases. Otherwise, by default it returns true. |
| 1089 __ mov(tos_, Operand(0), LeaveCC, eq); // for FP_ZERO |
| 1090 __ mov(tos_, Operand(0), LeaveCC, vs); // for FP_NAN |
| 1091 __ Ret(); |
| 1092 |
| 1093 __ bind(¬_heap_number); |
| 1094 |
| 1095 // Check if the value is 'null'. |
| 1096 // 'null' => false. |
| 1097 __ LoadRoot(ip, Heap::kNullValueRootIndex); |
| 1098 __ cmp(tos_, ip); |
| 1099 __ b(&false_result, eq); |
| 1100 |
| 1101 // It can be an undetectable object. |
| 1102 // Undetectable => false. |
| 1103 __ ldr(ip, FieldMemOperand(tos_, HeapObject::kMapOffset)); |
| 1104 __ ldrb(scratch, FieldMemOperand(ip, Map::kBitFieldOffset)); |
| 1105 __ and_(scratch, scratch, Operand(1 << Map::kIsUndetectable)); |
| 1106 __ cmp(scratch, Operand(1 << Map::kIsUndetectable)); |
| 1107 __ b(&false_result, eq); |
| 1108 |
| 1109 // JavaScript object => true. |
| 1110 __ ldr(scratch, FieldMemOperand(tos_, HeapObject::kMapOffset)); |
| 1111 __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); |
| 1112 __ cmp(scratch, Operand(FIRST_JS_OBJECT_TYPE)); |
| 1113 // "tos_" is a register and contains a non-zero value. |
| 1114 // Hence we implicitly return true if the greater than |
| 1115 // condition is satisfied. |
| 1116 __ Ret(gt); |
| 1117 |
| 1118 // Check for string |
| 1119 __ ldr(scratch, FieldMemOperand(tos_, HeapObject::kMapOffset)); |
| 1120 __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); |
| 1121 __ cmp(scratch, Operand(FIRST_NONSTRING_TYPE)); |
| 1122 // "tos_" is a register and contains a non-zero value. |
| 1123 // Hence we implicitly return true if the greater than |
| 1124 // condition is satisfied. |
| 1125 __ Ret(gt); |
| 1126 |
| 1127 // String value => false iff empty, i.e., length is zero |
| 1128 __ ldr(tos_, FieldMemOperand(tos_, String::kLengthOffset)); |
| 1129 // If length is zero, "tos_" contains zero ==> false. |
| 1130 // If length is not zero, "tos_" contains a non-zero value ==> true. |
| 1131 __ Ret(); |
| 1132 |
| 1133 // Return 0 in "tos_" for false . |
| 1134 __ bind(&false_result); |
| 1135 __ mov(tos_, Operand(0)); |
| 1136 __ Ret(); |
| 1137 } |
| 1138 |
| 1139 |
| 1140 // We fall into this code if the operands were Smis, but the result was |
| 1141 // not (eg. overflow). We branch into this code (to the not_smi label) if |
| 1142 // the operands were not both Smi. The operands are in r0 and r1. In order |
| 1143 // to call the C-implemented binary fp operation routines we need to end up |
| 1144 // with the double precision floating point operands in r0 and r1 (for the |
| 1145 // value in r1) and r2 and r3 (for the value in r0). |
| 1146 void GenericBinaryOpStub::HandleBinaryOpSlowCases( |
| 1147 MacroAssembler* masm, |
| 1148 Label* not_smi, |
| 1149 Register lhs, |
| 1150 Register rhs, |
| 1151 const Builtins::JavaScript& builtin) { |
| 1152 Label slow, slow_reverse, do_the_call; |
| 1153 bool use_fp_registers = CpuFeatures::IsSupported(VFP3) && Token::MOD != op_; |
| 1154 |
| 1155 ASSERT((lhs.is(r0) && rhs.is(r1)) || (lhs.is(r1) && rhs.is(r0))); |
| 1156 Register heap_number_map = r6; |
| 1157 |
| 1158 if (ShouldGenerateSmiCode()) { |
| 1159 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| 1160 |
| 1161 // Smi-smi case (overflow). |
| 1162 // Since both are Smis there is no heap number to overwrite, so allocate. |
| 1163 // The new heap number is in r5. r3 and r7 are scratch. |
| 1164 __ AllocateHeapNumber( |
| 1165 r5, r3, r7, heap_number_map, lhs.is(r0) ? &slow_reverse : &slow); |
| 1166 |
| 1167 // If we have floating point hardware, inline ADD, SUB, MUL, and DIV, |
| 1168 // using registers d7 and d6 for the double values. |
| 1169 if (CpuFeatures::IsSupported(VFP3)) { |
| 1170 CpuFeatures::Scope scope(VFP3); |
| 1171 __ mov(r7, Operand(rhs, ASR, kSmiTagSize)); |
| 1172 __ vmov(s15, r7); |
| 1173 __ vcvt_f64_s32(d7, s15); |
| 1174 __ mov(r7, Operand(lhs, ASR, kSmiTagSize)); |
| 1175 __ vmov(s13, r7); |
| 1176 __ vcvt_f64_s32(d6, s13); |
| 1177 if (!use_fp_registers) { |
| 1178 __ vmov(r2, r3, d7); |
| 1179 __ vmov(r0, r1, d6); |
| 1180 } |
| 1181 } else { |
| 1182 // Write Smi from rhs to r3 and r2 in double format. r9 is scratch. |
| 1183 __ mov(r7, Operand(rhs)); |
| 1184 ConvertToDoubleStub stub1(r3, r2, r7, r9); |
| 1185 __ push(lr); |
| 1186 __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET); |
| 1187 // Write Smi from lhs to r1 and r0 in double format. r9 is scratch. |
| 1188 __ mov(r7, Operand(lhs)); |
| 1189 ConvertToDoubleStub stub2(r1, r0, r7, r9); |
| 1190 __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET); |
| 1191 __ pop(lr); |
| 1192 } |
| 1193 __ jmp(&do_the_call); // Tail call. No return. |
| 1194 } |
| 1195 |
| 1196 // We branch here if at least one of r0 and r1 is not a Smi. |
| 1197 __ bind(not_smi); |
| 1198 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| 1199 |
| 1200 // After this point we have the left hand side in r1 and the right hand side |
| 1201 // in r0. |
| 1202 if (lhs.is(r0)) { |
| 1203 __ Swap(r0, r1, ip); |
| 1204 } |
| 1205 |
| 1206 // The type transition also calculates the answer. |
| 1207 bool generate_code_to_calculate_answer = true; |
| 1208 |
| 1209 if (ShouldGenerateFPCode()) { |
| 1210 if (runtime_operands_type_ == BinaryOpIC::DEFAULT) { |
| 1211 switch (op_) { |
| 1212 case Token::ADD: |
| 1213 case Token::SUB: |
| 1214 case Token::MUL: |
| 1215 case Token::DIV: |
| 1216 GenerateTypeTransition(masm); // Tail call. |
| 1217 generate_code_to_calculate_answer = false; |
| 1218 break; |
| 1219 |
| 1220 default: |
| 1221 break; |
| 1222 } |
| 1223 } |
| 1224 |
| 1225 if (generate_code_to_calculate_answer) { |
| 1226 Label r0_is_smi, r1_is_smi, finished_loading_r0, finished_loading_r1; |
| 1227 if (mode_ == NO_OVERWRITE) { |
| 1228 // In the case where there is no chance of an overwritable float we may |
| 1229 // as well do the allocation immediately while r0 and r1 are untouched. |
| 1230 __ AllocateHeapNumber(r5, r3, r7, heap_number_map, &slow); |
| 1231 } |
| 1232 |
| 1233 // Move r0 to a double in r2-r3. |
| 1234 __ tst(r0, Operand(kSmiTagMask)); |
| 1235 __ b(eq, &r0_is_smi); // It's a Smi so don't check it's a heap number. |
| 1236 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| 1237 __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| 1238 __ cmp(r4, heap_number_map); |
| 1239 __ b(ne, &slow); |
| 1240 if (mode_ == OVERWRITE_RIGHT) { |
| 1241 __ mov(r5, Operand(r0)); // Overwrite this heap number. |
| 1242 } |
| 1243 if (use_fp_registers) { |
| 1244 CpuFeatures::Scope scope(VFP3); |
| 1245 // Load the double from tagged HeapNumber r0 to d7. |
| 1246 __ sub(r7, r0, Operand(kHeapObjectTag)); |
| 1247 __ vldr(d7, r7, HeapNumber::kValueOffset); |
| 1248 } else { |
| 1249 // Calling convention says that second double is in r2 and r3. |
| 1250 __ Ldrd(r2, r3, FieldMemOperand(r0, HeapNumber::kValueOffset)); |
| 1251 } |
| 1252 __ jmp(&finished_loading_r0); |
| 1253 __ bind(&r0_is_smi); |
| 1254 if (mode_ == OVERWRITE_RIGHT) { |
| 1255 // We can't overwrite a Smi so get address of new heap number into r5. |
| 1256 __ AllocateHeapNumber(r5, r4, r7, heap_number_map, &slow); |
| 1257 } |
| 1258 |
| 1259 if (CpuFeatures::IsSupported(VFP3)) { |
| 1260 CpuFeatures::Scope scope(VFP3); |
| 1261 // Convert smi in r0 to double in d7. |
| 1262 __ mov(r7, Operand(r0, ASR, kSmiTagSize)); |
| 1263 __ vmov(s15, r7); |
| 1264 __ vcvt_f64_s32(d7, s15); |
| 1265 if (!use_fp_registers) { |
| 1266 __ vmov(r2, r3, d7); |
| 1267 } |
| 1268 } else { |
| 1269 // Write Smi from r0 to r3 and r2 in double format. |
| 1270 __ mov(r7, Operand(r0)); |
| 1271 ConvertToDoubleStub stub3(r3, r2, r7, r4); |
| 1272 __ push(lr); |
| 1273 __ Call(stub3.GetCode(), RelocInfo::CODE_TARGET); |
| 1274 __ pop(lr); |
| 1275 } |
| 1276 |
| 1277 // HEAP_NUMBERS stub is slower than GENERIC on a pair of smis. |
| 1278 // r0 is known to be a smi. If r1 is also a smi then switch to GENERIC. |
| 1279 Label r1_is_not_smi; |
| 1280 if (runtime_operands_type_ == BinaryOpIC::HEAP_NUMBERS) { |
| 1281 __ tst(r1, Operand(kSmiTagMask)); |
| 1282 __ b(ne, &r1_is_not_smi); |
| 1283 GenerateTypeTransition(masm); // Tail call. |
| 1284 } |
| 1285 |
| 1286 __ bind(&finished_loading_r0); |
| 1287 |
| 1288 // Move r1 to a double in r0-r1. |
| 1289 __ tst(r1, Operand(kSmiTagMask)); |
| 1290 __ b(eq, &r1_is_smi); // It's a Smi so don't check it's a heap number. |
| 1291 __ bind(&r1_is_not_smi); |
| 1292 __ ldr(r4, FieldMemOperand(r1, HeapNumber::kMapOffset)); |
| 1293 __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| 1294 __ cmp(r4, heap_number_map); |
| 1295 __ b(ne, &slow); |
| 1296 if (mode_ == OVERWRITE_LEFT) { |
| 1297 __ mov(r5, Operand(r1)); // Overwrite this heap number. |
| 1298 } |
| 1299 if (use_fp_registers) { |
| 1300 CpuFeatures::Scope scope(VFP3); |
| 1301 // Load the double from tagged HeapNumber r1 to d6. |
| 1302 __ sub(r7, r1, Operand(kHeapObjectTag)); |
| 1303 __ vldr(d6, r7, HeapNumber::kValueOffset); |
| 1304 } else { |
| 1305 // Calling convention says that first double is in r0 and r1. |
| 1306 __ Ldrd(r0, r1, FieldMemOperand(r1, HeapNumber::kValueOffset)); |
| 1307 } |
| 1308 __ jmp(&finished_loading_r1); |
| 1309 __ bind(&r1_is_smi); |
| 1310 if (mode_ == OVERWRITE_LEFT) { |
| 1311 // We can't overwrite a Smi so get address of new heap number into r5. |
| 1312 __ AllocateHeapNumber(r5, r4, r7, heap_number_map, &slow); |
| 1313 } |
| 1314 |
| 1315 if (CpuFeatures::IsSupported(VFP3)) { |
| 1316 CpuFeatures::Scope scope(VFP3); |
| 1317 // Convert smi in r1 to double in d6. |
| 1318 __ mov(r7, Operand(r1, ASR, kSmiTagSize)); |
| 1319 __ vmov(s13, r7); |
| 1320 __ vcvt_f64_s32(d6, s13); |
| 1321 if (!use_fp_registers) { |
| 1322 __ vmov(r0, r1, d6); |
| 1323 } |
| 1324 } else { |
| 1325 // Write Smi from r1 to r1 and r0 in double format. |
| 1326 __ mov(r7, Operand(r1)); |
| 1327 ConvertToDoubleStub stub4(r1, r0, r7, r9); |
| 1328 __ push(lr); |
| 1329 __ Call(stub4.GetCode(), RelocInfo::CODE_TARGET); |
| 1330 __ pop(lr); |
| 1331 } |
| 1332 |
| 1333 __ bind(&finished_loading_r1); |
| 1334 } |
| 1335 |
| 1336 if (generate_code_to_calculate_answer || do_the_call.is_linked()) { |
| 1337 __ bind(&do_the_call); |
| 1338 // If we are inlining the operation using VFP3 instructions for |
| 1339 // add, subtract, multiply, or divide, the arguments are in d6 and d7. |
| 1340 if (use_fp_registers) { |
| 1341 CpuFeatures::Scope scope(VFP3); |
| 1342 // ARMv7 VFP3 instructions to implement |
| 1343 // double precision, add, subtract, multiply, divide. |
| 1344 |
| 1345 if (Token::MUL == op_) { |
| 1346 __ vmul(d5, d6, d7); |
| 1347 } else if (Token::DIV == op_) { |
| 1348 __ vdiv(d5, d6, d7); |
| 1349 } else if (Token::ADD == op_) { |
| 1350 __ vadd(d5, d6, d7); |
| 1351 } else if (Token::SUB == op_) { |
| 1352 __ vsub(d5, d6, d7); |
| 1353 } else { |
| 1354 UNREACHABLE(); |
| 1355 } |
| 1356 __ sub(r0, r5, Operand(kHeapObjectTag)); |
| 1357 __ vstr(d5, r0, HeapNumber::kValueOffset); |
| 1358 __ add(r0, r0, Operand(kHeapObjectTag)); |
| 1359 __ mov(pc, lr); |
| 1360 } else { |
| 1361 // If we did not inline the operation, then the arguments are in: |
| 1362 // r0: Left value (least significant part of mantissa). |
| 1363 // r1: Left value (sign, exponent, top of mantissa). |
| 1364 // r2: Right value (least significant part of mantissa). |
| 1365 // r3: Right value (sign, exponent, top of mantissa). |
| 1366 // r5: Address of heap number for result. |
| 1367 |
| 1368 __ push(lr); // For later. |
| 1369 __ PrepareCallCFunction(4, r4); // Two doubles count as 4 arguments. |
| 1370 // Call C routine that may not cause GC or other trouble. r5 is callee |
| 1371 // save. |
| 1372 __ CallCFunction(ExternalReference::double_fp_operation(op_), 4); |
| 1373 // Store answer in the overwritable heap number. |
| 1374 #if !defined(USE_ARM_EABI) |
| 1375 // Double returned in fp coprocessor register 0 and 1, encoded as |
| 1376 // register cr8. Offsets must be divisible by 4 for coprocessor so we |
| 1377 // need to substract the tag from r5. |
| 1378 __ sub(r4, r5, Operand(kHeapObjectTag)); |
| 1379 __ stc(p1, cr8, MemOperand(r4, HeapNumber::kValueOffset)); |
| 1380 #else |
| 1381 // Double returned in registers 0 and 1. |
| 1382 __ Strd(r0, r1, FieldMemOperand(r5, HeapNumber::kValueOffset)); |
| 1383 #endif |
| 1384 __ mov(r0, Operand(r5)); |
| 1385 // And we are done. |
| 1386 __ pop(pc); |
| 1387 } |
| 1388 } |
| 1389 } |
| 1390 |
| 1391 if (!generate_code_to_calculate_answer && |
| 1392 !slow_reverse.is_linked() && |
| 1393 !slow.is_linked()) { |
| 1394 return; |
| 1395 } |
| 1396 |
| 1397 if (lhs.is(r0)) { |
| 1398 __ b(&slow); |
| 1399 __ bind(&slow_reverse); |
| 1400 __ Swap(r0, r1, ip); |
| 1401 } |
| 1402 |
| 1403 heap_number_map = no_reg; // Don't use this any more from here on. |
| 1404 |
| 1405 // We jump to here if something goes wrong (one param is not a number of any |
| 1406 // sort or new-space allocation fails). |
| 1407 __ bind(&slow); |
| 1408 |
| 1409 // Push arguments to the stack |
| 1410 __ Push(r1, r0); |
| 1411 |
| 1412 if (Token::ADD == op_) { |
| 1413 // Test for string arguments before calling runtime. |
| 1414 // r1 : first argument |
| 1415 // r0 : second argument |
| 1416 // sp[0] : second argument |
| 1417 // sp[4] : first argument |
| 1418 |
| 1419 Label not_strings, not_string1, string1, string1_smi2; |
| 1420 __ tst(r1, Operand(kSmiTagMask)); |
| 1421 __ b(eq, ¬_string1); |
| 1422 __ CompareObjectType(r1, r2, r2, FIRST_NONSTRING_TYPE); |
| 1423 __ b(ge, ¬_string1); |
| 1424 |
| 1425 // First argument is a a string, test second. |
| 1426 __ tst(r0, Operand(kSmiTagMask)); |
| 1427 __ b(eq, &string1_smi2); |
| 1428 __ CompareObjectType(r0, r2, r2, FIRST_NONSTRING_TYPE); |
| 1429 __ b(ge, &string1); |
| 1430 |
| 1431 // First and second argument are strings. |
| 1432 StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB); |
| 1433 __ TailCallStub(&string_add_stub); |
| 1434 |
| 1435 __ bind(&string1_smi2); |
| 1436 // First argument is a string, second is a smi. Try to lookup the number |
| 1437 // string for the smi in the number string cache. |
| 1438 NumberToStringStub::GenerateLookupNumberStringCache( |
| 1439 masm, r0, r2, r4, r5, r6, true, &string1); |
| 1440 |
| 1441 // Replace second argument on stack and tailcall string add stub to make |
| 1442 // the result. |
| 1443 __ str(r2, MemOperand(sp, 0)); |
| 1444 __ TailCallStub(&string_add_stub); |
| 1445 |
| 1446 // Only first argument is a string. |
| 1447 __ bind(&string1); |
| 1448 __ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_JS); |
| 1449 |
| 1450 // First argument was not a string, test second. |
| 1451 __ bind(¬_string1); |
| 1452 __ tst(r0, Operand(kSmiTagMask)); |
| 1453 __ b(eq, ¬_strings); |
| 1454 __ CompareObjectType(r0, r2, r2, FIRST_NONSTRING_TYPE); |
| 1455 __ b(ge, ¬_strings); |
| 1456 |
| 1457 // Only second argument is a string. |
| 1458 __ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_JS); |
| 1459 |
| 1460 __ bind(¬_strings); |
| 1461 } |
| 1462 |
| 1463 __ InvokeBuiltin(builtin, JUMP_JS); // Tail call. No return. |
| 1464 } |
| 1465 |
| 1466 |
| 1467 // Tries to get a signed int32 out of a double precision floating point heap |
| 1468 // number. Rounds towards 0. Fastest for doubles that are in the ranges |
| 1469 // -0x7fffffff to -0x40000000 or 0x40000000 to 0x7fffffff. This corresponds |
| 1470 // almost to the range of signed int32 values that are not Smis. Jumps to the |
| 1471 // label 'slow' if the double isn't in the range -0x80000000.0 to 0x80000000.0 |
| 1472 // (excluding the endpoints). |
| 1473 static void GetInt32(MacroAssembler* masm, |
| 1474 Register source, |
| 1475 Register dest, |
| 1476 Register scratch, |
| 1477 Register scratch2, |
| 1478 Label* slow) { |
| 1479 Label right_exponent, done; |
| 1480 // Get exponent word. |
| 1481 __ ldr(scratch, FieldMemOperand(source, HeapNumber::kExponentOffset)); |
| 1482 // Get exponent alone in scratch2. |
| 1483 __ Ubfx(scratch2, |
| 1484 scratch, |
| 1485 HeapNumber::kExponentShift, |
| 1486 HeapNumber::kExponentBits); |
| 1487 // Load dest with zero. We use this either for the final shift or |
| 1488 // for the answer. |
| 1489 __ mov(dest, Operand(0)); |
| 1490 // Check whether the exponent matches a 32 bit signed int that is not a Smi. |
| 1491 // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). This is |
| 1492 // the exponent that we are fastest at and also the highest exponent we can |
| 1493 // handle here. |
| 1494 const uint32_t non_smi_exponent = HeapNumber::kExponentBias + 30; |
| 1495 // The non_smi_exponent, 0x41d, is too big for ARM's immediate field so we |
| 1496 // split it up to avoid a constant pool entry. You can't do that in general |
| 1497 // for cmp because of the overflow flag, but we know the exponent is in the |
| 1498 // range 0-2047 so there is no overflow. |
| 1499 int fudge_factor = 0x400; |
| 1500 __ sub(scratch2, scratch2, Operand(fudge_factor)); |
| 1501 __ cmp(scratch2, Operand(non_smi_exponent - fudge_factor)); |
| 1502 // If we have a match of the int32-but-not-Smi exponent then skip some logic. |
| 1503 __ b(eq, &right_exponent); |
| 1504 // If the exponent is higher than that then go to slow case. This catches |
| 1505 // numbers that don't fit in a signed int32, infinities and NaNs. |
| 1506 __ b(gt, slow); |
| 1507 |
| 1508 // We know the exponent is smaller than 30 (biased). If it is less than |
| 1509 // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie |
| 1510 // it rounds to zero. |
| 1511 const uint32_t zero_exponent = HeapNumber::kExponentBias + 0; |
| 1512 __ sub(scratch2, scratch2, Operand(zero_exponent - fudge_factor), SetCC); |
| 1513 // Dest already has a Smi zero. |
| 1514 __ b(lt, &done); |
| 1515 if (!CpuFeatures::IsSupported(VFP3)) { |
| 1516 // We have an exponent between 0 and 30 in scratch2. Subtract from 30 to |
| 1517 // get how much to shift down. |
| 1518 __ rsb(dest, scratch2, Operand(30)); |
| 1519 } |
| 1520 __ bind(&right_exponent); |
| 1521 if (CpuFeatures::IsSupported(VFP3)) { |
| 1522 CpuFeatures::Scope scope(VFP3); |
| 1523 // ARMv7 VFP3 instructions implementing double precision to integer |
| 1524 // conversion using round to zero. |
| 1525 __ ldr(scratch2, FieldMemOperand(source, HeapNumber::kMantissaOffset)); |
| 1526 __ vmov(d7, scratch2, scratch); |
| 1527 __ vcvt_s32_f64(s15, d7); |
| 1528 __ vmov(dest, s15); |
| 1529 } else { |
| 1530 // Get the top bits of the mantissa. |
| 1531 __ and_(scratch2, scratch, Operand(HeapNumber::kMantissaMask)); |
| 1532 // Put back the implicit 1. |
| 1533 __ orr(scratch2, scratch2, Operand(1 << HeapNumber::kExponentShift)); |
| 1534 // Shift up the mantissa bits to take up the space the exponent used to |
| 1535 // take. We just orred in the implicit bit so that took care of one and |
| 1536 // we want to leave the sign bit 0 so we subtract 2 bits from the shift |
| 1537 // distance. |
| 1538 const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; |
| 1539 __ mov(scratch2, Operand(scratch2, LSL, shift_distance)); |
| 1540 // Put sign in zero flag. |
| 1541 __ tst(scratch, Operand(HeapNumber::kSignMask)); |
| 1542 // Get the second half of the double. For some exponents we don't |
| 1543 // actually need this because the bits get shifted out again, but |
| 1544 // it's probably slower to test than just to do it. |
| 1545 __ ldr(scratch, FieldMemOperand(source, HeapNumber::kMantissaOffset)); |
| 1546 // Shift down 22 bits to get the last 10 bits. |
| 1547 __ orr(scratch, scratch2, Operand(scratch, LSR, 32 - shift_distance)); |
| 1548 // Move down according to the exponent. |
| 1549 __ mov(dest, Operand(scratch, LSR, dest)); |
| 1550 // Fix sign if sign bit was set. |
| 1551 __ rsb(dest, dest, Operand(0), LeaveCC, ne); |
| 1552 } |
| 1553 __ bind(&done); |
| 1554 } |
| 1555 |
| 1556 // For bitwise ops where the inputs are not both Smis we here try to determine |
| 1557 // whether both inputs are either Smis or at least heap numbers that can be |
| 1558 // represented by a 32 bit signed value. We truncate towards zero as required |
| 1559 // by the ES spec. If this is the case we do the bitwise op and see if the |
| 1560 // result is a Smi. If so, great, otherwise we try to find a heap number to |
| 1561 // write the answer into (either by allocating or by overwriting). |
| 1562 // On entry the operands are in lhs and rhs. On exit the answer is in r0. |
| 1563 void GenericBinaryOpStub::HandleNonSmiBitwiseOp(MacroAssembler* masm, |
| 1564 Register lhs, |
| 1565 Register rhs) { |
| 1566 Label slow, result_not_a_smi; |
| 1567 Label rhs_is_smi, lhs_is_smi; |
| 1568 Label done_checking_rhs, done_checking_lhs; |
| 1569 |
| 1570 Register heap_number_map = r6; |
| 1571 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| 1572 |
| 1573 __ tst(lhs, Operand(kSmiTagMask)); |
| 1574 __ b(eq, &lhs_is_smi); // It's a Smi so don't check it's a heap number. |
| 1575 __ ldr(r4, FieldMemOperand(lhs, HeapNumber::kMapOffset)); |
| 1576 __ cmp(r4, heap_number_map); |
| 1577 __ b(ne, &slow); |
| 1578 GetInt32(masm, lhs, r3, r5, r4, &slow); |
| 1579 __ jmp(&done_checking_lhs); |
| 1580 __ bind(&lhs_is_smi); |
| 1581 __ mov(r3, Operand(lhs, ASR, 1)); |
| 1582 __ bind(&done_checking_lhs); |
| 1583 |
| 1584 __ tst(rhs, Operand(kSmiTagMask)); |
| 1585 __ b(eq, &rhs_is_smi); // It's a Smi so don't check it's a heap number. |
| 1586 __ ldr(r4, FieldMemOperand(rhs, HeapNumber::kMapOffset)); |
| 1587 __ cmp(r4, heap_number_map); |
| 1588 __ b(ne, &slow); |
| 1589 GetInt32(masm, rhs, r2, r5, r4, &slow); |
| 1590 __ jmp(&done_checking_rhs); |
| 1591 __ bind(&rhs_is_smi); |
| 1592 __ mov(r2, Operand(rhs, ASR, 1)); |
| 1593 __ bind(&done_checking_rhs); |
| 1594 |
| 1595 ASSERT(((lhs.is(r0) && rhs.is(r1)) || (lhs.is(r1) && rhs.is(r0)))); |
| 1596 |
| 1597 // r0 and r1: Original operands (Smi or heap numbers). |
| 1598 // r2 and r3: Signed int32 operands. |
| 1599 switch (op_) { |
| 1600 case Token::BIT_OR: __ orr(r2, r2, Operand(r3)); break; |
| 1601 case Token::BIT_XOR: __ eor(r2, r2, Operand(r3)); break; |
| 1602 case Token::BIT_AND: __ and_(r2, r2, Operand(r3)); break; |
| 1603 case Token::SAR: |
| 1604 // Use only the 5 least significant bits of the shift count. |
| 1605 __ and_(r2, r2, Operand(0x1f)); |
| 1606 __ mov(r2, Operand(r3, ASR, r2)); |
| 1607 break; |
| 1608 case Token::SHR: |
| 1609 // Use only the 5 least significant bits of the shift count. |
| 1610 __ and_(r2, r2, Operand(0x1f)); |
| 1611 __ mov(r2, Operand(r3, LSR, r2), SetCC); |
| 1612 // SHR is special because it is required to produce a positive answer. |
| 1613 // The code below for writing into heap numbers isn't capable of writing |
| 1614 // the register as an unsigned int so we go to slow case if we hit this |
| 1615 // case. |
| 1616 if (CpuFeatures::IsSupported(VFP3)) { |
| 1617 __ b(mi, &result_not_a_smi); |
| 1618 } else { |
| 1619 __ b(mi, &slow); |
| 1620 } |
| 1621 break; |
| 1622 case Token::SHL: |
| 1623 // Use only the 5 least significant bits of the shift count. |
| 1624 __ and_(r2, r2, Operand(0x1f)); |
| 1625 __ mov(r2, Operand(r3, LSL, r2)); |
| 1626 break; |
| 1627 default: UNREACHABLE(); |
| 1628 } |
| 1629 // check that the *signed* result fits in a smi |
| 1630 __ add(r3, r2, Operand(0x40000000), SetCC); |
| 1631 __ b(mi, &result_not_a_smi); |
| 1632 __ mov(r0, Operand(r2, LSL, kSmiTagSize)); |
| 1633 __ Ret(); |
| 1634 |
| 1635 Label have_to_allocate, got_a_heap_number; |
| 1636 __ bind(&result_not_a_smi); |
| 1637 switch (mode_) { |
| 1638 case OVERWRITE_RIGHT: { |
| 1639 __ tst(rhs, Operand(kSmiTagMask)); |
| 1640 __ b(eq, &have_to_allocate); |
| 1641 __ mov(r5, Operand(rhs)); |
| 1642 break; |
| 1643 } |
| 1644 case OVERWRITE_LEFT: { |
| 1645 __ tst(lhs, Operand(kSmiTagMask)); |
| 1646 __ b(eq, &have_to_allocate); |
| 1647 __ mov(r5, Operand(lhs)); |
| 1648 break; |
| 1649 } |
| 1650 case NO_OVERWRITE: { |
| 1651 // Get a new heap number in r5. r4 and r7 are scratch. |
| 1652 __ AllocateHeapNumber(r5, r4, r7, heap_number_map, &slow); |
| 1653 } |
| 1654 default: break; |
| 1655 } |
| 1656 __ bind(&got_a_heap_number); |
| 1657 // r2: Answer as signed int32. |
| 1658 // r5: Heap number to write answer into. |
| 1659 |
| 1660 // Nothing can go wrong now, so move the heap number to r0, which is the |
| 1661 // result. |
| 1662 __ mov(r0, Operand(r5)); |
| 1663 |
| 1664 if (CpuFeatures::IsSupported(VFP3)) { |
| 1665 // Convert the int32 in r2 to the heap number in r0. r3 is corrupted. |
| 1666 CpuFeatures::Scope scope(VFP3); |
| 1667 __ vmov(s0, r2); |
| 1668 if (op_ == Token::SHR) { |
| 1669 __ vcvt_f64_u32(d0, s0); |
| 1670 } else { |
| 1671 __ vcvt_f64_s32(d0, s0); |
| 1672 } |
| 1673 __ sub(r3, r0, Operand(kHeapObjectTag)); |
| 1674 __ vstr(d0, r3, HeapNumber::kValueOffset); |
| 1675 __ Ret(); |
| 1676 } else { |
| 1677 // Tail call that writes the int32 in r2 to the heap number in r0, using |
| 1678 // r3 as scratch. r0 is preserved and returned. |
| 1679 WriteInt32ToHeapNumberStub stub(r2, r0, r3); |
| 1680 __ TailCallStub(&stub); |
| 1681 } |
| 1682 |
| 1683 if (mode_ != NO_OVERWRITE) { |
| 1684 __ bind(&have_to_allocate); |
| 1685 // Get a new heap number in r5. r4 and r7 are scratch. |
| 1686 __ AllocateHeapNumber(r5, r4, r7, heap_number_map, &slow); |
| 1687 __ jmp(&got_a_heap_number); |
| 1688 } |
| 1689 |
| 1690 // If all else failed then we go to the runtime system. |
| 1691 __ bind(&slow); |
| 1692 __ Push(lhs, rhs); // Restore stack. |
| 1693 switch (op_) { |
| 1694 case Token::BIT_OR: |
| 1695 __ InvokeBuiltin(Builtins::BIT_OR, JUMP_JS); |
| 1696 break; |
| 1697 case Token::BIT_AND: |
| 1698 __ InvokeBuiltin(Builtins::BIT_AND, JUMP_JS); |
| 1699 break; |
| 1700 case Token::BIT_XOR: |
| 1701 __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_JS); |
| 1702 break; |
| 1703 case Token::SAR: |
| 1704 __ InvokeBuiltin(Builtins::SAR, JUMP_JS); |
| 1705 break; |
| 1706 case Token::SHR: |
| 1707 __ InvokeBuiltin(Builtins::SHR, JUMP_JS); |
| 1708 break; |
| 1709 case Token::SHL: |
| 1710 __ InvokeBuiltin(Builtins::SHL, JUMP_JS); |
| 1711 break; |
| 1712 default: |
| 1713 UNREACHABLE(); |
| 1714 } |
| 1715 } |
| 1716 |
| 1717 |
| 1718 |
| 1719 |
| 1720 // This function takes the known int in a register for the cases |
| 1721 // where it doesn't know a good trick, and may deliver |
| 1722 // a result that needs shifting. |
| 1723 static void MultiplyByKnownIntInStub( |
| 1724 MacroAssembler* masm, |
| 1725 Register result, |
| 1726 Register source, |
| 1727 Register known_int_register, // Smi tagged. |
| 1728 int known_int, |
| 1729 int* required_shift) { // Including Smi tag shift |
| 1730 switch (known_int) { |
| 1731 case 3: |
| 1732 __ add(result, source, Operand(source, LSL, 1)); |
| 1733 *required_shift = 1; |
| 1734 break; |
| 1735 case 5: |
| 1736 __ add(result, source, Operand(source, LSL, 2)); |
| 1737 *required_shift = 1; |
| 1738 break; |
| 1739 case 6: |
| 1740 __ add(result, source, Operand(source, LSL, 1)); |
| 1741 *required_shift = 2; |
| 1742 break; |
| 1743 case 7: |
| 1744 __ rsb(result, source, Operand(source, LSL, 3)); |
| 1745 *required_shift = 1; |
| 1746 break; |
| 1747 case 9: |
| 1748 __ add(result, source, Operand(source, LSL, 3)); |
| 1749 *required_shift = 1; |
| 1750 break; |
| 1751 case 10: |
| 1752 __ add(result, source, Operand(source, LSL, 2)); |
| 1753 *required_shift = 2; |
| 1754 break; |
| 1755 default: |
| 1756 ASSERT(!IsPowerOf2(known_int)); // That would be very inefficient. |
| 1757 __ mul(result, source, known_int_register); |
| 1758 *required_shift = 0; |
| 1759 } |
| 1760 } |
| 1761 |
| 1762 |
| 1763 // This uses versions of the sum-of-digits-to-see-if-a-number-is-divisible-by-3 |
| 1764 // trick. See http://en.wikipedia.org/wiki/Divisibility_rule |
| 1765 // Takes the sum of the digits base (mask + 1) repeatedly until we have a |
| 1766 // number from 0 to mask. On exit the 'eq' condition flags are set if the |
| 1767 // answer is exactly the mask. |
| 1768 void IntegerModStub::DigitSum(MacroAssembler* masm, |
| 1769 Register lhs, |
| 1770 int mask, |
| 1771 int shift, |
| 1772 Label* entry) { |
| 1773 ASSERT(mask > 0); |
| 1774 ASSERT(mask <= 0xff); // This ensures we don't need ip to use it. |
| 1775 Label loop; |
| 1776 __ bind(&loop); |
| 1777 __ and_(ip, lhs, Operand(mask)); |
| 1778 __ add(lhs, ip, Operand(lhs, LSR, shift)); |
| 1779 __ bind(entry); |
| 1780 __ cmp(lhs, Operand(mask)); |
| 1781 __ b(gt, &loop); |
| 1782 } |
| 1783 |
| 1784 |
| 1785 void IntegerModStub::DigitSum(MacroAssembler* masm, |
| 1786 Register lhs, |
| 1787 Register scratch, |
| 1788 int mask, |
| 1789 int shift1, |
| 1790 int shift2, |
| 1791 Label* entry) { |
| 1792 ASSERT(mask > 0); |
| 1793 ASSERT(mask <= 0xff); // This ensures we don't need ip to use it. |
| 1794 Label loop; |
| 1795 __ bind(&loop); |
| 1796 __ bic(scratch, lhs, Operand(mask)); |
| 1797 __ and_(ip, lhs, Operand(mask)); |
| 1798 __ add(lhs, ip, Operand(lhs, LSR, shift1)); |
| 1799 __ add(lhs, lhs, Operand(scratch, LSR, shift2)); |
| 1800 __ bind(entry); |
| 1801 __ cmp(lhs, Operand(mask)); |
| 1802 __ b(gt, &loop); |
| 1803 } |
| 1804 |
| 1805 |
| 1806 // Splits the number into two halves (bottom half has shift bits). The top |
| 1807 // half is subtracted from the bottom half. If the result is negative then |
| 1808 // rhs is added. |
| 1809 void IntegerModStub::ModGetInRangeBySubtraction(MacroAssembler* masm, |
| 1810 Register lhs, |
| 1811 int shift, |
| 1812 int rhs) { |
| 1813 int mask = (1 << shift) - 1; |
| 1814 __ and_(ip, lhs, Operand(mask)); |
| 1815 __ sub(lhs, ip, Operand(lhs, LSR, shift), SetCC); |
| 1816 __ add(lhs, lhs, Operand(rhs), LeaveCC, mi); |
| 1817 } |
| 1818 |
| 1819 |
| 1820 void IntegerModStub::ModReduce(MacroAssembler* masm, |
| 1821 Register lhs, |
| 1822 int max, |
| 1823 int denominator) { |
| 1824 int limit = denominator; |
| 1825 while (limit * 2 <= max) limit *= 2; |
| 1826 while (limit >= denominator) { |
| 1827 __ cmp(lhs, Operand(limit)); |
| 1828 __ sub(lhs, lhs, Operand(limit), LeaveCC, ge); |
| 1829 limit >>= 1; |
| 1830 } |
| 1831 } |
| 1832 |
| 1833 |
| 1834 void IntegerModStub::ModAnswer(MacroAssembler* masm, |
| 1835 Register result, |
| 1836 Register shift_distance, |
| 1837 Register mask_bits, |
| 1838 Register sum_of_digits) { |
| 1839 __ add(result, mask_bits, Operand(sum_of_digits, LSL, shift_distance)); |
| 1840 __ Ret(); |
| 1841 } |
| 1842 |
| 1843 |
| 1844 // See comment for class. |
| 1845 void IntegerModStub::Generate(MacroAssembler* masm) { |
| 1846 __ mov(lhs_, Operand(lhs_, LSR, shift_distance_)); |
| 1847 __ bic(odd_number_, odd_number_, Operand(1)); |
| 1848 __ mov(odd_number_, Operand(odd_number_, LSL, 1)); |
| 1849 // We now have (odd_number_ - 1) * 2 in the register. |
| 1850 // Build a switch out of branches instead of data because it avoids |
| 1851 // having to teach the assembler about intra-code-object pointers |
| 1852 // that are not in relative branch instructions. |
| 1853 Label mod3, mod5, mod7, mod9, mod11, mod13, mod15, mod17, mod19; |
| 1854 Label mod21, mod23, mod25; |
| 1855 { Assembler::BlockConstPoolScope block_const_pool(masm); |
| 1856 __ add(pc, pc, Operand(odd_number_)); |
| 1857 // When you read pc it is always 8 ahead, but when you write it you always |
| 1858 // write the actual value. So we put in two nops to take up the slack. |
| 1859 __ nop(); |
| 1860 __ nop(); |
| 1861 __ b(&mod3); |
| 1862 __ b(&mod5); |
| 1863 __ b(&mod7); |
| 1864 __ b(&mod9); |
| 1865 __ b(&mod11); |
| 1866 __ b(&mod13); |
| 1867 __ b(&mod15); |
| 1868 __ b(&mod17); |
| 1869 __ b(&mod19); |
| 1870 __ b(&mod21); |
| 1871 __ b(&mod23); |
| 1872 __ b(&mod25); |
| 1873 } |
| 1874 |
| 1875 // For each denominator we find a multiple that is almost only ones |
| 1876 // when expressed in binary. Then we do the sum-of-digits trick for |
| 1877 // that number. If the multiple is not 1 then we have to do a little |
| 1878 // more work afterwards to get the answer into the 0-denominator-1 |
| 1879 // range. |
| 1880 DigitSum(masm, lhs_, 3, 2, &mod3); // 3 = b11. |
| 1881 __ sub(lhs_, lhs_, Operand(3), LeaveCC, eq); |
| 1882 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_); |
| 1883 |
| 1884 DigitSum(masm, lhs_, 0xf, 4, &mod5); // 5 * 3 = b1111. |
| 1885 ModGetInRangeBySubtraction(masm, lhs_, 2, 5); |
| 1886 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_); |
| 1887 |
| 1888 DigitSum(masm, lhs_, 7, 3, &mod7); // 7 = b111. |
| 1889 __ sub(lhs_, lhs_, Operand(7), LeaveCC, eq); |
| 1890 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_); |
| 1891 |
| 1892 DigitSum(masm, lhs_, 0x3f, 6, &mod9); // 7 * 9 = b111111. |
| 1893 ModGetInRangeBySubtraction(masm, lhs_, 3, 9); |
| 1894 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_); |
| 1895 |
| 1896 DigitSum(masm, lhs_, r5, 0x3f, 6, 3, &mod11); // 5 * 11 = b110111. |
| 1897 ModReduce(masm, lhs_, 0x3f, 11); |
| 1898 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_); |
| 1899 |
| 1900 DigitSum(masm, lhs_, r5, 0xff, 8, 5, &mod13); // 19 * 13 = b11110111. |
| 1901 ModReduce(masm, lhs_, 0xff, 13); |
| 1902 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_); |
| 1903 |
| 1904 DigitSum(masm, lhs_, 0xf, 4, &mod15); // 15 = b1111. |
| 1905 __ sub(lhs_, lhs_, Operand(15), LeaveCC, eq); |
| 1906 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_); |
| 1907 |
| 1908 DigitSum(masm, lhs_, 0xff, 8, &mod17); // 15 * 17 = b11111111. |
| 1909 ModGetInRangeBySubtraction(masm, lhs_, 4, 17); |
| 1910 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_); |
| 1911 |
| 1912 DigitSum(masm, lhs_, r5, 0xff, 8, 5, &mod19); // 13 * 19 = b11110111. |
| 1913 ModReduce(masm, lhs_, 0xff, 19); |
| 1914 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_); |
| 1915 |
| 1916 DigitSum(masm, lhs_, 0x3f, 6, &mod21); // 3 * 21 = b111111. |
| 1917 ModReduce(masm, lhs_, 0x3f, 21); |
| 1918 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_); |
| 1919 |
| 1920 DigitSum(masm, lhs_, r5, 0xff, 8, 7, &mod23); // 11 * 23 = b11111101. |
| 1921 ModReduce(masm, lhs_, 0xff, 23); |
| 1922 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_); |
| 1923 |
| 1924 DigitSum(masm, lhs_, r5, 0x7f, 7, 6, &mod25); // 5 * 25 = b1111101. |
| 1925 ModReduce(masm, lhs_, 0x7f, 25); |
| 1926 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_); |
| 1927 } |
| 1928 |
| 1929 |
| 1930 void GenericBinaryOpStub::Generate(MacroAssembler* masm) { |
| 1931 // lhs_ : x |
| 1932 // rhs_ : y |
| 1933 // r0 : result |
| 1934 |
| 1935 Register result = r0; |
| 1936 Register lhs = lhs_; |
| 1937 Register rhs = rhs_; |
| 1938 |
| 1939 // This code can't cope with other register allocations yet. |
| 1940 ASSERT(result.is(r0) && |
| 1941 ((lhs.is(r0) && rhs.is(r1)) || |
| 1942 (lhs.is(r1) && rhs.is(r0)))); |
| 1943 |
| 1944 Register smi_test_reg = r7; |
| 1945 Register scratch = r9; |
| 1946 |
| 1947 // All ops need to know whether we are dealing with two Smis. Set up |
| 1948 // smi_test_reg to tell us that. |
| 1949 if (ShouldGenerateSmiCode()) { |
| 1950 __ orr(smi_test_reg, lhs, Operand(rhs)); |
| 1951 } |
| 1952 |
| 1953 switch (op_) { |
| 1954 case Token::ADD: { |
| 1955 Label not_smi; |
| 1956 // Fast path. |
| 1957 if (ShouldGenerateSmiCode()) { |
| 1958 STATIC_ASSERT(kSmiTag == 0); // Adjust code below. |
| 1959 __ tst(smi_test_reg, Operand(kSmiTagMask)); |
| 1960 __ b(ne, ¬_smi); |
| 1961 __ add(r0, r1, Operand(r0), SetCC); // Add y optimistically. |
| 1962 // Return if no overflow. |
| 1963 __ Ret(vc); |
| 1964 __ sub(r0, r0, Operand(r1)); // Revert optimistic add. |
| 1965 } |
| 1966 HandleBinaryOpSlowCases(masm, ¬_smi, lhs, rhs, Builtins::ADD); |
| 1967 break; |
| 1968 } |
| 1969 |
| 1970 case Token::SUB: { |
| 1971 Label not_smi; |
| 1972 // Fast path. |
| 1973 if (ShouldGenerateSmiCode()) { |
| 1974 STATIC_ASSERT(kSmiTag == 0); // Adjust code below. |
| 1975 __ tst(smi_test_reg, Operand(kSmiTagMask)); |
| 1976 __ b(ne, ¬_smi); |
| 1977 if (lhs.is(r1)) { |
| 1978 __ sub(r0, r1, Operand(r0), SetCC); // Subtract y optimistically. |
| 1979 // Return if no overflow. |
| 1980 __ Ret(vc); |
| 1981 __ sub(r0, r1, Operand(r0)); // Revert optimistic subtract. |
| 1982 } else { |
| 1983 __ sub(r0, r0, Operand(r1), SetCC); // Subtract y optimistically. |
| 1984 // Return if no overflow. |
| 1985 __ Ret(vc); |
| 1986 __ add(r0, r0, Operand(r1)); // Revert optimistic subtract. |
| 1987 } |
| 1988 } |
| 1989 HandleBinaryOpSlowCases(masm, ¬_smi, lhs, rhs, Builtins::SUB); |
| 1990 break; |
| 1991 } |
| 1992 |
| 1993 case Token::MUL: { |
| 1994 Label not_smi, slow; |
| 1995 if (ShouldGenerateSmiCode()) { |
| 1996 STATIC_ASSERT(kSmiTag == 0); // adjust code below |
| 1997 __ tst(smi_test_reg, Operand(kSmiTagMask)); |
| 1998 Register scratch2 = smi_test_reg; |
| 1999 smi_test_reg = no_reg; |
| 2000 __ b(ne, ¬_smi); |
| 2001 // Remove tag from one operand (but keep sign), so that result is Smi. |
| 2002 __ mov(ip, Operand(rhs, ASR, kSmiTagSize)); |
| 2003 // Do multiplication |
| 2004 // scratch = lower 32 bits of ip * lhs. |
| 2005 __ smull(scratch, scratch2, lhs, ip); |
| 2006 // Go slow on overflows (overflow bit is not set). |
| 2007 __ mov(ip, Operand(scratch, ASR, 31)); |
| 2008 // No overflow if higher 33 bits are identical. |
| 2009 __ cmp(ip, Operand(scratch2)); |
| 2010 __ b(ne, &slow); |
| 2011 // Go slow on zero result to handle -0. |
| 2012 __ tst(scratch, Operand(scratch)); |
| 2013 __ mov(result, Operand(scratch), LeaveCC, ne); |
| 2014 __ Ret(ne); |
| 2015 // We need -0 if we were multiplying a negative number with 0 to get 0. |
| 2016 // We know one of them was zero. |
| 2017 __ add(scratch2, rhs, Operand(lhs), SetCC); |
| 2018 __ mov(result, Operand(Smi::FromInt(0)), LeaveCC, pl); |
| 2019 __ Ret(pl); // Return Smi 0 if the non-zero one was positive. |
| 2020 // Slow case. We fall through here if we multiplied a negative number |
| 2021 // with 0, because that would mean we should produce -0. |
| 2022 __ bind(&slow); |
| 2023 } |
| 2024 HandleBinaryOpSlowCases(masm, ¬_smi, lhs, rhs, Builtins::MUL); |
| 2025 break; |
| 2026 } |
| 2027 |
| 2028 case Token::DIV: |
| 2029 case Token::MOD: { |
| 2030 Label not_smi; |
| 2031 if (ShouldGenerateSmiCode() && specialized_on_rhs_) { |
| 2032 Label lhs_is_unsuitable; |
| 2033 __ BranchOnNotSmi(lhs, ¬_smi); |
| 2034 if (IsPowerOf2(constant_rhs_)) { |
| 2035 if (op_ == Token::MOD) { |
| 2036 __ and_(rhs, |
| 2037 lhs, |
| 2038 Operand(0x80000000u | ((constant_rhs_ << kSmiTagSize) - 1)), |
| 2039 SetCC); |
| 2040 // We now have the answer, but if the input was negative we also |
| 2041 // have the sign bit. Our work is done if the result is |
| 2042 // positive or zero: |
| 2043 if (!rhs.is(r0)) { |
| 2044 __ mov(r0, rhs, LeaveCC, pl); |
| 2045 } |
| 2046 __ Ret(pl); |
| 2047 // A mod of a negative left hand side must return a negative number. |
| 2048 // Unfortunately if the answer is 0 then we must return -0. And we |
| 2049 // already optimistically trashed rhs so we may need to restore it. |
| 2050 __ eor(rhs, rhs, Operand(0x80000000u), SetCC); |
| 2051 // Next two instructions are conditional on the answer being -0. |
| 2052 __ mov(rhs, Operand(Smi::FromInt(constant_rhs_)), LeaveCC, eq); |
| 2053 __ b(eq, &lhs_is_unsuitable); |
| 2054 // We need to subtract the dividend. Eg. -3 % 4 == -3. |
| 2055 __ sub(result, rhs, Operand(Smi::FromInt(constant_rhs_))); |
| 2056 } else { |
| 2057 ASSERT(op_ == Token::DIV); |
| 2058 __ tst(lhs, |
| 2059 Operand(0x80000000u | ((constant_rhs_ << kSmiTagSize) - 1))); |
| 2060 __ b(ne, &lhs_is_unsuitable); // Go slow on negative or remainder. |
| 2061 int shift = 0; |
| 2062 int d = constant_rhs_; |
| 2063 while ((d & 1) == 0) { |
| 2064 d >>= 1; |
| 2065 shift++; |
| 2066 } |
| 2067 __ mov(r0, Operand(lhs, LSR, shift)); |
| 2068 __ bic(r0, r0, Operand(kSmiTagMask)); |
| 2069 } |
| 2070 } else { |
| 2071 // Not a power of 2. |
| 2072 __ tst(lhs, Operand(0x80000000u)); |
| 2073 __ b(ne, &lhs_is_unsuitable); |
| 2074 // Find a fixed point reciprocal of the divisor so we can divide by |
| 2075 // multiplying. |
| 2076 double divisor = 1.0 / constant_rhs_; |
| 2077 int shift = 32; |
| 2078 double scale = 4294967296.0; // 1 << 32. |
| 2079 uint32_t mul; |
| 2080 // Maximise the precision of the fixed point reciprocal. |
| 2081 while (true) { |
| 2082 mul = static_cast<uint32_t>(scale * divisor); |
| 2083 if (mul >= 0x7fffffff) break; |
| 2084 scale *= 2.0; |
| 2085 shift++; |
| 2086 } |
| 2087 mul++; |
| 2088 Register scratch2 = smi_test_reg; |
| 2089 smi_test_reg = no_reg; |
| 2090 __ mov(scratch2, Operand(mul)); |
| 2091 __ umull(scratch, scratch2, scratch2, lhs); |
| 2092 __ mov(scratch2, Operand(scratch2, LSR, shift - 31)); |
| 2093 // scratch2 is lhs / rhs. scratch2 is not Smi tagged. |
| 2094 // rhs is still the known rhs. rhs is Smi tagged. |
| 2095 // lhs is still the unkown lhs. lhs is Smi tagged. |
| 2096 int required_scratch_shift = 0; // Including the Smi tag shift of 1. |
| 2097 // scratch = scratch2 * rhs. |
| 2098 MultiplyByKnownIntInStub(masm, |
| 2099 scratch, |
| 2100 scratch2, |
| 2101 rhs, |
| 2102 constant_rhs_, |
| 2103 &required_scratch_shift); |
| 2104 // scratch << required_scratch_shift is now the Smi tagged rhs * |
| 2105 // (lhs / rhs) where / indicates integer division. |
| 2106 if (op_ == Token::DIV) { |
| 2107 __ cmp(lhs, Operand(scratch, LSL, required_scratch_shift)); |
| 2108 __ b(ne, &lhs_is_unsuitable); // There was a remainder. |
| 2109 __ mov(result, Operand(scratch2, LSL, kSmiTagSize)); |
| 2110 } else { |
| 2111 ASSERT(op_ == Token::MOD); |
| 2112 __ sub(result, lhs, Operand(scratch, LSL, required_scratch_shift)); |
| 2113 } |
| 2114 } |
| 2115 __ Ret(); |
| 2116 __ bind(&lhs_is_unsuitable); |
| 2117 } else if (op_ == Token::MOD && |
| 2118 runtime_operands_type_ != BinaryOpIC::HEAP_NUMBERS && |
| 2119 runtime_operands_type_ != BinaryOpIC::STRINGS) { |
| 2120 // Do generate a bit of smi code for modulus even though the default for |
| 2121 // modulus is not to do it, but as the ARM processor has no coprocessor |
| 2122 // support for modulus checking for smis makes sense. We can handle |
| 2123 // 1 to 25 times any power of 2. This covers over half the numbers from |
| 2124 // 1 to 100 including all of the first 25. (Actually the constants < 10 |
| 2125 // are handled above by reciprocal multiplication. We only get here for |
| 2126 // those cases if the right hand side is not a constant or for cases |
| 2127 // like 192 which is 3*2^6 and ends up in the 3 case in the integer mod |
| 2128 // stub.) |
| 2129 Label slow; |
| 2130 Label not_power_of_2; |
| 2131 ASSERT(!ShouldGenerateSmiCode()); |
| 2132 STATIC_ASSERT(kSmiTag == 0); // Adjust code below. |
| 2133 // Check for two positive smis. |
| 2134 __ orr(smi_test_reg, lhs, Operand(rhs)); |
| 2135 __ tst(smi_test_reg, Operand(0x80000000u | kSmiTagMask)); |
| 2136 __ b(ne, &slow); |
| 2137 // Check that rhs is a power of two and not zero. |
| 2138 Register mask_bits = r3; |
| 2139 __ sub(scratch, rhs, Operand(1), SetCC); |
| 2140 __ b(mi, &slow); |
| 2141 __ and_(mask_bits, rhs, Operand(scratch), SetCC); |
| 2142 __ b(ne, ¬_power_of_2); |
| 2143 // Calculate power of two modulus. |
| 2144 __ and_(result, lhs, Operand(scratch)); |
| 2145 __ Ret(); |
| 2146 |
| 2147 __ bind(¬_power_of_2); |
| 2148 __ eor(scratch, scratch, Operand(mask_bits)); |
| 2149 // At least two bits are set in the modulus. The high one(s) are in |
| 2150 // mask_bits and the low one is scratch + 1. |
| 2151 __ and_(mask_bits, scratch, Operand(lhs)); |
| 2152 Register shift_distance = scratch; |
| 2153 scratch = no_reg; |
| 2154 |
| 2155 // The rhs consists of a power of 2 multiplied by some odd number. |
| 2156 // The power-of-2 part we handle by putting the corresponding bits |
| 2157 // from the lhs in the mask_bits register, and the power in the |
| 2158 // shift_distance register. Shift distance is never 0 due to Smi |
| 2159 // tagging. |
| 2160 __ CountLeadingZeros(r4, shift_distance, shift_distance); |
| 2161 __ rsb(shift_distance, r4, Operand(32)); |
| 2162 |
| 2163 // Now we need to find out what the odd number is. The last bit is |
| 2164 // always 1. |
| 2165 Register odd_number = r4; |
| 2166 __ mov(odd_number, Operand(rhs, LSR, shift_distance)); |
| 2167 __ cmp(odd_number, Operand(25)); |
| 2168 __ b(gt, &slow); |
| 2169 |
| 2170 IntegerModStub stub( |
| 2171 result, shift_distance, odd_number, mask_bits, lhs, r5); |
| 2172 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); // Tail call. |
| 2173 |
| 2174 __ bind(&slow); |
| 2175 } |
| 2176 HandleBinaryOpSlowCases( |
| 2177 masm, |
| 2178 ¬_smi, |
| 2179 lhs, |
| 2180 rhs, |
| 2181 op_ == Token::MOD ? Builtins::MOD : Builtins::DIV); |
| 2182 break; |
| 2183 } |
| 2184 |
| 2185 case Token::BIT_OR: |
| 2186 case Token::BIT_AND: |
| 2187 case Token::BIT_XOR: |
| 2188 case Token::SAR: |
| 2189 case Token::SHR: |
| 2190 case Token::SHL: { |
| 2191 Label slow; |
| 2192 STATIC_ASSERT(kSmiTag == 0); // adjust code below |
| 2193 __ tst(smi_test_reg, Operand(kSmiTagMask)); |
| 2194 __ b(ne, &slow); |
| 2195 Register scratch2 = smi_test_reg; |
| 2196 smi_test_reg = no_reg; |
| 2197 switch (op_) { |
| 2198 case Token::BIT_OR: __ orr(result, rhs, Operand(lhs)); break; |
| 2199 case Token::BIT_AND: __ and_(result, rhs, Operand(lhs)); break; |
| 2200 case Token::BIT_XOR: __ eor(result, rhs, Operand(lhs)); break; |
| 2201 case Token::SAR: |
| 2202 // Remove tags from right operand. |
| 2203 __ GetLeastBitsFromSmi(scratch2, rhs, 5); |
| 2204 __ mov(result, Operand(lhs, ASR, scratch2)); |
| 2205 // Smi tag result. |
| 2206 __ bic(result, result, Operand(kSmiTagMask)); |
| 2207 break; |
| 2208 case Token::SHR: |
| 2209 // Remove tags from operands. We can't do this on a 31 bit number |
| 2210 // because then the 0s get shifted into bit 30 instead of bit 31. |
| 2211 __ mov(scratch, Operand(lhs, ASR, kSmiTagSize)); // x |
| 2212 __ GetLeastBitsFromSmi(scratch2, rhs, 5); |
| 2213 __ mov(scratch, Operand(scratch, LSR, scratch2)); |
| 2214 // Unsigned shift is not allowed to produce a negative number, so |
| 2215 // check the sign bit and the sign bit after Smi tagging. |
| 2216 __ tst(scratch, Operand(0xc0000000)); |
| 2217 __ b(ne, &slow); |
| 2218 // Smi tag result. |
| 2219 __ mov(result, Operand(scratch, LSL, kSmiTagSize)); |
| 2220 break; |
| 2221 case Token::SHL: |
| 2222 // Remove tags from operands. |
| 2223 __ mov(scratch, Operand(lhs, ASR, kSmiTagSize)); // x |
| 2224 __ GetLeastBitsFromSmi(scratch2, rhs, 5); |
| 2225 __ mov(scratch, Operand(scratch, LSL, scratch2)); |
| 2226 // Check that the signed result fits in a Smi. |
| 2227 __ add(scratch2, scratch, Operand(0x40000000), SetCC); |
| 2228 __ b(mi, &slow); |
| 2229 __ mov(result, Operand(scratch, LSL, kSmiTagSize)); |
| 2230 break; |
| 2231 default: UNREACHABLE(); |
| 2232 } |
| 2233 __ Ret(); |
| 2234 __ bind(&slow); |
| 2235 HandleNonSmiBitwiseOp(masm, lhs, rhs); |
| 2236 break; |
| 2237 } |
| 2238 |
| 2239 default: UNREACHABLE(); |
| 2240 } |
| 2241 // This code should be unreachable. |
| 2242 __ stop("Unreachable"); |
| 2243 |
| 2244 // Generate an unreachable reference to the DEFAULT stub so that it can be |
| 2245 // found at the end of this stub when clearing ICs at GC. |
| 2246 // TODO(kaznacheev): Check performance impact and get rid of this. |
| 2247 if (runtime_operands_type_ != BinaryOpIC::DEFAULT) { |
| 2248 GenericBinaryOpStub uninit(MinorKey(), BinaryOpIC::DEFAULT); |
| 2249 __ CallStub(&uninit); |
| 2250 } |
| 2251 } |
| 2252 |
| 2253 |
| 2254 void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { |
| 2255 Label get_result; |
| 2256 |
| 2257 __ Push(r1, r0); |
| 2258 |
| 2259 __ mov(r2, Operand(Smi::FromInt(MinorKey()))); |
| 2260 __ mov(r1, Operand(Smi::FromInt(op_))); |
| 2261 __ mov(r0, Operand(Smi::FromInt(runtime_operands_type_))); |
| 2262 __ Push(r2, r1, r0); |
| 2263 |
| 2264 __ TailCallExternalReference( |
| 2265 ExternalReference(IC_Utility(IC::kBinaryOp_Patch)), |
| 2266 5, |
| 2267 1); |
| 2268 } |
| 2269 |
| 2270 |
| 2271 Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) { |
| 2272 GenericBinaryOpStub stub(key, type_info); |
| 2273 return stub.GetCode(); |
| 2274 } |
| 2275 |
| 2276 |
| 2277 void TranscendentalCacheStub::Generate(MacroAssembler* masm) { |
| 2278 // Argument is a number and is on stack and in r0. |
| 2279 Label runtime_call; |
| 2280 Label input_not_smi; |
| 2281 Label loaded; |
| 2282 |
| 2283 if (CpuFeatures::IsSupported(VFP3)) { |
| 2284 // Load argument and check if it is a smi. |
| 2285 __ BranchOnNotSmi(r0, &input_not_smi); |
| 2286 |
| 2287 CpuFeatures::Scope scope(VFP3); |
| 2288 // Input is a smi. Convert to double and load the low and high words |
| 2289 // of the double into r2, r3. |
| 2290 __ IntegerToDoubleConversionWithVFP3(r0, r3, r2); |
| 2291 __ b(&loaded); |
| 2292 |
| 2293 __ bind(&input_not_smi); |
| 2294 // Check if input is a HeapNumber. |
| 2295 __ CheckMap(r0, |
| 2296 r1, |
| 2297 Heap::kHeapNumberMapRootIndex, |
| 2298 &runtime_call, |
| 2299 true); |
| 2300 // Input is a HeapNumber. Load it to a double register and store the |
| 2301 // low and high words into r2, r3. |
| 2302 __ Ldrd(r2, r3, FieldMemOperand(r0, HeapNumber::kValueOffset)); |
| 2303 |
| 2304 __ bind(&loaded); |
| 2305 // r2 = low 32 bits of double value |
| 2306 // r3 = high 32 bits of double value |
| 2307 // Compute hash (the shifts are arithmetic): |
| 2308 // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1); |
| 2309 __ eor(r1, r2, Operand(r3)); |
| 2310 __ eor(r1, r1, Operand(r1, ASR, 16)); |
| 2311 __ eor(r1, r1, Operand(r1, ASR, 8)); |
| 2312 ASSERT(IsPowerOf2(TranscendentalCache::kCacheSize)); |
| 2313 __ And(r1, r1, Operand(TranscendentalCache::kCacheSize - 1)); |
| 2314 |
| 2315 // r2 = low 32 bits of double value. |
| 2316 // r3 = high 32 bits of double value. |
| 2317 // r1 = TranscendentalCache::hash(double value). |
| 2318 __ mov(r0, |
| 2319 Operand(ExternalReference::transcendental_cache_array_address())); |
| 2320 // r0 points to cache array. |
| 2321 __ ldr(r0, MemOperand(r0, type_ * sizeof(TranscendentalCache::caches_[0]))); |
| 2322 // r0 points to the cache for the type type_. |
| 2323 // If NULL, the cache hasn't been initialized yet, so go through runtime. |
| 2324 __ cmp(r0, Operand(0)); |
| 2325 __ b(eq, &runtime_call); |
| 2326 |
| 2327 #ifdef DEBUG |
| 2328 // Check that the layout of cache elements match expectations. |
| 2329 { TranscendentalCache::Element test_elem[2]; |
| 2330 char* elem_start = reinterpret_cast<char*>(&test_elem[0]); |
| 2331 char* elem2_start = reinterpret_cast<char*>(&test_elem[1]); |
| 2332 char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0])); |
| 2333 char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1])); |
| 2334 char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output)); |
| 2335 CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer. |
| 2336 CHECK_EQ(0, elem_in0 - elem_start); |
| 2337 CHECK_EQ(kIntSize, elem_in1 - elem_start); |
| 2338 CHECK_EQ(2 * kIntSize, elem_out - elem_start); |
| 2339 } |
| 2340 #endif |
| 2341 |
| 2342 // Find the address of the r1'st entry in the cache, i.e., &r0[r1*12]. |
| 2343 __ add(r1, r1, Operand(r1, LSL, 1)); |
| 2344 __ add(r0, r0, Operand(r1, LSL, 2)); |
| 2345 // Check if cache matches: Double value is stored in uint32_t[2] array. |
| 2346 __ ldm(ia, r0, r4.bit()| r5.bit() | r6.bit()); |
| 2347 __ cmp(r2, r4); |
| 2348 __ b(ne, &runtime_call); |
| 2349 __ cmp(r3, r5); |
| 2350 __ b(ne, &runtime_call); |
| 2351 // Cache hit. Load result, pop argument and return. |
| 2352 __ mov(r0, Operand(r6)); |
| 2353 __ pop(); |
| 2354 __ Ret(); |
| 2355 } |
| 2356 |
| 2357 __ bind(&runtime_call); |
| 2358 __ TailCallExternalReference(ExternalReference(RuntimeFunction()), 1, 1); |
| 2359 } |
| 2360 |
| 2361 |
| 2362 Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() { |
| 2363 switch (type_) { |
| 2364 // Add more cases when necessary. |
| 2365 case TranscendentalCache::SIN: return Runtime::kMath_sin; |
| 2366 case TranscendentalCache::COS: return Runtime::kMath_cos; |
| 2367 default: |
| 2368 UNIMPLEMENTED(); |
| 2369 return Runtime::kAbort; |
| 2370 } |
| 2371 } |
| 2372 |
| 2373 |
| 2374 void StackCheckStub::Generate(MacroAssembler* masm) { |
| 2375 // Do tail-call to runtime routine. Runtime routines expect at least one |
| 2376 // argument, so give it a Smi. |
| 2377 __ mov(r0, Operand(Smi::FromInt(0))); |
| 2378 __ push(r0); |
| 2379 __ TailCallRuntime(Runtime::kStackGuard, 1, 1); |
| 2380 |
| 2381 __ StubReturn(1); |
| 2382 } |
| 2383 |
| 2384 |
| 2385 void GenericUnaryOpStub::Generate(MacroAssembler* masm) { |
| 2386 Label slow, done; |
| 2387 |
| 2388 Register heap_number_map = r6; |
| 2389 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| 2390 |
| 2391 if (op_ == Token::SUB) { |
| 2392 // Check whether the value is a smi. |
| 2393 Label try_float; |
| 2394 __ tst(r0, Operand(kSmiTagMask)); |
| 2395 __ b(ne, &try_float); |
| 2396 |
| 2397 // Go slow case if the value of the expression is zero |
| 2398 // to make sure that we switch between 0 and -0. |
| 2399 if (negative_zero_ == kStrictNegativeZero) { |
| 2400 // If we have to check for zero, then we can check for the max negative |
| 2401 // smi while we are at it. |
| 2402 __ bic(ip, r0, Operand(0x80000000), SetCC); |
| 2403 __ b(eq, &slow); |
| 2404 __ rsb(r0, r0, Operand(0)); |
| 2405 __ StubReturn(1); |
| 2406 } else { |
| 2407 // The value of the expression is a smi and 0 is OK for -0. Try |
| 2408 // optimistic subtraction '0 - value'. |
| 2409 __ rsb(r0, r0, Operand(0), SetCC); |
| 2410 __ StubReturn(1, vc); |
| 2411 // We don't have to reverse the optimistic neg since the only case |
| 2412 // where we fall through is the minimum negative Smi, which is the case |
| 2413 // where the neg leaves the register unchanged. |
| 2414 __ jmp(&slow); // Go slow on max negative Smi. |
| 2415 } |
| 2416 |
| 2417 __ bind(&try_float); |
| 2418 __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| 2419 __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| 2420 __ cmp(r1, heap_number_map); |
| 2421 __ b(ne, &slow); |
| 2422 // r0 is a heap number. Get a new heap number in r1. |
| 2423 if (overwrite_ == UNARY_OVERWRITE) { |
| 2424 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); |
| 2425 __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign. |
| 2426 __ str(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); |
| 2427 } else { |
| 2428 __ AllocateHeapNumber(r1, r2, r3, r6, &slow); |
| 2429 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); |
| 2430 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); |
| 2431 __ str(r3, FieldMemOperand(r1, HeapNumber::kMantissaOffset)); |
| 2432 __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign. |
| 2433 __ str(r2, FieldMemOperand(r1, HeapNumber::kExponentOffset)); |
| 2434 __ mov(r0, Operand(r1)); |
| 2435 } |
| 2436 } else if (op_ == Token::BIT_NOT) { |
| 2437 // Check if the operand is a heap number. |
| 2438 __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| 2439 __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| 2440 __ cmp(r1, heap_number_map); |
| 2441 __ b(ne, &slow); |
| 2442 |
| 2443 // Convert the heap number is r0 to an untagged integer in r1. |
| 2444 GetInt32(masm, r0, r1, r2, r3, &slow); |
| 2445 |
| 2446 // Do the bitwise operation (move negated) and check if the result |
| 2447 // fits in a smi. |
| 2448 Label try_float; |
| 2449 __ mvn(r1, Operand(r1)); |
| 2450 __ add(r2, r1, Operand(0x40000000), SetCC); |
| 2451 __ b(mi, &try_float); |
| 2452 __ mov(r0, Operand(r1, LSL, kSmiTagSize)); |
| 2453 __ b(&done); |
| 2454 |
| 2455 __ bind(&try_float); |
| 2456 if (!overwrite_ == UNARY_OVERWRITE) { |
| 2457 // Allocate a fresh heap number, but don't overwrite r0 until |
| 2458 // we're sure we can do it without going through the slow case |
| 2459 // that needs the value in r0. |
| 2460 __ AllocateHeapNumber(r2, r3, r4, r6, &slow); |
| 2461 __ mov(r0, Operand(r2)); |
| 2462 } |
| 2463 |
| 2464 if (CpuFeatures::IsSupported(VFP3)) { |
| 2465 // Convert the int32 in r1 to the heap number in r0. r2 is corrupted. |
| 2466 CpuFeatures::Scope scope(VFP3); |
| 2467 __ vmov(s0, r1); |
| 2468 __ vcvt_f64_s32(d0, s0); |
| 2469 __ sub(r2, r0, Operand(kHeapObjectTag)); |
| 2470 __ vstr(d0, r2, HeapNumber::kValueOffset); |
| 2471 } else { |
| 2472 // WriteInt32ToHeapNumberStub does not trigger GC, so we do not |
| 2473 // have to set up a frame. |
| 2474 WriteInt32ToHeapNumberStub stub(r1, r0, r2); |
| 2475 __ push(lr); |
| 2476 __ Call(stub.GetCode(), RelocInfo::CODE_TARGET); |
| 2477 __ pop(lr); |
| 2478 } |
| 2479 } else { |
| 2480 UNIMPLEMENTED(); |
| 2481 } |
| 2482 |
| 2483 __ bind(&done); |
| 2484 __ StubReturn(1); |
| 2485 |
| 2486 // Handle the slow case by jumping to the JavaScript builtin. |
| 2487 __ bind(&slow); |
| 2488 __ push(r0); |
| 2489 switch (op_) { |
| 2490 case Token::SUB: |
| 2491 __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_JS); |
| 2492 break; |
| 2493 case Token::BIT_NOT: |
| 2494 __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_JS); |
| 2495 break; |
| 2496 default: |
| 2497 UNREACHABLE(); |
| 2498 } |
| 2499 } |
| 2500 |
| 2501 |
| 2502 void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) { |
| 2503 // r0 holds the exception. |
| 2504 |
| 2505 // Adjust this code if not the case. |
| 2506 STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); |
| 2507 |
| 2508 // Drop the sp to the top of the handler. |
| 2509 __ mov(r3, Operand(ExternalReference(Top::k_handler_address))); |
| 2510 __ ldr(sp, MemOperand(r3)); |
| 2511 |
| 2512 // Restore the next handler and frame pointer, discard handler state. |
| 2513 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| 2514 __ pop(r2); |
| 2515 __ str(r2, MemOperand(r3)); |
| 2516 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize); |
| 2517 __ ldm(ia_w, sp, r3.bit() | fp.bit()); // r3: discarded state. |
| 2518 |
| 2519 // Before returning we restore the context from the frame pointer if |
| 2520 // not NULL. The frame pointer is NULL in the exception handler of a |
| 2521 // JS entry frame. |
| 2522 __ cmp(fp, Operand(0)); |
| 2523 // Set cp to NULL if fp is NULL. |
| 2524 __ mov(cp, Operand(0), LeaveCC, eq); |
| 2525 // Restore cp otherwise. |
| 2526 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne); |
| 2527 #ifdef DEBUG |
| 2528 if (FLAG_debug_code) { |
| 2529 __ mov(lr, Operand(pc)); |
| 2530 } |
| 2531 #endif |
| 2532 STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize); |
| 2533 __ pop(pc); |
| 2534 } |
| 2535 |
| 2536 |
| 2537 void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm, |
| 2538 UncatchableExceptionType type) { |
| 2539 // Adjust this code if not the case. |
| 2540 STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); |
| 2541 |
| 2542 // Drop sp to the top stack handler. |
| 2543 __ mov(r3, Operand(ExternalReference(Top::k_handler_address))); |
| 2544 __ ldr(sp, MemOperand(r3)); |
| 2545 |
| 2546 // Unwind the handlers until the ENTRY handler is found. |
| 2547 Label loop, done; |
| 2548 __ bind(&loop); |
| 2549 // Load the type of the current stack handler. |
| 2550 const int kStateOffset = StackHandlerConstants::kStateOffset; |
| 2551 __ ldr(r2, MemOperand(sp, kStateOffset)); |
| 2552 __ cmp(r2, Operand(StackHandler::ENTRY)); |
| 2553 __ b(eq, &done); |
| 2554 // Fetch the next handler in the list. |
| 2555 const int kNextOffset = StackHandlerConstants::kNextOffset; |
| 2556 __ ldr(sp, MemOperand(sp, kNextOffset)); |
| 2557 __ jmp(&loop); |
| 2558 __ bind(&done); |
| 2559 |
| 2560 // Set the top handler address to next handler past the current ENTRY handler. |
| 2561 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| 2562 __ pop(r2); |
| 2563 __ str(r2, MemOperand(r3)); |
| 2564 |
| 2565 if (type == OUT_OF_MEMORY) { |
| 2566 // Set external caught exception to false. |
| 2567 ExternalReference external_caught(Top::k_external_caught_exception_address); |
| 2568 __ mov(r0, Operand(false)); |
| 2569 __ mov(r2, Operand(external_caught)); |
| 2570 __ str(r0, MemOperand(r2)); |
| 2571 |
| 2572 // Set pending exception and r0 to out of memory exception. |
| 2573 Failure* out_of_memory = Failure::OutOfMemoryException(); |
| 2574 __ mov(r0, Operand(reinterpret_cast<int32_t>(out_of_memory))); |
| 2575 __ mov(r2, Operand(ExternalReference(Top::k_pending_exception_address))); |
| 2576 __ str(r0, MemOperand(r2)); |
| 2577 } |
| 2578 |
| 2579 // Stack layout at this point. See also StackHandlerConstants. |
| 2580 // sp -> state (ENTRY) |
| 2581 // fp |
| 2582 // lr |
| 2583 |
| 2584 // Discard handler state (r2 is not used) and restore frame pointer. |
| 2585 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize); |
| 2586 __ ldm(ia_w, sp, r2.bit() | fp.bit()); // r2: discarded state. |
| 2587 // Before returning we restore the context from the frame pointer if |
| 2588 // not NULL. The frame pointer is NULL in the exception handler of a |
| 2589 // JS entry frame. |
| 2590 __ cmp(fp, Operand(0)); |
| 2591 // Set cp to NULL if fp is NULL. |
| 2592 __ mov(cp, Operand(0), LeaveCC, eq); |
| 2593 // Restore cp otherwise. |
| 2594 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne); |
| 2595 #ifdef DEBUG |
| 2596 if (FLAG_debug_code) { |
| 2597 __ mov(lr, Operand(pc)); |
| 2598 } |
| 2599 #endif |
| 2600 STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize); |
| 2601 __ pop(pc); |
| 2602 } |
| 2603 |
| 2604 |
| 2605 void CEntryStub::GenerateCore(MacroAssembler* masm, |
| 2606 Label* throw_normal_exception, |
| 2607 Label* throw_termination_exception, |
| 2608 Label* throw_out_of_memory_exception, |
| 2609 bool do_gc, |
| 2610 bool always_allocate, |
| 2611 int frame_alignment_skew) { |
| 2612 // r0: result parameter for PerformGC, if any |
| 2613 // r4: number of arguments including receiver (C callee-saved) |
| 2614 // r5: pointer to builtin function (C callee-saved) |
| 2615 // r6: pointer to the first argument (C callee-saved) |
| 2616 |
| 2617 if (do_gc) { |
| 2618 // Passing r0. |
| 2619 __ PrepareCallCFunction(1, r1); |
| 2620 __ CallCFunction(ExternalReference::perform_gc_function(), 1); |
| 2621 } |
| 2622 |
| 2623 ExternalReference scope_depth = |
| 2624 ExternalReference::heap_always_allocate_scope_depth(); |
| 2625 if (always_allocate) { |
| 2626 __ mov(r0, Operand(scope_depth)); |
| 2627 __ ldr(r1, MemOperand(r0)); |
| 2628 __ add(r1, r1, Operand(1)); |
| 2629 __ str(r1, MemOperand(r0)); |
| 2630 } |
| 2631 |
| 2632 // Call C built-in. |
| 2633 // r0 = argc, r1 = argv |
| 2634 __ mov(r0, Operand(r4)); |
| 2635 __ mov(r1, Operand(r6)); |
| 2636 |
| 2637 int frame_alignment = MacroAssembler::ActivationFrameAlignment(); |
| 2638 int frame_alignment_mask = frame_alignment - 1; |
| 2639 #if defined(V8_HOST_ARCH_ARM) |
| 2640 if (FLAG_debug_code) { |
| 2641 if (frame_alignment > kPointerSize) { |
| 2642 Label alignment_as_expected; |
| 2643 ASSERT(IsPowerOf2(frame_alignment)); |
| 2644 __ sub(r2, sp, Operand(frame_alignment_skew)); |
| 2645 __ tst(r2, Operand(frame_alignment_mask)); |
| 2646 __ b(eq, &alignment_as_expected); |
| 2647 // Don't use Check here, as it will call Runtime_Abort re-entering here. |
| 2648 __ stop("Unexpected alignment"); |
| 2649 __ bind(&alignment_as_expected); |
| 2650 } |
| 2651 } |
| 2652 #endif |
| 2653 |
| 2654 // Just before the call (jump) below lr is pushed, so the actual alignment is |
| 2655 // adding one to the current skew. |
| 2656 int alignment_before_call = |
| 2657 (frame_alignment_skew + kPointerSize) & frame_alignment_mask; |
| 2658 if (alignment_before_call > 0) { |
| 2659 // Push until the alignment before the call is met. |
| 2660 __ mov(r2, Operand(0)); |
| 2661 for (int i = alignment_before_call; |
| 2662 (i & frame_alignment_mask) != 0; |
| 2663 i += kPointerSize) { |
| 2664 __ push(r2); |
| 2665 } |
| 2666 } |
| 2667 |
| 2668 // TODO(1242173): To let the GC traverse the return address of the exit |
| 2669 // frames, we need to know where the return address is. Right now, |
| 2670 // we push it on the stack to be able to find it again, but we never |
| 2671 // restore from it in case of changes, which makes it impossible to |
| 2672 // support moving the C entry code stub. This should be fixed, but currently |
| 2673 // this is OK because the CEntryStub gets generated so early in the V8 boot |
| 2674 // sequence that it is not moving ever. |
| 2675 masm->add(lr, pc, Operand(4)); // Compute return address: (pc + 8) + 4 |
| 2676 masm->push(lr); |
| 2677 masm->Jump(r5); |
| 2678 |
| 2679 // Restore sp back to before aligning the stack. |
| 2680 if (alignment_before_call > 0) { |
| 2681 __ add(sp, sp, Operand(alignment_before_call)); |
| 2682 } |
| 2683 |
| 2684 if (always_allocate) { |
| 2685 // It's okay to clobber r2 and r3 here. Don't mess with r0 and r1 |
| 2686 // though (contain the result). |
| 2687 __ mov(r2, Operand(scope_depth)); |
| 2688 __ ldr(r3, MemOperand(r2)); |
| 2689 __ sub(r3, r3, Operand(1)); |
| 2690 __ str(r3, MemOperand(r2)); |
| 2691 } |
| 2692 |
| 2693 // check for failure result |
| 2694 Label failure_returned; |
| 2695 STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); |
| 2696 // Lower 2 bits of r2 are 0 iff r0 has failure tag. |
| 2697 __ add(r2, r0, Operand(1)); |
| 2698 __ tst(r2, Operand(kFailureTagMask)); |
| 2699 __ b(eq, &failure_returned); |
| 2700 |
| 2701 // Exit C frame and return. |
| 2702 // r0:r1: result |
| 2703 // sp: stack pointer |
| 2704 // fp: frame pointer |
| 2705 __ LeaveExitFrame(mode_); |
| 2706 |
| 2707 // check if we should retry or throw exception |
| 2708 Label retry; |
| 2709 __ bind(&failure_returned); |
| 2710 STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0); |
| 2711 __ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize)); |
| 2712 __ b(eq, &retry); |
| 2713 |
| 2714 // Special handling of out of memory exceptions. |
| 2715 Failure* out_of_memory = Failure::OutOfMemoryException(); |
| 2716 __ cmp(r0, Operand(reinterpret_cast<int32_t>(out_of_memory))); |
| 2717 __ b(eq, throw_out_of_memory_exception); |
| 2718 |
| 2719 // Retrieve the pending exception and clear the variable. |
| 2720 __ mov(ip, Operand(ExternalReference::the_hole_value_location())); |
| 2721 __ ldr(r3, MemOperand(ip)); |
| 2722 __ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address))); |
| 2723 __ ldr(r0, MemOperand(ip)); |
| 2724 __ str(r3, MemOperand(ip)); |
| 2725 |
| 2726 // Special handling of termination exceptions which are uncatchable |
| 2727 // by javascript code. |
| 2728 __ cmp(r0, Operand(Factory::termination_exception())); |
| 2729 __ b(eq, throw_termination_exception); |
| 2730 |
| 2731 // Handle normal exception. |
| 2732 __ jmp(throw_normal_exception); |
| 2733 |
| 2734 __ bind(&retry); // pass last failure (r0) as parameter (r0) when retrying |
| 2735 } |
| 2736 |
| 2737 |
| 2738 void CEntryStub::Generate(MacroAssembler* masm) { |
| 2739 // Called from JavaScript; parameters are on stack as if calling JS function |
| 2740 // r0: number of arguments including receiver |
| 2741 // r1: pointer to builtin function |
| 2742 // fp: frame pointer (restored after C call) |
| 2743 // sp: stack pointer (restored as callee's sp after C call) |
| 2744 // cp: current context (C callee-saved) |
| 2745 |
| 2746 // Result returned in r0 or r0+r1 by default. |
| 2747 |
| 2748 // NOTE: Invocations of builtins may return failure objects |
| 2749 // instead of a proper result. The builtin entry handles |
| 2750 // this by performing a garbage collection and retrying the |
| 2751 // builtin once. |
| 2752 |
| 2753 // Enter the exit frame that transitions from JavaScript to C++. |
| 2754 __ EnterExitFrame(mode_); |
| 2755 |
| 2756 // r4: number of arguments (C callee-saved) |
| 2757 // r5: pointer to builtin function (C callee-saved) |
| 2758 // r6: pointer to first argument (C callee-saved) |
| 2759 |
| 2760 Label throw_normal_exception; |
| 2761 Label throw_termination_exception; |
| 2762 Label throw_out_of_memory_exception; |
| 2763 |
| 2764 // Call into the runtime system. |
| 2765 GenerateCore(masm, |
| 2766 &throw_normal_exception, |
| 2767 &throw_termination_exception, |
| 2768 &throw_out_of_memory_exception, |
| 2769 false, |
| 2770 false, |
| 2771 -kPointerSize); |
| 2772 |
| 2773 // Do space-specific GC and retry runtime call. |
| 2774 GenerateCore(masm, |
| 2775 &throw_normal_exception, |
| 2776 &throw_termination_exception, |
| 2777 &throw_out_of_memory_exception, |
| 2778 true, |
| 2779 false, |
| 2780 0); |
| 2781 |
| 2782 // Do full GC and retry runtime call one final time. |
| 2783 Failure* failure = Failure::InternalError(); |
| 2784 __ mov(r0, Operand(reinterpret_cast<int32_t>(failure))); |
| 2785 GenerateCore(masm, |
| 2786 &throw_normal_exception, |
| 2787 &throw_termination_exception, |
| 2788 &throw_out_of_memory_exception, |
| 2789 true, |
| 2790 true, |
| 2791 kPointerSize); |
| 2792 |
| 2793 __ bind(&throw_out_of_memory_exception); |
| 2794 GenerateThrowUncatchable(masm, OUT_OF_MEMORY); |
| 2795 |
| 2796 __ bind(&throw_termination_exception); |
| 2797 GenerateThrowUncatchable(masm, TERMINATION); |
| 2798 |
| 2799 __ bind(&throw_normal_exception); |
| 2800 GenerateThrowTOS(masm); |
| 2801 } |
| 2802 |
| 2803 |
| 2804 void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { |
| 2805 // r0: code entry |
| 2806 // r1: function |
| 2807 // r2: receiver |
| 2808 // r3: argc |
| 2809 // [sp+0]: argv |
| 2810 |
| 2811 Label invoke, exit; |
| 2812 |
| 2813 // Called from C, so do not pop argc and args on exit (preserve sp) |
| 2814 // No need to save register-passed args |
| 2815 // Save callee-saved registers (incl. cp and fp), sp, and lr |
| 2816 __ stm(db_w, sp, kCalleeSaved | lr.bit()); |
| 2817 |
| 2818 // Get address of argv, see stm above. |
| 2819 // r0: code entry |
| 2820 // r1: function |
| 2821 // r2: receiver |
| 2822 // r3: argc |
| 2823 __ ldr(r4, MemOperand(sp, (kNumCalleeSaved + 1) * kPointerSize)); // argv |
| 2824 |
| 2825 // Push a frame with special values setup to mark it as an entry frame. |
| 2826 // r0: code entry |
| 2827 // r1: function |
| 2828 // r2: receiver |
| 2829 // r3: argc |
| 2830 // r4: argv |
| 2831 __ mov(r8, Operand(-1)); // Push a bad frame pointer to fail if it is used. |
| 2832 int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; |
| 2833 __ mov(r7, Operand(Smi::FromInt(marker))); |
| 2834 __ mov(r6, Operand(Smi::FromInt(marker))); |
| 2835 __ mov(r5, Operand(ExternalReference(Top::k_c_entry_fp_address))); |
| 2836 __ ldr(r5, MemOperand(r5)); |
| 2837 __ Push(r8, r7, r6, r5); |
| 2838 |
| 2839 // Setup frame pointer for the frame to be pushed. |
| 2840 __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); |
| 2841 |
| 2842 // Call a faked try-block that does the invoke. |
| 2843 __ bl(&invoke); |
| 2844 |
| 2845 // Caught exception: Store result (exception) in the pending |
| 2846 // exception field in the JSEnv and return a failure sentinel. |
| 2847 // Coming in here the fp will be invalid because the PushTryHandler below |
| 2848 // sets it to 0 to signal the existence of the JSEntry frame. |
| 2849 __ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address))); |
| 2850 __ str(r0, MemOperand(ip)); |
| 2851 __ mov(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception()))); |
| 2852 __ b(&exit); |
| 2853 |
| 2854 // Invoke: Link this frame into the handler chain. |
| 2855 __ bind(&invoke); |
| 2856 // Must preserve r0-r4, r5-r7 are available. |
| 2857 __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER); |
| 2858 // If an exception not caught by another handler occurs, this handler |
| 2859 // returns control to the code after the bl(&invoke) above, which |
| 2860 // restores all kCalleeSaved registers (including cp and fp) to their |
| 2861 // saved values before returning a failure to C. |
| 2862 |
| 2863 // Clear any pending exceptions. |
| 2864 __ mov(ip, Operand(ExternalReference::the_hole_value_location())); |
| 2865 __ ldr(r5, MemOperand(ip)); |
| 2866 __ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address))); |
| 2867 __ str(r5, MemOperand(ip)); |
| 2868 |
| 2869 // Invoke the function by calling through JS entry trampoline builtin. |
| 2870 // Notice that we cannot store a reference to the trampoline code directly in |
| 2871 // this stub, because runtime stubs are not traversed when doing GC. |
| 2872 |
| 2873 // Expected registers by Builtins::JSEntryTrampoline |
| 2874 // r0: code entry |
| 2875 // r1: function |
| 2876 // r2: receiver |
| 2877 // r3: argc |
| 2878 // r4: argv |
| 2879 if (is_construct) { |
| 2880 ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline); |
| 2881 __ mov(ip, Operand(construct_entry)); |
| 2882 } else { |
| 2883 ExternalReference entry(Builtins::JSEntryTrampoline); |
| 2884 __ mov(ip, Operand(entry)); |
| 2885 } |
| 2886 __ ldr(ip, MemOperand(ip)); // deref address |
| 2887 |
| 2888 // Branch and link to JSEntryTrampoline. We don't use the double underscore |
| 2889 // macro for the add instruction because we don't want the coverage tool |
| 2890 // inserting instructions here after we read the pc. |
| 2891 __ mov(lr, Operand(pc)); |
| 2892 masm->add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| 2893 |
| 2894 // Unlink this frame from the handler chain. When reading the |
| 2895 // address of the next handler, there is no need to use the address |
| 2896 // displacement since the current stack pointer (sp) points directly |
| 2897 // to the stack handler. |
| 2898 __ ldr(r3, MemOperand(sp, StackHandlerConstants::kNextOffset)); |
| 2899 __ mov(ip, Operand(ExternalReference(Top::k_handler_address))); |
| 2900 __ str(r3, MemOperand(ip)); |
| 2901 // No need to restore registers |
| 2902 __ add(sp, sp, Operand(StackHandlerConstants::kSize)); |
| 2903 |
| 2904 |
| 2905 __ bind(&exit); // r0 holds result |
| 2906 // Restore the top frame descriptors from the stack. |
| 2907 __ pop(r3); |
| 2908 __ mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address))); |
| 2909 __ str(r3, MemOperand(ip)); |
| 2910 |
| 2911 // Reset the stack to the callee saved registers. |
| 2912 __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); |
| 2913 |
| 2914 // Restore callee-saved registers and return. |
| 2915 #ifdef DEBUG |
| 2916 if (FLAG_debug_code) { |
| 2917 __ mov(lr, Operand(pc)); |
| 2918 } |
| 2919 #endif |
| 2920 __ ldm(ia_w, sp, kCalleeSaved | pc.bit()); |
| 2921 } |
| 2922 |
| 2923 |
| 2924 // This stub performs an instanceof, calling the builtin function if |
| 2925 // necessary. Uses r1 for the object, r0 for the function that it may |
| 2926 // be an instance of (these are fetched from the stack). |
| 2927 void InstanceofStub::Generate(MacroAssembler* masm) { |
| 2928 // Get the object - slow case for smis (we may need to throw an exception |
| 2929 // depending on the rhs). |
| 2930 Label slow, loop, is_instance, is_not_instance; |
| 2931 __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); |
| 2932 __ BranchOnSmi(r0, &slow); |
| 2933 |
| 2934 // Check that the left hand is a JS object and put map in r3. |
| 2935 __ CompareObjectType(r0, r3, r2, FIRST_JS_OBJECT_TYPE); |
| 2936 __ b(lt, &slow); |
| 2937 __ cmp(r2, Operand(LAST_JS_OBJECT_TYPE)); |
| 2938 __ b(gt, &slow); |
| 2939 |
| 2940 // Get the prototype of the function (r4 is result, r2 is scratch). |
| 2941 __ ldr(r1, MemOperand(sp, 0)); |
| 2942 // r1 is function, r3 is map. |
| 2943 |
| 2944 // Look up the function and the map in the instanceof cache. |
| 2945 Label miss; |
| 2946 __ LoadRoot(ip, Heap::kInstanceofCacheFunctionRootIndex); |
| 2947 __ cmp(r1, ip); |
| 2948 __ b(ne, &miss); |
| 2949 __ LoadRoot(ip, Heap::kInstanceofCacheMapRootIndex); |
| 2950 __ cmp(r3, ip); |
| 2951 __ b(ne, &miss); |
| 2952 __ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); |
| 2953 __ pop(); |
| 2954 __ pop(); |
| 2955 __ mov(pc, Operand(lr)); |
| 2956 |
| 2957 __ bind(&miss); |
| 2958 __ TryGetFunctionPrototype(r1, r4, r2, &slow); |
| 2959 |
| 2960 // Check that the function prototype is a JS object. |
| 2961 __ BranchOnSmi(r4, &slow); |
| 2962 __ CompareObjectType(r4, r5, r5, FIRST_JS_OBJECT_TYPE); |
| 2963 __ b(lt, &slow); |
| 2964 __ cmp(r5, Operand(LAST_JS_OBJECT_TYPE)); |
| 2965 __ b(gt, &slow); |
| 2966 |
| 2967 __ StoreRoot(r1, Heap::kInstanceofCacheFunctionRootIndex); |
| 2968 __ StoreRoot(r3, Heap::kInstanceofCacheMapRootIndex); |
| 2969 |
| 2970 // Register mapping: r3 is object map and r4 is function prototype. |
| 2971 // Get prototype of object into r2. |
| 2972 __ ldr(r2, FieldMemOperand(r3, Map::kPrototypeOffset)); |
| 2973 |
| 2974 // Loop through the prototype chain looking for the function prototype. |
| 2975 __ bind(&loop); |
| 2976 __ cmp(r2, Operand(r4)); |
| 2977 __ b(eq, &is_instance); |
| 2978 __ LoadRoot(ip, Heap::kNullValueRootIndex); |
| 2979 __ cmp(r2, ip); |
| 2980 __ b(eq, &is_not_instance); |
| 2981 __ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset)); |
| 2982 __ ldr(r2, FieldMemOperand(r2, Map::kPrototypeOffset)); |
| 2983 __ jmp(&loop); |
| 2984 |
| 2985 __ bind(&is_instance); |
| 2986 __ mov(r0, Operand(Smi::FromInt(0))); |
| 2987 __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); |
| 2988 __ pop(); |
| 2989 __ pop(); |
| 2990 __ mov(pc, Operand(lr)); // Return. |
| 2991 |
| 2992 __ bind(&is_not_instance); |
| 2993 __ mov(r0, Operand(Smi::FromInt(1))); |
| 2994 __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); |
| 2995 __ pop(); |
| 2996 __ pop(); |
| 2997 __ mov(pc, Operand(lr)); // Return. |
| 2998 |
| 2999 // Slow-case. Tail call builtin. |
| 3000 __ bind(&slow); |
| 3001 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_JS); |
| 3002 } |
| 3003 |
| 3004 |
| 3005 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { |
| 3006 // The displacement is the offset of the last parameter (if any) |
| 3007 // relative to the frame pointer. |
| 3008 static const int kDisplacement = |
| 3009 StandardFrameConstants::kCallerSPOffset - kPointerSize; |
| 3010 |
| 3011 // Check that the key is a smi. |
| 3012 Label slow; |
| 3013 __ BranchOnNotSmi(r1, &slow); |
| 3014 |
| 3015 // Check if the calling frame is an arguments adaptor frame. |
| 3016 Label adaptor; |
| 3017 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| 3018 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); |
| 3019 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| 3020 __ b(eq, &adaptor); |
| 3021 |
| 3022 // Check index against formal parameters count limit passed in |
| 3023 // through register r0. Use unsigned comparison to get negative |
| 3024 // check for free. |
| 3025 __ cmp(r1, r0); |
| 3026 __ b(cs, &slow); |
| 3027 |
| 3028 // Read the argument from the stack and return it. |
| 3029 __ sub(r3, r0, r1); |
| 3030 __ add(r3, fp, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| 3031 __ ldr(r0, MemOperand(r3, kDisplacement)); |
| 3032 __ Jump(lr); |
| 3033 |
| 3034 // Arguments adaptor case: Check index against actual arguments |
| 3035 // limit found in the arguments adaptor frame. Use unsigned |
| 3036 // comparison to get negative check for free. |
| 3037 __ bind(&adaptor); |
| 3038 __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| 3039 __ cmp(r1, r0); |
| 3040 __ b(cs, &slow); |
| 3041 |
| 3042 // Read the argument from the adaptor frame and return it. |
| 3043 __ sub(r3, r0, r1); |
| 3044 __ add(r3, r2, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| 3045 __ ldr(r0, MemOperand(r3, kDisplacement)); |
| 3046 __ Jump(lr); |
| 3047 |
| 3048 // Slow-case: Handle non-smi or out-of-bounds access to arguments |
| 3049 // by calling the runtime system. |
| 3050 __ bind(&slow); |
| 3051 __ push(r1); |
| 3052 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); |
| 3053 } |
| 3054 |
| 3055 |
| 3056 void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) { |
| 3057 // sp[0] : number of parameters |
| 3058 // sp[4] : receiver displacement |
| 3059 // sp[8] : function |
| 3060 |
| 3061 // Check if the calling frame is an arguments adaptor frame. |
| 3062 Label adaptor_frame, try_allocate, runtime; |
| 3063 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| 3064 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); |
| 3065 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| 3066 __ b(eq, &adaptor_frame); |
| 3067 |
| 3068 // Get the length from the frame. |
| 3069 __ ldr(r1, MemOperand(sp, 0)); |
| 3070 __ b(&try_allocate); |
| 3071 |
| 3072 // Patch the arguments.length and the parameters pointer. |
| 3073 __ bind(&adaptor_frame); |
| 3074 __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| 3075 __ str(r1, MemOperand(sp, 0)); |
| 3076 __ add(r3, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| 3077 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset)); |
| 3078 __ str(r3, MemOperand(sp, 1 * kPointerSize)); |
| 3079 |
| 3080 // Try the new space allocation. Start out with computing the size |
| 3081 // of the arguments object and the elements array in words. |
| 3082 Label add_arguments_object; |
| 3083 __ bind(&try_allocate); |
| 3084 __ cmp(r1, Operand(0)); |
| 3085 __ b(eq, &add_arguments_object); |
| 3086 __ mov(r1, Operand(r1, LSR, kSmiTagSize)); |
| 3087 __ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize)); |
| 3088 __ bind(&add_arguments_object); |
| 3089 __ add(r1, r1, Operand(Heap::kArgumentsObjectSize / kPointerSize)); |
| 3090 |
| 3091 // Do the allocation of both objects in one go. |
| 3092 __ AllocateInNewSpace( |
| 3093 r1, |
| 3094 r0, |
| 3095 r2, |
| 3096 r3, |
| 3097 &runtime, |
| 3098 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS)); |
| 3099 |
| 3100 // Get the arguments boilerplate from the current (global) context. |
| 3101 int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX); |
| 3102 __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| 3103 __ ldr(r4, FieldMemOperand(r4, GlobalObject::kGlobalContextOffset)); |
| 3104 __ ldr(r4, MemOperand(r4, offset)); |
| 3105 |
| 3106 // Copy the JS object part. |
| 3107 __ CopyFields(r0, r4, r3.bit(), JSObject::kHeaderSize / kPointerSize); |
| 3108 |
| 3109 // Setup the callee in-object property. |
| 3110 STATIC_ASSERT(Heap::arguments_callee_index == 0); |
| 3111 __ ldr(r3, MemOperand(sp, 2 * kPointerSize)); |
| 3112 __ str(r3, FieldMemOperand(r0, JSObject::kHeaderSize)); |
| 3113 |
| 3114 // Get the length (smi tagged) and set that as an in-object property too. |
| 3115 STATIC_ASSERT(Heap::arguments_length_index == 1); |
| 3116 __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); |
| 3117 __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize + kPointerSize)); |
| 3118 |
| 3119 // If there are no actual arguments, we're done. |
| 3120 Label done; |
| 3121 __ cmp(r1, Operand(0)); |
| 3122 __ b(eq, &done); |
| 3123 |
| 3124 // Get the parameters pointer from the stack. |
| 3125 __ ldr(r2, MemOperand(sp, 1 * kPointerSize)); |
| 3126 |
| 3127 // Setup the elements pointer in the allocated arguments object and |
| 3128 // initialize the header in the elements fixed array. |
| 3129 __ add(r4, r0, Operand(Heap::kArgumentsObjectSize)); |
| 3130 __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset)); |
| 3131 __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex); |
| 3132 __ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset)); |
| 3133 __ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset)); |
| 3134 __ mov(r1, Operand(r1, LSR, kSmiTagSize)); // Untag the length for the loop. |
| 3135 |
| 3136 // Copy the fixed array slots. |
| 3137 Label loop; |
| 3138 // Setup r4 to point to the first array slot. |
| 3139 __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| 3140 __ bind(&loop); |
| 3141 // Pre-decrement r2 with kPointerSize on each iteration. |
| 3142 // Pre-decrement in order to skip receiver. |
| 3143 __ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex)); |
| 3144 // Post-increment r4 with kPointerSize on each iteration. |
| 3145 __ str(r3, MemOperand(r4, kPointerSize, PostIndex)); |
| 3146 __ sub(r1, r1, Operand(1)); |
| 3147 __ cmp(r1, Operand(0)); |
| 3148 __ b(ne, &loop); |
| 3149 |
| 3150 // Return and remove the on-stack parameters. |
| 3151 __ bind(&done); |
| 3152 __ add(sp, sp, Operand(3 * kPointerSize)); |
| 3153 __ Ret(); |
| 3154 |
| 3155 // Do the runtime call to allocate the arguments object. |
| 3156 __ bind(&runtime); |
| 3157 __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); |
| 3158 } |
| 3159 |
| 3160 |
| 3161 void RegExpExecStub::Generate(MacroAssembler* masm) { |
| 3162 // Just jump directly to runtime if native RegExp is not selected at compile |
| 3163 // time or if regexp entry in generated code is turned off runtime switch or |
| 3164 // at compilation. |
| 3165 #ifdef V8_INTERPRETED_REGEXP |
| 3166 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
| 3167 #else // V8_INTERPRETED_REGEXP |
| 3168 if (!FLAG_regexp_entry_native) { |
| 3169 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
| 3170 return; |
| 3171 } |
| 3172 |
| 3173 // Stack frame on entry. |
| 3174 // sp[0]: last_match_info (expected JSArray) |
| 3175 // sp[4]: previous index |
| 3176 // sp[8]: subject string |
| 3177 // sp[12]: JSRegExp object |
| 3178 |
| 3179 static const int kLastMatchInfoOffset = 0 * kPointerSize; |
| 3180 static const int kPreviousIndexOffset = 1 * kPointerSize; |
| 3181 static const int kSubjectOffset = 2 * kPointerSize; |
| 3182 static const int kJSRegExpOffset = 3 * kPointerSize; |
| 3183 |
| 3184 Label runtime, invoke_regexp; |
| 3185 |
| 3186 // Allocation of registers for this function. These are in callee save |
| 3187 // registers and will be preserved by the call to the native RegExp code, as |
| 3188 // this code is called using the normal C calling convention. When calling |
| 3189 // directly from generated code the native RegExp code will not do a GC and |
| 3190 // therefore the content of these registers are safe to use after the call. |
| 3191 Register subject = r4; |
| 3192 Register regexp_data = r5; |
| 3193 Register last_match_info_elements = r6; |
| 3194 |
| 3195 // Ensure that a RegExp stack is allocated. |
| 3196 ExternalReference address_of_regexp_stack_memory_address = |
| 3197 ExternalReference::address_of_regexp_stack_memory_address(); |
| 3198 ExternalReference address_of_regexp_stack_memory_size = |
| 3199 ExternalReference::address_of_regexp_stack_memory_size(); |
| 3200 __ mov(r0, Operand(address_of_regexp_stack_memory_size)); |
| 3201 __ ldr(r0, MemOperand(r0, 0)); |
| 3202 __ tst(r0, Operand(r0)); |
| 3203 __ b(eq, &runtime); |
| 3204 |
| 3205 // Check that the first argument is a JSRegExp object. |
| 3206 __ ldr(r0, MemOperand(sp, kJSRegExpOffset)); |
| 3207 STATIC_ASSERT(kSmiTag == 0); |
| 3208 __ tst(r0, Operand(kSmiTagMask)); |
| 3209 __ b(eq, &runtime); |
| 3210 __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE); |
| 3211 __ b(ne, &runtime); |
| 3212 |
| 3213 // Check that the RegExp has been compiled (data contains a fixed array). |
| 3214 __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset)); |
| 3215 if (FLAG_debug_code) { |
| 3216 __ tst(regexp_data, Operand(kSmiTagMask)); |
| 3217 __ Check(nz, "Unexpected type for RegExp data, FixedArray expected"); |
| 3218 __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE); |
| 3219 __ Check(eq, "Unexpected type for RegExp data, FixedArray expected"); |
| 3220 } |
| 3221 |
| 3222 // regexp_data: RegExp data (FixedArray) |
| 3223 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. |
| 3224 __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset)); |
| 3225 __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP))); |
| 3226 __ b(ne, &runtime); |
| 3227 |
| 3228 // regexp_data: RegExp data (FixedArray) |
| 3229 // Check that the number of captures fit in the static offsets vector buffer. |
| 3230 __ ldr(r2, |
| 3231 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); |
| 3232 // Calculate number of capture registers (number_of_captures + 1) * 2. This |
| 3233 // uses the asumption that smis are 2 * their untagged value. |
| 3234 STATIC_ASSERT(kSmiTag == 0); |
| 3235 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); |
| 3236 __ add(r2, r2, Operand(2)); // r2 was a smi. |
| 3237 // Check that the static offsets vector buffer is large enough. |
| 3238 __ cmp(r2, Operand(OffsetsVector::kStaticOffsetsVectorSize)); |
| 3239 __ b(hi, &runtime); |
| 3240 |
| 3241 // r2: Number of capture registers |
| 3242 // regexp_data: RegExp data (FixedArray) |
| 3243 // Check that the second argument is a string. |
| 3244 __ ldr(subject, MemOperand(sp, kSubjectOffset)); |
| 3245 __ tst(subject, Operand(kSmiTagMask)); |
| 3246 __ b(eq, &runtime); |
| 3247 Condition is_string = masm->IsObjectStringType(subject, r0); |
| 3248 __ b(NegateCondition(is_string), &runtime); |
| 3249 // Get the length of the string to r3. |
| 3250 __ ldr(r3, FieldMemOperand(subject, String::kLengthOffset)); |
| 3251 |
| 3252 // r2: Number of capture registers |
| 3253 // r3: Length of subject string as a smi |
| 3254 // subject: Subject string |
| 3255 // regexp_data: RegExp data (FixedArray) |
| 3256 // Check that the third argument is a positive smi less than the subject |
| 3257 // string length. A negative value will be greater (unsigned comparison). |
| 3258 __ ldr(r0, MemOperand(sp, kPreviousIndexOffset)); |
| 3259 __ tst(r0, Operand(kSmiTagMask)); |
| 3260 __ b(ne, &runtime); |
| 3261 __ cmp(r3, Operand(r0)); |
| 3262 __ b(ls, &runtime); |
| 3263 |
| 3264 // r2: Number of capture registers |
| 3265 // subject: Subject string |
| 3266 // regexp_data: RegExp data (FixedArray) |
| 3267 // Check that the fourth object is a JSArray object. |
| 3268 __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset)); |
| 3269 __ tst(r0, Operand(kSmiTagMask)); |
| 3270 __ b(eq, &runtime); |
| 3271 __ CompareObjectType(r0, r1, r1, JS_ARRAY_TYPE); |
| 3272 __ b(ne, &runtime); |
| 3273 // Check that the JSArray is in fast case. |
| 3274 __ ldr(last_match_info_elements, |
| 3275 FieldMemOperand(r0, JSArray::kElementsOffset)); |
| 3276 __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset)); |
| 3277 __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex); |
| 3278 __ cmp(r0, ip); |
| 3279 __ b(ne, &runtime); |
| 3280 // Check that the last match info has space for the capture registers and the |
| 3281 // additional information. |
| 3282 __ ldr(r0, |
| 3283 FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset)); |
| 3284 __ add(r2, r2, Operand(RegExpImpl::kLastMatchOverhead)); |
| 3285 __ cmp(r2, Operand(r0, ASR, kSmiTagSize)); |
| 3286 __ b(gt, &runtime); |
| 3287 |
| 3288 // subject: Subject string |
| 3289 // regexp_data: RegExp data (FixedArray) |
| 3290 // Check the representation and encoding of the subject string. |
| 3291 Label seq_string; |
| 3292 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset)); |
| 3293 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); |
| 3294 // First check for flat string. |
| 3295 __ tst(r0, Operand(kIsNotStringMask | kStringRepresentationMask)); |
| 3296 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0); |
| 3297 __ b(eq, &seq_string); |
| 3298 |
| 3299 // subject: Subject string |
| 3300 // regexp_data: RegExp data (FixedArray) |
| 3301 // Check for flat cons string. |
| 3302 // A flat cons string is a cons string where the second part is the empty |
| 3303 // string. In that case the subject string is just the first part of the cons |
| 3304 // string. Also in this case the first part of the cons string is known to be |
| 3305 // a sequential string or an external string. |
| 3306 STATIC_ASSERT(kExternalStringTag !=0); |
| 3307 STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0); |
| 3308 __ tst(r0, Operand(kIsNotStringMask | kExternalStringTag)); |
| 3309 __ b(ne, &runtime); |
| 3310 __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset)); |
| 3311 __ LoadRoot(r1, Heap::kEmptyStringRootIndex); |
| 3312 __ cmp(r0, r1); |
| 3313 __ b(ne, &runtime); |
| 3314 __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset)); |
| 3315 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset)); |
| 3316 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); |
| 3317 // Is first part a flat string? |
| 3318 STATIC_ASSERT(kSeqStringTag == 0); |
| 3319 __ tst(r0, Operand(kStringRepresentationMask)); |
| 3320 __ b(nz, &runtime); |
| 3321 |
| 3322 __ bind(&seq_string); |
| 3323 // subject: Subject string |
| 3324 // regexp_data: RegExp data (FixedArray) |
| 3325 // r0: Instance type of subject string |
| 3326 STATIC_ASSERT(4 == kAsciiStringTag); |
| 3327 STATIC_ASSERT(kTwoByteStringTag == 0); |
| 3328 // Find the code object based on the assumptions above. |
| 3329 __ and_(r0, r0, Operand(kStringEncodingMask)); |
| 3330 __ mov(r3, Operand(r0, ASR, 2), SetCC); |
| 3331 __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset), ne); |
| 3332 __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq); |
| 3333 |
| 3334 // Check that the irregexp code has been generated for the actual string |
| 3335 // encoding. If it has, the field contains a code object otherwise it contains |
| 3336 // the hole. |
| 3337 __ CompareObjectType(r7, r0, r0, CODE_TYPE); |
| 3338 __ b(ne, &runtime); |
| 3339 |
| 3340 // r3: encoding of subject string (1 if ascii, 0 if two_byte); |
| 3341 // r7: code |
| 3342 // subject: Subject string |
| 3343 // regexp_data: RegExp data (FixedArray) |
| 3344 // Load used arguments before starting to push arguments for call to native |
| 3345 // RegExp code to avoid handling changing stack height. |
| 3346 __ ldr(r1, MemOperand(sp, kPreviousIndexOffset)); |
| 3347 __ mov(r1, Operand(r1, ASR, kSmiTagSize)); |
| 3348 |
| 3349 // r1: previous index |
| 3350 // r3: encoding of subject string (1 if ascii, 0 if two_byte); |
| 3351 // r7: code |
| 3352 // subject: Subject string |
| 3353 // regexp_data: RegExp data (FixedArray) |
| 3354 // All checks done. Now push arguments for native regexp code. |
| 3355 __ IncrementCounter(&Counters::regexp_entry_native, 1, r0, r2); |
| 3356 |
| 3357 static const int kRegExpExecuteArguments = 7; |
| 3358 __ push(lr); |
| 3359 __ PrepareCallCFunction(kRegExpExecuteArguments, r0); |
| 3360 |
| 3361 // Argument 7 (sp[8]): Indicate that this is a direct call from JavaScript. |
| 3362 __ mov(r0, Operand(1)); |
| 3363 __ str(r0, MemOperand(sp, 2 * kPointerSize)); |
| 3364 |
| 3365 // Argument 6 (sp[4]): Start (high end) of backtracking stack memory area. |
| 3366 __ mov(r0, Operand(address_of_regexp_stack_memory_address)); |
| 3367 __ ldr(r0, MemOperand(r0, 0)); |
| 3368 __ mov(r2, Operand(address_of_regexp_stack_memory_size)); |
| 3369 __ ldr(r2, MemOperand(r2, 0)); |
| 3370 __ add(r0, r0, Operand(r2)); |
| 3371 __ str(r0, MemOperand(sp, 1 * kPointerSize)); |
| 3372 |
| 3373 // Argument 5 (sp[0]): static offsets vector buffer. |
| 3374 __ mov(r0, Operand(ExternalReference::address_of_static_offsets_vector())); |
| 3375 __ str(r0, MemOperand(sp, 0 * kPointerSize)); |
| 3376 |
| 3377 // For arguments 4 and 3 get string length, calculate start of string data and |
| 3378 // calculate the shift of the index (0 for ASCII and 1 for two byte). |
| 3379 __ ldr(r0, FieldMemOperand(subject, String::kLengthOffset)); |
| 3380 __ mov(r0, Operand(r0, ASR, kSmiTagSize)); |
| 3381 STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize); |
| 3382 __ add(r9, subject, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| 3383 __ eor(r3, r3, Operand(1)); |
| 3384 // Argument 4 (r3): End of string data |
| 3385 // Argument 3 (r2): Start of string data |
| 3386 __ add(r2, r9, Operand(r1, LSL, r3)); |
| 3387 __ add(r3, r9, Operand(r0, LSL, r3)); |
| 3388 |
| 3389 // Argument 2 (r1): Previous index. |
| 3390 // Already there |
| 3391 |
| 3392 // Argument 1 (r0): Subject string. |
| 3393 __ mov(r0, subject); |
| 3394 |
| 3395 // Locate the code entry and call it. |
| 3396 __ add(r7, r7, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| 3397 __ CallCFunction(r7, kRegExpExecuteArguments); |
| 3398 __ pop(lr); |
| 3399 |
| 3400 // r0: result |
| 3401 // subject: subject string (callee saved) |
| 3402 // regexp_data: RegExp data (callee saved) |
| 3403 // last_match_info_elements: Last match info elements (callee saved) |
| 3404 |
| 3405 // Check the result. |
| 3406 Label success; |
| 3407 __ cmp(r0, Operand(NativeRegExpMacroAssembler::SUCCESS)); |
| 3408 __ b(eq, &success); |
| 3409 Label failure; |
| 3410 __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE)); |
| 3411 __ b(eq, &failure); |
| 3412 __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION)); |
| 3413 // If not exception it can only be retry. Handle that in the runtime system. |
| 3414 __ b(ne, &runtime); |
| 3415 // Result must now be exception. If there is no pending exception already a |
| 3416 // stack overflow (on the backtrack stack) was detected in RegExp code but |
| 3417 // haven't created the exception yet. Handle that in the runtime system. |
| 3418 // TODO(592): Rerunning the RegExp to get the stack overflow exception. |
| 3419 __ mov(r0, Operand(ExternalReference::the_hole_value_location())); |
| 3420 __ ldr(r0, MemOperand(r0, 0)); |
| 3421 __ mov(r1, Operand(ExternalReference(Top::k_pending_exception_address))); |
| 3422 __ ldr(r1, MemOperand(r1, 0)); |
| 3423 __ cmp(r0, r1); |
| 3424 __ b(eq, &runtime); |
| 3425 __ bind(&failure); |
| 3426 // For failure and exception return null. |
| 3427 __ mov(r0, Operand(Factory::null_value())); |
| 3428 __ add(sp, sp, Operand(4 * kPointerSize)); |
| 3429 __ Ret(); |
| 3430 |
| 3431 // Process the result from the native regexp code. |
| 3432 __ bind(&success); |
| 3433 __ ldr(r1, |
| 3434 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); |
| 3435 // Calculate number of capture registers (number_of_captures + 1) * 2. |
| 3436 STATIC_ASSERT(kSmiTag == 0); |
| 3437 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); |
| 3438 __ add(r1, r1, Operand(2)); // r1 was a smi. |
| 3439 |
| 3440 // r1: number of capture registers |
| 3441 // r4: subject string |
| 3442 // Store the capture count. |
| 3443 __ mov(r2, Operand(r1, LSL, kSmiTagSize + kSmiShiftSize)); // To smi. |
| 3444 __ str(r2, FieldMemOperand(last_match_info_elements, |
| 3445 RegExpImpl::kLastCaptureCountOffset)); |
| 3446 // Store last subject and last input. |
| 3447 __ mov(r3, last_match_info_elements); // Moved up to reduce latency. |
| 3448 __ str(subject, |
| 3449 FieldMemOperand(last_match_info_elements, |
| 3450 RegExpImpl::kLastSubjectOffset)); |
| 3451 __ RecordWrite(r3, Operand(RegExpImpl::kLastSubjectOffset), r2, r7); |
| 3452 __ str(subject, |
| 3453 FieldMemOperand(last_match_info_elements, |
| 3454 RegExpImpl::kLastInputOffset)); |
| 3455 __ mov(r3, last_match_info_elements); |
| 3456 __ RecordWrite(r3, Operand(RegExpImpl::kLastInputOffset), r2, r7); |
| 3457 |
| 3458 // Get the static offsets vector filled by the native regexp code. |
| 3459 ExternalReference address_of_static_offsets_vector = |
| 3460 ExternalReference::address_of_static_offsets_vector(); |
| 3461 __ mov(r2, Operand(address_of_static_offsets_vector)); |
| 3462 |
| 3463 // r1: number of capture registers |
| 3464 // r2: offsets vector |
| 3465 Label next_capture, done; |
| 3466 // Capture register counter starts from number of capture registers and |
| 3467 // counts down until wraping after zero. |
| 3468 __ add(r0, |
| 3469 last_match_info_elements, |
| 3470 Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag)); |
| 3471 __ bind(&next_capture); |
| 3472 __ sub(r1, r1, Operand(1), SetCC); |
| 3473 __ b(mi, &done); |
| 3474 // Read the value from the static offsets vector buffer. |
| 3475 __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex)); |
| 3476 // Store the smi value in the last match info. |
| 3477 __ mov(r3, Operand(r3, LSL, kSmiTagSize)); |
| 3478 __ str(r3, MemOperand(r0, kPointerSize, PostIndex)); |
| 3479 __ jmp(&next_capture); |
| 3480 __ bind(&done); |
| 3481 |
| 3482 // Return last match info. |
| 3483 __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset)); |
| 3484 __ add(sp, sp, Operand(4 * kPointerSize)); |
| 3485 __ Ret(); |
| 3486 |
| 3487 // Do the runtime call to execute the regexp. |
| 3488 __ bind(&runtime); |
| 3489 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
| 3490 #endif // V8_INTERPRETED_REGEXP |
| 3491 } |
| 3492 |
| 3493 |
| 3494 void CallFunctionStub::Generate(MacroAssembler* masm) { |
| 3495 Label slow; |
| 3496 |
| 3497 // If the receiver might be a value (string, number or boolean) check for this |
| 3498 // and box it if it is. |
| 3499 if (ReceiverMightBeValue()) { |
| 3500 // Get the receiver from the stack. |
| 3501 // function, receiver [, arguments] |
| 3502 Label receiver_is_value, receiver_is_js_object; |
| 3503 __ ldr(r1, MemOperand(sp, argc_ * kPointerSize)); |
| 3504 |
| 3505 // Check if receiver is a smi (which is a number value). |
| 3506 __ BranchOnSmi(r1, &receiver_is_value); |
| 3507 |
| 3508 // Check if the receiver is a valid JS object. |
| 3509 __ CompareObjectType(r1, r2, r2, FIRST_JS_OBJECT_TYPE); |
| 3510 __ b(ge, &receiver_is_js_object); |
| 3511 |
| 3512 // Call the runtime to box the value. |
| 3513 __ bind(&receiver_is_value); |
| 3514 __ EnterInternalFrame(); |
| 3515 __ push(r1); |
| 3516 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS); |
| 3517 __ LeaveInternalFrame(); |
| 3518 __ str(r0, MemOperand(sp, argc_ * kPointerSize)); |
| 3519 |
| 3520 __ bind(&receiver_is_js_object); |
| 3521 } |
| 3522 |
| 3523 // Get the function to call from the stack. |
| 3524 // function, receiver [, arguments] |
| 3525 __ ldr(r1, MemOperand(sp, (argc_ + 1) * kPointerSize)); |
| 3526 |
| 3527 // Check that the function is really a JavaScript function. |
| 3528 // r1: pushed function (to be verified) |
| 3529 __ BranchOnSmi(r1, &slow); |
| 3530 // Get the map of the function object. |
| 3531 __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE); |
| 3532 __ b(ne, &slow); |
| 3533 |
| 3534 // Fast-case: Invoke the function now. |
| 3535 // r1: pushed function |
| 3536 ParameterCount actual(argc_); |
| 3537 __ InvokeFunction(r1, actual, JUMP_FUNCTION); |
| 3538 |
| 3539 // Slow-case: Non-function called. |
| 3540 __ bind(&slow); |
| 3541 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead |
| 3542 // of the original receiver from the call site). |
| 3543 __ str(r1, MemOperand(sp, argc_ * kPointerSize)); |
| 3544 __ mov(r0, Operand(argc_)); // Setup the number of arguments. |
| 3545 __ mov(r2, Operand(0)); |
| 3546 __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION); |
| 3547 __ Jump(Handle<Code>(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)), |
| 3548 RelocInfo::CODE_TARGET); |
| 3549 } |
| 3550 |
| 3551 |
| 3552 // Unfortunately you have to run without snapshots to see most of these |
| 3553 // names in the profile since most compare stubs end up in the snapshot. |
| 3554 const char* CompareStub::GetName() { |
| 3555 ASSERT((lhs_.is(r0) && rhs_.is(r1)) || |
| 3556 (lhs_.is(r1) && rhs_.is(r0))); |
| 3557 |
| 3558 if (name_ != NULL) return name_; |
| 3559 const int kMaxNameLength = 100; |
| 3560 name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength); |
| 3561 if (name_ == NULL) return "OOM"; |
| 3562 |
| 3563 const char* cc_name; |
| 3564 switch (cc_) { |
| 3565 case lt: cc_name = "LT"; break; |
| 3566 case gt: cc_name = "GT"; break; |
| 3567 case le: cc_name = "LE"; break; |
| 3568 case ge: cc_name = "GE"; break; |
| 3569 case eq: cc_name = "EQ"; break; |
| 3570 case ne: cc_name = "NE"; break; |
| 3571 default: cc_name = "UnknownCondition"; break; |
| 3572 } |
| 3573 |
| 3574 const char* lhs_name = lhs_.is(r0) ? "_r0" : "_r1"; |
| 3575 const char* rhs_name = rhs_.is(r0) ? "_r0" : "_r1"; |
| 3576 |
| 3577 const char* strict_name = ""; |
| 3578 if (strict_ && (cc_ == eq || cc_ == ne)) { |
| 3579 strict_name = "_STRICT"; |
| 3580 } |
| 3581 |
| 3582 const char* never_nan_nan_name = ""; |
| 3583 if (never_nan_nan_ && (cc_ == eq || cc_ == ne)) { |
| 3584 never_nan_nan_name = "_NO_NAN"; |
| 3585 } |
| 3586 |
| 3587 const char* include_number_compare_name = ""; |
| 3588 if (!include_number_compare_) { |
| 3589 include_number_compare_name = "_NO_NUMBER"; |
| 3590 } |
| 3591 |
| 3592 OS::SNPrintF(Vector<char>(name_, kMaxNameLength), |
| 3593 "CompareStub_%s%s%s%s%s%s", |
| 3594 cc_name, |
| 3595 lhs_name, |
| 3596 rhs_name, |
| 3597 strict_name, |
| 3598 never_nan_nan_name, |
| 3599 include_number_compare_name); |
| 3600 return name_; |
| 3601 } |
| 3602 |
| 3603 |
| 3604 int CompareStub::MinorKey() { |
| 3605 // Encode the three parameters in a unique 16 bit value. To avoid duplicate |
| 3606 // stubs the never NaN NaN condition is only taken into account if the |
| 3607 // condition is equals. |
| 3608 ASSERT((static_cast<unsigned>(cc_) >> 28) < (1 << 12)); |
| 3609 ASSERT((lhs_.is(r0) && rhs_.is(r1)) || |
| 3610 (lhs_.is(r1) && rhs_.is(r0))); |
| 3611 return ConditionField::encode(static_cast<unsigned>(cc_) >> 28) |
| 3612 | RegisterField::encode(lhs_.is(r0)) |
| 3613 | StrictField::encode(strict_) |
| 3614 | NeverNanNanField::encode(cc_ == eq ? never_nan_nan_ : false) |
| 3615 | IncludeNumberCompareField::encode(include_number_compare_); |
| 3616 } |
| 3617 |
| 3618 |
| 3619 // StringCharCodeAtGenerator |
| 3620 |
| 3621 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { |
| 3622 Label flat_string; |
| 3623 Label ascii_string; |
| 3624 Label got_char_code; |
| 3625 |
| 3626 // If the receiver is a smi trigger the non-string case. |
| 3627 __ BranchOnSmi(object_, receiver_not_string_); |
| 3628 |
| 3629 // Fetch the instance type of the receiver into result register. |
| 3630 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); |
| 3631 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); |
| 3632 // If the receiver is not a string trigger the non-string case. |
| 3633 __ tst(result_, Operand(kIsNotStringMask)); |
| 3634 __ b(ne, receiver_not_string_); |
| 3635 |
| 3636 // If the index is non-smi trigger the non-smi case. |
| 3637 __ BranchOnNotSmi(index_, &index_not_smi_); |
| 3638 |
| 3639 // Put smi-tagged index into scratch register. |
| 3640 __ mov(scratch_, index_); |
| 3641 __ bind(&got_smi_index_); |
| 3642 |
| 3643 // Check for index out of range. |
| 3644 __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset)); |
| 3645 __ cmp(ip, Operand(scratch_)); |
| 3646 __ b(ls, index_out_of_range_); |
| 3647 |
| 3648 // We need special handling for non-flat strings. |
| 3649 STATIC_ASSERT(kSeqStringTag == 0); |
| 3650 __ tst(result_, Operand(kStringRepresentationMask)); |
| 3651 __ b(eq, &flat_string); |
| 3652 |
| 3653 // Handle non-flat strings. |
| 3654 __ tst(result_, Operand(kIsConsStringMask)); |
| 3655 __ b(eq, &call_runtime_); |
| 3656 |
| 3657 // ConsString. |
| 3658 // Check whether the right hand side is the empty string (i.e. if |
| 3659 // this is really a flat string in a cons string). If that is not |
| 3660 // the case we would rather go to the runtime system now to flatten |
| 3661 // the string. |
| 3662 __ ldr(result_, FieldMemOperand(object_, ConsString::kSecondOffset)); |
| 3663 __ LoadRoot(ip, Heap::kEmptyStringRootIndex); |
| 3664 __ cmp(result_, Operand(ip)); |
| 3665 __ b(ne, &call_runtime_); |
| 3666 // Get the first of the two strings and load its instance type. |
| 3667 __ ldr(object_, FieldMemOperand(object_, ConsString::kFirstOffset)); |
| 3668 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); |
| 3669 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); |
| 3670 // If the first cons component is also non-flat, then go to runtime. |
| 3671 STATIC_ASSERT(kSeqStringTag == 0); |
| 3672 __ tst(result_, Operand(kStringRepresentationMask)); |
| 3673 __ b(nz, &call_runtime_); |
| 3674 |
| 3675 // Check for 1-byte or 2-byte string. |
| 3676 __ bind(&flat_string); |
| 3677 STATIC_ASSERT(kAsciiStringTag != 0); |
| 3678 __ tst(result_, Operand(kStringEncodingMask)); |
| 3679 __ b(nz, &ascii_string); |
| 3680 |
| 3681 // 2-byte string. |
| 3682 // Load the 2-byte character code into the result register. We can |
| 3683 // add without shifting since the smi tag size is the log2 of the |
| 3684 // number of bytes in a two-byte character. |
| 3685 STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1 && kSmiShiftSize == 0); |
| 3686 __ add(scratch_, object_, Operand(scratch_)); |
| 3687 __ ldrh(result_, FieldMemOperand(scratch_, SeqTwoByteString::kHeaderSize)); |
| 3688 __ jmp(&got_char_code); |
| 3689 |
| 3690 // ASCII string. |
| 3691 // Load the byte into the result register. |
| 3692 __ bind(&ascii_string); |
| 3693 __ add(scratch_, object_, Operand(scratch_, LSR, kSmiTagSize)); |
| 3694 __ ldrb(result_, FieldMemOperand(scratch_, SeqAsciiString::kHeaderSize)); |
| 3695 |
| 3696 __ bind(&got_char_code); |
| 3697 __ mov(result_, Operand(result_, LSL, kSmiTagSize)); |
| 3698 __ bind(&exit_); |
| 3699 } |
| 3700 |
| 3701 |
| 3702 void StringCharCodeAtGenerator::GenerateSlow( |
| 3703 MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
| 3704 __ Abort("Unexpected fallthrough to CharCodeAt slow case"); |
| 3705 |
| 3706 // Index is not a smi. |
| 3707 __ bind(&index_not_smi_); |
| 3708 // If index is a heap number, try converting it to an integer. |
| 3709 __ CheckMap(index_, |
| 3710 scratch_, |
| 3711 Heap::kHeapNumberMapRootIndex, |
| 3712 index_not_number_, |
| 3713 true); |
| 3714 call_helper.BeforeCall(masm); |
| 3715 __ Push(object_, index_); |
| 3716 __ push(index_); // Consumed by runtime conversion function. |
| 3717 if (index_flags_ == STRING_INDEX_IS_NUMBER) { |
| 3718 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); |
| 3719 } else { |
| 3720 ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); |
| 3721 // NumberToSmi discards numbers that are not exact integers. |
| 3722 __ CallRuntime(Runtime::kNumberToSmi, 1); |
| 3723 } |
| 3724 // Save the conversion result before the pop instructions below |
| 3725 // have a chance to overwrite it. |
| 3726 __ Move(scratch_, r0); |
| 3727 __ pop(index_); |
| 3728 __ pop(object_); |
| 3729 // Reload the instance type. |
| 3730 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); |
| 3731 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); |
| 3732 call_helper.AfterCall(masm); |
| 3733 // If index is still not a smi, it must be out of range. |
| 3734 __ BranchOnNotSmi(scratch_, index_out_of_range_); |
| 3735 // Otherwise, return to the fast path. |
| 3736 __ jmp(&got_smi_index_); |
| 3737 |
| 3738 // Call runtime. We get here when the receiver is a string and the |
| 3739 // index is a number, but the code of getting the actual character |
| 3740 // is too complex (e.g., when the string needs to be flattened). |
| 3741 __ bind(&call_runtime_); |
| 3742 call_helper.BeforeCall(masm); |
| 3743 __ Push(object_, index_); |
| 3744 __ CallRuntime(Runtime::kStringCharCodeAt, 2); |
| 3745 __ Move(result_, r0); |
| 3746 call_helper.AfterCall(masm); |
| 3747 __ jmp(&exit_); |
| 3748 |
| 3749 __ Abort("Unexpected fallthrough from CharCodeAt slow case"); |
| 3750 } |
| 3751 |
| 3752 |
| 3753 // ------------------------------------------------------------------------- |
| 3754 // StringCharFromCodeGenerator |
| 3755 |
| 3756 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { |
| 3757 // Fast case of Heap::LookupSingleCharacterStringFromCode. |
| 3758 STATIC_ASSERT(kSmiTag == 0); |
| 3759 STATIC_ASSERT(kSmiShiftSize == 0); |
| 3760 ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1)); |
| 3761 __ tst(code_, |
| 3762 Operand(kSmiTagMask | |
| 3763 ((~String::kMaxAsciiCharCode) << kSmiTagSize))); |
| 3764 __ b(nz, &slow_case_); |
| 3765 |
| 3766 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); |
| 3767 // At this point code register contains smi tagged ascii char code. |
| 3768 STATIC_ASSERT(kSmiTag == 0); |
| 3769 __ add(result_, result_, Operand(code_, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| 3770 __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize)); |
| 3771 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); |
| 3772 __ cmp(result_, Operand(ip)); |
| 3773 __ b(eq, &slow_case_); |
| 3774 __ bind(&exit_); |
| 3775 } |
| 3776 |
| 3777 |
| 3778 void StringCharFromCodeGenerator::GenerateSlow( |
| 3779 MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
| 3780 __ Abort("Unexpected fallthrough to CharFromCode slow case"); |
| 3781 |
| 3782 __ bind(&slow_case_); |
| 3783 call_helper.BeforeCall(masm); |
| 3784 __ push(code_); |
| 3785 __ CallRuntime(Runtime::kCharFromCode, 1); |
| 3786 __ Move(result_, r0); |
| 3787 call_helper.AfterCall(masm); |
| 3788 __ jmp(&exit_); |
| 3789 |
| 3790 __ Abort("Unexpected fallthrough from CharFromCode slow case"); |
| 3791 } |
| 3792 |
| 3793 |
| 3794 // ------------------------------------------------------------------------- |
| 3795 // StringCharAtGenerator |
| 3796 |
| 3797 void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) { |
| 3798 char_code_at_generator_.GenerateFast(masm); |
| 3799 char_from_code_generator_.GenerateFast(masm); |
| 3800 } |
| 3801 |
| 3802 |
| 3803 void StringCharAtGenerator::GenerateSlow( |
| 3804 MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
| 3805 char_code_at_generator_.GenerateSlow(masm, call_helper); |
| 3806 char_from_code_generator_.GenerateSlow(masm, call_helper); |
| 3807 } |
| 3808 |
| 3809 |
| 3810 class StringHelper : public AllStatic { |
| 3811 public: |
| 3812 // Generate code for copying characters using a simple loop. This should only |
| 3813 // be used in places where the number of characters is small and the |
| 3814 // additional setup and checking in GenerateCopyCharactersLong adds too much |
| 3815 // overhead. Copying of overlapping regions is not supported. |
| 3816 // Dest register ends at the position after the last character written. |
| 3817 static void GenerateCopyCharacters(MacroAssembler* masm, |
| 3818 Register dest, |
| 3819 Register src, |
| 3820 Register count, |
| 3821 Register scratch, |
| 3822 bool ascii); |
| 3823 |
| 3824 // Generate code for copying a large number of characters. This function |
| 3825 // is allowed to spend extra time setting up conditions to make copying |
| 3826 // faster. Copying of overlapping regions is not supported. |
| 3827 // Dest register ends at the position after the last character written. |
| 3828 static void GenerateCopyCharactersLong(MacroAssembler* masm, |
| 3829 Register dest, |
| 3830 Register src, |
| 3831 Register count, |
| 3832 Register scratch1, |
| 3833 Register scratch2, |
| 3834 Register scratch3, |
| 3835 Register scratch4, |
| 3836 Register scratch5, |
| 3837 int flags); |
| 3838 |
| 3839 |
| 3840 // Probe the symbol table for a two character string. If the string is |
| 3841 // not found by probing a jump to the label not_found is performed. This jump |
| 3842 // does not guarantee that the string is not in the symbol table. If the |
| 3843 // string is found the code falls through with the string in register r0. |
| 3844 // Contents of both c1 and c2 registers are modified. At the exit c1 is |
| 3845 // guaranteed to contain halfword with low and high bytes equal to |
| 3846 // initial contents of c1 and c2 respectively. |
| 3847 static void GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, |
| 3848 Register c1, |
| 3849 Register c2, |
| 3850 Register scratch1, |
| 3851 Register scratch2, |
| 3852 Register scratch3, |
| 3853 Register scratch4, |
| 3854 Register scratch5, |
| 3855 Label* not_found); |
| 3856 |
| 3857 // Generate string hash. |
| 3858 static void GenerateHashInit(MacroAssembler* masm, |
| 3859 Register hash, |
| 3860 Register character); |
| 3861 |
| 3862 static void GenerateHashAddCharacter(MacroAssembler* masm, |
| 3863 Register hash, |
| 3864 Register character); |
| 3865 |
| 3866 static void GenerateHashGetHash(MacroAssembler* masm, |
| 3867 Register hash); |
| 3868 |
| 3869 private: |
| 3870 DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper); |
| 3871 }; |
| 3872 |
| 3873 |
| 3874 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, |
| 3875 Register dest, |
| 3876 Register src, |
| 3877 Register count, |
| 3878 Register scratch, |
| 3879 bool ascii) { |
| 3880 Label loop; |
| 3881 Label done; |
| 3882 // This loop just copies one character at a time, as it is only used for very |
| 3883 // short strings. |
| 3884 if (!ascii) { |
| 3885 __ add(count, count, Operand(count), SetCC); |
| 3886 } else { |
| 3887 __ cmp(count, Operand(0)); |
| 3888 } |
| 3889 __ b(eq, &done); |
| 3890 |
| 3891 __ bind(&loop); |
| 3892 __ ldrb(scratch, MemOperand(src, 1, PostIndex)); |
| 3893 // Perform sub between load and dependent store to get the load time to |
| 3894 // complete. |
| 3895 __ sub(count, count, Operand(1), SetCC); |
| 3896 __ strb(scratch, MemOperand(dest, 1, PostIndex)); |
| 3897 // last iteration. |
| 3898 __ b(gt, &loop); |
| 3899 |
| 3900 __ bind(&done); |
| 3901 } |
| 3902 |
| 3903 |
| 3904 enum CopyCharactersFlags { |
| 3905 COPY_ASCII = 1, |
| 3906 DEST_ALWAYS_ALIGNED = 2 |
| 3907 }; |
| 3908 |
| 3909 |
| 3910 void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm, |
| 3911 Register dest, |
| 3912 Register src, |
| 3913 Register count, |
| 3914 Register scratch1, |
| 3915 Register scratch2, |
| 3916 Register scratch3, |
| 3917 Register scratch4, |
| 3918 Register scratch5, |
| 3919 int flags) { |
| 3920 bool ascii = (flags & COPY_ASCII) != 0; |
| 3921 bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0; |
| 3922 |
| 3923 if (dest_always_aligned && FLAG_debug_code) { |
| 3924 // Check that destination is actually word aligned if the flag says |
| 3925 // that it is. |
| 3926 __ tst(dest, Operand(kPointerAlignmentMask)); |
| 3927 __ Check(eq, "Destination of copy not aligned."); |
| 3928 } |
| 3929 |
| 3930 const int kReadAlignment = 4; |
| 3931 const int kReadAlignmentMask = kReadAlignment - 1; |
| 3932 // Ensure that reading an entire aligned word containing the last character |
| 3933 // of a string will not read outside the allocated area (because we pad up |
| 3934 // to kObjectAlignment). |
| 3935 STATIC_ASSERT(kObjectAlignment >= kReadAlignment); |
| 3936 // Assumes word reads and writes are little endian. |
| 3937 // Nothing to do for zero characters. |
| 3938 Label done; |
| 3939 if (!ascii) { |
| 3940 __ add(count, count, Operand(count), SetCC); |
| 3941 } else { |
| 3942 __ cmp(count, Operand(0)); |
| 3943 } |
| 3944 __ b(eq, &done); |
| 3945 |
| 3946 // Assume that you cannot read (or write) unaligned. |
| 3947 Label byte_loop; |
| 3948 // Must copy at least eight bytes, otherwise just do it one byte at a time. |
| 3949 __ cmp(count, Operand(8)); |
| 3950 __ add(count, dest, Operand(count)); |
| 3951 Register limit = count; // Read until src equals this. |
| 3952 __ b(lt, &byte_loop); |
| 3953 |
| 3954 if (!dest_always_aligned) { |
| 3955 // Align dest by byte copying. Copies between zero and three bytes. |
| 3956 __ and_(scratch4, dest, Operand(kReadAlignmentMask), SetCC); |
| 3957 Label dest_aligned; |
| 3958 __ b(eq, &dest_aligned); |
| 3959 __ cmp(scratch4, Operand(2)); |
| 3960 __ ldrb(scratch1, MemOperand(src, 1, PostIndex)); |
| 3961 __ ldrb(scratch2, MemOperand(src, 1, PostIndex), le); |
| 3962 __ ldrb(scratch3, MemOperand(src, 1, PostIndex), lt); |
| 3963 __ strb(scratch1, MemOperand(dest, 1, PostIndex)); |
| 3964 __ strb(scratch2, MemOperand(dest, 1, PostIndex), le); |
| 3965 __ strb(scratch3, MemOperand(dest, 1, PostIndex), lt); |
| 3966 __ bind(&dest_aligned); |
| 3967 } |
| 3968 |
| 3969 Label simple_loop; |
| 3970 |
| 3971 __ sub(scratch4, dest, Operand(src)); |
| 3972 __ and_(scratch4, scratch4, Operand(0x03), SetCC); |
| 3973 __ b(eq, &simple_loop); |
| 3974 // Shift register is number of bits in a source word that |
| 3975 // must be combined with bits in the next source word in order |
| 3976 // to create a destination word. |
| 3977 |
| 3978 // Complex loop for src/dst that are not aligned the same way. |
| 3979 { |
| 3980 Label loop; |
| 3981 __ mov(scratch4, Operand(scratch4, LSL, 3)); |
| 3982 Register left_shift = scratch4; |
| 3983 __ and_(src, src, Operand(~3)); // Round down to load previous word. |
| 3984 __ ldr(scratch1, MemOperand(src, 4, PostIndex)); |
| 3985 // Store the "shift" most significant bits of scratch in the least |
| 3986 // signficant bits (i.e., shift down by (32-shift)). |
| 3987 __ rsb(scratch2, left_shift, Operand(32)); |
| 3988 Register right_shift = scratch2; |
| 3989 __ mov(scratch1, Operand(scratch1, LSR, right_shift)); |
| 3990 |
| 3991 __ bind(&loop); |
| 3992 __ ldr(scratch3, MemOperand(src, 4, PostIndex)); |
| 3993 __ sub(scratch5, limit, Operand(dest)); |
| 3994 __ orr(scratch1, scratch1, Operand(scratch3, LSL, left_shift)); |
| 3995 __ str(scratch1, MemOperand(dest, 4, PostIndex)); |
| 3996 __ mov(scratch1, Operand(scratch3, LSR, right_shift)); |
| 3997 // Loop if four or more bytes left to copy. |
| 3998 // Compare to eight, because we did the subtract before increasing dst. |
| 3999 __ sub(scratch5, scratch5, Operand(8), SetCC); |
| 4000 __ b(ge, &loop); |
| 4001 } |
| 4002 // There is now between zero and three bytes left to copy (negative that |
| 4003 // number is in scratch5), and between one and three bytes already read into |
| 4004 // scratch1 (eight times that number in scratch4). We may have read past |
| 4005 // the end of the string, but because objects are aligned, we have not read |
| 4006 // past the end of the object. |
| 4007 // Find the minimum of remaining characters to move and preloaded characters |
| 4008 // and write those as bytes. |
| 4009 __ add(scratch5, scratch5, Operand(4), SetCC); |
| 4010 __ b(eq, &done); |
| 4011 __ cmp(scratch4, Operand(scratch5, LSL, 3), ne); |
| 4012 // Move minimum of bytes read and bytes left to copy to scratch4. |
| 4013 __ mov(scratch5, Operand(scratch4, LSR, 3), LeaveCC, lt); |
| 4014 // Between one and three (value in scratch5) characters already read into |
| 4015 // scratch ready to write. |
| 4016 __ cmp(scratch5, Operand(2)); |
| 4017 __ strb(scratch1, MemOperand(dest, 1, PostIndex)); |
| 4018 __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, ge); |
| 4019 __ strb(scratch1, MemOperand(dest, 1, PostIndex), ge); |
| 4020 __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, gt); |
| 4021 __ strb(scratch1, MemOperand(dest, 1, PostIndex), gt); |
| 4022 // Copy any remaining bytes. |
| 4023 __ b(&byte_loop); |
| 4024 |
| 4025 // Simple loop. |
| 4026 // Copy words from src to dst, until less than four bytes left. |
| 4027 // Both src and dest are word aligned. |
| 4028 __ bind(&simple_loop); |
| 4029 { |
| 4030 Label loop; |
| 4031 __ bind(&loop); |
| 4032 __ ldr(scratch1, MemOperand(src, 4, PostIndex)); |
| 4033 __ sub(scratch3, limit, Operand(dest)); |
| 4034 __ str(scratch1, MemOperand(dest, 4, PostIndex)); |
| 4035 // Compare to 8, not 4, because we do the substraction before increasing |
| 4036 // dest. |
| 4037 __ cmp(scratch3, Operand(8)); |
| 4038 __ b(ge, &loop); |
| 4039 } |
| 4040 |
| 4041 // Copy bytes from src to dst until dst hits limit. |
| 4042 __ bind(&byte_loop); |
| 4043 __ cmp(dest, Operand(limit)); |
| 4044 __ ldrb(scratch1, MemOperand(src, 1, PostIndex), lt); |
| 4045 __ b(ge, &done); |
| 4046 __ strb(scratch1, MemOperand(dest, 1, PostIndex)); |
| 4047 __ b(&byte_loop); |
| 4048 |
| 4049 __ bind(&done); |
| 4050 } |
| 4051 |
| 4052 |
| 4053 void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, |
| 4054 Register c1, |
| 4055 Register c2, |
| 4056 Register scratch1, |
| 4057 Register scratch2, |
| 4058 Register scratch3, |
| 4059 Register scratch4, |
| 4060 Register scratch5, |
| 4061 Label* not_found) { |
| 4062 // Register scratch3 is the general scratch register in this function. |
| 4063 Register scratch = scratch3; |
| 4064 |
| 4065 // Make sure that both characters are not digits as such strings has a |
| 4066 // different hash algorithm. Don't try to look for these in the symbol table. |
| 4067 Label not_array_index; |
| 4068 __ sub(scratch, c1, Operand(static_cast<int>('0'))); |
| 4069 __ cmp(scratch, Operand(static_cast<int>('9' - '0'))); |
| 4070 __ b(hi, ¬_array_index); |
| 4071 __ sub(scratch, c2, Operand(static_cast<int>('0'))); |
| 4072 __ cmp(scratch, Operand(static_cast<int>('9' - '0'))); |
| 4073 |
| 4074 // If check failed combine both characters into single halfword. |
| 4075 // This is required by the contract of the method: code at the |
| 4076 // not_found branch expects this combination in c1 register |
| 4077 __ orr(c1, c1, Operand(c2, LSL, kBitsPerByte), LeaveCC, ls); |
| 4078 __ b(ls, not_found); |
| 4079 |
| 4080 __ bind(¬_array_index); |
| 4081 // Calculate the two character string hash. |
| 4082 Register hash = scratch1; |
| 4083 StringHelper::GenerateHashInit(masm, hash, c1); |
| 4084 StringHelper::GenerateHashAddCharacter(masm, hash, c2); |
| 4085 StringHelper::GenerateHashGetHash(masm, hash); |
| 4086 |
| 4087 // Collect the two characters in a register. |
| 4088 Register chars = c1; |
| 4089 __ orr(chars, chars, Operand(c2, LSL, kBitsPerByte)); |
| 4090 |
| 4091 // chars: two character string, char 1 in byte 0 and char 2 in byte 1. |
| 4092 // hash: hash of two character string. |
| 4093 |
| 4094 // Load symbol table |
| 4095 // Load address of first element of the symbol table. |
| 4096 Register symbol_table = c2; |
| 4097 __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex); |
| 4098 |
| 4099 // Load undefined value |
| 4100 Register undefined = scratch4; |
| 4101 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); |
| 4102 |
| 4103 // Calculate capacity mask from the symbol table capacity. |
| 4104 Register mask = scratch2; |
| 4105 __ ldr(mask, FieldMemOperand(symbol_table, SymbolTable::kCapacityOffset)); |
| 4106 __ mov(mask, Operand(mask, ASR, 1)); |
| 4107 __ sub(mask, mask, Operand(1)); |
| 4108 |
| 4109 // Calculate untagged address of the first element of the symbol table. |
| 4110 Register first_symbol_table_element = symbol_table; |
| 4111 __ add(first_symbol_table_element, symbol_table, |
| 4112 Operand(SymbolTable::kElementsStartOffset - kHeapObjectTag)); |
| 4113 |
| 4114 // Registers |
| 4115 // chars: two character string, char 1 in byte 0 and char 2 in byte 1. |
| 4116 // hash: hash of two character string |
| 4117 // mask: capacity mask |
| 4118 // first_symbol_table_element: address of the first element of |
| 4119 // the symbol table |
| 4120 // scratch: - |
| 4121 |
| 4122 // Perform a number of probes in the symbol table. |
| 4123 static const int kProbes = 4; |
| 4124 Label found_in_symbol_table; |
| 4125 Label next_probe[kProbes]; |
| 4126 for (int i = 0; i < kProbes; i++) { |
| 4127 Register candidate = scratch5; // Scratch register contains candidate. |
| 4128 |
| 4129 // Calculate entry in symbol table. |
| 4130 if (i > 0) { |
| 4131 __ add(candidate, hash, Operand(SymbolTable::GetProbeOffset(i))); |
| 4132 } else { |
| 4133 __ mov(candidate, hash); |
| 4134 } |
| 4135 |
| 4136 __ and_(candidate, candidate, Operand(mask)); |
| 4137 |
| 4138 // Load the entry from the symble table. |
| 4139 STATIC_ASSERT(SymbolTable::kEntrySize == 1); |
| 4140 __ ldr(candidate, |
| 4141 MemOperand(first_symbol_table_element, |
| 4142 candidate, |
| 4143 LSL, |
| 4144 kPointerSizeLog2)); |
| 4145 |
| 4146 // If entry is undefined no string with this hash can be found. |
| 4147 __ cmp(candidate, undefined); |
| 4148 __ b(eq, not_found); |
| 4149 |
| 4150 // If length is not 2 the string is not a candidate. |
| 4151 __ ldr(scratch, FieldMemOperand(candidate, String::kLengthOffset)); |
| 4152 __ cmp(scratch, Operand(Smi::FromInt(2))); |
| 4153 __ b(ne, &next_probe[i]); |
| 4154 |
| 4155 // Check that the candidate is a non-external ascii string. |
| 4156 __ ldr(scratch, FieldMemOperand(candidate, HeapObject::kMapOffset)); |
| 4157 __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); |
| 4158 __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, |
| 4159 &next_probe[i]); |
| 4160 |
| 4161 // Check if the two characters match. |
| 4162 // Assumes that word load is little endian. |
| 4163 __ ldrh(scratch, FieldMemOperand(candidate, SeqAsciiString::kHeaderSize)); |
| 4164 __ cmp(chars, scratch); |
| 4165 __ b(eq, &found_in_symbol_table); |
| 4166 __ bind(&next_probe[i]); |
| 4167 } |
| 4168 |
| 4169 // No matching 2 character string found by probing. |
| 4170 __ jmp(not_found); |
| 4171 |
| 4172 // Scratch register contains result when we fall through to here. |
| 4173 Register result = scratch; |
| 4174 __ bind(&found_in_symbol_table); |
| 4175 __ Move(r0, result); |
| 4176 } |
| 4177 |
| 4178 |
| 4179 void StringHelper::GenerateHashInit(MacroAssembler* masm, |
| 4180 Register hash, |
| 4181 Register character) { |
| 4182 // hash = character + (character << 10); |
| 4183 __ add(hash, character, Operand(character, LSL, 10)); |
| 4184 // hash ^= hash >> 6; |
| 4185 __ eor(hash, hash, Operand(hash, ASR, 6)); |
| 4186 } |
| 4187 |
| 4188 |
| 4189 void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, |
| 4190 Register hash, |
| 4191 Register character) { |
| 4192 // hash += character; |
| 4193 __ add(hash, hash, Operand(character)); |
| 4194 // hash += hash << 10; |
| 4195 __ add(hash, hash, Operand(hash, LSL, 10)); |
| 4196 // hash ^= hash >> 6; |
| 4197 __ eor(hash, hash, Operand(hash, ASR, 6)); |
| 4198 } |
| 4199 |
| 4200 |
| 4201 void StringHelper::GenerateHashGetHash(MacroAssembler* masm, |
| 4202 Register hash) { |
| 4203 // hash += hash << 3; |
| 4204 __ add(hash, hash, Operand(hash, LSL, 3)); |
| 4205 // hash ^= hash >> 11; |
| 4206 __ eor(hash, hash, Operand(hash, ASR, 11)); |
| 4207 // hash += hash << 15; |
| 4208 __ add(hash, hash, Operand(hash, LSL, 15), SetCC); |
| 4209 |
| 4210 // if (hash == 0) hash = 27; |
| 4211 __ mov(hash, Operand(27), LeaveCC, nz); |
| 4212 } |
| 4213 |
| 4214 |
| 4215 void SubStringStub::Generate(MacroAssembler* masm) { |
| 4216 Label runtime; |
| 4217 |
| 4218 // Stack frame on entry. |
| 4219 // lr: return address |
| 4220 // sp[0]: to |
| 4221 // sp[4]: from |
| 4222 // sp[8]: string |
| 4223 |
| 4224 // This stub is called from the native-call %_SubString(...), so |
| 4225 // nothing can be assumed about the arguments. It is tested that: |
| 4226 // "string" is a sequential string, |
| 4227 // both "from" and "to" are smis, and |
| 4228 // 0 <= from <= to <= string.length. |
| 4229 // If any of these assumptions fail, we call the runtime system. |
| 4230 |
| 4231 static const int kToOffset = 0 * kPointerSize; |
| 4232 static const int kFromOffset = 1 * kPointerSize; |
| 4233 static const int kStringOffset = 2 * kPointerSize; |
| 4234 |
| 4235 |
| 4236 // Check bounds and smi-ness. |
| 4237 __ ldr(r7, MemOperand(sp, kToOffset)); |
| 4238 __ ldr(r6, MemOperand(sp, kFromOffset)); |
| 4239 STATIC_ASSERT(kSmiTag == 0); |
| 4240 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); |
| 4241 // I.e., arithmetic shift right by one un-smi-tags. |
| 4242 __ mov(r2, Operand(r7, ASR, 1), SetCC); |
| 4243 __ mov(r3, Operand(r6, ASR, 1), SetCC, cc); |
| 4244 // If either r2 or r6 had the smi tag bit set, then carry is set now. |
| 4245 __ b(cs, &runtime); // Either "from" or "to" is not a smi. |
| 4246 __ b(mi, &runtime); // From is negative. |
| 4247 |
| 4248 __ sub(r2, r2, Operand(r3), SetCC); |
| 4249 __ b(mi, &runtime); // Fail if from > to. |
| 4250 // Special handling of sub-strings of length 1 and 2. One character strings |
| 4251 // are handled in the runtime system (looked up in the single character |
| 4252 // cache). Two character strings are looked for in the symbol cache. |
| 4253 __ cmp(r2, Operand(2)); |
| 4254 __ b(lt, &runtime); |
| 4255 |
| 4256 // r2: length |
| 4257 // r3: from index (untaged smi) |
| 4258 // r6: from (smi) |
| 4259 // r7: to (smi) |
| 4260 |
| 4261 // Make sure first argument is a sequential (or flat) string. |
| 4262 __ ldr(r5, MemOperand(sp, kStringOffset)); |
| 4263 STATIC_ASSERT(kSmiTag == 0); |
| 4264 __ tst(r5, Operand(kSmiTagMask)); |
| 4265 __ b(eq, &runtime); |
| 4266 Condition is_string = masm->IsObjectStringType(r5, r1); |
| 4267 __ b(NegateCondition(is_string), &runtime); |
| 4268 |
| 4269 // r1: instance type |
| 4270 // r2: length |
| 4271 // r3: from index (untaged smi) |
| 4272 // r5: string |
| 4273 // r6: from (smi) |
| 4274 // r7: to (smi) |
| 4275 Label seq_string; |
| 4276 __ and_(r4, r1, Operand(kStringRepresentationMask)); |
| 4277 STATIC_ASSERT(kSeqStringTag < kConsStringTag); |
| 4278 STATIC_ASSERT(kConsStringTag < kExternalStringTag); |
| 4279 __ cmp(r4, Operand(kConsStringTag)); |
| 4280 __ b(gt, &runtime); // External strings go to runtime. |
| 4281 __ b(lt, &seq_string); // Sequential strings are handled directly. |
| 4282 |
| 4283 // Cons string. Try to recurse (once) on the first substring. |
| 4284 // (This adds a little more generality than necessary to handle flattened |
| 4285 // cons strings, but not much). |
| 4286 __ ldr(r5, FieldMemOperand(r5, ConsString::kFirstOffset)); |
| 4287 __ ldr(r4, FieldMemOperand(r5, HeapObject::kMapOffset)); |
| 4288 __ ldrb(r1, FieldMemOperand(r4, Map::kInstanceTypeOffset)); |
| 4289 __ tst(r1, Operand(kStringRepresentationMask)); |
| 4290 STATIC_ASSERT(kSeqStringTag == 0); |
| 4291 __ b(ne, &runtime); // Cons and External strings go to runtime. |
| 4292 |
| 4293 // Definitly a sequential string. |
| 4294 __ bind(&seq_string); |
| 4295 |
| 4296 // r1: instance type. |
| 4297 // r2: length |
| 4298 // r3: from index (untaged smi) |
| 4299 // r5: string |
| 4300 // r6: from (smi) |
| 4301 // r7: to (smi) |
| 4302 __ ldr(r4, FieldMemOperand(r5, String::kLengthOffset)); |
| 4303 __ cmp(r4, Operand(r7)); |
| 4304 __ b(lt, &runtime); // Fail if to > length. |
| 4305 |
| 4306 // r1: instance type. |
| 4307 // r2: result string length. |
| 4308 // r3: from index (untaged smi) |
| 4309 // r5: string. |
| 4310 // r6: from offset (smi) |
| 4311 // Check for flat ascii string. |
| 4312 Label non_ascii_flat; |
| 4313 __ tst(r1, Operand(kStringEncodingMask)); |
| 4314 STATIC_ASSERT(kTwoByteStringTag == 0); |
| 4315 __ b(eq, &non_ascii_flat); |
| 4316 |
| 4317 Label result_longer_than_two; |
| 4318 __ cmp(r2, Operand(2)); |
| 4319 __ b(gt, &result_longer_than_two); |
| 4320 |
| 4321 // Sub string of length 2 requested. |
| 4322 // Get the two characters forming the sub string. |
| 4323 __ add(r5, r5, Operand(r3)); |
| 4324 __ ldrb(r3, FieldMemOperand(r5, SeqAsciiString::kHeaderSize)); |
| 4325 __ ldrb(r4, FieldMemOperand(r5, SeqAsciiString::kHeaderSize + 1)); |
| 4326 |
| 4327 // Try to lookup two character string in symbol table. |
| 4328 Label make_two_character_string; |
| 4329 StringHelper::GenerateTwoCharacterSymbolTableProbe( |
| 4330 masm, r3, r4, r1, r5, r6, r7, r9, &make_two_character_string); |
| 4331 __ IncrementCounter(&Counters::sub_string_native, 1, r3, r4); |
| 4332 __ add(sp, sp, Operand(3 * kPointerSize)); |
| 4333 __ Ret(); |
| 4334 |
| 4335 // r2: result string length. |
| 4336 // r3: two characters combined into halfword in little endian byte order. |
| 4337 __ bind(&make_two_character_string); |
| 4338 __ AllocateAsciiString(r0, r2, r4, r5, r9, &runtime); |
| 4339 __ strh(r3, FieldMemOperand(r0, SeqAsciiString::kHeaderSize)); |
| 4340 __ IncrementCounter(&Counters::sub_string_native, 1, r3, r4); |
| 4341 __ add(sp, sp, Operand(3 * kPointerSize)); |
| 4342 __ Ret(); |
| 4343 |
| 4344 __ bind(&result_longer_than_two); |
| 4345 |
| 4346 // Allocate the result. |
| 4347 __ AllocateAsciiString(r0, r2, r3, r4, r1, &runtime); |
| 4348 |
| 4349 // r0: result string. |
| 4350 // r2: result string length. |
| 4351 // r5: string. |
| 4352 // r6: from offset (smi) |
| 4353 // Locate first character of result. |
| 4354 __ add(r1, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| 4355 // Locate 'from' character of string. |
| 4356 __ add(r5, r5, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| 4357 __ add(r5, r5, Operand(r6, ASR, 1)); |
| 4358 |
| 4359 // r0: result string. |
| 4360 // r1: first character of result string. |
| 4361 // r2: result string length. |
| 4362 // r5: first character of sub string to copy. |
| 4363 STATIC_ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0); |
| 4364 StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9, |
| 4365 COPY_ASCII | DEST_ALWAYS_ALIGNED); |
| 4366 __ IncrementCounter(&Counters::sub_string_native, 1, r3, r4); |
| 4367 __ add(sp, sp, Operand(3 * kPointerSize)); |
| 4368 __ Ret(); |
| 4369 |
| 4370 __ bind(&non_ascii_flat); |
| 4371 // r2: result string length. |
| 4372 // r5: string. |
| 4373 // r6: from offset (smi) |
| 4374 // Check for flat two byte string. |
| 4375 |
| 4376 // Allocate the result. |
| 4377 __ AllocateTwoByteString(r0, r2, r1, r3, r4, &runtime); |
| 4378 |
| 4379 // r0: result string. |
| 4380 // r2: result string length. |
| 4381 // r5: string. |
| 4382 // Locate first character of result. |
| 4383 __ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| 4384 // Locate 'from' character of string. |
| 4385 __ add(r5, r5, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| 4386 // As "from" is a smi it is 2 times the value which matches the size of a two |
| 4387 // byte character. |
| 4388 __ add(r5, r5, Operand(r6)); |
| 4389 |
| 4390 // r0: result string. |
| 4391 // r1: first character of result. |
| 4392 // r2: result length. |
| 4393 // r5: first character of string to copy. |
| 4394 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); |
| 4395 StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9, |
| 4396 DEST_ALWAYS_ALIGNED); |
| 4397 __ IncrementCounter(&Counters::sub_string_native, 1, r3, r4); |
| 4398 __ add(sp, sp, Operand(3 * kPointerSize)); |
| 4399 __ Ret(); |
| 4400 |
| 4401 // Just jump to runtime to create the sub string. |
| 4402 __ bind(&runtime); |
| 4403 __ TailCallRuntime(Runtime::kSubString, 3, 1); |
| 4404 } |
| 4405 |
| 4406 |
| 4407 void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, |
| 4408 Register left, |
| 4409 Register right, |
| 4410 Register scratch1, |
| 4411 Register scratch2, |
| 4412 Register scratch3, |
| 4413 Register scratch4) { |
| 4414 Label compare_lengths; |
| 4415 // Find minimum length and length difference. |
| 4416 __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset)); |
| 4417 __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset)); |
| 4418 __ sub(scratch3, scratch1, Operand(scratch2), SetCC); |
| 4419 Register length_delta = scratch3; |
| 4420 __ mov(scratch1, scratch2, LeaveCC, gt); |
| 4421 Register min_length = scratch1; |
| 4422 STATIC_ASSERT(kSmiTag == 0); |
| 4423 __ tst(min_length, Operand(min_length)); |
| 4424 __ b(eq, &compare_lengths); |
| 4425 |
| 4426 // Untag smi. |
| 4427 __ mov(min_length, Operand(min_length, ASR, kSmiTagSize)); |
| 4428 |
| 4429 // Setup registers so that we only need to increment one register |
| 4430 // in the loop. |
| 4431 __ add(scratch2, min_length, |
| 4432 Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| 4433 __ add(left, left, Operand(scratch2)); |
| 4434 __ add(right, right, Operand(scratch2)); |
| 4435 // Registers left and right points to the min_length character of strings. |
| 4436 __ rsb(min_length, min_length, Operand(-1)); |
| 4437 Register index = min_length; |
| 4438 // Index starts at -min_length. |
| 4439 |
| 4440 { |
| 4441 // Compare loop. |
| 4442 Label loop; |
| 4443 __ bind(&loop); |
| 4444 // Compare characters. |
| 4445 __ add(index, index, Operand(1), SetCC); |
| 4446 __ ldrb(scratch2, MemOperand(left, index), ne); |
| 4447 __ ldrb(scratch4, MemOperand(right, index), ne); |
| 4448 // Skip to compare lengths with eq condition true. |
| 4449 __ b(eq, &compare_lengths); |
| 4450 __ cmp(scratch2, scratch4); |
| 4451 __ b(eq, &loop); |
| 4452 // Fallthrough with eq condition false. |
| 4453 } |
| 4454 // Compare lengths - strings up to min-length are equal. |
| 4455 __ bind(&compare_lengths); |
| 4456 ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0)); |
| 4457 // Use zero length_delta as result. |
| 4458 __ mov(r0, Operand(length_delta), SetCC, eq); |
| 4459 // Fall through to here if characters compare not-equal. |
| 4460 __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt); |
| 4461 __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt); |
| 4462 __ Ret(); |
| 4463 } |
| 4464 |
| 4465 |
| 4466 void StringCompareStub::Generate(MacroAssembler* masm) { |
| 4467 Label runtime; |
| 4468 |
| 4469 // Stack frame on entry. |
| 4470 // sp[0]: right string |
| 4471 // sp[4]: left string |
| 4472 __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); // left |
| 4473 __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); // right |
| 4474 |
| 4475 Label not_same; |
| 4476 __ cmp(r0, r1); |
| 4477 __ b(ne, ¬_same); |
| 4478 STATIC_ASSERT(EQUAL == 0); |
| 4479 STATIC_ASSERT(kSmiTag == 0); |
| 4480 __ mov(r0, Operand(Smi::FromInt(EQUAL))); |
| 4481 __ IncrementCounter(&Counters::string_compare_native, 1, r1, r2); |
| 4482 __ add(sp, sp, Operand(2 * kPointerSize)); |
| 4483 __ Ret(); |
| 4484 |
| 4485 __ bind(¬_same); |
| 4486 |
| 4487 // Check that both objects are sequential ascii strings. |
| 4488 __ JumpIfNotBothSequentialAsciiStrings(r0, r1, r2, r3, &runtime); |
| 4489 |
| 4490 // Compare flat ascii strings natively. Remove arguments from stack first. |
| 4491 __ IncrementCounter(&Counters::string_compare_native, 1, r2, r3); |
| 4492 __ add(sp, sp, Operand(2 * kPointerSize)); |
| 4493 GenerateCompareFlatAsciiStrings(masm, r0, r1, r2, r3, r4, r5); |
| 4494 |
| 4495 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) |
| 4496 // tagged as a small integer. |
| 4497 __ bind(&runtime); |
| 4498 __ TailCallRuntime(Runtime::kStringCompare, 2, 1); |
| 4499 } |
| 4500 |
| 4501 |
| 4502 void StringAddStub::Generate(MacroAssembler* masm) { |
| 4503 Label string_add_runtime; |
| 4504 // Stack on entry: |
| 4505 // sp[0]: second argument. |
| 4506 // sp[4]: first argument. |
| 4507 |
| 4508 // Load the two arguments. |
| 4509 __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); // First argument. |
| 4510 __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); // Second argument. |
| 4511 |
| 4512 // Make sure that both arguments are strings if not known in advance. |
| 4513 if (string_check_) { |
| 4514 STATIC_ASSERT(kSmiTag == 0); |
| 4515 __ JumpIfEitherSmi(r0, r1, &string_add_runtime); |
| 4516 // Load instance types. |
| 4517 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| 4518 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| 4519 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); |
| 4520 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); |
| 4521 STATIC_ASSERT(kStringTag == 0); |
| 4522 // If either is not a string, go to runtime. |
| 4523 __ tst(r4, Operand(kIsNotStringMask)); |
| 4524 __ tst(r5, Operand(kIsNotStringMask), eq); |
| 4525 __ b(ne, &string_add_runtime); |
| 4526 } |
| 4527 |
| 4528 // Both arguments are strings. |
| 4529 // r0: first string |
| 4530 // r1: second string |
| 4531 // r4: first string instance type (if string_check_) |
| 4532 // r5: second string instance type (if string_check_) |
| 4533 { |
| 4534 Label strings_not_empty; |
| 4535 // Check if either of the strings are empty. In that case return the other. |
| 4536 __ ldr(r2, FieldMemOperand(r0, String::kLengthOffset)); |
| 4537 __ ldr(r3, FieldMemOperand(r1, String::kLengthOffset)); |
| 4538 STATIC_ASSERT(kSmiTag == 0); |
| 4539 __ cmp(r2, Operand(Smi::FromInt(0))); // Test if first string is empty. |
| 4540 __ mov(r0, Operand(r1), LeaveCC, eq); // If first is empty, return second. |
| 4541 STATIC_ASSERT(kSmiTag == 0); |
| 4542 // Else test if second string is empty. |
| 4543 __ cmp(r3, Operand(Smi::FromInt(0)), ne); |
| 4544 __ b(ne, &strings_not_empty); // If either string was empty, return r0. |
| 4545 |
| 4546 __ IncrementCounter(&Counters::string_add_native, 1, r2, r3); |
| 4547 __ add(sp, sp, Operand(2 * kPointerSize)); |
| 4548 __ Ret(); |
| 4549 |
| 4550 __ bind(&strings_not_empty); |
| 4551 } |
| 4552 |
| 4553 __ mov(r2, Operand(r2, ASR, kSmiTagSize)); |
| 4554 __ mov(r3, Operand(r3, ASR, kSmiTagSize)); |
| 4555 // Both strings are non-empty. |
| 4556 // r0: first string |
| 4557 // r1: second string |
| 4558 // r2: length of first string |
| 4559 // r3: length of second string |
| 4560 // r4: first string instance type (if string_check_) |
| 4561 // r5: second string instance type (if string_check_) |
| 4562 // Look at the length of the result of adding the two strings. |
| 4563 Label string_add_flat_result, longer_than_two; |
| 4564 // Adding two lengths can't overflow. |
| 4565 STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2); |
| 4566 __ add(r6, r2, Operand(r3)); |
| 4567 // Use the runtime system when adding two one character strings, as it |
| 4568 // contains optimizations for this specific case using the symbol table. |
| 4569 __ cmp(r6, Operand(2)); |
| 4570 __ b(ne, &longer_than_two); |
| 4571 |
| 4572 // Check that both strings are non-external ascii strings. |
| 4573 if (!string_check_) { |
| 4574 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| 4575 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| 4576 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); |
| 4577 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); |
| 4578 } |
| 4579 __ JumpIfBothInstanceTypesAreNotSequentialAscii(r4, r5, r6, r7, |
| 4580 &string_add_runtime); |
| 4581 |
| 4582 // Get the two characters forming the sub string. |
| 4583 __ ldrb(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize)); |
| 4584 __ ldrb(r3, FieldMemOperand(r1, SeqAsciiString::kHeaderSize)); |
| 4585 |
| 4586 // Try to lookup two character string in symbol table. If it is not found |
| 4587 // just allocate a new one. |
| 4588 Label make_two_character_string; |
| 4589 StringHelper::GenerateTwoCharacterSymbolTableProbe( |
| 4590 masm, r2, r3, r6, r7, r4, r5, r9, &make_two_character_string); |
| 4591 __ IncrementCounter(&Counters::string_add_native, 1, r2, r3); |
| 4592 __ add(sp, sp, Operand(2 * kPointerSize)); |
| 4593 __ Ret(); |
| 4594 |
| 4595 __ bind(&make_two_character_string); |
| 4596 // Resulting string has length 2 and first chars of two strings |
| 4597 // are combined into single halfword in r2 register. |
| 4598 // So we can fill resulting string without two loops by a single |
| 4599 // halfword store instruction (which assumes that processor is |
| 4600 // in a little endian mode) |
| 4601 __ mov(r6, Operand(2)); |
| 4602 __ AllocateAsciiString(r0, r6, r4, r5, r9, &string_add_runtime); |
| 4603 __ strh(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize)); |
| 4604 __ IncrementCounter(&Counters::string_add_native, 1, r2, r3); |
| 4605 __ add(sp, sp, Operand(2 * kPointerSize)); |
| 4606 __ Ret(); |
| 4607 |
| 4608 __ bind(&longer_than_two); |
| 4609 // Check if resulting string will be flat. |
| 4610 __ cmp(r6, Operand(String::kMinNonFlatLength)); |
| 4611 __ b(lt, &string_add_flat_result); |
| 4612 // Handle exceptionally long strings in the runtime system. |
| 4613 STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0); |
| 4614 ASSERT(IsPowerOf2(String::kMaxLength + 1)); |
| 4615 // kMaxLength + 1 is representable as shifted literal, kMaxLength is not. |
| 4616 __ cmp(r6, Operand(String::kMaxLength + 1)); |
| 4617 __ b(hs, &string_add_runtime); |
| 4618 |
| 4619 // If result is not supposed to be flat, allocate a cons string object. |
| 4620 // If both strings are ascii the result is an ascii cons string. |
| 4621 if (!string_check_) { |
| 4622 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| 4623 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| 4624 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); |
| 4625 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); |
| 4626 } |
| 4627 Label non_ascii, allocated, ascii_data; |
| 4628 STATIC_ASSERT(kTwoByteStringTag == 0); |
| 4629 __ tst(r4, Operand(kStringEncodingMask)); |
| 4630 __ tst(r5, Operand(kStringEncodingMask), ne); |
| 4631 __ b(eq, &non_ascii); |
| 4632 |
| 4633 // Allocate an ASCII cons string. |
| 4634 __ bind(&ascii_data); |
| 4635 __ AllocateAsciiConsString(r7, r6, r4, r5, &string_add_runtime); |
| 4636 __ bind(&allocated); |
| 4637 // Fill the fields of the cons string. |
| 4638 __ str(r0, FieldMemOperand(r7, ConsString::kFirstOffset)); |
| 4639 __ str(r1, FieldMemOperand(r7, ConsString::kSecondOffset)); |
| 4640 __ mov(r0, Operand(r7)); |
| 4641 __ IncrementCounter(&Counters::string_add_native, 1, r2, r3); |
| 4642 __ add(sp, sp, Operand(2 * kPointerSize)); |
| 4643 __ Ret(); |
| 4644 |
| 4645 __ bind(&non_ascii); |
| 4646 // At least one of the strings is two-byte. Check whether it happens |
| 4647 // to contain only ascii characters. |
| 4648 // r4: first instance type. |
| 4649 // r5: second instance type. |
| 4650 __ tst(r4, Operand(kAsciiDataHintMask)); |
| 4651 __ tst(r5, Operand(kAsciiDataHintMask), ne); |
| 4652 __ b(ne, &ascii_data); |
| 4653 __ eor(r4, r4, Operand(r5)); |
| 4654 STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0); |
| 4655 __ and_(r4, r4, Operand(kAsciiStringTag | kAsciiDataHintTag)); |
| 4656 __ cmp(r4, Operand(kAsciiStringTag | kAsciiDataHintTag)); |
| 4657 __ b(eq, &ascii_data); |
| 4658 |
| 4659 // Allocate a two byte cons string. |
| 4660 __ AllocateTwoByteConsString(r7, r6, r4, r5, &string_add_runtime); |
| 4661 __ jmp(&allocated); |
| 4662 |
| 4663 // Handle creating a flat result. First check that both strings are |
| 4664 // sequential and that they have the same encoding. |
| 4665 // r0: first string |
| 4666 // r1: second string |
| 4667 // r2: length of first string |
| 4668 // r3: length of second string |
| 4669 // r4: first string instance type (if string_check_) |
| 4670 // r5: second string instance type (if string_check_) |
| 4671 // r6: sum of lengths. |
| 4672 __ bind(&string_add_flat_result); |
| 4673 if (!string_check_) { |
| 4674 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| 4675 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| 4676 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); |
| 4677 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); |
| 4678 } |
| 4679 // Check that both strings are sequential. |
| 4680 STATIC_ASSERT(kSeqStringTag == 0); |
| 4681 __ tst(r4, Operand(kStringRepresentationMask)); |
| 4682 __ tst(r5, Operand(kStringRepresentationMask), eq); |
| 4683 __ b(ne, &string_add_runtime); |
| 4684 // Now check if both strings have the same encoding (ASCII/Two-byte). |
| 4685 // r0: first string. |
| 4686 // r1: second string. |
| 4687 // r2: length of first string. |
| 4688 // r3: length of second string. |
| 4689 // r6: sum of lengths.. |
| 4690 Label non_ascii_string_add_flat_result; |
| 4691 ASSERT(IsPowerOf2(kStringEncodingMask)); // Just one bit to test. |
| 4692 __ eor(r7, r4, Operand(r5)); |
| 4693 __ tst(r7, Operand(kStringEncodingMask)); |
| 4694 __ b(ne, &string_add_runtime); |
| 4695 // And see if it's ASCII or two-byte. |
| 4696 __ tst(r4, Operand(kStringEncodingMask)); |
| 4697 __ b(eq, &non_ascii_string_add_flat_result); |
| 4698 |
| 4699 // Both strings are sequential ASCII strings. We also know that they are |
| 4700 // short (since the sum of the lengths is less than kMinNonFlatLength). |
| 4701 // r6: length of resulting flat string |
| 4702 __ AllocateAsciiString(r7, r6, r4, r5, r9, &string_add_runtime); |
| 4703 // Locate first character of result. |
| 4704 __ add(r6, r7, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| 4705 // Locate first character of first argument. |
| 4706 __ add(r0, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| 4707 // r0: first character of first string. |
| 4708 // r1: second string. |
| 4709 // r2: length of first string. |
| 4710 // r3: length of second string. |
| 4711 // r6: first character of result. |
| 4712 // r7: result string. |
| 4713 StringHelper::GenerateCopyCharacters(masm, r6, r0, r2, r4, true); |
| 4714 |
| 4715 // Load second argument and locate first character. |
| 4716 __ add(r1, r1, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| 4717 // r1: first character of second string. |
| 4718 // r3: length of second string. |
| 4719 // r6: next character of result. |
| 4720 // r7: result string. |
| 4721 StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, true); |
| 4722 __ mov(r0, Operand(r7)); |
| 4723 __ IncrementCounter(&Counters::string_add_native, 1, r2, r3); |
| 4724 __ add(sp, sp, Operand(2 * kPointerSize)); |
| 4725 __ Ret(); |
| 4726 |
| 4727 __ bind(&non_ascii_string_add_flat_result); |
| 4728 // Both strings are sequential two byte strings. |
| 4729 // r0: first string. |
| 4730 // r1: second string. |
| 4731 // r2: length of first string. |
| 4732 // r3: length of second string. |
| 4733 // r6: sum of length of strings. |
| 4734 __ AllocateTwoByteString(r7, r6, r4, r5, r9, &string_add_runtime); |
| 4735 // r0: first string. |
| 4736 // r1: second string. |
| 4737 // r2: length of first string. |
| 4738 // r3: length of second string. |
| 4739 // r7: result string. |
| 4740 |
| 4741 // Locate first character of result. |
| 4742 __ add(r6, r7, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| 4743 // Locate first character of first argument. |
| 4744 __ add(r0, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| 4745 |
| 4746 // r0: first character of first string. |
| 4747 // r1: second string. |
| 4748 // r2: length of first string. |
| 4749 // r3: length of second string. |
| 4750 // r6: first character of result. |
| 4751 // r7: result string. |
| 4752 StringHelper::GenerateCopyCharacters(masm, r6, r0, r2, r4, false); |
| 4753 |
| 4754 // Locate first character of second argument. |
| 4755 __ add(r1, r1, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| 4756 |
| 4757 // r1: first character of second string. |
| 4758 // r3: length of second string. |
| 4759 // r6: next character of result (after copy of first string). |
| 4760 // r7: result string. |
| 4761 StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, false); |
| 4762 |
| 4763 __ mov(r0, Operand(r7)); |
| 4764 __ IncrementCounter(&Counters::string_add_native, 1, r2, r3); |
| 4765 __ add(sp, sp, Operand(2 * kPointerSize)); |
| 4766 __ Ret(); |
| 4767 |
| 4768 // Just jump to runtime to add the two strings. |
| 4769 __ bind(&string_add_runtime); |
| 4770 __ TailCallRuntime(Runtime::kStringAdd, 2, 1); |
| 4771 } |
| 4772 |
| 4773 |
| 4774 #undef __ |
| 4775 |
| 4776 } } // namespace v8::internal |
| 4777 |
| 4778 #endif // V8_TARGET_ARCH_ARM |
OLD | NEW |