| Index: third_party/sqlite/ext/fts3/fts3.c
|
| ===================================================================
|
| --- third_party/sqlite/ext/fts3/fts3.c (revision 56608)
|
| +++ third_party/sqlite/ext/fts3/fts3.c (working copy)
|
| @@ -1,7415 +0,0 @@
|
| -/*
|
| -** 2006 Oct 10
|
| -**
|
| -** The author disclaims copyright to this source code. In place of
|
| -** a legal notice, here is a blessing:
|
| -**
|
| -** May you do good and not evil.
|
| -** May you find forgiveness for yourself and forgive others.
|
| -** May you share freely, never taking more than you give.
|
| -**
|
| -******************************************************************************
|
| -**
|
| -** This is an SQLite module implementing full-text search.
|
| -*/
|
| -
|
| -/*
|
| -** The code in this file is only compiled if:
|
| -**
|
| -** * The FTS3 module is being built as an extension
|
| -** (in which case SQLITE_CORE is not defined), or
|
| -**
|
| -** * The FTS3 module is being built into the core of
|
| -** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
|
| -*/
|
| -
|
| -/* TODO(shess) Consider exporting this comment to an HTML file or the
|
| -** wiki.
|
| -*/
|
| -/* The full-text index is stored in a series of b+tree (-like)
|
| -** structures called segments which map terms to doclists. The
|
| -** structures are like b+trees in layout, but are constructed from the
|
| -** bottom up in optimal fashion and are not updatable. Since trees
|
| -** are built from the bottom up, things will be described from the
|
| -** bottom up.
|
| -**
|
| -**
|
| -**** Varints ****
|
| -** The basic unit of encoding is a variable-length integer called a
|
| -** varint. We encode variable-length integers in little-endian order
|
| -** using seven bits * per byte as follows:
|
| -**
|
| -** KEY:
|
| -** A = 0xxxxxxx 7 bits of data and one flag bit
|
| -** B = 1xxxxxxx 7 bits of data and one flag bit
|
| -**
|
| -** 7 bits - A
|
| -** 14 bits - BA
|
| -** 21 bits - BBA
|
| -** and so on.
|
| -**
|
| -** This is identical to how sqlite encodes varints (see util.c).
|
| -**
|
| -**
|
| -**** Document lists ****
|
| -** A doclist (document list) holds a docid-sorted list of hits for a
|
| -** given term. Doclists hold docids, and can optionally associate
|
| -** token positions and offsets with docids.
|
| -**
|
| -** A DL_POSITIONS_OFFSETS doclist is stored like this:
|
| -**
|
| -** array {
|
| -** varint docid;
|
| -** array { (position list for column 0)
|
| -** varint position; (delta from previous position plus POS_BASE)
|
| -** varint startOffset; (delta from previous startOffset)
|
| -** varint endOffset; (delta from startOffset)
|
| -** }
|
| -** array {
|
| -** varint POS_COLUMN; (marks start of position list for new column)
|
| -** varint column; (index of new column)
|
| -** array {
|
| -** varint position; (delta from previous position plus POS_BASE)
|
| -** varint startOffset;(delta from previous startOffset)
|
| -** varint endOffset; (delta from startOffset)
|
| -** }
|
| -** }
|
| -** varint POS_END; (marks end of positions for this document.
|
| -** }
|
| -**
|
| -** Here, array { X } means zero or more occurrences of X, adjacent in
|
| -** memory. A "position" is an index of a token in the token stream
|
| -** generated by the tokenizer, while an "offset" is a byte offset,
|
| -** both based at 0. Note that POS_END and POS_COLUMN occur in the
|
| -** same logical place as the position element, and act as sentinals
|
| -** ending a position list array.
|
| -**
|
| -** A DL_POSITIONS doclist omits the startOffset and endOffset
|
| -** information. A DL_DOCIDS doclist omits both the position and
|
| -** offset information, becoming an array of varint-encoded docids.
|
| -**
|
| -** On-disk data is stored as type DL_DEFAULT, so we don't serialize
|
| -** the type. Due to how deletion is implemented in the segmentation
|
| -** system, on-disk doclists MUST store at least positions.
|
| -**
|
| -**
|
| -**** Segment leaf nodes ****
|
| -** Segment leaf nodes store terms and doclists, ordered by term. Leaf
|
| -** nodes are written using LeafWriter, and read using LeafReader (to
|
| -** iterate through a single leaf node's data) and LeavesReader (to
|
| -** iterate through a segment's entire leaf layer). Leaf nodes have
|
| -** the format:
|
| -**
|
| -** varint iHeight; (height from leaf level, always 0)
|
| -** varint nTerm; (length of first term)
|
| -** char pTerm[nTerm]; (content of first term)
|
| -** varint nDoclist; (length of term's associated doclist)
|
| -** char pDoclist[nDoclist]; (content of doclist)
|
| -** array {
|
| -** (further terms are delta-encoded)
|
| -** varint nPrefix; (length of prefix shared with previous term)
|
| -** varint nSuffix; (length of unshared suffix)
|
| -** char pTermSuffix[nSuffix];(unshared suffix of next term)
|
| -** varint nDoclist; (length of term's associated doclist)
|
| -** char pDoclist[nDoclist]; (content of doclist)
|
| -** }
|
| -**
|
| -** Here, array { X } means zero or more occurrences of X, adjacent in
|
| -** memory.
|
| -**
|
| -** Leaf nodes are broken into blocks which are stored contiguously in
|
| -** the %_segments table in sorted order. This means that when the end
|
| -** of a node is reached, the next term is in the node with the next
|
| -** greater node id.
|
| -**
|
| -** New data is spilled to a new leaf node when the current node
|
| -** exceeds LEAF_MAX bytes (default 2048). New data which itself is
|
| -** larger than STANDALONE_MIN (default 1024) is placed in a standalone
|
| -** node (a leaf node with a single term and doclist). The goal of
|
| -** these settings is to pack together groups of small doclists while
|
| -** making it efficient to directly access large doclists. The
|
| -** assumption is that large doclists represent terms which are more
|
| -** likely to be query targets.
|
| -**
|
| -** TODO(shess) It may be useful for blocking decisions to be more
|
| -** dynamic. For instance, it may make more sense to have a 2.5k leaf
|
| -** node rather than splitting into 2k and .5k nodes. My intuition is
|
| -** that this might extend through 2x or 4x the pagesize.
|
| -**
|
| -**
|
| -**** Segment interior nodes ****
|
| -** Segment interior nodes store blockids for subtree nodes and terms
|
| -** to describe what data is stored by the each subtree. Interior
|
| -** nodes are written using InteriorWriter, and read using
|
| -** InteriorReader. InteriorWriters are created as needed when
|
| -** SegmentWriter creates new leaf nodes, or when an interior node
|
| -** itself grows too big and must be split. The format of interior
|
| -** nodes:
|
| -**
|
| -** varint iHeight; (height from leaf level, always >0)
|
| -** varint iBlockid; (block id of node's leftmost subtree)
|
| -** optional {
|
| -** varint nTerm; (length of first term)
|
| -** char pTerm[nTerm]; (content of first term)
|
| -** array {
|
| -** (further terms are delta-encoded)
|
| -** varint nPrefix; (length of shared prefix with previous term)
|
| -** varint nSuffix; (length of unshared suffix)
|
| -** char pTermSuffix[nSuffix]; (unshared suffix of next term)
|
| -** }
|
| -** }
|
| -**
|
| -** Here, optional { X } means an optional element, while array { X }
|
| -** means zero or more occurrences of X, adjacent in memory.
|
| -**
|
| -** An interior node encodes n terms separating n+1 subtrees. The
|
| -** subtree blocks are contiguous, so only the first subtree's blockid
|
| -** is encoded. The subtree at iBlockid will contain all terms less
|
| -** than the first term encoded (or all terms if no term is encoded).
|
| -** Otherwise, for terms greater than or equal to pTerm[i] but less
|
| -** than pTerm[i+1], the subtree for that term will be rooted at
|
| -** iBlockid+i. Interior nodes only store enough term data to
|
| -** distinguish adjacent children (if the rightmost term of the left
|
| -** child is "something", and the leftmost term of the right child is
|
| -** "wicked", only "w" is stored).
|
| -**
|
| -** New data is spilled to a new interior node at the same height when
|
| -** the current node exceeds INTERIOR_MAX bytes (default 2048).
|
| -** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
|
| -** interior nodes and making the tree too skinny. The interior nodes
|
| -** at a given height are naturally tracked by interior nodes at
|
| -** height+1, and so on.
|
| -**
|
| -**
|
| -**** Segment directory ****
|
| -** The segment directory in table %_segdir stores meta-information for
|
| -** merging and deleting segments, and also the root node of the
|
| -** segment's tree.
|
| -**
|
| -** The root node is the top node of the segment's tree after encoding
|
| -** the entire segment, restricted to ROOT_MAX bytes (default 1024).
|
| -** This could be either a leaf node or an interior node. If the top
|
| -** node requires more than ROOT_MAX bytes, it is flushed to %_segments
|
| -** and a new root interior node is generated (which should always fit
|
| -** within ROOT_MAX because it only needs space for 2 varints, the
|
| -** height and the blockid of the previous root).
|
| -**
|
| -** The meta-information in the segment directory is:
|
| -** level - segment level (see below)
|
| -** idx - index within level
|
| -** - (level,idx uniquely identify a segment)
|
| -** start_block - first leaf node
|
| -** leaves_end_block - last leaf node
|
| -** end_block - last block (including interior nodes)
|
| -** root - contents of root node
|
| -**
|
| -** If the root node is a leaf node, then start_block,
|
| -** leaves_end_block, and end_block are all 0.
|
| -**
|
| -**
|
| -**** Segment merging ****
|
| -** To amortize update costs, segments are grouped into levels and
|
| -** merged in batches. Each increase in level represents exponentially
|
| -** more documents.
|
| -**
|
| -** New documents (actually, document updates) are tokenized and
|
| -** written individually (using LeafWriter) to a level 0 segment, with
|
| -** incrementing idx. When idx reaches MERGE_COUNT (default 16), all
|
| -** level 0 segments are merged into a single level 1 segment. Level 1
|
| -** is populated like level 0, and eventually MERGE_COUNT level 1
|
| -** segments are merged to a single level 2 segment (representing
|
| -** MERGE_COUNT^2 updates), and so on.
|
| -**
|
| -** A segment merge traverses all segments at a given level in
|
| -** parallel, performing a straightforward sorted merge. Since segment
|
| -** leaf nodes are written in to the %_segments table in order, this
|
| -** merge traverses the underlying sqlite disk structures efficiently.
|
| -** After the merge, all segment blocks from the merged level are
|
| -** deleted.
|
| -**
|
| -** MERGE_COUNT controls how often we merge segments. 16 seems to be
|
| -** somewhat of a sweet spot for insertion performance. 32 and 64 show
|
| -** very similar performance numbers to 16 on insertion, though they're
|
| -** a tiny bit slower (perhaps due to more overhead in merge-time
|
| -** sorting). 8 is about 20% slower than 16, 4 about 50% slower than
|
| -** 16, 2 about 66% slower than 16.
|
| -**
|
| -** At query time, high MERGE_COUNT increases the number of segments
|
| -** which need to be scanned and merged. For instance, with 100k docs
|
| -** inserted:
|
| -**
|
| -** MERGE_COUNT segments
|
| -** 16 25
|
| -** 8 12
|
| -** 4 10
|
| -** 2 6
|
| -**
|
| -** This appears to have only a moderate impact on queries for very
|
| -** frequent terms (which are somewhat dominated by segment merge
|
| -** costs), and infrequent and non-existent terms still seem to be fast
|
| -** even with many segments.
|
| -**
|
| -** TODO(shess) That said, it would be nice to have a better query-side
|
| -** argument for MERGE_COUNT of 16. Also, it is possible/likely that
|
| -** optimizations to things like doclist merging will swing the sweet
|
| -** spot around.
|
| -**
|
| -**
|
| -**
|
| -**** Handling of deletions and updates ****
|
| -** Since we're using a segmented structure, with no docid-oriented
|
| -** index into the term index, we clearly cannot simply update the term
|
| -** index when a document is deleted or updated. For deletions, we
|
| -** write an empty doclist (varint(docid) varint(POS_END)), for updates
|
| -** we simply write the new doclist. Segment merges overwrite older
|
| -** data for a particular docid with newer data, so deletes or updates
|
| -** will eventually overtake the earlier data and knock it out. The
|
| -** query logic likewise merges doclists so that newer data knocks out
|
| -** older data.
|
| -**
|
| -** TODO(shess) Provide a VACUUM type operation to clear out all
|
| -** deletions and duplications. This would basically be a forced merge
|
| -** into a single segment.
|
| -*/
|
| -#define CHROMIUM_FTS3_CHANGES 1
|
| -
|
| -#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
|
| -
|
| -#if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE)
|
| -# define SQLITE_CORE 1
|
| -#endif
|
| -
|
| -#include <assert.h>
|
| -#include <stdlib.h>
|
| -#include <stdio.h>
|
| -#include <string.h>
|
| -#include <ctype.h>
|
| -
|
| -#include "fts3.h"
|
| -#include "fts3_expr.h"
|
| -#include "fts3_hash.h"
|
| -#include "fts3_tokenizer.h"
|
| -#ifndef SQLITE_CORE
|
| -# include "sqlite3ext.h"
|
| - SQLITE_EXTENSION_INIT1
|
| -#endif
|
| -
|
| -
|
| -/* TODO(shess) MAN, this thing needs some refactoring. At minimum, it
|
| -** would be nice to order the file better, perhaps something along the
|
| -** lines of:
|
| -**
|
| -** - utility functions
|
| -** - table setup functions
|
| -** - table update functions
|
| -** - table query functions
|
| -**
|
| -** Put the query functions last because they're likely to reference
|
| -** typedefs or functions from the table update section.
|
| -*/
|
| -
|
| -#if 0
|
| -# define FTSTRACE(A) printf A; fflush(stdout)
|
| -#else
|
| -# define FTSTRACE(A)
|
| -#endif
|
| -
|
| -#if 0
|
| -/* Useful to set breakpoints. See main.c sqlite3Corrupt(). */
|
| -static int fts3Corrupt(void){
|
| - return SQLITE_CORRUPT;
|
| -}
|
| -# define SQLITE_CORRUPT_BKPT fts3Corrupt()
|
| -#else
|
| -# define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT
|
| -#endif
|
| -
|
| -/* It is not safe to call isspace(), tolower(), or isalnum() on
|
| -** hi-bit-set characters. This is the same solution used in the
|
| -** tokenizer.
|
| -*/
|
| -/* TODO(shess) The snippet-generation code should be using the
|
| -** tokenizer-generated tokens rather than doing its own local
|
| -** tokenization.
|
| -*/
|
| -/* TODO(shess) Is __isascii() a portable version of (c&0x80)==0? */
|
| -static int safe_isspace(char c){
|
| - return (c&0x80)==0 ? isspace(c) : 0;
|
| -}
|
| -static int safe_tolower(char c){
|
| - return (c>='A' && c<='Z') ? (c-'A'+'a') : c;
|
| -}
|
| -static int safe_isalnum(char c){
|
| - return (c&0x80)==0 ? isalnum(c) : 0;
|
| -}
|
| -
|
| -typedef enum DocListType {
|
| - DL_DOCIDS, /* docids only */
|
| - DL_POSITIONS, /* docids + positions */
|
| - DL_POSITIONS_OFFSETS /* docids + positions + offsets */
|
| -} DocListType;
|
| -
|
| -/*
|
| -** By default, only positions and not offsets are stored in the doclists.
|
| -** To change this so that offsets are stored too, compile with
|
| -**
|
| -** -DDL_DEFAULT=DL_POSITIONS_OFFSETS
|
| -**
|
| -** If DL_DEFAULT is set to DL_DOCIDS, your table can only be inserted
|
| -** into (no deletes or updates).
|
| -*/
|
| -#ifndef DL_DEFAULT
|
| -# define DL_DEFAULT DL_POSITIONS
|
| -#endif
|
| -
|
| -enum {
|
| - POS_END = 0, /* end of this position list */
|
| - POS_COLUMN, /* followed by new column number */
|
| - POS_BASE
|
| -};
|
| -
|
| -/* MERGE_COUNT controls how often we merge segments (see comment at
|
| -** top of file).
|
| -*/
|
| -#define MERGE_COUNT 16
|
| -
|
| -/* utility functions */
|
| -
|
| -/* CLEAR() and SCRAMBLE() abstract memset() on a pointer to a single
|
| -** record to prevent errors of the form:
|
| -**
|
| -** my_function(SomeType *b){
|
| -** memset(b, '\0', sizeof(b)); // sizeof(b)!=sizeof(*b)
|
| -** }
|
| -*/
|
| -/* TODO(shess) Obvious candidates for a header file. */
|
| -#define CLEAR(b) memset(b, '\0', sizeof(*(b)))
|
| -
|
| -#ifndef NDEBUG
|
| -# define SCRAMBLE(b) memset(b, 0x55, sizeof(*(b)))
|
| -#else
|
| -# define SCRAMBLE(b)
|
| -#endif
|
| -
|
| -/* We may need up to VARINT_MAX bytes to store an encoded 64-bit integer. */
|
| -#define VARINT_MAX 10
|
| -
|
| -/* Write a 64-bit variable-length integer to memory starting at p[0].
|
| - * The length of data written will be between 1 and VARINT_MAX bytes.
|
| - * The number of bytes written is returned. */
|
| -static int fts3PutVarint(char *p, sqlite_int64 v){
|
| - unsigned char *q = (unsigned char *) p;
|
| - sqlite_uint64 vu = v;
|
| - do{
|
| - *q++ = (unsigned char) ((vu & 0x7f) | 0x80);
|
| - vu >>= 7;
|
| - }while( vu!=0 );
|
| - q[-1] &= 0x7f; /* turn off high bit in final byte */
|
| - assert( q - (unsigned char *)p <= VARINT_MAX );
|
| - return (int) (q - (unsigned char *)p);
|
| -}
|
| -
|
| -/* Read a 64-bit variable-length integer from memory starting at p[0].
|
| - * Return the number of bytes read, or 0 on error.
|
| - * The value is stored in *v. */
|
| -static int fts3GetVarintSafe(const char *p, sqlite_int64 *v, int max){
|
| - const unsigned char *q = (const unsigned char *) p;
|
| - sqlite_uint64 x = 0, y = 1;
|
| - if( max>VARINT_MAX ) max = VARINT_MAX;
|
| - while( max && (*q & 0x80) == 0x80 ){
|
| - max--;
|
| - x += y * (*q++ & 0x7f);
|
| - y <<= 7;
|
| - }
|
| - if( !max ){
|
| - assert( 0 );
|
| - return 0; /* tried to read too much; bad data */
|
| - }
|
| - x += y * (*q++);
|
| - *v = (sqlite_int64) x;
|
| - return (int) (q - (unsigned char *)p);
|
| -}
|
| -
|
| -static int fts3GetVarint(const char *p, sqlite_int64 *v){
|
| - return fts3GetVarintSafe(p, v, VARINT_MAX);
|
| -}
|
| -
|
| -static int fts3GetVarint32Safe(const char *p, int *pi, int max){
|
| - sqlite_int64 i;
|
| - int ret = fts3GetVarintSafe(p, &i, max);
|
| - if( !ret ) return ret;
|
| - *pi = (int) i;
|
| - assert( *pi==i );
|
| - return ret;
|
| -}
|
| -
|
| -static int fts3GetVarint32(const char* p, int *pi){
|
| - return fts3GetVarint32Safe(p, pi, VARINT_MAX);
|
| -}
|
| -
|
| -/*******************************************************************/
|
| -/* DataBuffer is used to collect data into a buffer in piecemeal
|
| -** fashion. It implements the usual distinction between amount of
|
| -** data currently stored (nData) and buffer capacity (nCapacity).
|
| -**
|
| -** dataBufferInit - create a buffer with given initial capacity.
|
| -** dataBufferReset - forget buffer's data, retaining capacity.
|
| -** dataBufferDestroy - free buffer's data.
|
| -** dataBufferSwap - swap contents of two buffers.
|
| -** dataBufferExpand - expand capacity without adding data.
|
| -** dataBufferAppend - append data.
|
| -** dataBufferAppend2 - append two pieces of data at once.
|
| -** dataBufferReplace - replace buffer's data.
|
| -*/
|
| -typedef struct DataBuffer {
|
| - char *pData; /* Pointer to malloc'ed buffer. */
|
| - int nCapacity; /* Size of pData buffer. */
|
| - int nData; /* End of data loaded into pData. */
|
| -} DataBuffer;
|
| -
|
| -static void dataBufferInit(DataBuffer *pBuffer, int nCapacity){
|
| - assert( nCapacity>=0 );
|
| - pBuffer->nData = 0;
|
| - pBuffer->nCapacity = nCapacity;
|
| - pBuffer->pData = nCapacity==0 ? NULL : sqlite3_malloc(nCapacity);
|
| -}
|
| -static void dataBufferReset(DataBuffer *pBuffer){
|
| - pBuffer->nData = 0;
|
| -}
|
| -static void dataBufferDestroy(DataBuffer *pBuffer){
|
| - if( pBuffer->pData!=NULL ) sqlite3_free(pBuffer->pData);
|
| - SCRAMBLE(pBuffer);
|
| -}
|
| -static void dataBufferSwap(DataBuffer *pBuffer1, DataBuffer *pBuffer2){
|
| - DataBuffer tmp = *pBuffer1;
|
| - *pBuffer1 = *pBuffer2;
|
| - *pBuffer2 = tmp;
|
| -}
|
| -static void dataBufferExpand(DataBuffer *pBuffer, int nAddCapacity){
|
| - assert( nAddCapacity>0 );
|
| - /* TODO(shess) Consider expanding more aggressively. Note that the
|
| - ** underlying malloc implementation may take care of such things for
|
| - ** us already.
|
| - */
|
| - if( pBuffer->nData+nAddCapacity>pBuffer->nCapacity ){
|
| - pBuffer->nCapacity = pBuffer->nData+nAddCapacity;
|
| - pBuffer->pData = sqlite3_realloc(pBuffer->pData, pBuffer->nCapacity);
|
| - }
|
| -}
|
| -static void dataBufferAppend(DataBuffer *pBuffer,
|
| - const char *pSource, int nSource){
|
| - assert( nSource>0 && pSource!=NULL );
|
| - dataBufferExpand(pBuffer, nSource);
|
| - memcpy(pBuffer->pData+pBuffer->nData, pSource, nSource);
|
| - pBuffer->nData += nSource;
|
| -}
|
| -static void dataBufferAppend2(DataBuffer *pBuffer,
|
| - const char *pSource1, int nSource1,
|
| - const char *pSource2, int nSource2){
|
| - assert( nSource1>0 && pSource1!=NULL );
|
| - assert( nSource2>0 && pSource2!=NULL );
|
| - dataBufferExpand(pBuffer, nSource1+nSource2);
|
| - memcpy(pBuffer->pData+pBuffer->nData, pSource1, nSource1);
|
| - memcpy(pBuffer->pData+pBuffer->nData+nSource1, pSource2, nSource2);
|
| - pBuffer->nData += nSource1+nSource2;
|
| -}
|
| -static void dataBufferReplace(DataBuffer *pBuffer,
|
| - const char *pSource, int nSource){
|
| - dataBufferReset(pBuffer);
|
| - dataBufferAppend(pBuffer, pSource, nSource);
|
| -}
|
| -
|
| -/* StringBuffer is a null-terminated version of DataBuffer. */
|
| -typedef struct StringBuffer {
|
| - DataBuffer b; /* Includes null terminator. */
|
| -} StringBuffer;
|
| -
|
| -static void initStringBuffer(StringBuffer *sb){
|
| - dataBufferInit(&sb->b, 100);
|
| - dataBufferReplace(&sb->b, "", 1);
|
| -}
|
| -static int stringBufferLength(StringBuffer *sb){
|
| - return sb->b.nData-1;
|
| -}
|
| -static char *stringBufferData(StringBuffer *sb){
|
| - return sb->b.pData;
|
| -}
|
| -static void stringBufferDestroy(StringBuffer *sb){
|
| - dataBufferDestroy(&sb->b);
|
| -}
|
| -
|
| -static void nappend(StringBuffer *sb, const char *zFrom, int nFrom){
|
| - assert( sb->b.nData>0 );
|
| - if( nFrom>0 ){
|
| - sb->b.nData--;
|
| - dataBufferAppend2(&sb->b, zFrom, nFrom, "", 1);
|
| - }
|
| -}
|
| -static void append(StringBuffer *sb, const char *zFrom){
|
| - nappend(sb, zFrom, strlen(zFrom));
|
| -}
|
| -
|
| -/* Append a list of strings separated by commas. */
|
| -static void appendList(StringBuffer *sb, int nString, char **azString){
|
| - int i;
|
| - for(i=0; i<nString; ++i){
|
| - if( i>0 ) append(sb, ", ");
|
| - append(sb, azString[i]);
|
| - }
|
| -}
|
| -
|
| -static int endsInWhiteSpace(StringBuffer *p){
|
| - return stringBufferLength(p)>0 &&
|
| - safe_isspace(stringBufferData(p)[stringBufferLength(p)-1]);
|
| -}
|
| -
|
| -/* If the StringBuffer ends in something other than white space, add a
|
| -** single space character to the end.
|
| -*/
|
| -static void appendWhiteSpace(StringBuffer *p){
|
| - if( stringBufferLength(p)==0 ) return;
|
| - if( !endsInWhiteSpace(p) ) append(p, " ");
|
| -}
|
| -
|
| -/* Remove white space from the end of the StringBuffer */
|
| -static void trimWhiteSpace(StringBuffer *p){
|
| - while( endsInWhiteSpace(p) ){
|
| - p->b.pData[--p->b.nData-1] = '\0';
|
| - }
|
| -}
|
| -
|
| -/*******************************************************************/
|
| -/* DLReader is used to read document elements from a doclist. The
|
| -** current docid is cached, so dlrDocid() is fast. DLReader does not
|
| -** own the doclist buffer.
|
| -**
|
| -** dlrAtEnd - true if there's no more data to read.
|
| -** dlrDocid - docid of current document.
|
| -** dlrDocData - doclist data for current document (including docid).
|
| -** dlrDocDataBytes - length of same.
|
| -** dlrAllDataBytes - length of all remaining data.
|
| -** dlrPosData - position data for current document.
|
| -** dlrPosDataLen - length of pos data for current document (incl POS_END).
|
| -** dlrStep - step to current document.
|
| -** dlrInit - initial for doclist of given type against given data.
|
| -** dlrDestroy - clean up.
|
| -**
|
| -** Expected usage is something like:
|
| -**
|
| -** DLReader reader;
|
| -** dlrInit(&reader, pData, nData);
|
| -** while( !dlrAtEnd(&reader) ){
|
| -** // calls to dlrDocid() and kin.
|
| -** dlrStep(&reader);
|
| -** }
|
| -** dlrDestroy(&reader);
|
| -*/
|
| -typedef struct DLReader {
|
| - DocListType iType;
|
| - const char *pData;
|
| - int nData;
|
| -
|
| - sqlite_int64 iDocid;
|
| - int nElement;
|
| -} DLReader;
|
| -
|
| -static int dlrAtEnd(DLReader *pReader){
|
| - assert( pReader->nData>=0 );
|
| - return pReader->nData<=0;
|
| -}
|
| -static sqlite_int64 dlrDocid(DLReader *pReader){
|
| - assert( !dlrAtEnd(pReader) );
|
| - return pReader->iDocid;
|
| -}
|
| -static const char *dlrDocData(DLReader *pReader){
|
| - assert( !dlrAtEnd(pReader) );
|
| - return pReader->pData;
|
| -}
|
| -static int dlrDocDataBytes(DLReader *pReader){
|
| - assert( !dlrAtEnd(pReader) );
|
| - return pReader->nElement;
|
| -}
|
| -static int dlrAllDataBytes(DLReader *pReader){
|
| - assert( !dlrAtEnd(pReader) );
|
| - return pReader->nData;
|
| -}
|
| -/* TODO(shess) Consider adding a field to track iDocid varint length
|
| -** to make these two functions faster. This might matter (a tiny bit)
|
| -** for queries.
|
| -*/
|
| -static const char *dlrPosData(DLReader *pReader){
|
| - sqlite_int64 iDummy;
|
| - int n = fts3GetVarintSafe(pReader->pData, &iDummy, pReader->nElement);
|
| - if( !n ) return NULL;
|
| - assert( !dlrAtEnd(pReader) );
|
| - return pReader->pData+n;
|
| -}
|
| -static int dlrPosDataLen(DLReader *pReader){
|
| - sqlite_int64 iDummy;
|
| - int n = fts3GetVarint(pReader->pData, &iDummy);
|
| - assert( !dlrAtEnd(pReader) );
|
| - return pReader->nElement-n;
|
| -}
|
| -static int dlrStep(DLReader *pReader){
|
| - assert( !dlrAtEnd(pReader) );
|
| -
|
| - /* Skip past current doclist element. */
|
| - assert( pReader->nElement<=pReader->nData );
|
| - pReader->pData += pReader->nElement;
|
| - pReader->nData -= pReader->nElement;
|
| -
|
| - /* If there is more data, read the next doclist element. */
|
| - if( pReader->nData>0 ){
|
| - sqlite_int64 iDocidDelta;
|
| - int nTotal = 0;
|
| - int iDummy, n = fts3GetVarintSafe(pReader->pData, &iDocidDelta, pReader->nData);
|
| - if( !n ) return SQLITE_CORRUPT_BKPT;
|
| - nTotal += n;
|
| - pReader->iDocid += iDocidDelta;
|
| - if( pReader->iType>=DL_POSITIONS ){
|
| - while( 1 ){
|
| - n = fts3GetVarint32Safe(pReader->pData+nTotal, &iDummy, pReader->nData-nTotal);
|
| - if( !n ) return SQLITE_CORRUPT_BKPT;
|
| - nTotal += n;
|
| - if( iDummy==POS_END ) break;
|
| - if( iDummy==POS_COLUMN ){
|
| - n = fts3GetVarint32Safe(pReader->pData+nTotal, &iDummy, pReader->nData-nTotal);
|
| - if( !n ) return SQLITE_CORRUPT_BKPT;
|
| - nTotal += n;
|
| - }else if( pReader->iType==DL_POSITIONS_OFFSETS ){
|
| - n = fts3GetVarint32Safe(pReader->pData+nTotal, &iDummy, pReader->nData-nTotal);
|
| - if( !n ) return SQLITE_CORRUPT_BKPT;
|
| - nTotal += n;
|
| - n = fts3GetVarint32Safe(pReader->pData+nTotal, &iDummy, pReader->nData-nTotal);
|
| - if( !n ) return SQLITE_CORRUPT_BKPT;
|
| - nTotal += n;
|
| - }
|
| - }
|
| - }
|
| - pReader->nElement = nTotal;
|
| - assert( pReader->nElement<=pReader->nData );
|
| - }
|
| - return SQLITE_OK;
|
| -}
|
| -static void dlrDestroy(DLReader *pReader){
|
| - SCRAMBLE(pReader);
|
| -}
|
| -static int dlrInit(DLReader *pReader, DocListType iType,
|
| - const char *pData, int nData){
|
| - int rc;
|
| - assert( pData!=NULL && nData!=0 );
|
| - pReader->iType = iType;
|
| - pReader->pData = pData;
|
| - pReader->nData = nData;
|
| - pReader->nElement = 0;
|
| - pReader->iDocid = 0;
|
| -
|
| - /* Load the first element's data. There must be a first element. */
|
| - rc = dlrStep(pReader);
|
| - if( rc!=SQLITE_OK ) dlrDestroy(pReader);
|
| - return rc;
|
| -}
|
| -
|
| -#ifndef NDEBUG
|
| -/* Verify that the doclist can be validly decoded. Also returns the
|
| -** last docid found because it is convenient in other assertions for
|
| -** DLWriter.
|
| -*/
|
| -static void docListValidate(DocListType iType, const char *pData, int nData,
|
| - sqlite_int64 *pLastDocid){
|
| - sqlite_int64 iPrevDocid = 0;
|
| - assert( nData>0 );
|
| - assert( pData!=0 );
|
| - assert( pData+nData>pData );
|
| - while( nData!=0 ){
|
| - sqlite_int64 iDocidDelta;
|
| - int n = fts3GetVarint(pData, &iDocidDelta);
|
| - iPrevDocid += iDocidDelta;
|
| - if( iType>DL_DOCIDS ){
|
| - int iDummy;
|
| - while( 1 ){
|
| - n += fts3GetVarint32(pData+n, &iDummy);
|
| - if( iDummy==POS_END ) break;
|
| - if( iDummy==POS_COLUMN ){
|
| - n += fts3GetVarint32(pData+n, &iDummy);
|
| - }else if( iType>DL_POSITIONS ){
|
| - n += fts3GetVarint32(pData+n, &iDummy);
|
| - n += fts3GetVarint32(pData+n, &iDummy);
|
| - }
|
| - assert( n<=nData );
|
| - }
|
| - }
|
| - assert( n<=nData );
|
| - pData += n;
|
| - nData -= n;
|
| - }
|
| - if( pLastDocid ) *pLastDocid = iPrevDocid;
|
| -}
|
| -#define ASSERT_VALID_DOCLIST(i, p, n, o) docListValidate(i, p, n, o)
|
| -#else
|
| -#define ASSERT_VALID_DOCLIST(i, p, n, o) assert( 1 )
|
| -#endif
|
| -
|
| -/*******************************************************************/
|
| -/* DLWriter is used to write doclist data to a DataBuffer. DLWriter
|
| -** always appends to the buffer and does not own it.
|
| -**
|
| -** dlwInit - initialize to write a given type doclistto a buffer.
|
| -** dlwDestroy - clear the writer's memory. Does not free buffer.
|
| -** dlwAppend - append raw doclist data to buffer.
|
| -** dlwCopy - copy next doclist from reader to writer.
|
| -** dlwAdd - construct doclist element and append to buffer.
|
| -** Only apply dlwAdd() to DL_DOCIDS doclists (else use PLWriter).
|
| -*/
|
| -typedef struct DLWriter {
|
| - DocListType iType;
|
| - DataBuffer *b;
|
| - sqlite_int64 iPrevDocid;
|
| -#ifndef NDEBUG
|
| - int has_iPrevDocid;
|
| -#endif
|
| -} DLWriter;
|
| -
|
| -static void dlwInit(DLWriter *pWriter, DocListType iType, DataBuffer *b){
|
| - pWriter->b = b;
|
| - pWriter->iType = iType;
|
| - pWriter->iPrevDocid = 0;
|
| -#ifndef NDEBUG
|
| - pWriter->has_iPrevDocid = 0;
|
| -#endif
|
| -}
|
| -static void dlwDestroy(DLWriter *pWriter){
|
| - SCRAMBLE(pWriter);
|
| -}
|
| -/* iFirstDocid is the first docid in the doclist in pData. It is
|
| -** needed because pData may point within a larger doclist, in which
|
| -** case the first item would be delta-encoded.
|
| -**
|
| -** iLastDocid is the final docid in the doclist in pData. It is
|
| -** needed to create the new iPrevDocid for future delta-encoding. The
|
| -** code could decode the passed doclist to recreate iLastDocid, but
|
| -** the only current user (docListMerge) already has decoded this
|
| -** information.
|
| -*/
|
| -/* TODO(shess) This has become just a helper for docListMerge.
|
| -** Consider a refactor to make this cleaner.
|
| -*/
|
| -static int dlwAppend(DLWriter *pWriter,
|
| - const char *pData, int nData,
|
| - sqlite_int64 iFirstDocid, sqlite_int64 iLastDocid){
|
| - sqlite_int64 iDocid = 0;
|
| - char c[VARINT_MAX];
|
| - int nFirstOld, nFirstNew; /* Old and new varint len of first docid. */
|
| -#ifndef NDEBUG
|
| - sqlite_int64 iLastDocidDelta;
|
| -#endif
|
| -
|
| - /* Recode the initial docid as delta from iPrevDocid. */
|
| - nFirstOld = fts3GetVarintSafe(pData, &iDocid, nData);
|
| - if( !nFirstOld ) return SQLITE_CORRUPT_BKPT;
|
| - assert( nFirstOld<nData || (nFirstOld==nData && pWriter->iType==DL_DOCIDS) );
|
| - nFirstNew = fts3PutVarint(c, iFirstDocid-pWriter->iPrevDocid);
|
| -
|
| - /* Verify that the incoming doclist is valid AND that it ends with
|
| - ** the expected docid. This is essential because we'll trust this
|
| - ** docid in future delta-encoding.
|
| - */
|
| - ASSERT_VALID_DOCLIST(pWriter->iType, pData, nData, &iLastDocidDelta);
|
| - assert( iLastDocid==iFirstDocid-iDocid+iLastDocidDelta );
|
| -
|
| - /* Append recoded initial docid and everything else. Rest of docids
|
| - ** should have been delta-encoded from previous initial docid.
|
| - */
|
| - if( nFirstOld<nData ){
|
| - dataBufferAppend2(pWriter->b, c, nFirstNew,
|
| - pData+nFirstOld, nData-nFirstOld);
|
| - }else{
|
| - dataBufferAppend(pWriter->b, c, nFirstNew);
|
| - }
|
| - pWriter->iPrevDocid = iLastDocid;
|
| - return SQLITE_OK;
|
| -}
|
| -static int dlwCopy(DLWriter *pWriter, DLReader *pReader){
|
| - return dlwAppend(pWriter, dlrDocData(pReader), dlrDocDataBytes(pReader),
|
| - dlrDocid(pReader), dlrDocid(pReader));
|
| -}
|
| -static void dlwAdd(DLWriter *pWriter, sqlite_int64 iDocid){
|
| - char c[VARINT_MAX];
|
| - int n = fts3PutVarint(c, iDocid-pWriter->iPrevDocid);
|
| -
|
| - /* Docids must ascend. */
|
| - assert( !pWriter->has_iPrevDocid || iDocid>pWriter->iPrevDocid );
|
| - assert( pWriter->iType==DL_DOCIDS );
|
| -
|
| - dataBufferAppend(pWriter->b, c, n);
|
| - pWriter->iPrevDocid = iDocid;
|
| -#ifndef NDEBUG
|
| - pWriter->has_iPrevDocid = 1;
|
| -#endif
|
| -}
|
| -
|
| -/*******************************************************************/
|
| -/* PLReader is used to read data from a document's position list. As
|
| -** the caller steps through the list, data is cached so that varints
|
| -** only need to be decoded once.
|
| -**
|
| -** plrInit, plrDestroy - create/destroy a reader.
|
| -** plrColumn, plrPosition, plrStartOffset, plrEndOffset - accessors
|
| -** plrAtEnd - at end of stream, only call plrDestroy once true.
|
| -** plrStep - step to the next element.
|
| -*/
|
| -typedef struct PLReader {
|
| - /* These refer to the next position's data. nData will reach 0 when
|
| - ** reading the last position, so plrStep() signals EOF by setting
|
| - ** pData to NULL.
|
| - */
|
| - const char *pData;
|
| - int nData;
|
| -
|
| - DocListType iType;
|
| - int iColumn; /* the last column read */
|
| - int iPosition; /* the last position read */
|
| - int iStartOffset; /* the last start offset read */
|
| - int iEndOffset; /* the last end offset read */
|
| -} PLReader;
|
| -
|
| -static int plrAtEnd(PLReader *pReader){
|
| - return pReader->pData==NULL;
|
| -}
|
| -static int plrColumn(PLReader *pReader){
|
| - assert( !plrAtEnd(pReader) );
|
| - return pReader->iColumn;
|
| -}
|
| -static int plrPosition(PLReader *pReader){
|
| - assert( !plrAtEnd(pReader) );
|
| - return pReader->iPosition;
|
| -}
|
| -static int plrStartOffset(PLReader *pReader){
|
| - assert( !plrAtEnd(pReader) );
|
| - return pReader->iStartOffset;
|
| -}
|
| -static int plrEndOffset(PLReader *pReader){
|
| - assert( !plrAtEnd(pReader) );
|
| - return pReader->iEndOffset;
|
| -}
|
| -static int plrStep(PLReader *pReader){
|
| - int i, n, nTotal = 0;
|
| -
|
| - assert( !plrAtEnd(pReader) );
|
| -
|
| - if( pReader->nData<=0 ){
|
| - pReader->pData = NULL;
|
| - return SQLITE_OK;
|
| - }
|
| -
|
| - n = fts3GetVarint32Safe(pReader->pData, &i, pReader->nData);
|
| - if( !n ) return SQLITE_CORRUPT_BKPT;
|
| - nTotal += n;
|
| - if( i==POS_COLUMN ){
|
| - n = fts3GetVarint32Safe(pReader->pData+nTotal, &pReader->iColumn, pReader->nData-nTotal);
|
| - if( !n ) return SQLITE_CORRUPT_BKPT;
|
| - nTotal += n;
|
| - pReader->iPosition = 0;
|
| - pReader->iStartOffset = 0;
|
| - n = fts3GetVarint32Safe(pReader->pData+nTotal, &i, pReader->nData-nTotal);
|
| - if( !n ) return SQLITE_CORRUPT_BKPT;
|
| - nTotal += n;
|
| - }
|
| - /* Should never see adjacent column changes. */
|
| - assert( i!=POS_COLUMN );
|
| -
|
| - if( i==POS_END ){
|
| - assert( nTotal<=pReader->nData );
|
| - pReader->nData = 0;
|
| - pReader->pData = NULL;
|
| - return SQLITE_OK;
|
| - }
|
| -
|
| - pReader->iPosition += i-POS_BASE;
|
| - if( pReader->iType==DL_POSITIONS_OFFSETS ){
|
| - n = fts3GetVarint32Safe(pReader->pData+nTotal, &i, pReader->nData-nTotal);
|
| - if( !n ) return SQLITE_CORRUPT_BKPT;
|
| - nTotal += n;
|
| - pReader->iStartOffset += i;
|
| - n = fts3GetVarint32Safe(pReader->pData+nTotal, &i, pReader->nData-nTotal);
|
| - if( !n ) return SQLITE_CORRUPT_BKPT;
|
| - nTotal += n;
|
| - pReader->iEndOffset = pReader->iStartOffset+i;
|
| - }
|
| - assert( nTotal<=pReader->nData );
|
| - pReader->pData += nTotal;
|
| - pReader->nData -= nTotal;
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -static void plrDestroy(PLReader *pReader){
|
| - SCRAMBLE(pReader);
|
| -}
|
| -static int plrInit(PLReader *pReader, DLReader *pDLReader){
|
| - int rc;
|
| - pReader->pData = dlrPosData(pDLReader);
|
| - pReader->nData = dlrPosDataLen(pDLReader);
|
| - pReader->iType = pDLReader->iType;
|
| - pReader->iColumn = 0;
|
| - pReader->iPosition = 0;
|
| - pReader->iStartOffset = 0;
|
| - pReader->iEndOffset = 0;
|
| - rc = plrStep(pReader);
|
| - if( rc!=SQLITE_OK ) plrDestroy(pReader);
|
| - return rc;
|
| -}
|
| -
|
| -/*******************************************************************/
|
| -/* PLWriter is used in constructing a document's position list. As a
|
| -** convenience, if iType is DL_DOCIDS, PLWriter becomes a no-op.
|
| -** PLWriter writes to the associated DLWriter's buffer.
|
| -**
|
| -** plwInit - init for writing a document's poslist.
|
| -** plwDestroy - clear a writer.
|
| -** plwAdd - append position and offset information.
|
| -** plwCopy - copy next position's data from reader to writer.
|
| -** plwTerminate - add any necessary doclist terminator.
|
| -**
|
| -** Calling plwAdd() after plwTerminate() may result in a corrupt
|
| -** doclist.
|
| -*/
|
| -/* TODO(shess) Until we've written the second item, we can cache the
|
| -** first item's information. Then we'd have three states:
|
| -**
|
| -** - initialized with docid, no positions.
|
| -** - docid and one position.
|
| -** - docid and multiple positions.
|
| -**
|
| -** Only the last state needs to actually write to dlw->b, which would
|
| -** be an improvement in the DLCollector case.
|
| -*/
|
| -typedef struct PLWriter {
|
| - DLWriter *dlw;
|
| -
|
| - int iColumn; /* the last column written */
|
| - int iPos; /* the last position written */
|
| - int iOffset; /* the last start offset written */
|
| -} PLWriter;
|
| -
|
| -/* TODO(shess) In the case where the parent is reading these values
|
| -** from a PLReader, we could optimize to a copy if that PLReader has
|
| -** the same type as pWriter.
|
| -*/
|
| -static void plwAdd(PLWriter *pWriter, int iColumn, int iPos,
|
| - int iStartOffset, int iEndOffset){
|
| - /* Worst-case space for POS_COLUMN, iColumn, iPosDelta,
|
| - ** iStartOffsetDelta, and iEndOffsetDelta.
|
| - */
|
| - char c[5*VARINT_MAX];
|
| - int n = 0;
|
| -
|
| - /* Ban plwAdd() after plwTerminate(). */
|
| - assert( pWriter->iPos!=-1 );
|
| -
|
| - if( pWriter->dlw->iType==DL_DOCIDS ) return;
|
| -
|
| - if( iColumn!=pWriter->iColumn ){
|
| - n += fts3PutVarint(c+n, POS_COLUMN);
|
| - n += fts3PutVarint(c+n, iColumn);
|
| - pWriter->iColumn = iColumn;
|
| - pWriter->iPos = 0;
|
| - pWriter->iOffset = 0;
|
| - }
|
| - assert( iPos>=pWriter->iPos );
|
| - n += fts3PutVarint(c+n, POS_BASE+(iPos-pWriter->iPos));
|
| - pWriter->iPos = iPos;
|
| - if( pWriter->dlw->iType==DL_POSITIONS_OFFSETS ){
|
| - assert( iStartOffset>=pWriter->iOffset );
|
| - n += fts3PutVarint(c+n, iStartOffset-pWriter->iOffset);
|
| - pWriter->iOffset = iStartOffset;
|
| - assert( iEndOffset>=iStartOffset );
|
| - n += fts3PutVarint(c+n, iEndOffset-iStartOffset);
|
| - }
|
| - dataBufferAppend(pWriter->dlw->b, c, n);
|
| -}
|
| -static void plwCopy(PLWriter *pWriter, PLReader *pReader){
|
| - plwAdd(pWriter, plrColumn(pReader), plrPosition(pReader),
|
| - plrStartOffset(pReader), plrEndOffset(pReader));
|
| -}
|
| -static void plwInit(PLWriter *pWriter, DLWriter *dlw, sqlite_int64 iDocid){
|
| - char c[VARINT_MAX];
|
| - int n;
|
| -
|
| - pWriter->dlw = dlw;
|
| -
|
| - /* Docids must ascend. */
|
| - assert( !pWriter->dlw->has_iPrevDocid || iDocid>pWriter->dlw->iPrevDocid );
|
| - n = fts3PutVarint(c, iDocid-pWriter->dlw->iPrevDocid);
|
| - dataBufferAppend(pWriter->dlw->b, c, n);
|
| - pWriter->dlw->iPrevDocid = iDocid;
|
| -#ifndef NDEBUG
|
| - pWriter->dlw->has_iPrevDocid = 1;
|
| -#endif
|
| -
|
| - pWriter->iColumn = 0;
|
| - pWriter->iPos = 0;
|
| - pWriter->iOffset = 0;
|
| -}
|
| -/* TODO(shess) Should plwDestroy() also terminate the doclist? But
|
| -** then plwDestroy() would no longer be just a destructor, it would
|
| -** also be doing work, which isn't consistent with the overall idiom.
|
| -** Another option would be for plwAdd() to always append any necessary
|
| -** terminator, so that the output is always correct. But that would
|
| -** add incremental work to the common case with the only benefit being
|
| -** API elegance. Punt for now.
|
| -*/
|
| -static void plwTerminate(PLWriter *pWriter){
|
| - if( pWriter->dlw->iType>DL_DOCIDS ){
|
| - char c[VARINT_MAX];
|
| - int n = fts3PutVarint(c, POS_END);
|
| - dataBufferAppend(pWriter->dlw->b, c, n);
|
| - }
|
| -#ifndef NDEBUG
|
| - /* Mark as terminated for assert in plwAdd(). */
|
| - pWriter->iPos = -1;
|
| -#endif
|
| -}
|
| -static void plwDestroy(PLWriter *pWriter){
|
| - SCRAMBLE(pWriter);
|
| -}
|
| -
|
| -/*******************************************************************/
|
| -/* DLCollector wraps PLWriter and DLWriter to provide a
|
| -** dynamically-allocated doclist area to use during tokenization.
|
| -**
|
| -** dlcNew - malloc up and initialize a collector.
|
| -** dlcDelete - destroy a collector and all contained items.
|
| -** dlcAddPos - append position and offset information.
|
| -** dlcAddDoclist - add the collected doclist to the given buffer.
|
| -** dlcNext - terminate the current document and open another.
|
| -*/
|
| -typedef struct DLCollector {
|
| - DataBuffer b;
|
| - DLWriter dlw;
|
| - PLWriter plw;
|
| -} DLCollector;
|
| -
|
| -/* TODO(shess) This could also be done by calling plwTerminate() and
|
| -** dataBufferAppend(). I tried that, expecting nominal performance
|
| -** differences, but it seemed to pretty reliably be worth 1% to code
|
| -** it this way. I suspect it is the incremental malloc overhead (some
|
| -** percentage of the plwTerminate() calls will cause a realloc), so
|
| -** this might be worth revisiting if the DataBuffer implementation
|
| -** changes.
|
| -*/
|
| -static void dlcAddDoclist(DLCollector *pCollector, DataBuffer *b){
|
| - if( pCollector->dlw.iType>DL_DOCIDS ){
|
| - char c[VARINT_MAX];
|
| - int n = fts3PutVarint(c, POS_END);
|
| - dataBufferAppend2(b, pCollector->b.pData, pCollector->b.nData, c, n);
|
| - }else{
|
| - dataBufferAppend(b, pCollector->b.pData, pCollector->b.nData);
|
| - }
|
| -}
|
| -static void dlcNext(DLCollector *pCollector, sqlite_int64 iDocid){
|
| - plwTerminate(&pCollector->plw);
|
| - plwDestroy(&pCollector->plw);
|
| - plwInit(&pCollector->plw, &pCollector->dlw, iDocid);
|
| -}
|
| -static void dlcAddPos(DLCollector *pCollector, int iColumn, int iPos,
|
| - int iStartOffset, int iEndOffset){
|
| - plwAdd(&pCollector->plw, iColumn, iPos, iStartOffset, iEndOffset);
|
| -}
|
| -
|
| -static DLCollector *dlcNew(sqlite_int64 iDocid, DocListType iType){
|
| - DLCollector *pCollector = sqlite3_malloc(sizeof(DLCollector));
|
| - dataBufferInit(&pCollector->b, 0);
|
| - dlwInit(&pCollector->dlw, iType, &pCollector->b);
|
| - plwInit(&pCollector->plw, &pCollector->dlw, iDocid);
|
| - return pCollector;
|
| -}
|
| -static void dlcDelete(DLCollector *pCollector){
|
| - plwDestroy(&pCollector->plw);
|
| - dlwDestroy(&pCollector->dlw);
|
| - dataBufferDestroy(&pCollector->b);
|
| - SCRAMBLE(pCollector);
|
| - sqlite3_free(pCollector);
|
| -}
|
| -
|
| -
|
| -/* Copy the doclist data of iType in pData/nData into *out, trimming
|
| -** unnecessary data as we go. Only columns matching iColumn are
|
| -** copied, all columns copied if iColumn is -1. Elements with no
|
| -** matching columns are dropped. The output is an iOutType doclist.
|
| -*/
|
| -/* NOTE(shess) This code is only valid after all doclists are merged.
|
| -** If this is run before merges, then doclist items which represent
|
| -** deletion will be trimmed, and will thus not effect a deletion
|
| -** during the merge.
|
| -*/
|
| -static int docListTrim(DocListType iType, const char *pData, int nData,
|
| - int iColumn, DocListType iOutType, DataBuffer *out){
|
| - DLReader dlReader;
|
| - DLWriter dlWriter;
|
| - int rc;
|
| -
|
| - assert( iOutType<=iType );
|
| -
|
| - rc = dlrInit(&dlReader, iType, pData, nData);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - dlwInit(&dlWriter, iOutType, out);
|
| -
|
| - while( !dlrAtEnd(&dlReader) ){
|
| - PLReader plReader;
|
| - PLWriter plWriter;
|
| - int match = 0;
|
| -
|
| - rc = plrInit(&plReader, &dlReader);
|
| - if( rc!=SQLITE_OK ) break;
|
| -
|
| - while( !plrAtEnd(&plReader) ){
|
| - if( iColumn==-1 || plrColumn(&plReader)==iColumn ){
|
| - if( !match ){
|
| - plwInit(&plWriter, &dlWriter, dlrDocid(&dlReader));
|
| - match = 1;
|
| - }
|
| - plwAdd(&plWriter, plrColumn(&plReader), plrPosition(&plReader),
|
| - plrStartOffset(&plReader), plrEndOffset(&plReader));
|
| - }
|
| - rc = plrStep(&plReader);
|
| - if( rc!=SQLITE_OK ){
|
| - plrDestroy(&plReader);
|
| - goto err;
|
| - }
|
| - }
|
| - if( match ){
|
| - plwTerminate(&plWriter);
|
| - plwDestroy(&plWriter);
|
| - }
|
| -
|
| - plrDestroy(&plReader);
|
| - rc = dlrStep(&dlReader);
|
| - if( rc!=SQLITE_OK ) break;
|
| - }
|
| -err:
|
| - dlwDestroy(&dlWriter);
|
| - dlrDestroy(&dlReader);
|
| - return rc;
|
| -}
|
| -
|
| -/* Used by docListMerge() to keep doclists in the ascending order by
|
| -** docid, then ascending order by age (so the newest comes first).
|
| -*/
|
| -typedef struct OrderedDLReader {
|
| - DLReader *pReader;
|
| -
|
| - /* TODO(shess) If we assume that docListMerge pReaders is ordered by
|
| - ** age (which we do), then we could use pReader comparisons to break
|
| - ** ties.
|
| - */
|
| - int idx;
|
| -} OrderedDLReader;
|
| -
|
| -/* Order eof to end, then by docid asc, idx desc. */
|
| -static int orderedDLReaderCmp(OrderedDLReader *r1, OrderedDLReader *r2){
|
| - if( dlrAtEnd(r1->pReader) ){
|
| - if( dlrAtEnd(r2->pReader) ) return 0; /* Both atEnd(). */
|
| - return 1; /* Only r1 atEnd(). */
|
| - }
|
| - if( dlrAtEnd(r2->pReader) ) return -1; /* Only r2 atEnd(). */
|
| -
|
| - if( dlrDocid(r1->pReader)<dlrDocid(r2->pReader) ) return -1;
|
| - if( dlrDocid(r1->pReader)>dlrDocid(r2->pReader) ) return 1;
|
| -
|
| - /* Descending on idx. */
|
| - return r2->idx-r1->idx;
|
| -}
|
| -
|
| -/* Bubble p[0] to appropriate place in p[1..n-1]. Assumes that
|
| -** p[1..n-1] is already sorted.
|
| -*/
|
| -/* TODO(shess) Is this frequent enough to warrant a binary search?
|
| -** Before implementing that, instrument the code to check. In most
|
| -** current usage, I expect that p[0] will be less than p[1] a very
|
| -** high proportion of the time.
|
| -*/
|
| -static void orderedDLReaderReorder(OrderedDLReader *p, int n){
|
| - while( n>1 && orderedDLReaderCmp(p, p+1)>0 ){
|
| - OrderedDLReader tmp = p[0];
|
| - p[0] = p[1];
|
| - p[1] = tmp;
|
| - n--;
|
| - p++;
|
| - }
|
| -}
|
| -
|
| -/* Given an array of doclist readers, merge their doclist elements
|
| -** into out in sorted order (by docid), dropping elements from older
|
| -** readers when there is a duplicate docid. pReaders is assumed to be
|
| -** ordered by age, oldest first.
|
| -*/
|
| -/* TODO(shess) nReaders must be <= MERGE_COUNT. This should probably
|
| -** be fixed.
|
| -*/
|
| -static int docListMerge(DataBuffer *out,
|
| - DLReader *pReaders, int nReaders){
|
| - OrderedDLReader readers[MERGE_COUNT];
|
| - DLWriter writer;
|
| - int i, n;
|
| - const char *pStart = 0;
|
| - int nStart = 0;
|
| - sqlite_int64 iFirstDocid = 0, iLastDocid = 0;
|
| - int rc = SQLITE_OK;
|
| -
|
| - assert( nReaders>0 );
|
| - if( nReaders==1 ){
|
| - dataBufferAppend(out, dlrDocData(pReaders), dlrAllDataBytes(pReaders));
|
| - return SQLITE_OK;
|
| - }
|
| -
|
| - assert( nReaders<=MERGE_COUNT );
|
| - n = 0;
|
| - for(i=0; i<nReaders; i++){
|
| - assert( pReaders[i].iType==pReaders[0].iType );
|
| - readers[i].pReader = pReaders+i;
|
| - readers[i].idx = i;
|
| - n += dlrAllDataBytes(&pReaders[i]);
|
| - }
|
| - /* Conservatively size output to sum of inputs. Output should end
|
| - ** up strictly smaller than input.
|
| - */
|
| - dataBufferExpand(out, n);
|
| -
|
| - /* Get the readers into sorted order. */
|
| - while( i-->0 ){
|
| - orderedDLReaderReorder(readers+i, nReaders-i);
|
| - }
|
| -
|
| - dlwInit(&writer, pReaders[0].iType, out);
|
| - while( !dlrAtEnd(readers[0].pReader) ){
|
| - sqlite_int64 iDocid = dlrDocid(readers[0].pReader);
|
| -
|
| - /* If this is a continuation of the current buffer to copy, extend
|
| - ** that buffer. memcpy() seems to be more efficient if it has a
|
| - ** lots of data to copy.
|
| - */
|
| - if( dlrDocData(readers[0].pReader)==pStart+nStart ){
|
| - nStart += dlrDocDataBytes(readers[0].pReader);
|
| - }else{
|
| - if( pStart!=0 ){
|
| - rc = dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| - }
|
| - pStart = dlrDocData(readers[0].pReader);
|
| - nStart = dlrDocDataBytes(readers[0].pReader);
|
| - iFirstDocid = iDocid;
|
| - }
|
| - iLastDocid = iDocid;
|
| - rc = dlrStep(readers[0].pReader);
|
| - if( rc!= SQLITE_OK ) goto err;
|
| -
|
| - /* Drop all of the older elements with the same docid. */
|
| - for(i=1; i<nReaders &&
|
| - !dlrAtEnd(readers[i].pReader) &&
|
| - dlrDocid(readers[i].pReader)==iDocid; i++){
|
| - rc = dlrStep(readers[i].pReader);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| - }
|
| -
|
| - /* Get the readers back into order. */
|
| - while( i-->0 ){
|
| - orderedDLReaderReorder(readers+i, nReaders-i);
|
| - }
|
| - }
|
| -
|
| - /* Copy over any remaining elements. */
|
| - if( nStart>0 ) rc = dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid);
|
| -err:
|
| - dlwDestroy(&writer);
|
| - return rc;
|
| -}
|
| -
|
| -/* Helper function for posListUnion(). Compares the current position
|
| -** between left and right, returning as standard C idiom of <0 if
|
| -** left<right, >0 if left>right, and 0 if left==right. "End" always
|
| -** compares greater.
|
| -*/
|
| -static int posListCmp(PLReader *pLeft, PLReader *pRight){
|
| - assert( pLeft->iType==pRight->iType );
|
| - if( pLeft->iType==DL_DOCIDS ) return 0;
|
| -
|
| - if( plrAtEnd(pLeft) ) return plrAtEnd(pRight) ? 0 : 1;
|
| - if( plrAtEnd(pRight) ) return -1;
|
| -
|
| - if( plrColumn(pLeft)<plrColumn(pRight) ) return -1;
|
| - if( plrColumn(pLeft)>plrColumn(pRight) ) return 1;
|
| -
|
| - if( plrPosition(pLeft)<plrPosition(pRight) ) return -1;
|
| - if( plrPosition(pLeft)>plrPosition(pRight) ) return 1;
|
| - if( pLeft->iType==DL_POSITIONS ) return 0;
|
| -
|
| - if( plrStartOffset(pLeft)<plrStartOffset(pRight) ) return -1;
|
| - if( plrStartOffset(pLeft)>plrStartOffset(pRight) ) return 1;
|
| -
|
| - if( plrEndOffset(pLeft)<plrEndOffset(pRight) ) return -1;
|
| - if( plrEndOffset(pLeft)>plrEndOffset(pRight) ) return 1;
|
| -
|
| - return 0;
|
| -}
|
| -
|
| -/* Write the union of position lists in pLeft and pRight to pOut.
|
| -** "Union" in this case meaning "All unique position tuples". Should
|
| -** work with any doclist type, though both inputs and the output
|
| -** should be the same type.
|
| -*/
|
| -static int posListUnion(DLReader *pLeft, DLReader *pRight, DLWriter *pOut){
|
| - PLReader left, right;
|
| - PLWriter writer;
|
| - int rc;
|
| -
|
| - assert( dlrDocid(pLeft)==dlrDocid(pRight) );
|
| - assert( pLeft->iType==pRight->iType );
|
| - assert( pLeft->iType==pOut->iType );
|
| -
|
| - rc = plrInit(&left, pLeft);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - rc = plrInit(&right, pRight);
|
| - if( rc!=SQLITE_OK ){
|
| - plrDestroy(&left);
|
| - return rc;
|
| - }
|
| - plwInit(&writer, pOut, dlrDocid(pLeft));
|
| -
|
| - while( !plrAtEnd(&left) || !plrAtEnd(&right) ){
|
| - int c = posListCmp(&left, &right);
|
| - if( c<0 ){
|
| - plwCopy(&writer, &left);
|
| - rc = plrStep(&left);
|
| - if( rc!=SQLITE_OK ) break;
|
| - }else if( c>0 ){
|
| - plwCopy(&writer, &right);
|
| - rc = plrStep(&right);
|
| - if( rc!=SQLITE_OK ) break;
|
| - }else{
|
| - plwCopy(&writer, &left);
|
| - rc = plrStep(&left);
|
| - if( rc!=SQLITE_OK ) break;
|
| - rc = plrStep(&right);
|
| - if( rc!=SQLITE_OK ) break;
|
| - }
|
| - }
|
| -
|
| - plwTerminate(&writer);
|
| - plwDestroy(&writer);
|
| - plrDestroy(&left);
|
| - plrDestroy(&right);
|
| - return rc;
|
| -}
|
| -
|
| -/* Write the union of doclists in pLeft and pRight to pOut. For
|
| -** docids in common between the inputs, the union of the position
|
| -** lists is written. Inputs and outputs are always type DL_DEFAULT.
|
| -*/
|
| -static int docListUnion(
|
| - const char *pLeft, int nLeft,
|
| - const char *pRight, int nRight,
|
| - DataBuffer *pOut /* Write the combined doclist here */
|
| -){
|
| - DLReader left, right;
|
| - DLWriter writer;
|
| - int rc;
|
| -
|
| - if( nLeft==0 ){
|
| - if( nRight!=0) dataBufferAppend(pOut, pRight, nRight);
|
| - return SQLITE_OK;
|
| - }
|
| - if( nRight==0 ){
|
| - dataBufferAppend(pOut, pLeft, nLeft);
|
| - return SQLITE_OK;
|
| - }
|
| -
|
| - rc = dlrInit(&left, DL_DEFAULT, pLeft, nLeft);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - rc = dlrInit(&right, DL_DEFAULT, pRight, nRight);
|
| - if( rc!=SQLITE_OK){
|
| - dlrDestroy(&left);
|
| - return rc;
|
| - }
|
| - dlwInit(&writer, DL_DEFAULT, pOut);
|
| -
|
| - while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){
|
| - if( dlrAtEnd(&right) ){
|
| - rc = dlwCopy(&writer, &left);
|
| - if( rc!=SQLITE_OK) break;
|
| - rc = dlrStep(&left);
|
| - if( rc!=SQLITE_OK) break;
|
| - }else if( dlrAtEnd(&left) ){
|
| - rc = dlwCopy(&writer, &right);
|
| - if( rc!=SQLITE_OK ) break;
|
| - rc = dlrStep(&right);
|
| - if( rc!=SQLITE_OK ) break;
|
| - }else if( dlrDocid(&left)<dlrDocid(&right) ){
|
| - rc = dlwCopy(&writer, &left);
|
| - if( rc!=SQLITE_OK ) break;
|
| - rc = dlrStep(&left);
|
| - if( rc!=SQLITE_OK ) break;
|
| - }else if( dlrDocid(&left)>dlrDocid(&right) ){
|
| - rc = dlwCopy(&writer, &right);
|
| - if( rc!=SQLITE_OK ) break;
|
| - rc = dlrStep(&right);
|
| - if( rc!=SQLITE_OK ) break;
|
| - }else{
|
| - rc = posListUnion(&left, &right, &writer);
|
| - if( rc!=SQLITE_OK ) break;
|
| - rc = dlrStep(&left);
|
| - if( rc!=SQLITE_OK ) break;
|
| - rc = dlrStep(&right);
|
| - if( rc!=SQLITE_OK ) break;
|
| - }
|
| - }
|
| -
|
| - dlrDestroy(&left);
|
| - dlrDestroy(&right);
|
| - dlwDestroy(&writer);
|
| - return rc;
|
| -}
|
| -
|
| -/*
|
| -** This function is used as part of the implementation of phrase and
|
| -** NEAR matching.
|
| -**
|
| -** pLeft and pRight are DLReaders positioned to the same docid in
|
| -** lists of type DL_POSITION. This function writes an entry to the
|
| -** DLWriter pOut for each position in pRight that is less than
|
| -** (nNear+1) greater (but not equal to or smaller) than a position
|
| -** in pLeft. For example, if nNear is 0, and the positions contained
|
| -** by pLeft and pRight are:
|
| -**
|
| -** pLeft: 5 10 15 20
|
| -** pRight: 6 9 17 21
|
| -**
|
| -** then the docid is added to pOut. If pOut is of type DL_POSITIONS,
|
| -** then a positionids "6" and "21" are also added to pOut.
|
| -**
|
| -** If boolean argument isSaveLeft is true, then positionids are copied
|
| -** from pLeft instead of pRight. In the example above, the positions "5"
|
| -** and "20" would be added instead of "6" and "21".
|
| -*/
|
| -static int posListPhraseMerge(
|
| - DLReader *pLeft,
|
| - DLReader *pRight,
|
| - int nNear,
|
| - int isSaveLeft,
|
| - DLWriter *pOut
|
| -){
|
| - PLReader left, right;
|
| - PLWriter writer;
|
| - int match = 0;
|
| - int rc;
|
| -
|
| - assert( dlrDocid(pLeft)==dlrDocid(pRight) );
|
| - assert( pOut->iType!=DL_POSITIONS_OFFSETS );
|
| -
|
| - rc = plrInit(&left, pLeft);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - rc = plrInit(&right, pRight);
|
| - if( rc!=SQLITE_OK ){
|
| - plrDestroy(&left);
|
| - return rc;
|
| - }
|
| -
|
| - while( !plrAtEnd(&left) && !plrAtEnd(&right) ){
|
| - if( plrColumn(&left)<plrColumn(&right) ){
|
| - rc = plrStep(&left);
|
| - if( rc!=SQLITE_OK ) break;
|
| - }else if( plrColumn(&left)>plrColumn(&right) ){
|
| - rc = plrStep(&right);
|
| - if( rc!=SQLITE_OK ) break;
|
| - }else if( plrPosition(&left)>=plrPosition(&right) ){
|
| - rc = plrStep(&right);
|
| - if( rc!=SQLITE_OK ) break;
|
| - }else{
|
| - if( (plrPosition(&right)-plrPosition(&left))<=(nNear+1) ){
|
| - if( !match ){
|
| - plwInit(&writer, pOut, dlrDocid(pLeft));
|
| - match = 1;
|
| - }
|
| - if( !isSaveLeft ){
|
| - plwAdd(&writer, plrColumn(&right), plrPosition(&right), 0, 0);
|
| - }else{
|
| - plwAdd(&writer, plrColumn(&left), plrPosition(&left), 0, 0);
|
| - }
|
| - rc = plrStep(&right);
|
| - if( rc!=SQLITE_OK ) break;
|
| - }else{
|
| - rc = plrStep(&left);
|
| - if( rc!=SQLITE_OK ) break;
|
| - }
|
| - }
|
| - }
|
| -
|
| - if( match ){
|
| - plwTerminate(&writer);
|
| - plwDestroy(&writer);
|
| - }
|
| -
|
| - plrDestroy(&left);
|
| - plrDestroy(&right);
|
| - return rc;
|
| -}
|
| -
|
| -/*
|
| -** Compare the values pointed to by the PLReaders passed as arguments.
|
| -** Return -1 if the value pointed to by pLeft is considered less than
|
| -** the value pointed to by pRight, +1 if it is considered greater
|
| -** than it, or 0 if it is equal. i.e.
|
| -**
|
| -** (*pLeft - *pRight)
|
| -**
|
| -** A PLReader that is in the EOF condition is considered greater than
|
| -** any other. If neither argument is in EOF state, the return value of
|
| -** plrColumn() is used. If the plrColumn() values are equal, the
|
| -** comparison is on the basis of plrPosition().
|
| -*/
|
| -static int plrCompare(PLReader *pLeft, PLReader *pRight){
|
| - assert(!plrAtEnd(pLeft) || !plrAtEnd(pRight));
|
| -
|
| - if( plrAtEnd(pRight) || plrAtEnd(pLeft) ){
|
| - return (plrAtEnd(pRight) ? -1 : 1);
|
| - }
|
| - if( plrColumn(pLeft)!=plrColumn(pRight) ){
|
| - return ((plrColumn(pLeft)<plrColumn(pRight)) ? -1 : 1);
|
| - }
|
| - if( plrPosition(pLeft)!=plrPosition(pRight) ){
|
| - return ((plrPosition(pLeft)<plrPosition(pRight)) ? -1 : 1);
|
| - }
|
| - return 0;
|
| -}
|
| -
|
| -/* We have two doclists with positions: pLeft and pRight. Depending
|
| -** on the value of the nNear parameter, perform either a phrase
|
| -** intersection (if nNear==0) or a NEAR intersection (if nNear>0)
|
| -** and write the results into pOut.
|
| -**
|
| -** A phrase intersection means that two documents only match
|
| -** if pLeft.iPos+1==pRight.iPos.
|
| -**
|
| -** A NEAR intersection means that two documents only match if
|
| -** (abs(pLeft.iPos-pRight.iPos)<nNear).
|
| -**
|
| -** If a NEAR intersection is requested, then the nPhrase argument should
|
| -** be passed the number of tokens in the two operands to the NEAR operator
|
| -** combined. For example:
|
| -**
|
| -** Query syntax nPhrase
|
| -** ------------------------------------
|
| -** "A B C" NEAR "D E" 5
|
| -** A NEAR B 2
|
| -**
|
| -** iType controls the type of data written to pOut. If iType is
|
| -** DL_POSITIONS, the positions are those from pRight.
|
| -*/
|
| -static int docListPhraseMerge(
|
| - const char *pLeft, int nLeft,
|
| - const char *pRight, int nRight,
|
| - int nNear, /* 0 for a phrase merge, non-zero for a NEAR merge */
|
| - int nPhrase, /* Number of tokens in left+right operands to NEAR */
|
| - DocListType iType, /* Type of doclist to write to pOut */
|
| - DataBuffer *pOut /* Write the combined doclist here */
|
| -){
|
| - DLReader left, right;
|
| - DLWriter writer;
|
| - int rc;
|
| -
|
| - /* These two buffers are used in the 'while', but are declared here
|
| - ** to simplify error-handling.
|
| - */
|
| - DataBuffer one = {0, 0, 0};
|
| - DataBuffer two = {0, 0, 0};
|
| -
|
| - if( nLeft==0 || nRight==0 ) return SQLITE_OK;
|
| -
|
| - assert( iType!=DL_POSITIONS_OFFSETS );
|
| -
|
| - rc = dlrInit(&left, DL_POSITIONS, pLeft, nLeft);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - rc = dlrInit(&right, DL_POSITIONS, pRight, nRight);
|
| - if( rc!=SQLITE_OK ){
|
| - dlrDestroy(&left);
|
| - return rc;
|
| - }
|
| - dlwInit(&writer, iType, pOut);
|
| -
|
| - while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){
|
| - if( dlrDocid(&left)<dlrDocid(&right) ){
|
| - rc = dlrStep(&left);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| - }else if( dlrDocid(&right)<dlrDocid(&left) ){
|
| - rc = dlrStep(&right);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| - }else{
|
| - if( nNear==0 ){
|
| - rc = posListPhraseMerge(&left, &right, 0, 0, &writer);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| - }else{
|
| - /* This case occurs when two terms (simple terms or phrases) are
|
| - * connected by a NEAR operator, span (nNear+1). i.e.
|
| - *
|
| - * '"terrible company" NEAR widget'
|
| - */
|
| - DLWriter dlwriter2;
|
| - DLReader dr1 = {0, 0, 0, 0, 0};
|
| - DLReader dr2 = {0, 0, 0, 0, 0};
|
| -
|
| - dlwInit(&dlwriter2, iType, &one);
|
| - rc = posListPhraseMerge(&right, &left, nNear-3+nPhrase, 1, &dlwriter2);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| - dlwInit(&dlwriter2, iType, &two);
|
| - rc = posListPhraseMerge(&left, &right, nNear-1, 0, &dlwriter2);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| -
|
| - if( one.nData){
|
| - rc = dlrInit(&dr1, iType, one.pData, one.nData);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| - }
|
| - if( two.nData){
|
| - rc = dlrInit(&dr2, iType, two.pData, two.nData);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| - }
|
| -
|
| - if( !dlrAtEnd(&dr1) || !dlrAtEnd(&dr2) ){
|
| - PLReader pr1 = {0};
|
| - PLReader pr2 = {0};
|
| -
|
| - PLWriter plwriter;
|
| - plwInit(&plwriter, &writer, dlrDocid(dlrAtEnd(&dr1)?&dr2:&dr1));
|
| -
|
| - if( one.nData ){
|
| - rc = plrInit(&pr1, &dr1);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| - }
|
| - if( two.nData ){
|
| - rc = plrInit(&pr2, &dr2);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| - }
|
| - while( !plrAtEnd(&pr1) || !plrAtEnd(&pr2) ){
|
| - int iCompare = plrCompare(&pr1, &pr2);
|
| - switch( iCompare ){
|
| - case -1:
|
| - plwCopy(&plwriter, &pr1);
|
| - rc = plrStep(&pr1);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| - break;
|
| - case 1:
|
| - plwCopy(&plwriter, &pr2);
|
| - rc = plrStep(&pr2);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| - break;
|
| - case 0:
|
| - plwCopy(&plwriter, &pr1);
|
| - rc = plrStep(&pr1);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| - rc = plrStep(&pr2);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| - break;
|
| - }
|
| - }
|
| - plwTerminate(&plwriter);
|
| - }
|
| - dataBufferReset(&one);
|
| - dataBufferReset(&two);
|
| - }
|
| - rc = dlrStep(&left);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| - rc = dlrStep(&right);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| - }
|
| - }
|
| -
|
| -err:
|
| - dataBufferDestroy(&one);
|
| - dataBufferDestroy(&two);
|
| - dlrDestroy(&left);
|
| - dlrDestroy(&right);
|
| - dlwDestroy(&writer);
|
| - return rc;
|
| -}
|
| -
|
| -/* We have two DL_DOCIDS doclists: pLeft and pRight.
|
| -** Write the intersection of these two doclists into pOut as a
|
| -** DL_DOCIDS doclist.
|
| -*/
|
| -static int docListAndMerge(
|
| - const char *pLeft, int nLeft,
|
| - const char *pRight, int nRight,
|
| - DataBuffer *pOut /* Write the combined doclist here */
|
| -){
|
| - DLReader left, right;
|
| - DLWriter writer;
|
| - int rc;
|
| -
|
| - if( nLeft==0 || nRight==0 ) return SQLITE_OK;
|
| -
|
| - rc = dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - rc = dlrInit(&right, DL_DOCIDS, pRight, nRight);
|
| - if( rc!=SQLITE_OK ){
|
| - dlrDestroy(&left);
|
| - return rc;
|
| - }
|
| - dlwInit(&writer, DL_DOCIDS, pOut);
|
| -
|
| - while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){
|
| - if( dlrDocid(&left)<dlrDocid(&right) ){
|
| - rc = dlrStep(&left);
|
| - if( rc!=SQLITE_OK ) break;
|
| - }else if( dlrDocid(&right)<dlrDocid(&left) ){
|
| - rc = dlrStep(&right);
|
| - if( rc!=SQLITE_OK ) break;
|
| - }else{
|
| - dlwAdd(&writer, dlrDocid(&left));
|
| - rc = dlrStep(&left);
|
| - if( rc!=SQLITE_OK ) break;
|
| - rc = dlrStep(&right);
|
| - if( rc!=SQLITE_OK ) break;
|
| - }
|
| - }
|
| -
|
| - dlrDestroy(&left);
|
| - dlrDestroy(&right);
|
| - dlwDestroy(&writer);
|
| - return rc;
|
| -}
|
| -
|
| -/* We have two DL_DOCIDS doclists: pLeft and pRight.
|
| -** Write the union of these two doclists into pOut as a
|
| -** DL_DOCIDS doclist.
|
| -*/
|
| -static int docListOrMerge(
|
| - const char *pLeft, int nLeft,
|
| - const char *pRight, int nRight,
|
| - DataBuffer *pOut /* Write the combined doclist here */
|
| -){
|
| - DLReader left, right;
|
| - DLWriter writer;
|
| - int rc;
|
| -
|
| - if( nLeft==0 ){
|
| - if( nRight!=0 ) dataBufferAppend(pOut, pRight, nRight);
|
| - return SQLITE_OK;
|
| - }
|
| - if( nRight==0 ){
|
| - dataBufferAppend(pOut, pLeft, nLeft);
|
| - return SQLITE_OK;
|
| - }
|
| -
|
| - rc = dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - rc = dlrInit(&right, DL_DOCIDS, pRight, nRight);
|
| - if( rc!=SQLITE_OK ){
|
| - dlrDestroy(&left);
|
| - return rc;
|
| - }
|
| - dlwInit(&writer, DL_DOCIDS, pOut);
|
| -
|
| - while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){
|
| - if( dlrAtEnd(&right) ){
|
| - dlwAdd(&writer, dlrDocid(&left));
|
| - rc = dlrStep(&left);
|
| - if( rc!=SQLITE_OK ) break;
|
| - }else if( dlrAtEnd(&left) ){
|
| - dlwAdd(&writer, dlrDocid(&right));
|
| - rc = dlrStep(&right);
|
| - if( rc!=SQLITE_OK ) break;
|
| - }else if( dlrDocid(&left)<dlrDocid(&right) ){
|
| - dlwAdd(&writer, dlrDocid(&left));
|
| - rc = dlrStep(&left);
|
| - if( rc!=SQLITE_OK ) break;
|
| - }else if( dlrDocid(&right)<dlrDocid(&left) ){
|
| - dlwAdd(&writer, dlrDocid(&right));
|
| - rc = dlrStep(&right);
|
| - if( rc!=SQLITE_OK ) break;
|
| - }else{
|
| - dlwAdd(&writer, dlrDocid(&left));
|
| - rc = dlrStep(&left);
|
| - if( rc!=SQLITE_OK ) break;
|
| - rc = dlrStep(&right);
|
| - if( rc!=SQLITE_OK ) break;
|
| - }
|
| - }
|
| -
|
| - dlrDestroy(&left);
|
| - dlrDestroy(&right);
|
| - dlwDestroy(&writer);
|
| - return rc;
|
| -}
|
| -
|
| -/* We have two DL_DOCIDS doclists: pLeft and pRight.
|
| -** Write into pOut as DL_DOCIDS doclist containing all documents that
|
| -** occur in pLeft but not in pRight.
|
| -*/
|
| -static int docListExceptMerge(
|
| - const char *pLeft, int nLeft,
|
| - const char *pRight, int nRight,
|
| - DataBuffer *pOut /* Write the combined doclist here */
|
| -){
|
| - DLReader left, right;
|
| - DLWriter writer;
|
| - int rc;
|
| -
|
| - if( nLeft==0 ) return SQLITE_OK;
|
| - if( nRight==0 ){
|
| - dataBufferAppend(pOut, pLeft, nLeft);
|
| - return SQLITE_OK;
|
| - }
|
| -
|
| - rc = dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - rc = dlrInit(&right, DL_DOCIDS, pRight, nRight);
|
| - if( rc!=SQLITE_OK ){
|
| - dlrDestroy(&left);
|
| - return rc;
|
| - }
|
| - dlwInit(&writer, DL_DOCIDS, pOut);
|
| -
|
| - while( !dlrAtEnd(&left) ){
|
| - while( !dlrAtEnd(&right) && dlrDocid(&right)<dlrDocid(&left) ){
|
| - rc = dlrStep(&right);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| - }
|
| - if( dlrAtEnd(&right) || dlrDocid(&left)<dlrDocid(&right) ){
|
| - dlwAdd(&writer, dlrDocid(&left));
|
| - }
|
| - rc = dlrStep(&left);
|
| - if( rc!=SQLITE_OK ) break;
|
| - }
|
| -
|
| -err:
|
| - dlrDestroy(&left);
|
| - dlrDestroy(&right);
|
| - dlwDestroy(&writer);
|
| - return rc;
|
| -}
|
| -
|
| -static char *string_dup_n(const char *s, int n){
|
| - char *str = sqlite3_malloc(n + 1);
|
| - memcpy(str, s, n);
|
| - str[n] = '\0';
|
| - return str;
|
| -}
|
| -
|
| -/* Duplicate a string; the caller must free() the returned string.
|
| - * (We don't use strdup() since it is not part of the standard C library and
|
| - * may not be available everywhere.) */
|
| -static char *string_dup(const char *s){
|
| - return string_dup_n(s, strlen(s));
|
| -}
|
| -
|
| -/* Format a string, replacing each occurrence of the % character with
|
| - * zDb.zName. This may be more convenient than sqlite_mprintf()
|
| - * when one string is used repeatedly in a format string.
|
| - * The caller must free() the returned string. */
|
| -static char *string_format(const char *zFormat,
|
| - const char *zDb, const char *zName){
|
| - const char *p;
|
| - size_t len = 0;
|
| - size_t nDb = strlen(zDb);
|
| - size_t nName = strlen(zName);
|
| - size_t nFullTableName = nDb+1+nName;
|
| - char *result;
|
| - char *r;
|
| -
|
| - /* first compute length needed */
|
| - for(p = zFormat ; *p ; ++p){
|
| - len += (*p=='%' ? nFullTableName : 1);
|
| - }
|
| - len += 1; /* for null terminator */
|
| -
|
| - r = result = sqlite3_malloc(len);
|
| - for(p = zFormat; *p; ++p){
|
| - if( *p=='%' ){
|
| - memcpy(r, zDb, nDb);
|
| - r += nDb;
|
| - *r++ = '.';
|
| - memcpy(r, zName, nName);
|
| - r += nName;
|
| - } else {
|
| - *r++ = *p;
|
| - }
|
| - }
|
| - *r++ = '\0';
|
| - assert( r == result + len );
|
| - return result;
|
| -}
|
| -
|
| -static int sql_exec(sqlite3 *db, const char *zDb, const char *zName,
|
| - const char *zFormat){
|
| - char *zCommand = string_format(zFormat, zDb, zName);
|
| - int rc;
|
| - FTSTRACE(("FTS3 sql: %s\n", zCommand));
|
| - rc = sqlite3_exec(db, zCommand, NULL, 0, NULL);
|
| - sqlite3_free(zCommand);
|
| - return rc;
|
| -}
|
| -
|
| -static int sql_prepare(sqlite3 *db, const char *zDb, const char *zName,
|
| - sqlite3_stmt **ppStmt, const char *zFormat){
|
| - char *zCommand = string_format(zFormat, zDb, zName);
|
| - int rc;
|
| - FTSTRACE(("FTS3 prepare: %s\n", zCommand));
|
| - rc = sqlite3_prepare_v2(db, zCommand, -1, ppStmt, NULL);
|
| - sqlite3_free(zCommand);
|
| - return rc;
|
| -}
|
| -
|
| -/* end utility functions */
|
| -
|
| -/* Forward reference */
|
| -typedef struct fulltext_vtab fulltext_vtab;
|
| -
|
| -/*
|
| -** An instance of the following structure keeps track of generated
|
| -** matching-word offset information and snippets.
|
| -*/
|
| -typedef struct Snippet {
|
| - int nMatch; /* Total number of matches */
|
| - int nAlloc; /* Space allocated for aMatch[] */
|
| - struct snippetMatch { /* One entry for each matching term */
|
| - char snStatus; /* Status flag for use while constructing snippets */
|
| - short int iCol; /* The column that contains the match */
|
| - short int iTerm; /* The index in Query.pTerms[] of the matching term */
|
| - int iToken; /* The index of the matching document token */
|
| - short int nByte; /* Number of bytes in the term */
|
| - int iStart; /* The offset to the first character of the term */
|
| - } *aMatch; /* Points to space obtained from malloc */
|
| - char *zOffset; /* Text rendering of aMatch[] */
|
| - int nOffset; /* strlen(zOffset) */
|
| - char *zSnippet; /* Snippet text */
|
| - int nSnippet; /* strlen(zSnippet) */
|
| -} Snippet;
|
| -
|
| -
|
| -typedef enum QueryType {
|
| - QUERY_GENERIC, /* table scan */
|
| - QUERY_DOCID, /* lookup by docid */
|
| - QUERY_FULLTEXT /* QUERY_FULLTEXT + [i] is a full-text search for column i*/
|
| -} QueryType;
|
| -
|
| -typedef enum fulltext_statement {
|
| - CONTENT_INSERT_STMT,
|
| - CONTENT_SELECT_STMT,
|
| - CONTENT_UPDATE_STMT,
|
| - CONTENT_DELETE_STMT,
|
| - CONTENT_EXISTS_STMT,
|
| -
|
| - BLOCK_INSERT_STMT,
|
| - BLOCK_SELECT_STMT,
|
| - BLOCK_DELETE_STMT,
|
| - BLOCK_DELETE_ALL_STMT,
|
| -
|
| - SEGDIR_MAX_INDEX_STMT,
|
| - SEGDIR_SET_STMT,
|
| - SEGDIR_SELECT_LEVEL_STMT,
|
| - SEGDIR_SPAN_STMT,
|
| - SEGDIR_DELETE_STMT,
|
| - SEGDIR_SELECT_SEGMENT_STMT,
|
| - SEGDIR_SELECT_ALL_STMT,
|
| - SEGDIR_DELETE_ALL_STMT,
|
| - SEGDIR_COUNT_STMT,
|
| -
|
| - MAX_STMT /* Always at end! */
|
| -} fulltext_statement;
|
| -
|
| -/* These must exactly match the enum above. */
|
| -/* TODO(shess): Is there some risk that a statement will be used in two
|
| -** cursors at once, e.g. if a query joins a virtual table to itself?
|
| -** If so perhaps we should move some of these to the cursor object.
|
| -*/
|
| -static const char *const fulltext_zStatement[MAX_STMT] = {
|
| - /* CONTENT_INSERT */ NULL, /* generated in contentInsertStatement() */
|
| - /* CONTENT_SELECT */ NULL, /* generated in contentSelectStatement() */
|
| - /* CONTENT_UPDATE */ NULL, /* generated in contentUpdateStatement() */
|
| - /* CONTENT_DELETE */ "delete from %_content where docid = ?",
|
| - /* CONTENT_EXISTS */ "select docid from %_content limit 1",
|
| -
|
| - /* BLOCK_INSERT */
|
| - "insert into %_segments (blockid, block) values (null, ?)",
|
| - /* BLOCK_SELECT */ "select block from %_segments where blockid = ?",
|
| - /* BLOCK_DELETE */ "delete from %_segments where blockid between ? and ?",
|
| - /* BLOCK_DELETE_ALL */ "delete from %_segments",
|
| -
|
| - /* SEGDIR_MAX_INDEX */ "select max(idx) from %_segdir where level = ?",
|
| - /* SEGDIR_SET */ "insert into %_segdir values (?, ?, ?, ?, ?, ?)",
|
| - /* SEGDIR_SELECT_LEVEL */
|
| - "select start_block, leaves_end_block, root, idx from %_segdir "
|
| - " where level = ? order by idx",
|
| - /* SEGDIR_SPAN */
|
| - "select min(start_block), max(end_block) from %_segdir "
|
| - " where level = ? and start_block <> 0",
|
| - /* SEGDIR_DELETE */ "delete from %_segdir where level = ?",
|
| -
|
| - /* NOTE(shess): The first three results of the following two
|
| - ** statements must match.
|
| - */
|
| - /* SEGDIR_SELECT_SEGMENT */
|
| - "select start_block, leaves_end_block, root from %_segdir "
|
| - " where level = ? and idx = ?",
|
| - /* SEGDIR_SELECT_ALL */
|
| - "select start_block, leaves_end_block, root from %_segdir "
|
| - " order by level desc, idx asc",
|
| - /* SEGDIR_DELETE_ALL */ "delete from %_segdir",
|
| - /* SEGDIR_COUNT */ "select count(*), ifnull(max(level),0) from %_segdir",
|
| -};
|
| -
|
| -/*
|
| -** A connection to a fulltext index is an instance of the following
|
| -** structure. The xCreate and xConnect methods create an instance
|
| -** of this structure and xDestroy and xDisconnect free that instance.
|
| -** All other methods receive a pointer to the structure as one of their
|
| -** arguments.
|
| -*/
|
| -struct fulltext_vtab {
|
| - sqlite3_vtab base; /* Base class used by SQLite core */
|
| - sqlite3 *db; /* The database connection */
|
| - const char *zDb; /* logical database name */
|
| - const char *zName; /* virtual table name */
|
| - int nColumn; /* number of columns in virtual table */
|
| - char **azColumn; /* column names. malloced */
|
| - char **azContentColumn; /* column names in content table; malloced */
|
| - sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */
|
| -
|
| - /* Precompiled statements which we keep as long as the table is
|
| - ** open.
|
| - */
|
| - sqlite3_stmt *pFulltextStatements[MAX_STMT];
|
| -
|
| - /* Precompiled statements used for segment merges. We run a
|
| - ** separate select across the leaf level of each tree being merged.
|
| - */
|
| - sqlite3_stmt *pLeafSelectStmts[MERGE_COUNT];
|
| - /* The statement used to prepare pLeafSelectStmts. */
|
| -#define LEAF_SELECT \
|
| - "select block from %_segments where blockid between ? and ? order by blockid"
|
| -
|
| - /* These buffer pending index updates during transactions.
|
| - ** nPendingData estimates the memory size of the pending data. It
|
| - ** doesn't include the hash-bucket overhead, nor any malloc
|
| - ** overhead. When nPendingData exceeds kPendingThreshold, the
|
| - ** buffer is flushed even before the transaction closes.
|
| - ** pendingTerms stores the data, and is only valid when nPendingData
|
| - ** is >=0 (nPendingData<0 means pendingTerms has not been
|
| - ** initialized). iPrevDocid is the last docid written, used to make
|
| - ** certain we're inserting in sorted order.
|
| - */
|
| - int nPendingData;
|
| -#define kPendingThreshold (1*1024*1024)
|
| - sqlite_int64 iPrevDocid;
|
| - fts3Hash pendingTerms;
|
| -};
|
| -
|
| -/*
|
| -** When the core wants to do a query, it create a cursor using a
|
| -** call to xOpen. This structure is an instance of a cursor. It
|
| -** is destroyed by xClose.
|
| -*/
|
| -typedef struct fulltext_cursor {
|
| - sqlite3_vtab_cursor base; /* Base class used by SQLite core */
|
| - QueryType iCursorType; /* Copy of sqlite3_index_info.idxNum */
|
| - sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */
|
| - int eof; /* True if at End Of Results */
|
| - Fts3Expr *pExpr; /* Parsed MATCH query string */
|
| - Snippet snippet; /* Cached snippet for the current row */
|
| - int iColumn; /* Column being searched */
|
| - DataBuffer result; /* Doclist results from fulltextQuery */
|
| - DLReader reader; /* Result reader if result not empty */
|
| -} fulltext_cursor;
|
| -
|
| -static fulltext_vtab *cursor_vtab(fulltext_cursor *c){
|
| - return (fulltext_vtab *) c->base.pVtab;
|
| -}
|
| -
|
| -static const sqlite3_module fts3Module; /* forward declaration */
|
| -
|
| -/* Return a dynamically generated statement of the form
|
| - * insert into %_content (docid, ...) values (?, ...)
|
| - */
|
| -static const char *contentInsertStatement(fulltext_vtab *v){
|
| - StringBuffer sb;
|
| - int i;
|
| -
|
| - initStringBuffer(&sb);
|
| - append(&sb, "insert into %_content (docid, ");
|
| - appendList(&sb, v->nColumn, v->azContentColumn);
|
| - append(&sb, ") values (?");
|
| - for(i=0; i<v->nColumn; ++i)
|
| - append(&sb, ", ?");
|
| - append(&sb, ")");
|
| - return stringBufferData(&sb);
|
| -}
|
| -
|
| -/* Return a dynamically generated statement of the form
|
| - * select <content columns> from %_content where docid = ?
|
| - */
|
| -static const char *contentSelectStatement(fulltext_vtab *v){
|
| - StringBuffer sb;
|
| - initStringBuffer(&sb);
|
| - append(&sb, "SELECT ");
|
| - appendList(&sb, v->nColumn, v->azContentColumn);
|
| - append(&sb, " FROM %_content WHERE docid = ?");
|
| - return stringBufferData(&sb);
|
| -}
|
| -
|
| -/* Return a dynamically generated statement of the form
|
| - * update %_content set [col_0] = ?, [col_1] = ?, ...
|
| - * where docid = ?
|
| - */
|
| -static const char *contentUpdateStatement(fulltext_vtab *v){
|
| - StringBuffer sb;
|
| - int i;
|
| -
|
| - initStringBuffer(&sb);
|
| - append(&sb, "update %_content set ");
|
| - for(i=0; i<v->nColumn; ++i) {
|
| - if( i>0 ){
|
| - append(&sb, ", ");
|
| - }
|
| - append(&sb, v->azContentColumn[i]);
|
| - append(&sb, " = ?");
|
| - }
|
| - append(&sb, " where docid = ?");
|
| - return stringBufferData(&sb);
|
| -}
|
| -
|
| -/* Puts a freshly-prepared statement determined by iStmt in *ppStmt.
|
| -** If the indicated statement has never been prepared, it is prepared
|
| -** and cached, otherwise the cached version is reset.
|
| -*/
|
| -static int sql_get_statement(fulltext_vtab *v, fulltext_statement iStmt,
|
| - sqlite3_stmt **ppStmt){
|
| - assert( iStmt<MAX_STMT );
|
| - if( v->pFulltextStatements[iStmt]==NULL ){
|
| - const char *zStmt;
|
| - int rc;
|
| - switch( iStmt ){
|
| - case CONTENT_INSERT_STMT:
|
| - zStmt = contentInsertStatement(v); break;
|
| - case CONTENT_SELECT_STMT:
|
| - zStmt = contentSelectStatement(v); break;
|
| - case CONTENT_UPDATE_STMT:
|
| - zStmt = contentUpdateStatement(v); break;
|
| - default:
|
| - zStmt = fulltext_zStatement[iStmt];
|
| - }
|
| - rc = sql_prepare(v->db, v->zDb, v->zName, &v->pFulltextStatements[iStmt],
|
| - zStmt);
|
| - if( zStmt != fulltext_zStatement[iStmt]) sqlite3_free((void *) zStmt);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - } else {
|
| - int rc = sqlite3_reset(v->pFulltextStatements[iStmt]);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - }
|
| -
|
| - *ppStmt = v->pFulltextStatements[iStmt];
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/* Like sqlite3_step(), but convert SQLITE_DONE to SQLITE_OK and
|
| -** SQLITE_ROW to SQLITE_ERROR. Useful for statements like UPDATE,
|
| -** where we expect no results.
|
| -*/
|
| -static int sql_single_step(sqlite3_stmt *s){
|
| - int rc = sqlite3_step(s);
|
| - return (rc==SQLITE_DONE) ? SQLITE_OK : rc;
|
| -}
|
| -
|
| -/* Like sql_get_statement(), but for special replicated LEAF_SELECT
|
| -** statements. idx -1 is a special case for an uncached version of
|
| -** the statement (used in the optimize implementation).
|
| -*/
|
| -/* TODO(shess) Write version for generic statements and then share
|
| -** that between the cached-statement functions.
|
| -*/
|
| -static int sql_get_leaf_statement(fulltext_vtab *v, int idx,
|
| - sqlite3_stmt **ppStmt){
|
| - assert( idx>=-1 && idx<MERGE_COUNT );
|
| - if( idx==-1 ){
|
| - return sql_prepare(v->db, v->zDb, v->zName, ppStmt, LEAF_SELECT);
|
| - }else if( v->pLeafSelectStmts[idx]==NULL ){
|
| - int rc = sql_prepare(v->db, v->zDb, v->zName, &v->pLeafSelectStmts[idx],
|
| - LEAF_SELECT);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - }else{
|
| - int rc = sqlite3_reset(v->pLeafSelectStmts[idx]);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - }
|
| -
|
| - *ppStmt = v->pLeafSelectStmts[idx];
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/* insert into %_content (docid, ...) values ([docid], [pValues])
|
| -** If the docid contains SQL NULL, then a unique docid will be
|
| -** generated.
|
| -*/
|
| -static int content_insert(fulltext_vtab *v, sqlite3_value *docid,
|
| - sqlite3_value **pValues){
|
| - sqlite3_stmt *s;
|
| - int i;
|
| - int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = sqlite3_bind_value(s, 1, docid);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - for(i=0; i<v->nColumn; ++i){
|
| - rc = sqlite3_bind_value(s, 2+i, pValues[i]);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - }
|
| -
|
| - return sql_single_step(s);
|
| -}
|
| -
|
| -/* update %_content set col0 = pValues[0], col1 = pValues[1], ...
|
| - * where docid = [iDocid] */
|
| -static int content_update(fulltext_vtab *v, sqlite3_value **pValues,
|
| - sqlite_int64 iDocid){
|
| - sqlite3_stmt *s;
|
| - int i;
|
| - int rc = sql_get_statement(v, CONTENT_UPDATE_STMT, &s);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - for(i=0; i<v->nColumn; ++i){
|
| - rc = sqlite3_bind_value(s, 1+i, pValues[i]);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - }
|
| -
|
| - rc = sqlite3_bind_int64(s, 1+v->nColumn, iDocid);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - return sql_single_step(s);
|
| -}
|
| -
|
| -static void freeStringArray(int nString, const char **pString){
|
| - int i;
|
| -
|
| - for (i=0 ; i < nString ; ++i) {
|
| - if( pString[i]!=NULL ) sqlite3_free((void *) pString[i]);
|
| - }
|
| - sqlite3_free((void *) pString);
|
| -}
|
| -
|
| -/* select * from %_content where docid = [iDocid]
|
| - * The caller must delete the returned array and all strings in it.
|
| - * null fields will be NULL in the returned array.
|
| - *
|
| - * TODO: Perhaps we should return pointer/length strings here for consistency
|
| - * with other code which uses pointer/length. */
|
| -static int content_select(fulltext_vtab *v, sqlite_int64 iDocid,
|
| - const char ***pValues){
|
| - sqlite3_stmt *s;
|
| - const char **values;
|
| - int i;
|
| - int rc;
|
| -
|
| - *pValues = NULL;
|
| -
|
| - rc = sql_get_statement(v, CONTENT_SELECT_STMT, &s);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = sqlite3_bind_int64(s, 1, iDocid);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = sqlite3_step(s);
|
| - if( rc!=SQLITE_ROW ) return rc;
|
| -
|
| - values = (const char **) sqlite3_malloc(v->nColumn * sizeof(const char *));
|
| - for(i=0; i<v->nColumn; ++i){
|
| - if( sqlite3_column_type(s, i)==SQLITE_NULL ){
|
| - values[i] = NULL;
|
| - }else{
|
| - values[i] = string_dup((char*)sqlite3_column_text(s, i));
|
| - }
|
| - }
|
| -
|
| - /* We expect only one row. We must execute another sqlite3_step()
|
| - * to complete the iteration; otherwise the table will remain locked. */
|
| - rc = sqlite3_step(s);
|
| - if( rc==SQLITE_DONE ){
|
| - *pValues = values;
|
| - return SQLITE_OK;
|
| - }
|
| -
|
| - freeStringArray(v->nColumn, values);
|
| - return rc;
|
| -}
|
| -
|
| -/* delete from %_content where docid = [iDocid ] */
|
| -static int content_delete(fulltext_vtab *v, sqlite_int64 iDocid){
|
| - sqlite3_stmt *s;
|
| - int rc = sql_get_statement(v, CONTENT_DELETE_STMT, &s);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = sqlite3_bind_int64(s, 1, iDocid);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - return sql_single_step(s);
|
| -}
|
| -
|
| -/* Returns SQLITE_ROW if any rows exist in %_content, SQLITE_DONE if
|
| -** no rows exist, and any error in case of failure.
|
| -*/
|
| -static int content_exists(fulltext_vtab *v){
|
| - sqlite3_stmt *s;
|
| - int rc = sql_get_statement(v, CONTENT_EXISTS_STMT, &s);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = sqlite3_step(s);
|
| - if( rc!=SQLITE_ROW ) return rc;
|
| -
|
| - /* We expect only one row. We must execute another sqlite3_step()
|
| - * to complete the iteration; otherwise the table will remain locked. */
|
| - rc = sqlite3_step(s);
|
| - if( rc==SQLITE_DONE ) return SQLITE_ROW;
|
| - if( rc==SQLITE_ROW ) return SQLITE_ERROR;
|
| - return rc;
|
| -}
|
| -
|
| -/* insert into %_segments values ([pData])
|
| -** returns assigned blockid in *piBlockid
|
| -*/
|
| -static int block_insert(fulltext_vtab *v, const char *pData, int nData,
|
| - sqlite_int64 *piBlockid){
|
| - sqlite3_stmt *s;
|
| - int rc = sql_get_statement(v, BLOCK_INSERT_STMT, &s);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = sqlite3_bind_blob(s, 1, pData, nData, SQLITE_STATIC);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = sqlite3_step(s);
|
| - if( rc==SQLITE_ROW ) return SQLITE_ERROR;
|
| - if( rc!=SQLITE_DONE ) return rc;
|
| -
|
| - /* blockid column is an alias for rowid. */
|
| - *piBlockid = sqlite3_last_insert_rowid(v->db);
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/* delete from %_segments
|
| -** where blockid between [iStartBlockid] and [iEndBlockid]
|
| -**
|
| -** Deletes the range of blocks, inclusive, used to delete the blocks
|
| -** which form a segment.
|
| -*/
|
| -static int block_delete(fulltext_vtab *v,
|
| - sqlite_int64 iStartBlockid, sqlite_int64 iEndBlockid){
|
| - sqlite3_stmt *s;
|
| - int rc = sql_get_statement(v, BLOCK_DELETE_STMT, &s);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = sqlite3_bind_int64(s, 1, iStartBlockid);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = sqlite3_bind_int64(s, 2, iEndBlockid);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - return sql_single_step(s);
|
| -}
|
| -
|
| -/* Returns SQLITE_ROW with *pidx set to the maximum segment idx found
|
| -** at iLevel. Returns SQLITE_DONE if there are no segments at
|
| -** iLevel. Otherwise returns an error.
|
| -*/
|
| -static int segdir_max_index(fulltext_vtab *v, int iLevel, int *pidx){
|
| - sqlite3_stmt *s;
|
| - int rc = sql_get_statement(v, SEGDIR_MAX_INDEX_STMT, &s);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = sqlite3_bind_int(s, 1, iLevel);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = sqlite3_step(s);
|
| - /* Should always get at least one row due to how max() works. */
|
| - if( rc==SQLITE_DONE ) return SQLITE_DONE;
|
| - if( rc!=SQLITE_ROW ) return rc;
|
| -
|
| - /* NULL means that there were no inputs to max(). */
|
| - if( SQLITE_NULL==sqlite3_column_type(s, 0) ){
|
| - rc = sqlite3_step(s);
|
| - if( rc==SQLITE_ROW ) return SQLITE_ERROR;
|
| - return rc;
|
| - }
|
| -
|
| - *pidx = sqlite3_column_int(s, 0);
|
| -
|
| - /* We expect only one row. We must execute another sqlite3_step()
|
| - * to complete the iteration; otherwise the table will remain locked. */
|
| - rc = sqlite3_step(s);
|
| - if( rc==SQLITE_ROW ) return SQLITE_ERROR;
|
| - if( rc!=SQLITE_DONE ) return rc;
|
| - return SQLITE_ROW;
|
| -}
|
| -
|
| -/* insert into %_segdir values (
|
| -** [iLevel], [idx],
|
| -** [iStartBlockid], [iLeavesEndBlockid], [iEndBlockid],
|
| -** [pRootData]
|
| -** )
|
| -*/
|
| -static int segdir_set(fulltext_vtab *v, int iLevel, int idx,
|
| - sqlite_int64 iStartBlockid,
|
| - sqlite_int64 iLeavesEndBlockid,
|
| - sqlite_int64 iEndBlockid,
|
| - const char *pRootData, int nRootData){
|
| - sqlite3_stmt *s;
|
| - int rc = sql_get_statement(v, SEGDIR_SET_STMT, &s);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = sqlite3_bind_int(s, 1, iLevel);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = sqlite3_bind_int(s, 2, idx);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = sqlite3_bind_int64(s, 3, iStartBlockid);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = sqlite3_bind_int64(s, 4, iLeavesEndBlockid);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = sqlite3_bind_int64(s, 5, iEndBlockid);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = sqlite3_bind_blob(s, 6, pRootData, nRootData, SQLITE_STATIC);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - return sql_single_step(s);
|
| -}
|
| -
|
| -/* Queries %_segdir for the block span of the segments in level
|
| -** iLevel. Returns SQLITE_DONE if there are no blocks for iLevel,
|
| -** SQLITE_ROW if there are blocks, else an error.
|
| -*/
|
| -static int segdir_span(fulltext_vtab *v, int iLevel,
|
| - sqlite_int64 *piStartBlockid,
|
| - sqlite_int64 *piEndBlockid){
|
| - sqlite3_stmt *s;
|
| - int rc = sql_get_statement(v, SEGDIR_SPAN_STMT, &s);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = sqlite3_bind_int(s, 1, iLevel);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = sqlite3_step(s);
|
| - if( rc==SQLITE_DONE ) return SQLITE_DONE; /* Should never happen */
|
| - if( rc!=SQLITE_ROW ) return rc;
|
| -
|
| - /* This happens if all segments at this level are entirely inline. */
|
| - if( SQLITE_NULL==sqlite3_column_type(s, 0) ){
|
| - /* We expect only one row. We must execute another sqlite3_step()
|
| - * to complete the iteration; otherwise the table will remain locked. */
|
| - int rc2 = sqlite3_step(s);
|
| - if( rc2==SQLITE_ROW ) return SQLITE_ERROR;
|
| - return rc2;
|
| - }
|
| -
|
| - *piStartBlockid = sqlite3_column_int64(s, 0);
|
| - *piEndBlockid = sqlite3_column_int64(s, 1);
|
| -
|
| - /* We expect only one row. We must execute another sqlite3_step()
|
| - * to complete the iteration; otherwise the table will remain locked. */
|
| - rc = sqlite3_step(s);
|
| - if( rc==SQLITE_ROW ) return SQLITE_ERROR;
|
| - if( rc!=SQLITE_DONE ) return rc;
|
| - return SQLITE_ROW;
|
| -}
|
| -
|
| -/* Delete the segment blocks and segment directory records for all
|
| -** segments at iLevel.
|
| -*/
|
| -static int segdir_delete(fulltext_vtab *v, int iLevel){
|
| - sqlite3_stmt *s;
|
| - sqlite_int64 iStartBlockid, iEndBlockid;
|
| - int rc = segdir_span(v, iLevel, &iStartBlockid, &iEndBlockid);
|
| - if( rc!=SQLITE_ROW && rc!=SQLITE_DONE ) return rc;
|
| -
|
| - if( rc==SQLITE_ROW ){
|
| - rc = block_delete(v, iStartBlockid, iEndBlockid);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - }
|
| -
|
| - /* Delete the segment directory itself. */
|
| - rc = sql_get_statement(v, SEGDIR_DELETE_STMT, &s);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = sqlite3_bind_int64(s, 1, iLevel);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - return sql_single_step(s);
|
| -}
|
| -
|
| -/* Delete entire fts index, SQLITE_OK on success, relevant error on
|
| -** failure.
|
| -*/
|
| -static int segdir_delete_all(fulltext_vtab *v){
|
| - sqlite3_stmt *s;
|
| - int rc = sql_get_statement(v, SEGDIR_DELETE_ALL_STMT, &s);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = sql_single_step(s);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = sql_get_statement(v, BLOCK_DELETE_ALL_STMT, &s);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - return sql_single_step(s);
|
| -}
|
| -
|
| -/* Returns SQLITE_OK with *pnSegments set to the number of entries in
|
| -** %_segdir and *piMaxLevel set to the highest level which has a
|
| -** segment. Otherwise returns the SQLite error which caused failure.
|
| -*/
|
| -static int segdir_count(fulltext_vtab *v, int *pnSegments, int *piMaxLevel){
|
| - sqlite3_stmt *s;
|
| - int rc = sql_get_statement(v, SEGDIR_COUNT_STMT, &s);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = sqlite3_step(s);
|
| - /* TODO(shess): This case should not be possible? Should stronger
|
| - ** measures be taken if it happens?
|
| - */
|
| - if( rc==SQLITE_DONE ){
|
| - *pnSegments = 0;
|
| - *piMaxLevel = 0;
|
| - return SQLITE_OK;
|
| - }
|
| - if( rc!=SQLITE_ROW ) return rc;
|
| -
|
| - *pnSegments = sqlite3_column_int(s, 0);
|
| - *piMaxLevel = sqlite3_column_int(s, 1);
|
| -
|
| - /* We expect only one row. We must execute another sqlite3_step()
|
| - * to complete the iteration; otherwise the table will remain locked. */
|
| - rc = sqlite3_step(s);
|
| - if( rc==SQLITE_DONE ) return SQLITE_OK;
|
| - if( rc==SQLITE_ROW ) return SQLITE_ERROR;
|
| - return rc;
|
| -}
|
| -
|
| -/* TODO(shess) clearPendingTerms() is far down the file because
|
| -** writeZeroSegment() is far down the file because LeafWriter is far
|
| -** down the file. Consider refactoring the code to move the non-vtab
|
| -** code above the vtab code so that we don't need this forward
|
| -** reference.
|
| -*/
|
| -static int clearPendingTerms(fulltext_vtab *v);
|
| -
|
| -/*
|
| -** Free the memory used to contain a fulltext_vtab structure.
|
| -*/
|
| -static void fulltext_vtab_destroy(fulltext_vtab *v){
|
| - int iStmt, i;
|
| -
|
| - FTSTRACE(("FTS3 Destroy %p\n", v));
|
| - for( iStmt=0; iStmt<MAX_STMT; iStmt++ ){
|
| - if( v->pFulltextStatements[iStmt]!=NULL ){
|
| - sqlite3_finalize(v->pFulltextStatements[iStmt]);
|
| - v->pFulltextStatements[iStmt] = NULL;
|
| - }
|
| - }
|
| -
|
| - for( i=0; i<MERGE_COUNT; i++ ){
|
| - if( v->pLeafSelectStmts[i]!=NULL ){
|
| - sqlite3_finalize(v->pLeafSelectStmts[i]);
|
| - v->pLeafSelectStmts[i] = NULL;
|
| - }
|
| - }
|
| -
|
| - if( v->pTokenizer!=NULL ){
|
| - v->pTokenizer->pModule->xDestroy(v->pTokenizer);
|
| - v->pTokenizer = NULL;
|
| - }
|
| -
|
| - clearPendingTerms(v);
|
| -
|
| - sqlite3_free(v->azColumn);
|
| - for(i = 0; i < v->nColumn; ++i) {
|
| - sqlite3_free(v->azContentColumn[i]);
|
| - }
|
| - sqlite3_free(v->azContentColumn);
|
| - sqlite3_free(v);
|
| -}
|
| -
|
| -/*
|
| -** Token types for parsing the arguments to xConnect or xCreate.
|
| -*/
|
| -#define TOKEN_EOF 0 /* End of file */
|
| -#define TOKEN_SPACE 1 /* Any kind of whitespace */
|
| -#define TOKEN_ID 2 /* An identifier */
|
| -#define TOKEN_STRING 3 /* A string literal */
|
| -#define TOKEN_PUNCT 4 /* A single punctuation character */
|
| -
|
| -/*
|
| -** If X is a character that can be used in an identifier then
|
| -** ftsIdChar(X) will be true. Otherwise it is false.
|
| -**
|
| -** For ASCII, any character with the high-order bit set is
|
| -** allowed in an identifier. For 7-bit characters,
|
| -** isFtsIdChar[X] must be 1.
|
| -**
|
| -** Ticket #1066. the SQL standard does not allow '$' in the
|
| -** middle of identfiers. But many SQL implementations do.
|
| -** SQLite will allow '$' in identifiers for compatibility.
|
| -** But the feature is undocumented.
|
| -*/
|
| -static const char isFtsIdChar[] = {
|
| -/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
|
| - 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
|
| - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
|
| - 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
|
| - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
|
| - 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
|
| - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
|
| -};
|
| -#define ftsIdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && isFtsIdChar[c-0x20]))
|
| -
|
| -
|
| -/*
|
| -** Return the length of the token that begins at z[0].
|
| -** Store the token type in *tokenType before returning.
|
| -*/
|
| -static int ftsGetToken(const char *z, int *tokenType){
|
| - int i, c;
|
| - switch( *z ){
|
| - case 0: {
|
| - *tokenType = TOKEN_EOF;
|
| - return 0;
|
| - }
|
| - case ' ': case '\t': case '\n': case '\f': case '\r': {
|
| - for(i=1; safe_isspace(z[i]); i++){}
|
| - *tokenType = TOKEN_SPACE;
|
| - return i;
|
| - }
|
| - case '`':
|
| - case '\'':
|
| - case '"': {
|
| - int delim = z[0];
|
| - for(i=1; (c=z[i])!=0; i++){
|
| - if( c==delim ){
|
| - if( z[i+1]==delim ){
|
| - i++;
|
| - }else{
|
| - break;
|
| - }
|
| - }
|
| - }
|
| - *tokenType = TOKEN_STRING;
|
| - return i + (c!=0);
|
| - }
|
| - case '[': {
|
| - for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){}
|
| - *tokenType = TOKEN_ID;
|
| - return i;
|
| - }
|
| - default: {
|
| - if( !ftsIdChar(*z) ){
|
| - break;
|
| - }
|
| - for(i=1; ftsIdChar(z[i]); i++){}
|
| - *tokenType = TOKEN_ID;
|
| - return i;
|
| - }
|
| - }
|
| - *tokenType = TOKEN_PUNCT;
|
| - return 1;
|
| -}
|
| -
|
| -/*
|
| -** A token extracted from a string is an instance of the following
|
| -** structure.
|
| -*/
|
| -typedef struct FtsToken {
|
| - const char *z; /* Pointer to token text. Not '\000' terminated */
|
| - short int n; /* Length of the token text in bytes. */
|
| -} FtsToken;
|
| -
|
| -/*
|
| -** Given a input string (which is really one of the argv[] parameters
|
| -** passed into xConnect or xCreate) split the string up into tokens.
|
| -** Return an array of pointers to '\000' terminated strings, one string
|
| -** for each non-whitespace token.
|
| -**
|
| -** The returned array is terminated by a single NULL pointer.
|
| -**
|
| -** Space to hold the returned array is obtained from a single
|
| -** malloc and should be freed by passing the return value to free().
|
| -** The individual strings within the token list are all a part of
|
| -** the single memory allocation and will all be freed at once.
|
| -*/
|
| -static char **tokenizeString(const char *z, int *pnToken){
|
| - int nToken = 0;
|
| - FtsToken *aToken = sqlite3_malloc( strlen(z) * sizeof(aToken[0]) );
|
| - int n = 1;
|
| - int e, i;
|
| - int totalSize = 0;
|
| - char **azToken;
|
| - char *zCopy;
|
| - while( n>0 ){
|
| - n = ftsGetToken(z, &e);
|
| - if( e!=TOKEN_SPACE ){
|
| - aToken[nToken].z = z;
|
| - aToken[nToken].n = n;
|
| - nToken++;
|
| - totalSize += n+1;
|
| - }
|
| - z += n;
|
| - }
|
| - azToken = (char**)sqlite3_malloc( nToken*sizeof(char*) + totalSize );
|
| - zCopy = (char*)&azToken[nToken];
|
| - nToken--;
|
| - for(i=0; i<nToken; i++){
|
| - azToken[i] = zCopy;
|
| - n = aToken[i].n;
|
| - memcpy(zCopy, aToken[i].z, n);
|
| - zCopy[n] = 0;
|
| - zCopy += n+1;
|
| - }
|
| - azToken[nToken] = 0;
|
| - sqlite3_free(aToken);
|
| - *pnToken = nToken;
|
| - return azToken;
|
| -}
|
| -
|
| -/*
|
| -** Convert an SQL-style quoted string into a normal string by removing
|
| -** the quote characters. The conversion is done in-place. If the
|
| -** input does not begin with a quote character, then this routine
|
| -** is a no-op.
|
| -**
|
| -** Examples:
|
| -**
|
| -** "abc" becomes abc
|
| -** 'xyz' becomes xyz
|
| -** [pqr] becomes pqr
|
| -** `mno` becomes mno
|
| -*/
|
| -static void dequoteString(char *z){
|
| - int quote;
|
| - int i, j;
|
| - if( z==0 ) return;
|
| - quote = z[0];
|
| - switch( quote ){
|
| - case '\'': break;
|
| - case '"': break;
|
| - case '`': break; /* For MySQL compatibility */
|
| - case '[': quote = ']'; break; /* For MS SqlServer compatibility */
|
| - default: return;
|
| - }
|
| - for(i=1, j=0; z[i]; i++){
|
| - if( z[i]==quote ){
|
| - if( z[i+1]==quote ){
|
| - z[j++] = quote;
|
| - i++;
|
| - }else{
|
| - z[j++] = 0;
|
| - break;
|
| - }
|
| - }else{
|
| - z[j++] = z[i];
|
| - }
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** The input azIn is a NULL-terminated list of tokens. Remove the first
|
| -** token and all punctuation tokens. Remove the quotes from
|
| -** around string literal tokens.
|
| -**
|
| -** Example:
|
| -**
|
| -** input: tokenize chinese ( 'simplifed' , 'mixed' )
|
| -** output: chinese simplifed mixed
|
| -**
|
| -** Another example:
|
| -**
|
| -** input: delimiters ( '[' , ']' , '...' )
|
| -** output: [ ] ...
|
| -*/
|
| -static void tokenListToIdList(char **azIn){
|
| - int i, j;
|
| - if( azIn ){
|
| - for(i=0, j=-1; azIn[i]; i++){
|
| - if( safe_isalnum(azIn[i][0]) || azIn[i][1] ){
|
| - dequoteString(azIn[i]);
|
| - if( j>=0 ){
|
| - azIn[j] = azIn[i];
|
| - }
|
| - j++;
|
| - }
|
| - }
|
| - azIn[j] = 0;
|
| - }
|
| -}
|
| -
|
| -
|
| -/*
|
| -** Find the first alphanumeric token in the string zIn. Null-terminate
|
| -** this token. Remove any quotation marks. And return a pointer to
|
| -** the result.
|
| -*/
|
| -static char *firstToken(char *zIn, char **pzTail){
|
| - int n, ttype;
|
| - while(1){
|
| - n = ftsGetToken(zIn, &ttype);
|
| - if( ttype==TOKEN_SPACE ){
|
| - zIn += n;
|
| - }else if( ttype==TOKEN_EOF ){
|
| - *pzTail = zIn;
|
| - return 0;
|
| - }else{
|
| - zIn[n] = 0;
|
| - *pzTail = &zIn[1];
|
| - dequoteString(zIn);
|
| - return zIn;
|
| - }
|
| - }
|
| - /*NOTREACHED*/
|
| -}
|
| -
|
| -/* Return true if...
|
| -**
|
| -** * s begins with the string t, ignoring case
|
| -** * s is longer than t
|
| -** * The first character of s beyond t is not a alphanumeric
|
| -**
|
| -** Ignore leading space in *s.
|
| -**
|
| -** To put it another way, return true if the first token of
|
| -** s[] is t[].
|
| -*/
|
| -static int startsWith(const char *s, const char *t){
|
| - while( safe_isspace(*s) ){ s++; }
|
| - while( *t ){
|
| - if( safe_tolower(*s++)!=safe_tolower(*t++) ) return 0;
|
| - }
|
| - return *s!='_' && !safe_isalnum(*s);
|
| -}
|
| -
|
| -/*
|
| -** An instance of this structure defines the "spec" of a
|
| -** full text index. This structure is populated by parseSpec
|
| -** and use by fulltextConnect and fulltextCreate.
|
| -*/
|
| -typedef struct TableSpec {
|
| - const char *zDb; /* Logical database name */
|
| - const char *zName; /* Name of the full-text index */
|
| - int nColumn; /* Number of columns to be indexed */
|
| - char **azColumn; /* Original names of columns to be indexed */
|
| - char **azContentColumn; /* Column names for %_content */
|
| - char **azTokenizer; /* Name of tokenizer and its arguments */
|
| -} TableSpec;
|
| -
|
| -/*
|
| -** Reclaim all of the memory used by a TableSpec
|
| -*/
|
| -static void clearTableSpec(TableSpec *p) {
|
| - sqlite3_free(p->azColumn);
|
| - sqlite3_free(p->azContentColumn);
|
| - sqlite3_free(p->azTokenizer);
|
| -}
|
| -
|
| -/* Parse a CREATE VIRTUAL TABLE statement, which looks like this:
|
| - *
|
| - * CREATE VIRTUAL TABLE email
|
| - * USING fts3(subject, body, tokenize mytokenizer(myarg))
|
| - *
|
| - * We return parsed information in a TableSpec structure.
|
| - *
|
| - */
|
| -static int parseSpec(TableSpec *pSpec, int argc, const char *const*argv,
|
| - char**pzErr){
|
| - int i, n;
|
| - char *z, *zDummy;
|
| - char **azArg;
|
| - const char *zTokenizer = 0; /* argv[] entry describing the tokenizer */
|
| -
|
| - assert( argc>=3 );
|
| - /* Current interface:
|
| - ** argv[0] - module name
|
| - ** argv[1] - database name
|
| - ** argv[2] - table name
|
| - ** argv[3..] - columns, optionally followed by tokenizer specification
|
| - ** and snippet delimiters specification.
|
| - */
|
| -
|
| - /* Make a copy of the complete argv[][] array in a single allocation.
|
| - ** The argv[][] array is read-only and transient. We can write to the
|
| - ** copy in order to modify things and the copy is persistent.
|
| - */
|
| - CLEAR(pSpec);
|
| - for(i=n=0; i<argc; i++){
|
| - n += strlen(argv[i]) + 1;
|
| - }
|
| - azArg = sqlite3_malloc( sizeof(char*)*argc + n );
|
| - if( azArg==0 ){
|
| - return SQLITE_NOMEM;
|
| - }
|
| - z = (char*)&azArg[argc];
|
| - for(i=0; i<argc; i++){
|
| - azArg[i] = z;
|
| - strcpy(z, argv[i]);
|
| - z += strlen(z)+1;
|
| - }
|
| -
|
| - /* Identify the column names and the tokenizer and delimiter arguments
|
| - ** in the argv[][] array.
|
| - */
|
| - pSpec->zDb = azArg[1];
|
| - pSpec->zName = azArg[2];
|
| - pSpec->nColumn = 0;
|
| - pSpec->azColumn = azArg;
|
| - zTokenizer = "tokenize simple";
|
| - for(i=3; i<argc; ++i){
|
| - if( startsWith(azArg[i],"tokenize") ){
|
| - zTokenizer = azArg[i];
|
| - }else{
|
| - z = azArg[pSpec->nColumn] = firstToken(azArg[i], &zDummy);
|
| - pSpec->nColumn++;
|
| - }
|
| - }
|
| - if( pSpec->nColumn==0 ){
|
| - azArg[0] = "content";
|
| - pSpec->nColumn = 1;
|
| - }
|
| -
|
| - /*
|
| - ** Construct the list of content column names.
|
| - **
|
| - ** Each content column name will be of the form cNNAAAA
|
| - ** where NN is the column number and AAAA is the sanitized
|
| - ** column name. "sanitized" means that special characters are
|
| - ** converted to "_". The cNN prefix guarantees that all column
|
| - ** names are unique.
|
| - **
|
| - ** The AAAA suffix is not strictly necessary. It is included
|
| - ** for the convenience of people who might examine the generated
|
| - ** %_content table and wonder what the columns are used for.
|
| - */
|
| - pSpec->azContentColumn = sqlite3_malloc( pSpec->nColumn * sizeof(char *) );
|
| - if( pSpec->azContentColumn==0 ){
|
| - clearTableSpec(pSpec);
|
| - return SQLITE_NOMEM;
|
| - }
|
| - for(i=0; i<pSpec->nColumn; i++){
|
| - char *p;
|
| - pSpec->azContentColumn[i] = sqlite3_mprintf("c%d%s", i, azArg[i]);
|
| - for (p = pSpec->azContentColumn[i]; *p ; ++p) {
|
| - if( !safe_isalnum(*p) ) *p = '_';
|
| - }
|
| - }
|
| -
|
| - /*
|
| - ** Parse the tokenizer specification string.
|
| - */
|
| - pSpec->azTokenizer = tokenizeString(zTokenizer, &n);
|
| - tokenListToIdList(pSpec->azTokenizer);
|
| -
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/*
|
| -** Generate a CREATE TABLE statement that describes the schema of
|
| -** the virtual table. Return a pointer to this schema string.
|
| -**
|
| -** Space is obtained from sqlite3_mprintf() and should be freed
|
| -** using sqlite3_free().
|
| -*/
|
| -static char *fulltextSchema(
|
| - int nColumn, /* Number of columns */
|
| - const char *const* azColumn, /* List of columns */
|
| - const char *zTableName /* Name of the table */
|
| -){
|
| - int i;
|
| - char *zSchema, *zNext;
|
| - const char *zSep = "(";
|
| - zSchema = sqlite3_mprintf("CREATE TABLE x");
|
| - for(i=0; i<nColumn; i++){
|
| - zNext = sqlite3_mprintf("%s%s%Q", zSchema, zSep, azColumn[i]);
|
| - sqlite3_free(zSchema);
|
| - zSchema = zNext;
|
| - zSep = ",";
|
| - }
|
| - zNext = sqlite3_mprintf("%s,%Q HIDDEN", zSchema, zTableName);
|
| - sqlite3_free(zSchema);
|
| - zSchema = zNext;
|
| - zNext = sqlite3_mprintf("%s,docid HIDDEN)", zSchema);
|
| - sqlite3_free(zSchema);
|
| - return zNext;
|
| -}
|
| -
|
| -/*
|
| -** Build a new sqlite3_vtab structure that will describe the
|
| -** fulltext index defined by spec.
|
| -*/
|
| -static int constructVtab(
|
| - sqlite3 *db, /* The SQLite database connection */
|
| - fts3Hash *pHash, /* Hash table containing tokenizers */
|
| - TableSpec *spec, /* Parsed spec information from parseSpec() */
|
| - sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */
|
| - char **pzErr /* Write any error message here */
|
| -){
|
| - int rc;
|
| - int n;
|
| - fulltext_vtab *v = 0;
|
| - const sqlite3_tokenizer_module *m = NULL;
|
| - char *schema;
|
| -
|
| - char const *zTok; /* Name of tokenizer to use for this fts table */
|
| - int nTok; /* Length of zTok, including nul terminator */
|
| -
|
| - v = (fulltext_vtab *) sqlite3_malloc(sizeof(fulltext_vtab));
|
| - if( v==0 ) return SQLITE_NOMEM;
|
| - CLEAR(v);
|
| - /* sqlite will initialize v->base */
|
| - v->db = db;
|
| - v->zDb = spec->zDb; /* Freed when azColumn is freed */
|
| - v->zName = spec->zName; /* Freed when azColumn is freed */
|
| - v->nColumn = spec->nColumn;
|
| - v->azContentColumn = spec->azContentColumn;
|
| - spec->azContentColumn = 0;
|
| - v->azColumn = spec->azColumn;
|
| - spec->azColumn = 0;
|
| -
|
| - if( spec->azTokenizer==0 ){
|
| - return SQLITE_NOMEM;
|
| - }
|
| -
|
| - zTok = spec->azTokenizer[0];
|
| - if( !zTok ){
|
| - zTok = "simple";
|
| - }
|
| - nTok = strlen(zTok)+1;
|
| -
|
| - m = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zTok, nTok);
|
| - if( !m ){
|
| - *pzErr = sqlite3_mprintf("unknown tokenizer: %s", spec->azTokenizer[0]);
|
| - rc = SQLITE_ERROR;
|
| - goto err;
|
| - }
|
| -
|
| - for(n=0; spec->azTokenizer[n]; n++){}
|
| - if( n ){
|
| - rc = m->xCreate(n-1, (const char*const*)&spec->azTokenizer[1],
|
| - &v->pTokenizer);
|
| - }else{
|
| - rc = m->xCreate(0, 0, &v->pTokenizer);
|
| - }
|
| - if( rc!=SQLITE_OK ) goto err;
|
| - v->pTokenizer->pModule = m;
|
| -
|
| - /* TODO: verify the existence of backing tables foo_content, foo_term */
|
| -
|
| - schema = fulltextSchema(v->nColumn, (const char*const*)v->azColumn,
|
| - spec->zName);
|
| - rc = sqlite3_declare_vtab(db, schema);
|
| - sqlite3_free(schema);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| -
|
| - memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements));
|
| -
|
| - /* Indicate that the buffer is not live. */
|
| - v->nPendingData = -1;
|
| -
|
| - *ppVTab = &v->base;
|
| - FTSTRACE(("FTS3 Connect %p\n", v));
|
| -
|
| - return rc;
|
| -
|
| -err:
|
| - fulltext_vtab_destroy(v);
|
| - return rc;
|
| -}
|
| -
|
| -static int fulltextConnect(
|
| - sqlite3 *db,
|
| - void *pAux,
|
| - int argc, const char *const*argv,
|
| - sqlite3_vtab **ppVTab,
|
| - char **pzErr
|
| -){
|
| - TableSpec spec;
|
| - int rc = parseSpec(&spec, argc, argv, pzErr);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = constructVtab(db, (fts3Hash *)pAux, &spec, ppVTab, pzErr);
|
| - clearTableSpec(&spec);
|
| - return rc;
|
| -}
|
| -
|
| -/* The %_content table holds the text of each document, with
|
| -** the docid column exposed as the SQLite rowid for the table.
|
| -*/
|
| -/* TODO(shess) This comment needs elaboration to match the updated
|
| -** code. Work it into the top-of-file comment at that time.
|
| -*/
|
| -static int fulltextCreate(sqlite3 *db, void *pAux,
|
| - int argc, const char * const *argv,
|
| - sqlite3_vtab **ppVTab, char **pzErr){
|
| - int rc;
|
| - TableSpec spec;
|
| - StringBuffer schema;
|
| - FTSTRACE(("FTS3 Create\n"));
|
| -
|
| - rc = parseSpec(&spec, argc, argv, pzErr);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - initStringBuffer(&schema);
|
| - append(&schema, "CREATE TABLE %_content(");
|
| - append(&schema, " docid INTEGER PRIMARY KEY,");
|
| - appendList(&schema, spec.nColumn, spec.azContentColumn);
|
| - append(&schema, ")");
|
| - rc = sql_exec(db, spec.zDb, spec.zName, stringBufferData(&schema));
|
| - stringBufferDestroy(&schema);
|
| - if( rc!=SQLITE_OK ) goto out;
|
| -
|
| - rc = sql_exec(db, spec.zDb, spec.zName,
|
| - "create table %_segments("
|
| - " blockid INTEGER PRIMARY KEY,"
|
| - " block blob"
|
| - ");"
|
| - );
|
| - if( rc!=SQLITE_OK ) goto out;
|
| -
|
| - rc = sql_exec(db, spec.zDb, spec.zName,
|
| - "create table %_segdir("
|
| - " level integer,"
|
| - " idx integer,"
|
| - " start_block integer,"
|
| - " leaves_end_block integer,"
|
| - " end_block integer,"
|
| - " root blob,"
|
| - " primary key(level, idx)"
|
| - ");");
|
| - if( rc!=SQLITE_OK ) goto out;
|
| -
|
| - rc = constructVtab(db, (fts3Hash *)pAux, &spec, ppVTab, pzErr);
|
| -
|
| -out:
|
| - clearTableSpec(&spec);
|
| - return rc;
|
| -}
|
| -
|
| -/* Decide how to handle an SQL query. */
|
| -static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
|
| - fulltext_vtab *v = (fulltext_vtab *)pVTab;
|
| - int i;
|
| - FTSTRACE(("FTS3 BestIndex\n"));
|
| -
|
| - for(i=0; i<pInfo->nConstraint; ++i){
|
| - const struct sqlite3_index_constraint *pConstraint;
|
| - pConstraint = &pInfo->aConstraint[i];
|
| - if( pConstraint->usable ) {
|
| - if( (pConstraint->iColumn==-1 || pConstraint->iColumn==v->nColumn+1) &&
|
| - pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){
|
| - pInfo->idxNum = QUERY_DOCID; /* lookup by docid */
|
| - FTSTRACE(("FTS3 QUERY_DOCID\n"));
|
| - } else if( pConstraint->iColumn>=0 && pConstraint->iColumn<=v->nColumn &&
|
| - pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){
|
| - /* full-text search */
|
| - pInfo->idxNum = QUERY_FULLTEXT + pConstraint->iColumn;
|
| - FTSTRACE(("FTS3 QUERY_FULLTEXT %d\n", pConstraint->iColumn));
|
| - } else continue;
|
| -
|
| - pInfo->aConstraintUsage[i].argvIndex = 1;
|
| - pInfo->aConstraintUsage[i].omit = 1;
|
| -
|
| - /* An arbitrary value for now.
|
| - * TODO: Perhaps docid matches should be considered cheaper than
|
| - * full-text searches. */
|
| - pInfo->estimatedCost = 1.0;
|
| -
|
| - return SQLITE_OK;
|
| - }
|
| - }
|
| - pInfo->idxNum = QUERY_GENERIC;
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -static int fulltextDisconnect(sqlite3_vtab *pVTab){
|
| - FTSTRACE(("FTS3 Disconnect %p\n", pVTab));
|
| - fulltext_vtab_destroy((fulltext_vtab *)pVTab);
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -static int fulltextDestroy(sqlite3_vtab *pVTab){
|
| - fulltext_vtab *v = (fulltext_vtab *)pVTab;
|
| - int rc;
|
| -
|
| - FTSTRACE(("FTS3 Destroy %p\n", pVTab));
|
| - rc = sql_exec(v->db, v->zDb, v->zName,
|
| - "drop table if exists %_content;"
|
| - "drop table if exists %_segments;"
|
| - "drop table if exists %_segdir;"
|
| - );
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - fulltext_vtab_destroy((fulltext_vtab *)pVTab);
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -static int fulltextOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
|
| - fulltext_cursor *c;
|
| -
|
| - c = (fulltext_cursor *) sqlite3_malloc(sizeof(fulltext_cursor));
|
| - if( c ){
|
| - memset(c, 0, sizeof(fulltext_cursor));
|
| - /* sqlite will initialize c->base */
|
| - *ppCursor = &c->base;
|
| - FTSTRACE(("FTS3 Open %p: %p\n", pVTab, c));
|
| - return SQLITE_OK;
|
| - }else{
|
| - return SQLITE_NOMEM;
|
| - }
|
| -}
|
| -
|
| -/* Free all of the dynamically allocated memory held by the
|
| -** Snippet
|
| -*/
|
| -static void snippetClear(Snippet *p){
|
| - sqlite3_free(p->aMatch);
|
| - sqlite3_free(p->zOffset);
|
| - sqlite3_free(p->zSnippet);
|
| - CLEAR(p);
|
| -}
|
| -
|
| -/*
|
| -** Append a single entry to the p->aMatch[] log.
|
| -*/
|
| -static void snippetAppendMatch(
|
| - Snippet *p, /* Append the entry to this snippet */
|
| - int iCol, int iTerm, /* The column and query term */
|
| - int iToken, /* Matching token in document */
|
| - int iStart, int nByte /* Offset and size of the match */
|
| -){
|
| - int i;
|
| - struct snippetMatch *pMatch;
|
| - if( p->nMatch+1>=p->nAlloc ){
|
| - p->nAlloc = p->nAlloc*2 + 10;
|
| - p->aMatch = sqlite3_realloc(p->aMatch, p->nAlloc*sizeof(p->aMatch[0]) );
|
| - if( p->aMatch==0 ){
|
| - p->nMatch = 0;
|
| - p->nAlloc = 0;
|
| - return;
|
| - }
|
| - }
|
| - i = p->nMatch++;
|
| - pMatch = &p->aMatch[i];
|
| - pMatch->iCol = iCol;
|
| - pMatch->iTerm = iTerm;
|
| - pMatch->iToken = iToken;
|
| - pMatch->iStart = iStart;
|
| - pMatch->nByte = nByte;
|
| -}
|
| -
|
| -/*
|
| -** Sizing information for the circular buffer used in snippetOffsetsOfColumn()
|
| -*/
|
| -#define FTS3_ROTOR_SZ (32)
|
| -#define FTS3_ROTOR_MASK (FTS3_ROTOR_SZ-1)
|
| -
|
| -/*
|
| -** Function to iterate through the tokens of a compiled expression.
|
| -**
|
| -** Except, skip all tokens on the right-hand side of a NOT operator.
|
| -** This function is used to find tokens as part of snippet and offset
|
| -** generation and we do nt want snippets and offsets to report matches
|
| -** for tokens on the RHS of a NOT.
|
| -*/
|
| -static int fts3NextExprToken(Fts3Expr **ppExpr, int *piToken){
|
| - Fts3Expr *p = *ppExpr;
|
| - int iToken = *piToken;
|
| - if( iToken<0 ){
|
| - /* In this case the expression p is the root of an expression tree.
|
| - ** Move to the first token in the expression tree.
|
| - */
|
| - while( p->pLeft ){
|
| - p = p->pLeft;
|
| - }
|
| - iToken = 0;
|
| - }else{
|
| - assert(p && p->eType==FTSQUERY_PHRASE );
|
| - if( iToken<(p->pPhrase->nToken-1) ){
|
| - iToken++;
|
| - }else{
|
| - iToken = 0;
|
| - while( p->pParent && p->pParent->pLeft!=p ){
|
| - assert( p->pParent->pRight==p );
|
| - p = p->pParent;
|
| - }
|
| - p = p->pParent;
|
| - if( p ){
|
| - assert( p->pRight!=0 );
|
| - p = p->pRight;
|
| - while( p->pLeft ){
|
| - p = p->pLeft;
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| - *ppExpr = p;
|
| - *piToken = iToken;
|
| - return p?1:0;
|
| -}
|
| -
|
| -/*
|
| -** Return TRUE if the expression node pExpr is located beneath the
|
| -** RHS of a NOT operator.
|
| -*/
|
| -static int fts3ExprBeneathNot(Fts3Expr *p){
|
| - Fts3Expr *pParent;
|
| - while( p ){
|
| - pParent = p->pParent;
|
| - if( pParent && pParent->eType==FTSQUERY_NOT && pParent->pRight==p ){
|
| - return 1;
|
| - }
|
| - p = pParent;
|
| - }
|
| - return 0;
|
| -}
|
| -
|
| -/*
|
| -** Add entries to pSnippet->aMatch[] for every match that occurs against
|
| -** document zDoc[0..nDoc-1] which is stored in column iColumn.
|
| -*/
|
| -static void snippetOffsetsOfColumn(
|
| - fulltext_cursor *pCur, /* The fulltest search cursor */
|
| - Snippet *pSnippet, /* The Snippet object to be filled in */
|
| - int iColumn, /* Index of fulltext table column */
|
| - const char *zDoc, /* Text of the fulltext table column */
|
| - int nDoc /* Length of zDoc in bytes */
|
| -){
|
| - const sqlite3_tokenizer_module *pTModule; /* The tokenizer module */
|
| - sqlite3_tokenizer *pTokenizer; /* The specific tokenizer */
|
| - sqlite3_tokenizer_cursor *pTCursor; /* Tokenizer cursor */
|
| - fulltext_vtab *pVtab; /* The full text index */
|
| - int nColumn; /* Number of columns in the index */
|
| - int i, j; /* Loop counters */
|
| - int rc; /* Return code */
|
| - unsigned int match, prevMatch; /* Phrase search bitmasks */
|
| - const char *zToken; /* Next token from the tokenizer */
|
| - int nToken; /* Size of zToken */
|
| - int iBegin, iEnd, iPos; /* Offsets of beginning and end */
|
| -
|
| - /* The following variables keep a circular buffer of the last
|
| - ** few tokens */
|
| - unsigned int iRotor = 0; /* Index of current token */
|
| - int iRotorBegin[FTS3_ROTOR_SZ]; /* Beginning offset of token */
|
| - int iRotorLen[FTS3_ROTOR_SZ]; /* Length of token */
|
| -
|
| - pVtab = cursor_vtab(pCur);
|
| - nColumn = pVtab->nColumn;
|
| - pTokenizer = pVtab->pTokenizer;
|
| - pTModule = pTokenizer->pModule;
|
| - rc = pTModule->xOpen(pTokenizer, zDoc, nDoc, &pTCursor);
|
| - if( rc ) return;
|
| - pTCursor->pTokenizer = pTokenizer;
|
| -
|
| - prevMatch = 0;
|
| - while( !pTModule->xNext(pTCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos) ){
|
| - Fts3Expr *pIter = pCur->pExpr;
|
| - int iIter = -1;
|
| - iRotorBegin[iRotor&FTS3_ROTOR_MASK] = iBegin;
|
| - iRotorLen[iRotor&FTS3_ROTOR_MASK] = iEnd-iBegin;
|
| - match = 0;
|
| - for(i=0; i<(FTS3_ROTOR_SZ-1) && fts3NextExprToken(&pIter, &iIter); i++){
|
| - int nPhrase; /* Number of tokens in current phrase */
|
| - struct PhraseToken *pToken; /* Current token */
|
| - int iCol; /* Column index */
|
| -
|
| - if( fts3ExprBeneathNot(pIter) ) continue;
|
| - nPhrase = pIter->pPhrase->nToken;
|
| - pToken = &pIter->pPhrase->aToken[iIter];
|
| - iCol = pIter->pPhrase->iColumn;
|
| - if( iCol>=0 && iCol<nColumn && iCol!=iColumn ) continue;
|
| - if( pToken->n>nToken ) continue;
|
| - if( !pToken->isPrefix && pToken->n<nToken ) continue;
|
| - assert( pToken->n<=nToken );
|
| - if( memcmp(pToken->z, zToken, pToken->n) ) continue;
|
| - if( iIter>0 && (prevMatch & (1<<i))==0 ) continue;
|
| - match |= 1<<i;
|
| - if( i==(FTS3_ROTOR_SZ-2) || nPhrase==iIter+1 ){
|
| - for(j=nPhrase-1; j>=0; j--){
|
| - int k = (iRotor-j) & FTS3_ROTOR_MASK;
|
| - snippetAppendMatch(pSnippet, iColumn, i-j, iPos-j,
|
| - iRotorBegin[k], iRotorLen[k]);
|
| - }
|
| - }
|
| - }
|
| - prevMatch = match<<1;
|
| - iRotor++;
|
| - }
|
| - pTModule->xClose(pTCursor);
|
| -}
|
| -
|
| -/*
|
| -** Remove entries from the pSnippet structure to account for the NEAR
|
| -** operator. When this is called, pSnippet contains the list of token
|
| -** offsets produced by treating all NEAR operators as AND operators.
|
| -** This function removes any entries that should not be present after
|
| -** accounting for the NEAR restriction. For example, if the queried
|
| -** document is:
|
| -**
|
| -** "A B C D E A"
|
| -**
|
| -** and the query is:
|
| -**
|
| -** A NEAR/0 E
|
| -**
|
| -** then when this function is called the Snippet contains token offsets
|
| -** 0, 4 and 5. This function removes the "0" entry (because the first A
|
| -** is not near enough to an E).
|
| -**
|
| -** When this function is called, the value pointed to by parameter piLeft is
|
| -** the integer id of the left-most token in the expression tree headed by
|
| -** pExpr. This function increments *piLeft by the total number of tokens
|
| -** in the expression tree headed by pExpr.
|
| -**
|
| -** Return 1 if any trimming occurs. Return 0 if no trimming is required.
|
| -*/
|
| -static int trimSnippetOffsets(
|
| - Fts3Expr *pExpr, /* The search expression */
|
| - Snippet *pSnippet, /* The set of snippet offsets to be trimmed */
|
| - int *piLeft /* Index of left-most token in pExpr */
|
| -){
|
| - if( pExpr ){
|
| - if( trimSnippetOffsets(pExpr->pLeft, pSnippet, piLeft) ){
|
| - return 1;
|
| - }
|
| -
|
| - switch( pExpr->eType ){
|
| - case FTSQUERY_PHRASE:
|
| - *piLeft += pExpr->pPhrase->nToken;
|
| - break;
|
| - case FTSQUERY_NEAR: {
|
| - /* The right-hand-side of a NEAR operator is always a phrase. The
|
| - ** left-hand-side is either a phrase or an expression tree that is
|
| - ** itself headed by a NEAR operator. The following initializations
|
| - ** set local variable iLeft to the token number of the left-most
|
| - ** token in the right-hand phrase, and iRight to the right most
|
| - ** token in the same phrase. For example, if we had:
|
| - **
|
| - ** <col> MATCH '"abc def" NEAR/2 "ghi jkl"'
|
| - **
|
| - ** then iLeft will be set to 2 (token number of ghi) and nToken will
|
| - ** be set to 4.
|
| - */
|
| - Fts3Expr *pLeft = pExpr->pLeft;
|
| - Fts3Expr *pRight = pExpr->pRight;
|
| - int iLeft = *piLeft;
|
| - int nNear = pExpr->nNear;
|
| - int nToken = pRight->pPhrase->nToken;
|
| - int jj, ii;
|
| - if( pLeft->eType==FTSQUERY_NEAR ){
|
| - pLeft = pLeft->pRight;
|
| - }
|
| - assert( pRight->eType==FTSQUERY_PHRASE );
|
| - assert( pLeft->eType==FTSQUERY_PHRASE );
|
| - nToken += pLeft->pPhrase->nToken;
|
| -
|
| - for(ii=0; ii<pSnippet->nMatch; ii++){
|
| - struct snippetMatch *p = &pSnippet->aMatch[ii];
|
| - if( p->iTerm==iLeft ){
|
| - int isOk = 0;
|
| - /* Snippet ii is an occurence of query term iLeft in the document.
|
| - ** It occurs at position (p->iToken) of the document. We now
|
| - ** search for an instance of token (iLeft-1) somewhere in the
|
| - ** range (p->iToken - nNear)...(p->iToken + nNear + nToken) within
|
| - ** the set of snippetMatch structures. If one is found, proceed.
|
| - ** If one cannot be found, then remove snippets ii..(ii+N-1)
|
| - ** from the matching snippets, where N is the number of tokens
|
| - ** in phrase pRight->pPhrase.
|
| - */
|
| - for(jj=0; isOk==0 && jj<pSnippet->nMatch; jj++){
|
| - struct snippetMatch *p2 = &pSnippet->aMatch[jj];
|
| - if( p2->iTerm==(iLeft-1) ){
|
| - if( p2->iToken>=(p->iToken-nNear-1)
|
| - && p2->iToken<(p->iToken+nNear+nToken)
|
| - ){
|
| - isOk = 1;
|
| - }
|
| - }
|
| - }
|
| - if( !isOk ){
|
| - int kk;
|
| - for(kk=0; kk<pRight->pPhrase->nToken; kk++){
|
| - pSnippet->aMatch[kk+ii].iTerm = -2;
|
| - }
|
| - return 1;
|
| - }
|
| - }
|
| - if( p->iTerm==(iLeft-1) ){
|
| - int isOk = 0;
|
| - for(jj=0; isOk==0 && jj<pSnippet->nMatch; jj++){
|
| - struct snippetMatch *p2 = &pSnippet->aMatch[jj];
|
| - if( p2->iTerm==iLeft ){
|
| - if( p2->iToken<=(p->iToken+nNear+1)
|
| - && p2->iToken>(p->iToken-nNear-nToken)
|
| - ){
|
| - isOk = 1;
|
| - }
|
| - }
|
| - }
|
| - if( !isOk ){
|
| - int kk;
|
| - for(kk=0; kk<pLeft->pPhrase->nToken; kk++){
|
| - pSnippet->aMatch[ii-kk].iTerm = -2;
|
| - }
|
| - return 1;
|
| - }
|
| - }
|
| - }
|
| - break;
|
| - }
|
| - }
|
| -
|
| - if( trimSnippetOffsets(pExpr->pRight, pSnippet, piLeft) ){
|
| - return 1;
|
| - }
|
| - }
|
| - return 0;
|
| -}
|
| -
|
| -/*
|
| -** Compute all offsets for the current row of the query.
|
| -** If the offsets have already been computed, this routine is a no-op.
|
| -*/
|
| -static void snippetAllOffsets(fulltext_cursor *p){
|
| - int nColumn;
|
| - int iColumn, i;
|
| - int iFirst, iLast;
|
| - int iTerm = 0;
|
| - fulltext_vtab *pFts = cursor_vtab(p);
|
| -
|
| - if( p->snippet.nMatch || p->pExpr==0 ){
|
| - return;
|
| - }
|
| - nColumn = pFts->nColumn;
|
| - iColumn = (p->iCursorType - QUERY_FULLTEXT);
|
| - if( iColumn<0 || iColumn>=nColumn ){
|
| - /* Look for matches over all columns of the full-text index */
|
| - iFirst = 0;
|
| - iLast = nColumn-1;
|
| - }else{
|
| - /* Look for matches in the iColumn-th column of the index only */
|
| - iFirst = iColumn;
|
| - iLast = iColumn;
|
| - }
|
| - for(i=iFirst; i<=iLast; i++){
|
| - const char *zDoc;
|
| - int nDoc;
|
| - zDoc = (const char*)sqlite3_column_text(p->pStmt, i+1);
|
| - nDoc = sqlite3_column_bytes(p->pStmt, i+1);
|
| - snippetOffsetsOfColumn(p, &p->snippet, i, zDoc, nDoc);
|
| - }
|
| -
|
| - while( trimSnippetOffsets(p->pExpr, &p->snippet, &iTerm) ){
|
| - iTerm = 0;
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Convert the information in the aMatch[] array of the snippet
|
| -** into the string zOffset[0..nOffset-1]. This string is used as
|
| -** the return of the SQL offsets() function.
|
| -*/
|
| -static void snippetOffsetText(Snippet *p){
|
| - int i;
|
| - int cnt = 0;
|
| - StringBuffer sb;
|
| - char zBuf[200];
|
| - if( p->zOffset ) return;
|
| - initStringBuffer(&sb);
|
| - for(i=0; i<p->nMatch; i++){
|
| - struct snippetMatch *pMatch = &p->aMatch[i];
|
| - if( pMatch->iTerm>=0 ){
|
| - /* If snippetMatch.iTerm is less than 0, then the match was
|
| - ** discarded as part of processing the NEAR operator (see the
|
| - ** trimSnippetOffsetsForNear() function for details). Ignore
|
| - ** it in this case
|
| - */
|
| - zBuf[0] = ' ';
|
| - sqlite3_snprintf(sizeof(zBuf)-1, &zBuf[cnt>0], "%d %d %d %d",
|
| - pMatch->iCol, pMatch->iTerm, pMatch->iStart, pMatch->nByte);
|
| - append(&sb, zBuf);
|
| - cnt++;
|
| - }
|
| - }
|
| - p->zOffset = stringBufferData(&sb);
|
| - p->nOffset = stringBufferLength(&sb);
|
| -}
|
| -
|
| -/*
|
| -** zDoc[0..nDoc-1] is phrase of text. aMatch[0..nMatch-1] are a set
|
| -** of matching words some of which might be in zDoc. zDoc is column
|
| -** number iCol.
|
| -**
|
| -** iBreak is suggested spot in zDoc where we could begin or end an
|
| -** excerpt. Return a value similar to iBreak but possibly adjusted
|
| -** to be a little left or right so that the break point is better.
|
| -*/
|
| -static int wordBoundary(
|
| - int iBreak, /* The suggested break point */
|
| - const char *zDoc, /* Document text */
|
| - int nDoc, /* Number of bytes in zDoc[] */
|
| - struct snippetMatch *aMatch, /* Matching words */
|
| - int nMatch, /* Number of entries in aMatch[] */
|
| - int iCol /* The column number for zDoc[] */
|
| -){
|
| - int i;
|
| - if( iBreak<=10 ){
|
| - return 0;
|
| - }
|
| - if( iBreak>=nDoc-10 ){
|
| - return nDoc;
|
| - }
|
| - for(i=0; i<nMatch && aMatch[i].iCol<iCol; i++){}
|
| - while( i<nMatch && aMatch[i].iStart+aMatch[i].nByte<iBreak ){ i++; }
|
| - if( i<nMatch ){
|
| - if( aMatch[i].iStart<iBreak+10 ){
|
| - return aMatch[i].iStart;
|
| - }
|
| - if( i>0 && aMatch[i-1].iStart+aMatch[i-1].nByte>=iBreak ){
|
| - return aMatch[i-1].iStart;
|
| - }
|
| - }
|
| - for(i=1; i<=10; i++){
|
| - if( safe_isspace(zDoc[iBreak-i]) ){
|
| - return iBreak - i + 1;
|
| - }
|
| - if( safe_isspace(zDoc[iBreak+i]) ){
|
| - return iBreak + i + 1;
|
| - }
|
| - }
|
| - return iBreak;
|
| -}
|
| -
|
| -
|
| -
|
| -/*
|
| -** Allowed values for Snippet.aMatch[].snStatus
|
| -*/
|
| -#define SNIPPET_IGNORE 0 /* It is ok to omit this match from the snippet */
|
| -#define SNIPPET_DESIRED 1 /* We want to include this match in the snippet */
|
| -
|
| -/*
|
| -** Generate the text of a snippet.
|
| -*/
|
| -static void snippetText(
|
| - fulltext_cursor *pCursor, /* The cursor we need the snippet for */
|
| - const char *zStartMark, /* Markup to appear before each match */
|
| - const char *zEndMark, /* Markup to appear after each match */
|
| - const char *zEllipsis /* Ellipsis mark */
|
| -){
|
| - int i, j;
|
| - struct snippetMatch *aMatch;
|
| - int nMatch;
|
| - int nDesired;
|
| - StringBuffer sb;
|
| - int tailCol;
|
| - int tailOffset;
|
| - int iCol;
|
| - int nDoc;
|
| - const char *zDoc;
|
| - int iStart, iEnd;
|
| - int tailEllipsis = 0;
|
| - int iMatch;
|
| -
|
| -
|
| - sqlite3_free(pCursor->snippet.zSnippet);
|
| - pCursor->snippet.zSnippet = 0;
|
| - aMatch = pCursor->snippet.aMatch;
|
| - nMatch = pCursor->snippet.nMatch;
|
| - initStringBuffer(&sb);
|
| -
|
| - for(i=0; i<nMatch; i++){
|
| - aMatch[i].snStatus = SNIPPET_IGNORE;
|
| - }
|
| - nDesired = 0;
|
| - for(i=0; i<FTS3_ROTOR_SZ; i++){
|
| - for(j=0; j<nMatch; j++){
|
| - if( aMatch[j].iTerm==i ){
|
| - aMatch[j].snStatus = SNIPPET_DESIRED;
|
| - nDesired++;
|
| - break;
|
| - }
|
| - }
|
| - }
|
| -
|
| - iMatch = 0;
|
| - tailCol = -1;
|
| - tailOffset = 0;
|
| - for(i=0; i<nMatch && nDesired>0; i++){
|
| - if( aMatch[i].snStatus!=SNIPPET_DESIRED ) continue;
|
| - nDesired--;
|
| - iCol = aMatch[i].iCol;
|
| - zDoc = (const char*)sqlite3_column_text(pCursor->pStmt, iCol+1);
|
| - nDoc = sqlite3_column_bytes(pCursor->pStmt, iCol+1);
|
| - iStart = aMatch[i].iStart - 40;
|
| - iStart = wordBoundary(iStart, zDoc, nDoc, aMatch, nMatch, iCol);
|
| - if( iStart<=10 ){
|
| - iStart = 0;
|
| - }
|
| - if( iCol==tailCol && iStart<=tailOffset+20 ){
|
| - iStart = tailOffset;
|
| - }
|
| - if( (iCol!=tailCol && tailCol>=0) || iStart!=tailOffset ){
|
| - trimWhiteSpace(&sb);
|
| - appendWhiteSpace(&sb);
|
| - append(&sb, zEllipsis);
|
| - appendWhiteSpace(&sb);
|
| - }
|
| - iEnd = aMatch[i].iStart + aMatch[i].nByte + 40;
|
| - iEnd = wordBoundary(iEnd, zDoc, nDoc, aMatch, nMatch, iCol);
|
| - if( iEnd>=nDoc-10 ){
|
| - iEnd = nDoc;
|
| - tailEllipsis = 0;
|
| - }else{
|
| - tailEllipsis = 1;
|
| - }
|
| - while( iMatch<nMatch && aMatch[iMatch].iCol<iCol ){ iMatch++; }
|
| - while( iStart<iEnd ){
|
| - while( iMatch<nMatch && aMatch[iMatch].iStart<iStart
|
| - && aMatch[iMatch].iCol<=iCol ){
|
| - iMatch++;
|
| - }
|
| - if( iMatch<nMatch && aMatch[iMatch].iStart<iEnd
|
| - && aMatch[iMatch].iCol==iCol ){
|
| - nappend(&sb, &zDoc[iStart], aMatch[iMatch].iStart - iStart);
|
| - iStart = aMatch[iMatch].iStart;
|
| - append(&sb, zStartMark);
|
| - nappend(&sb, &zDoc[iStart], aMatch[iMatch].nByte);
|
| - append(&sb, zEndMark);
|
| - iStart += aMatch[iMatch].nByte;
|
| - for(j=iMatch+1; j<nMatch; j++){
|
| - if( aMatch[j].iTerm==aMatch[iMatch].iTerm
|
| - && aMatch[j].snStatus==SNIPPET_DESIRED ){
|
| - nDesired--;
|
| - aMatch[j].snStatus = SNIPPET_IGNORE;
|
| - }
|
| - }
|
| - }else{
|
| - nappend(&sb, &zDoc[iStart], iEnd - iStart);
|
| - iStart = iEnd;
|
| - }
|
| - }
|
| - tailCol = iCol;
|
| - tailOffset = iEnd;
|
| - }
|
| - trimWhiteSpace(&sb);
|
| - if( tailEllipsis ){
|
| - appendWhiteSpace(&sb);
|
| - append(&sb, zEllipsis);
|
| - }
|
| - pCursor->snippet.zSnippet = stringBufferData(&sb);
|
| - pCursor->snippet.nSnippet = stringBufferLength(&sb);
|
| -}
|
| -
|
| -
|
| -/*
|
| -** Close the cursor. For additional information see the documentation
|
| -** on the xClose method of the virtual table interface.
|
| -*/
|
| -static int fulltextClose(sqlite3_vtab_cursor *pCursor){
|
| - fulltext_cursor *c = (fulltext_cursor *) pCursor;
|
| - FTSTRACE(("FTS3 Close %p\n", c));
|
| - sqlite3_finalize(c->pStmt);
|
| - sqlite3Fts3ExprFree(c->pExpr);
|
| - snippetClear(&c->snippet);
|
| - if( c->result.nData!=0 ){
|
| - dlrDestroy(&c->reader);
|
| - }
|
| - dataBufferDestroy(&c->result);
|
| - sqlite3_free(c);
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -static int fulltextNext(sqlite3_vtab_cursor *pCursor){
|
| - fulltext_cursor *c = (fulltext_cursor *) pCursor;
|
| - int rc;
|
| -
|
| - FTSTRACE(("FTS3 Next %p\n", pCursor));
|
| - snippetClear(&c->snippet);
|
| - if( c->iCursorType < QUERY_FULLTEXT ){
|
| - /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */
|
| - rc = sqlite3_step(c->pStmt);
|
| - switch( rc ){
|
| - case SQLITE_ROW:
|
| - c->eof = 0;
|
| - return SQLITE_OK;
|
| - case SQLITE_DONE:
|
| - c->eof = 1;
|
| - return SQLITE_OK;
|
| - default:
|
| - c->eof = 1;
|
| - return rc;
|
| - }
|
| - } else { /* full-text query */
|
| - rc = sqlite3_reset(c->pStmt);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - if( c->result.nData==0 || dlrAtEnd(&c->reader) ){
|
| - c->eof = 1;
|
| - return SQLITE_OK;
|
| - }
|
| - rc = sqlite3_bind_int64(c->pStmt, 1, dlrDocid(&c->reader));
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - rc = dlrStep(&c->reader);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */
|
| - rc = sqlite3_step(c->pStmt);
|
| - if( rc==SQLITE_ROW ){ /* the case we expect */
|
| - c->eof = 0;
|
| - return SQLITE_OK;
|
| - }
|
| - /* Corrupt if the index refers to missing document. */
|
| - if( rc==SQLITE_DONE ) return SQLITE_CORRUPT_BKPT;
|
| -
|
| - return rc;
|
| - }
|
| -}
|
| -
|
| -
|
| -/* TODO(shess) If we pushed LeafReader to the top of the file, or to
|
| -** another file, term_select() could be pushed above
|
| -** docListOfTerm().
|
| -*/
|
| -static int termSelect(fulltext_vtab *v, int iColumn,
|
| - const char *pTerm, int nTerm, int isPrefix,
|
| - DocListType iType, DataBuffer *out);
|
| -
|
| -/*
|
| -** Return a DocList corresponding to the phrase *pPhrase.
|
| -**
|
| -** The resulting DL_DOCIDS doclist is stored in pResult, which is
|
| -** overwritten.
|
| -*/
|
| -static int docListOfPhrase(
|
| - fulltext_vtab *pTab, /* The full text index */
|
| - Fts3Phrase *pPhrase, /* Phrase to return a doclist corresponding to */
|
| - DocListType eListType, /* Either DL_DOCIDS or DL_POSITIONS */
|
| - DataBuffer *pResult /* Write the result here */
|
| -){
|
| - int ii;
|
| - int rc = SQLITE_OK;
|
| - int iCol = pPhrase->iColumn;
|
| - DocListType eType = eListType;
|
| - assert( eType==DL_POSITIONS || eType==DL_DOCIDS );
|
| - if( pPhrase->nToken>1 ){
|
| - eType = DL_POSITIONS;
|
| - }
|
| -
|
| - /* This code should never be called with buffered updates. */
|
| - assert( pTab->nPendingData<0 );
|
| -
|
| - for(ii=0; rc==SQLITE_OK && ii<pPhrase->nToken; ii++){
|
| - DataBuffer tmp;
|
| - struct PhraseToken *p = &pPhrase->aToken[ii];
|
| - rc = termSelect(pTab, iCol, p->z, p->n, p->isPrefix, eType, &tmp);
|
| - if( rc==SQLITE_OK ){
|
| - if( ii==0 ){
|
| - *pResult = tmp;
|
| - }else{
|
| - DataBuffer res = *pResult;
|
| - dataBufferInit(pResult, 0);
|
| - if( ii==(pPhrase->nToken-1) ){
|
| - eType = eListType;
|
| - }
|
| - rc = docListPhraseMerge(
|
| - res.pData, res.nData, tmp.pData, tmp.nData, 0, 0, eType, pResult
|
| - );
|
| - dataBufferDestroy(&res);
|
| - dataBufferDestroy(&tmp);
|
| - if( rc!= SQLITE_OK ) return rc;
|
| - }
|
| - }
|
| - }
|
| -
|
| - return rc;
|
| -}
|
| -
|
| -/*
|
| -** Evaluate the full-text expression pExpr against fts3 table pTab. Write
|
| -** the results into pRes.
|
| -*/
|
| -static int evalFts3Expr(
|
| - fulltext_vtab *pTab, /* Fts3 Virtual table object */
|
| - Fts3Expr *pExpr, /* Parsed fts3 expression */
|
| - DataBuffer *pRes /* OUT: Write results of the expression here */
|
| -){
|
| - int rc = SQLITE_OK;
|
| -
|
| - /* Initialize the output buffer. If this is an empty query (pExpr==0),
|
| - ** this is all that needs to be done. Empty queries produce empty
|
| - ** result sets.
|
| - */
|
| - dataBufferInit(pRes, 0);
|
| -
|
| - if( pExpr ){
|
| - if( pExpr->eType==FTSQUERY_PHRASE ){
|
| - DocListType eType = DL_DOCIDS;
|
| - if( pExpr->pParent && pExpr->pParent->eType==FTSQUERY_NEAR ){
|
| - eType = DL_POSITIONS;
|
| - }
|
| - rc = docListOfPhrase(pTab, pExpr->pPhrase, eType, pRes);
|
| - }else{
|
| - DataBuffer lhs;
|
| - DataBuffer rhs;
|
| -
|
| - dataBufferInit(&rhs, 0);
|
| - if( SQLITE_OK==(rc = evalFts3Expr(pTab, pExpr->pLeft, &lhs))
|
| - && SQLITE_OK==(rc = evalFts3Expr(pTab, pExpr->pRight, &rhs))
|
| - ){
|
| - switch( pExpr->eType ){
|
| - case FTSQUERY_NEAR: {
|
| - int nToken;
|
| - Fts3Expr *pLeft;
|
| - DocListType eType = DL_DOCIDS;
|
| - if( pExpr->pParent && pExpr->pParent->eType==FTSQUERY_NEAR ){
|
| - eType = DL_POSITIONS;
|
| - }
|
| - pLeft = pExpr->pLeft;
|
| - while( pLeft->eType==FTSQUERY_NEAR ){
|
| - pLeft=pLeft->pRight;
|
| - }
|
| - assert( pExpr->pRight->eType==FTSQUERY_PHRASE );
|
| - assert( pLeft->eType==FTSQUERY_PHRASE );
|
| - nToken = pLeft->pPhrase->nToken + pExpr->pRight->pPhrase->nToken;
|
| - rc = docListPhraseMerge(lhs.pData, lhs.nData, rhs.pData, rhs.nData,
|
| - pExpr->nNear+1, nToken, eType, pRes
|
| - );
|
| - break;
|
| - }
|
| - case FTSQUERY_NOT: {
|
| - rc = docListExceptMerge(lhs.pData, lhs.nData, rhs.pData, rhs.nData,pRes);
|
| - break;
|
| - }
|
| - case FTSQUERY_AND: {
|
| - rc = docListAndMerge(lhs.pData, lhs.nData, rhs.pData, rhs.nData, pRes);
|
| - break;
|
| - }
|
| - case FTSQUERY_OR: {
|
| - rc = docListOrMerge(lhs.pData, lhs.nData, rhs.pData, rhs.nData, pRes);
|
| - break;
|
| - }
|
| - }
|
| - }
|
| - dataBufferDestroy(&lhs);
|
| - dataBufferDestroy(&rhs);
|
| - }
|
| - }
|
| -
|
| - return rc;
|
| -}
|
| -
|
| -/* TODO(shess) Refactor the code to remove this forward decl. */
|
| -static int flushPendingTerms(fulltext_vtab *v);
|
| -
|
| -/* Perform a full-text query using the search expression in
|
| -** zInput[0..nInput-1]. Return a list of matching documents
|
| -** in pResult.
|
| -**
|
| -** Queries must match column iColumn. Or if iColumn>=nColumn
|
| -** they are allowed to match against any column.
|
| -*/
|
| -static int fulltextQuery(
|
| - fulltext_vtab *v, /* The full text index */
|
| - int iColumn, /* Match against this column by default */
|
| - const char *zInput, /* The query string */
|
| - int nInput, /* Number of bytes in zInput[] */
|
| - DataBuffer *pResult, /* Write the result doclist here */
|
| - Fts3Expr **ppExpr /* Put parsed query string here */
|
| -){
|
| - int rc;
|
| -
|
| - /* TODO(shess) Instead of flushing pendingTerms, we could query for
|
| - ** the relevant term and merge the doclist into what we receive from
|
| - ** the database. Wait and see if this is a common issue, first.
|
| - **
|
| - ** A good reason not to flush is to not generate update-related
|
| - ** error codes from here.
|
| - */
|
| -
|
| - /* Flush any buffered updates before executing the query. */
|
| - rc = flushPendingTerms(v);
|
| - if( rc!=SQLITE_OK ){
|
| - return rc;
|
| - }
|
| -
|
| - /* Parse the query passed to the MATCH operator. */
|
| - rc = sqlite3Fts3ExprParse(v->pTokenizer,
|
| - v->azColumn, v->nColumn, iColumn, zInput, nInput, ppExpr
|
| - );
|
| - if( rc!=SQLITE_OK ){
|
| - assert( 0==(*ppExpr) );
|
| - return rc;
|
| - }
|
| -
|
| - return evalFts3Expr(v, *ppExpr, pResult);
|
| -}
|
| -
|
| -/*
|
| -** This is the xFilter interface for the virtual table. See
|
| -** the virtual table xFilter method documentation for additional
|
| -** information.
|
| -**
|
| -** If idxNum==QUERY_GENERIC then do a full table scan against
|
| -** the %_content table.
|
| -**
|
| -** If idxNum==QUERY_DOCID then do a docid lookup for a single entry
|
| -** in the %_content table.
|
| -**
|
| -** If idxNum>=QUERY_FULLTEXT then use the full text index. The
|
| -** column on the left-hand side of the MATCH operator is column
|
| -** number idxNum-QUERY_FULLTEXT, 0 indexed. argv[0] is the right-hand
|
| -** side of the MATCH operator.
|
| -*/
|
| -/* TODO(shess) Upgrade the cursor initialization and destruction to
|
| -** account for fulltextFilter() being called multiple times on the
|
| -** same cursor. The current solution is very fragile. Apply fix to
|
| -** fts3 as appropriate.
|
| -*/
|
| -static int fulltextFilter(
|
| - sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
|
| - int idxNum, const char *idxStr, /* Which indexing scheme to use */
|
| - int argc, sqlite3_value **argv /* Arguments for the indexing scheme */
|
| -){
|
| - fulltext_cursor *c = (fulltext_cursor *) pCursor;
|
| - fulltext_vtab *v = cursor_vtab(c);
|
| - int rc;
|
| -
|
| - FTSTRACE(("FTS3 Filter %p\n",pCursor));
|
| -
|
| - /* If the cursor has a statement that was not prepared according to
|
| - ** idxNum, clear it. I believe all calls to fulltextFilter with a
|
| - ** given cursor will have the same idxNum , but in this case it's
|
| - ** easy to be safe.
|
| - */
|
| - if( c->pStmt && c->iCursorType!=idxNum ){
|
| - sqlite3_finalize(c->pStmt);
|
| - c->pStmt = NULL;
|
| - }
|
| -
|
| - /* Get a fresh statement appropriate to idxNum. */
|
| - /* TODO(shess): Add a prepared-statement cache in the vt structure.
|
| - ** The cache must handle multiple open cursors. Easier to cache the
|
| - ** statement variants at the vt to reduce malloc/realloc/free here.
|
| - ** Or we could have a StringBuffer variant which allowed stack
|
| - ** construction for small values.
|
| - */
|
| - if( !c->pStmt ){
|
| - StringBuffer sb;
|
| - initStringBuffer(&sb);
|
| - append(&sb, "SELECT docid, ");
|
| - appendList(&sb, v->nColumn, v->azContentColumn);
|
| - append(&sb, " FROM %_content");
|
| - if( idxNum!=QUERY_GENERIC ) append(&sb, " WHERE docid = ?");
|
| - rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt,
|
| - stringBufferData(&sb));
|
| - stringBufferDestroy(&sb);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - c->iCursorType = idxNum;
|
| - }else{
|
| - sqlite3_reset(c->pStmt);
|
| - assert( c->iCursorType==idxNum );
|
| - }
|
| -
|
| - switch( idxNum ){
|
| - case QUERY_GENERIC:
|
| - break;
|
| -
|
| - case QUERY_DOCID:
|
| - rc = sqlite3_bind_int64(c->pStmt, 1, sqlite3_value_int64(argv[0]));
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - break;
|
| -
|
| - default: /* full-text search */
|
| - {
|
| - int iCol = idxNum-QUERY_FULLTEXT;
|
| - const char *zQuery = (const char *)sqlite3_value_text(argv[0]);
|
| - assert( idxNum<=QUERY_FULLTEXT+v->nColumn);
|
| - assert( argc==1 );
|
| - if( c->result.nData!=0 ){
|
| - /* This case happens if the same cursor is used repeatedly. */
|
| - dlrDestroy(&c->reader);
|
| - dataBufferReset(&c->result);
|
| - }else{
|
| - dataBufferInit(&c->result, 0);
|
| - }
|
| - rc = fulltextQuery(v, iCol, zQuery, -1, &c->result, &c->pExpr);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - if( c->result.nData!=0 ){
|
| - dlrInit(&c->reader, DL_DOCIDS, c->result.pData, c->result.nData);
|
| - }
|
| - break;
|
| - }
|
| - }
|
| -
|
| - return fulltextNext(pCursor);
|
| -}
|
| -
|
| -/* This is the xEof method of the virtual table. The SQLite core
|
| -** calls this routine to find out if it has reached the end of
|
| -** a query's results set.
|
| -*/
|
| -static int fulltextEof(sqlite3_vtab_cursor *pCursor){
|
| - fulltext_cursor *c = (fulltext_cursor *) pCursor;
|
| - return c->eof;
|
| -}
|
| -
|
| -/* This is the xColumn method of the virtual table. The SQLite
|
| -** core calls this method during a query when it needs the value
|
| -** of a column from the virtual table. This method needs to use
|
| -** one of the sqlite3_result_*() routines to store the requested
|
| -** value back in the pContext.
|
| -*/
|
| -static int fulltextColumn(sqlite3_vtab_cursor *pCursor,
|
| - sqlite3_context *pContext, int idxCol){
|
| - fulltext_cursor *c = (fulltext_cursor *) pCursor;
|
| - fulltext_vtab *v = cursor_vtab(c);
|
| -
|
| - if( idxCol<v->nColumn ){
|
| - sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol+1);
|
| - sqlite3_result_value(pContext, pVal);
|
| - }else if( idxCol==v->nColumn ){
|
| - /* The extra column whose name is the same as the table.
|
| - ** Return a blob which is a pointer to the cursor
|
| - */
|
| - sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT);
|
| - }else if( idxCol==v->nColumn+1 ){
|
| - /* The docid column, which is an alias for rowid. */
|
| - sqlite3_value *pVal = sqlite3_column_value(c->pStmt, 0);
|
| - sqlite3_result_value(pContext, pVal);
|
| - }
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/* This is the xRowid method. The SQLite core calls this routine to
|
| -** retrieve the rowid for the current row of the result set. fts3
|
| -** exposes %_content.docid as the rowid for the virtual table. The
|
| -** rowid should be written to *pRowid.
|
| -*/
|
| -static int fulltextRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
|
| - fulltext_cursor *c = (fulltext_cursor *) pCursor;
|
| -
|
| - *pRowid = sqlite3_column_int64(c->pStmt, 0);
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/* Add all terms in [zText] to pendingTerms table. If [iColumn] > 0,
|
| -** we also store positions and offsets in the hash table using that
|
| -** column number.
|
| -*/
|
| -static int buildTerms(fulltext_vtab *v, sqlite_int64 iDocid,
|
| - const char *zText, int iColumn){
|
| - sqlite3_tokenizer *pTokenizer = v->pTokenizer;
|
| - sqlite3_tokenizer_cursor *pCursor;
|
| - const char *pToken;
|
| - int nTokenBytes;
|
| - int iStartOffset, iEndOffset, iPosition;
|
| - int rc;
|
| -
|
| - rc = pTokenizer->pModule->xOpen(pTokenizer, zText, -1, &pCursor);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - pCursor->pTokenizer = pTokenizer;
|
| - while( SQLITE_OK==(rc=pTokenizer->pModule->xNext(pCursor,
|
| - &pToken, &nTokenBytes,
|
| - &iStartOffset, &iEndOffset,
|
| - &iPosition)) ){
|
| - DLCollector *p;
|
| - int nData; /* Size of doclist before our update. */
|
| -
|
| - /* Positions can't be negative; we use -1 as a terminator
|
| - * internally. Token can't be NULL or empty. */
|
| - if( iPosition<0 || pToken == NULL || nTokenBytes == 0 ){
|
| - rc = SQLITE_ERROR;
|
| - break;
|
| - }
|
| -
|
| - p = fts3HashFind(&v->pendingTerms, pToken, nTokenBytes);
|
| - if( p==NULL ){
|
| - nData = 0;
|
| - p = dlcNew(iDocid, DL_DEFAULT);
|
| - fts3HashInsert(&v->pendingTerms, pToken, nTokenBytes, p);
|
| -
|
| - /* Overhead for our hash table entry, the key, and the value. */
|
| - v->nPendingData += sizeof(struct fts3HashElem)+sizeof(*p)+nTokenBytes;
|
| - }else{
|
| - nData = p->b.nData;
|
| - if( p->dlw.iPrevDocid!=iDocid ) dlcNext(p, iDocid);
|
| - }
|
| - if( iColumn>=0 ){
|
| - dlcAddPos(p, iColumn, iPosition, iStartOffset, iEndOffset);
|
| - }
|
| -
|
| - /* Accumulate data added by dlcNew or dlcNext, and dlcAddPos. */
|
| - v->nPendingData += p->b.nData-nData;
|
| - }
|
| -
|
| - /* TODO(shess) Check return? Should this be able to cause errors at
|
| - ** this point? Actually, same question about sqlite3_finalize(),
|
| - ** though one could argue that failure there means that the data is
|
| - ** not durable. *ponder*
|
| - */
|
| - pTokenizer->pModule->xClose(pCursor);
|
| - if( SQLITE_DONE == rc ) return SQLITE_OK;
|
| - return rc;
|
| -}
|
| -
|
| -/* Add doclists for all terms in [pValues] to pendingTerms table. */
|
| -static int insertTerms(fulltext_vtab *v, sqlite_int64 iDocid,
|
| - sqlite3_value **pValues){
|
| - int i;
|
| - for(i = 0; i < v->nColumn ; ++i){
|
| - char *zText = (char*)sqlite3_value_text(pValues[i]);
|
| - int rc = buildTerms(v, iDocid, zText, i);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - }
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/* Add empty doclists for all terms in the given row's content to
|
| -** pendingTerms.
|
| -*/
|
| -static int deleteTerms(fulltext_vtab *v, sqlite_int64 iDocid){
|
| - const char **pValues;
|
| - int i, rc;
|
| -
|
| - /* TODO(shess) Should we allow such tables at all? */
|
| - if( DL_DEFAULT==DL_DOCIDS ) return SQLITE_ERROR;
|
| -
|
| - rc = content_select(v, iDocid, &pValues);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - for(i = 0 ; i < v->nColumn; ++i) {
|
| - rc = buildTerms(v, iDocid, pValues[i], -1);
|
| - if( rc!=SQLITE_OK ) break;
|
| - }
|
| -
|
| - freeStringArray(v->nColumn, pValues);
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/* TODO(shess) Refactor the code to remove this forward decl. */
|
| -static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid);
|
| -
|
| -/* Insert a row into the %_content table; set *piDocid to be the ID of the
|
| -** new row. Add doclists for terms to pendingTerms.
|
| -*/
|
| -static int index_insert(fulltext_vtab *v, sqlite3_value *pRequestDocid,
|
| - sqlite3_value **pValues, sqlite_int64 *piDocid){
|
| - int rc;
|
| -
|
| - rc = content_insert(v, pRequestDocid, pValues); /* execute an SQL INSERT */
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - /* docid column is an alias for rowid. */
|
| - *piDocid = sqlite3_last_insert_rowid(v->db);
|
| - rc = initPendingTerms(v, *piDocid);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - return insertTerms(v, *piDocid, pValues);
|
| -}
|
| -
|
| -/* Delete a row from the %_content table; add empty doclists for terms
|
| -** to pendingTerms.
|
| -*/
|
| -static int index_delete(fulltext_vtab *v, sqlite_int64 iRow){
|
| - int rc = initPendingTerms(v, iRow);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = deleteTerms(v, iRow);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - return content_delete(v, iRow); /* execute an SQL DELETE */
|
| -}
|
| -
|
| -/* Update a row in the %_content table; add delete doclists to
|
| -** pendingTerms for old terms not in the new data, add insert doclists
|
| -** to pendingTerms for terms in the new data.
|
| -*/
|
| -static int index_update(fulltext_vtab *v, sqlite_int64 iRow,
|
| - sqlite3_value **pValues){
|
| - int rc = initPendingTerms(v, iRow);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - /* Generate an empty doclist for each term that previously appeared in this
|
| - * row. */
|
| - rc = deleteTerms(v, iRow);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = content_update(v, pValues, iRow); /* execute an SQL UPDATE */
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - /* Now add positions for terms which appear in the updated row. */
|
| - return insertTerms(v, iRow, pValues);
|
| -}
|
| -
|
| -/*******************************************************************/
|
| -/* InteriorWriter is used to collect terms and block references into
|
| -** interior nodes in %_segments. See commentary at top of file for
|
| -** format.
|
| -*/
|
| -
|
| -/* How large interior nodes can grow. */
|
| -#define INTERIOR_MAX 2048
|
| -
|
| -/* Minimum number of terms per interior node (except the root). This
|
| -** prevents large terms from making the tree too skinny - must be >0
|
| -** so that the tree always makes progress. Note that the min tree
|
| -** fanout will be INTERIOR_MIN_TERMS+1.
|
| -*/
|
| -#define INTERIOR_MIN_TERMS 7
|
| -#if INTERIOR_MIN_TERMS<1
|
| -# error INTERIOR_MIN_TERMS must be greater than 0.
|
| -#endif
|
| -
|
| -/* ROOT_MAX controls how much data is stored inline in the segment
|
| -** directory.
|
| -*/
|
| -/* TODO(shess) Push ROOT_MAX down to whoever is writing things. It's
|
| -** only here so that interiorWriterRootInfo() and leafWriterRootInfo()
|
| -** can both see it, but if the caller passed it in, we wouldn't even
|
| -** need a define.
|
| -*/
|
| -#define ROOT_MAX 1024
|
| -#if ROOT_MAX<VARINT_MAX*2
|
| -# error ROOT_MAX must have enough space for a header.
|
| -#endif
|
| -
|
| -/* InteriorBlock stores a linked-list of interior blocks while a lower
|
| -** layer is being constructed.
|
| -*/
|
| -typedef struct InteriorBlock {
|
| - DataBuffer term; /* Leftmost term in block's subtree. */
|
| - DataBuffer data; /* Accumulated data for the block. */
|
| - struct InteriorBlock *next;
|
| -} InteriorBlock;
|
| -
|
| -static InteriorBlock *interiorBlockNew(int iHeight, sqlite_int64 iChildBlock,
|
| - const char *pTerm, int nTerm){
|
| - InteriorBlock *block = sqlite3_malloc(sizeof(InteriorBlock));
|
| - char c[VARINT_MAX+VARINT_MAX];
|
| - int n;
|
| -
|
| - if( block ){
|
| - memset(block, 0, sizeof(*block));
|
| - dataBufferInit(&block->term, 0);
|
| - dataBufferReplace(&block->term, pTerm, nTerm);
|
| -
|
| - n = fts3PutVarint(c, iHeight);
|
| - n += fts3PutVarint(c+n, iChildBlock);
|
| - dataBufferInit(&block->data, INTERIOR_MAX);
|
| - dataBufferReplace(&block->data, c, n);
|
| - }
|
| - return block;
|
| -}
|
| -
|
| -#ifndef NDEBUG
|
| -/* Verify that the data is readable as an interior node. */
|
| -static void interiorBlockValidate(InteriorBlock *pBlock){
|
| - const char *pData = pBlock->data.pData;
|
| - int nData = pBlock->data.nData;
|
| - int n, iDummy;
|
| - sqlite_int64 iBlockid;
|
| -
|
| - assert( nData>0 );
|
| - assert( pData!=0 );
|
| - assert( pData+nData>pData );
|
| -
|
| - /* Must lead with height of node as a varint(n), n>0 */
|
| - n = fts3GetVarint32(pData, &iDummy);
|
| - assert( n>0 );
|
| - assert( iDummy>0 );
|
| - assert( n<nData );
|
| - pData += n;
|
| - nData -= n;
|
| -
|
| - /* Must contain iBlockid. */
|
| - n = fts3GetVarint(pData, &iBlockid);
|
| - assert( n>0 );
|
| - assert( n<=nData );
|
| - pData += n;
|
| - nData -= n;
|
| -
|
| - /* Zero or more terms of positive length */
|
| - if( nData!=0 ){
|
| - /* First term is not delta-encoded. */
|
| - n = fts3GetVarint32(pData, &iDummy);
|
| - assert( n>0 );
|
| - assert( iDummy>0 );
|
| - assert( n+iDummy>0);
|
| - assert( n+iDummy<=nData );
|
| - pData += n+iDummy;
|
| - nData -= n+iDummy;
|
| -
|
| - /* Following terms delta-encoded. */
|
| - while( nData!=0 ){
|
| - /* Length of shared prefix. */
|
| - n = fts3GetVarint32(pData, &iDummy);
|
| - assert( n>0 );
|
| - assert( iDummy>=0 );
|
| - assert( n<nData );
|
| - pData += n;
|
| - nData -= n;
|
| -
|
| - /* Length and data of distinct suffix. */
|
| - n = fts3GetVarint32(pData, &iDummy);
|
| - assert( n>0 );
|
| - assert( iDummy>0 );
|
| - assert( n+iDummy>0);
|
| - assert( n+iDummy<=nData );
|
| - pData += n+iDummy;
|
| - nData -= n+iDummy;
|
| - }
|
| - }
|
| -}
|
| -#define ASSERT_VALID_INTERIOR_BLOCK(x) interiorBlockValidate(x)
|
| -#else
|
| -#define ASSERT_VALID_INTERIOR_BLOCK(x) assert( 1 )
|
| -#endif
|
| -
|
| -typedef struct InteriorWriter {
|
| - int iHeight; /* from 0 at leaves. */
|
| - InteriorBlock *first, *last;
|
| - struct InteriorWriter *parentWriter;
|
| -
|
| - DataBuffer term; /* Last term written to block "last". */
|
| - sqlite_int64 iOpeningChildBlock; /* First child block in block "last". */
|
| -#ifndef NDEBUG
|
| - sqlite_int64 iLastChildBlock; /* for consistency checks. */
|
| -#endif
|
| -} InteriorWriter;
|
| -
|
| -/* Initialize an interior node where pTerm[nTerm] marks the leftmost
|
| -** term in the tree. iChildBlock is the leftmost child block at the
|
| -** next level down the tree.
|
| -*/
|
| -static void interiorWriterInit(int iHeight, const char *pTerm, int nTerm,
|
| - sqlite_int64 iChildBlock,
|
| - InteriorWriter *pWriter){
|
| - InteriorBlock *block;
|
| - assert( iHeight>0 );
|
| - CLEAR(pWriter);
|
| -
|
| - pWriter->iHeight = iHeight;
|
| - pWriter->iOpeningChildBlock = iChildBlock;
|
| -#ifndef NDEBUG
|
| - pWriter->iLastChildBlock = iChildBlock;
|
| -#endif
|
| - block = interiorBlockNew(iHeight, iChildBlock, pTerm, nTerm);
|
| - pWriter->last = pWriter->first = block;
|
| - ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
|
| - dataBufferInit(&pWriter->term, 0);
|
| -}
|
| -
|
| -/* Append the child node rooted at iChildBlock to the interior node,
|
| -** with pTerm[nTerm] as the leftmost term in iChildBlock's subtree.
|
| -*/
|
| -static void interiorWriterAppend(InteriorWriter *pWriter,
|
| - const char *pTerm, int nTerm,
|
| - sqlite_int64 iChildBlock){
|
| - char c[VARINT_MAX+VARINT_MAX];
|
| - int n, nPrefix = 0;
|
| -
|
| - ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
|
| -
|
| - /* The first term written into an interior node is actually
|
| - ** associated with the second child added (the first child was added
|
| - ** in interiorWriterInit, or in the if clause at the bottom of this
|
| - ** function). That term gets encoded straight up, with nPrefix left
|
| - ** at 0.
|
| - */
|
| - if( pWriter->term.nData==0 ){
|
| - n = fts3PutVarint(c, nTerm);
|
| - }else{
|
| - while( nPrefix<pWriter->term.nData &&
|
| - pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){
|
| - nPrefix++;
|
| - }
|
| -
|
| - n = fts3PutVarint(c, nPrefix);
|
| - n += fts3PutVarint(c+n, nTerm-nPrefix);
|
| - }
|
| -
|
| -#ifndef NDEBUG
|
| - pWriter->iLastChildBlock++;
|
| -#endif
|
| - assert( pWriter->iLastChildBlock==iChildBlock );
|
| -
|
| - /* Overflow to a new block if the new term makes the current block
|
| - ** too big, and the current block already has enough terms.
|
| - */
|
| - if( pWriter->last->data.nData+n+nTerm-nPrefix>INTERIOR_MAX &&
|
| - iChildBlock-pWriter->iOpeningChildBlock>INTERIOR_MIN_TERMS ){
|
| - pWriter->last->next = interiorBlockNew(pWriter->iHeight, iChildBlock,
|
| - pTerm, nTerm);
|
| - pWriter->last = pWriter->last->next;
|
| - pWriter->iOpeningChildBlock = iChildBlock;
|
| - dataBufferReset(&pWriter->term);
|
| - }else{
|
| - dataBufferAppend2(&pWriter->last->data, c, n,
|
| - pTerm+nPrefix, nTerm-nPrefix);
|
| - dataBufferReplace(&pWriter->term, pTerm, nTerm);
|
| - }
|
| - ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
|
| -}
|
| -
|
| -/* Free the space used by pWriter, including the linked-list of
|
| -** InteriorBlocks, and parentWriter, if present.
|
| -*/
|
| -static int interiorWriterDestroy(InteriorWriter *pWriter){
|
| - InteriorBlock *block = pWriter->first;
|
| -
|
| - while( block!=NULL ){
|
| - InteriorBlock *b = block;
|
| - block = block->next;
|
| - dataBufferDestroy(&b->term);
|
| - dataBufferDestroy(&b->data);
|
| - sqlite3_free(b);
|
| - }
|
| - if( pWriter->parentWriter!=NULL ){
|
| - interiorWriterDestroy(pWriter->parentWriter);
|
| - sqlite3_free(pWriter->parentWriter);
|
| - }
|
| - dataBufferDestroy(&pWriter->term);
|
| - SCRAMBLE(pWriter);
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/* If pWriter can fit entirely in ROOT_MAX, return it as the root info
|
| -** directly, leaving *piEndBlockid unchanged. Otherwise, flush
|
| -** pWriter to %_segments, building a new layer of interior nodes, and
|
| -** recursively ask for their root into.
|
| -*/
|
| -static int interiorWriterRootInfo(fulltext_vtab *v, InteriorWriter *pWriter,
|
| - char **ppRootInfo, int *pnRootInfo,
|
| - sqlite_int64 *piEndBlockid){
|
| - InteriorBlock *block = pWriter->first;
|
| - sqlite_int64 iBlockid = 0;
|
| - int rc;
|
| -
|
| - /* If we can fit the segment inline */
|
| - if( block==pWriter->last && block->data.nData<ROOT_MAX ){
|
| - *ppRootInfo = block->data.pData;
|
| - *pnRootInfo = block->data.nData;
|
| - return SQLITE_OK;
|
| - }
|
| -
|
| - /* Flush the first block to %_segments, and create a new level of
|
| - ** interior node.
|
| - */
|
| - ASSERT_VALID_INTERIOR_BLOCK(block);
|
| - rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - *piEndBlockid = iBlockid;
|
| -
|
| - pWriter->parentWriter = sqlite3_malloc(sizeof(*pWriter->parentWriter));
|
| - interiorWriterInit(pWriter->iHeight+1,
|
| - block->term.pData, block->term.nData,
|
| - iBlockid, pWriter->parentWriter);
|
| -
|
| - /* Flush additional blocks and append to the higher interior
|
| - ** node.
|
| - */
|
| - for(block=block->next; block!=NULL; block=block->next){
|
| - ASSERT_VALID_INTERIOR_BLOCK(block);
|
| - rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - *piEndBlockid = iBlockid;
|
| -
|
| - interiorWriterAppend(pWriter->parentWriter,
|
| - block->term.pData, block->term.nData, iBlockid);
|
| - }
|
| -
|
| - /* Parent node gets the chance to be the root. */
|
| - return interiorWriterRootInfo(v, pWriter->parentWriter,
|
| - ppRootInfo, pnRootInfo, piEndBlockid);
|
| -}
|
| -
|
| -/****************************************************************/
|
| -/* InteriorReader is used to read off the data from an interior node
|
| -** (see comment at top of file for the format).
|
| -*/
|
| -typedef struct InteriorReader {
|
| - const char *pData;
|
| - int nData;
|
| -
|
| - DataBuffer term; /* previous term, for decoding term delta. */
|
| -
|
| - sqlite_int64 iBlockid;
|
| -} InteriorReader;
|
| -
|
| -static void interiorReaderDestroy(InteriorReader *pReader){
|
| - dataBufferDestroy(&pReader->term);
|
| - SCRAMBLE(pReader);
|
| -}
|
| -
|
| -static int interiorReaderInit(const char *pData, int nData,
|
| - InteriorReader *pReader){
|
| - int n, nTerm;
|
| -
|
| - /* These conditions are checked and met by the callers. */
|
| - assert( nData>0 );
|
| - assert( pData[0]!='\0' );
|
| -
|
| - CLEAR(pReader);
|
| -
|
| - /* Decode the base blockid, and set the cursor to the first term. */
|
| - n = fts3GetVarintSafe(pData+1, &pReader->iBlockid, nData-1);
|
| - if( !n ) return SQLITE_CORRUPT_BKPT;
|
| - pReader->pData = pData+1+n;
|
| - pReader->nData = nData-(1+n);
|
| -
|
| - /* A single-child interior node (such as when a leaf node was too
|
| - ** large for the segment directory) won't have any terms.
|
| - ** Otherwise, decode the first term.
|
| - */
|
| - if( pReader->nData==0 ){
|
| - dataBufferInit(&pReader->term, 0);
|
| - }else{
|
| - n = fts3GetVarint32Safe(pReader->pData, &nTerm, pReader->nData);
|
| - if( !n || nTerm<0 || nTerm>pReader->nData-n) return SQLITE_CORRUPT_BKPT;
|
| - dataBufferInit(&pReader->term, nTerm);
|
| - dataBufferReplace(&pReader->term, pReader->pData+n, nTerm);
|
| - pReader->pData += n+nTerm;
|
| - pReader->nData -= n+nTerm;
|
| - }
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -static int interiorReaderAtEnd(InteriorReader *pReader){
|
| - return pReader->term.nData<=0;
|
| -}
|
| -
|
| -static sqlite_int64 interiorReaderCurrentBlockid(InteriorReader *pReader){
|
| - return pReader->iBlockid;
|
| -}
|
| -
|
| -static int interiorReaderTermBytes(InteriorReader *pReader){
|
| - assert( !interiorReaderAtEnd(pReader) );
|
| - return pReader->term.nData;
|
| -}
|
| -static const char *interiorReaderTerm(InteriorReader *pReader){
|
| - assert( !interiorReaderAtEnd(pReader) );
|
| - return pReader->term.pData;
|
| -}
|
| -
|
| -/* Step forward to the next term in the node. */
|
| -static int interiorReaderStep(InteriorReader *pReader){
|
| - assert( !interiorReaderAtEnd(pReader) );
|
| -
|
| - /* If the last term has been read, signal eof, else construct the
|
| - ** next term.
|
| - */
|
| - if( pReader->nData==0 ){
|
| - dataBufferReset(&pReader->term);
|
| - }else{
|
| - int n, nPrefix, nSuffix;
|
| -
|
| - n = fts3GetVarint32Safe(pReader->pData, &nPrefix, pReader->nData);
|
| - if( !n ) return SQLITE_CORRUPT_BKPT;
|
| - pReader->nData -= n;
|
| - pReader->pData += n;
|
| - n = fts3GetVarint32Safe(pReader->pData, &nSuffix, pReader->nData);
|
| - if( !n ) return SQLITE_CORRUPT_BKPT;
|
| - pReader->nData -= n;
|
| - pReader->pData += n;
|
| - if( nSuffix<0 || nSuffix>pReader->nData ) return SQLITE_CORRUPT_BKPT;
|
| - if( nPrefix<0 || nPrefix>pReader->term.nData ) return SQLITE_CORRUPT_BKPT;
|
| -
|
| - /* Truncate the current term and append suffix data. */
|
| - pReader->term.nData = nPrefix;
|
| - dataBufferAppend(&pReader->term, pReader->pData, nSuffix);
|
| -
|
| - pReader->pData += nSuffix;
|
| - pReader->nData -= nSuffix;
|
| - }
|
| - pReader->iBlockid++;
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/* Compare the current term to pTerm[nTerm], returning strcmp-style
|
| -** results. If isPrefix, equality means equal through nTerm bytes.
|
| -*/
|
| -static int interiorReaderTermCmp(InteriorReader *pReader,
|
| - const char *pTerm, int nTerm, int isPrefix){
|
| - const char *pReaderTerm = interiorReaderTerm(pReader);
|
| - int nReaderTerm = interiorReaderTermBytes(pReader);
|
| - int c, n = nReaderTerm<nTerm ? nReaderTerm : nTerm;
|
| -
|
| - if( n==0 ){
|
| - if( nReaderTerm>0 ) return -1;
|
| - if( nTerm>0 ) return 1;
|
| - return 0;
|
| - }
|
| -
|
| - c = memcmp(pReaderTerm, pTerm, n);
|
| - if( c!=0 ) return c;
|
| - if( isPrefix && n==nTerm ) return 0;
|
| - return nReaderTerm - nTerm;
|
| -}
|
| -
|
| -/****************************************************************/
|
| -/* LeafWriter is used to collect terms and associated doclist data
|
| -** into leaf blocks in %_segments (see top of file for format info).
|
| -** Expected usage is:
|
| -**
|
| -** LeafWriter writer;
|
| -** leafWriterInit(0, 0, &writer);
|
| -** while( sorted_terms_left_to_process ){
|
| -** // data is doclist data for that term.
|
| -** rc = leafWriterStep(v, &writer, pTerm, nTerm, pData, nData);
|
| -** if( rc!=SQLITE_OK ) goto err;
|
| -** }
|
| -** rc = leafWriterFinalize(v, &writer);
|
| -**err:
|
| -** leafWriterDestroy(&writer);
|
| -** return rc;
|
| -**
|
| -** leafWriterStep() may write a collected leaf out to %_segments.
|
| -** leafWriterFinalize() finishes writing any buffered data and stores
|
| -** a root node in %_segdir. leafWriterDestroy() frees all buffers and
|
| -** InteriorWriters allocated as part of writing this segment.
|
| -**
|
| -** TODO(shess) Document leafWriterStepMerge().
|
| -*/
|
| -
|
| -/* Put terms with data this big in their own block. */
|
| -#define STANDALONE_MIN 1024
|
| -
|
| -/* Keep leaf blocks below this size. */
|
| -#define LEAF_MAX 2048
|
| -
|
| -typedef struct LeafWriter {
|
| - int iLevel;
|
| - int idx;
|
| - sqlite_int64 iStartBlockid; /* needed to create the root info */
|
| - sqlite_int64 iEndBlockid; /* when we're done writing. */
|
| -
|
| - DataBuffer term; /* previous encoded term */
|
| - DataBuffer data; /* encoding buffer */
|
| -
|
| - /* bytes of first term in the current node which distinguishes that
|
| - ** term from the last term of the previous node.
|
| - */
|
| - int nTermDistinct;
|
| -
|
| - InteriorWriter parentWriter; /* if we overflow */
|
| - int has_parent;
|
| -} LeafWriter;
|
| -
|
| -static void leafWriterInit(int iLevel, int idx, LeafWriter *pWriter){
|
| - CLEAR(pWriter);
|
| - pWriter->iLevel = iLevel;
|
| - pWriter->idx = idx;
|
| -
|
| - dataBufferInit(&pWriter->term, 32);
|
| -
|
| - /* Start out with a reasonably sized block, though it can grow. */
|
| - dataBufferInit(&pWriter->data, LEAF_MAX);
|
| -}
|
| -
|
| -#ifndef NDEBUG
|
| -/* Verify that the data is readable as a leaf node. */
|
| -static void leafNodeValidate(const char *pData, int nData){
|
| - int n, iDummy;
|
| -
|
| - if( nData==0 ) return;
|
| - assert( nData>0 );
|
| - assert( pData!=0 );
|
| - assert( pData+nData>pData );
|
| -
|
| - /* Must lead with a varint(0) */
|
| - n = fts3GetVarint32(pData, &iDummy);
|
| - assert( iDummy==0 );
|
| - assert( n>0 );
|
| - assert( n<nData );
|
| - pData += n;
|
| - nData -= n;
|
| -
|
| - /* Leading term length and data must fit in buffer. */
|
| - n = fts3GetVarint32(pData, &iDummy);
|
| - assert( n>0 );
|
| - assert( iDummy>0 );
|
| - assert( n+iDummy>0 );
|
| - assert( n+iDummy<nData );
|
| - pData += n+iDummy;
|
| - nData -= n+iDummy;
|
| -
|
| - /* Leading term's doclist length and data must fit. */
|
| - n = fts3GetVarint32(pData, &iDummy);
|
| - assert( n>0 );
|
| - assert( iDummy>0 );
|
| - assert( n+iDummy>0 );
|
| - assert( n+iDummy<=nData );
|
| - ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL);
|
| - pData += n+iDummy;
|
| - nData -= n+iDummy;
|
| -
|
| - /* Verify that trailing terms and doclists also are readable. */
|
| - while( nData!=0 ){
|
| - n = fts3GetVarint32(pData, &iDummy);
|
| - assert( n>0 );
|
| - assert( iDummy>=0 );
|
| - assert( n<nData );
|
| - pData += n;
|
| - nData -= n;
|
| - n = fts3GetVarint32(pData, &iDummy);
|
| - assert( n>0 );
|
| - assert( iDummy>0 );
|
| - assert( n+iDummy>0 );
|
| - assert( n+iDummy<nData );
|
| - pData += n+iDummy;
|
| - nData -= n+iDummy;
|
| -
|
| - n = fts3GetVarint32(pData, &iDummy);
|
| - assert( n>0 );
|
| - assert( iDummy>0 );
|
| - assert( n+iDummy>0 );
|
| - assert( n+iDummy<=nData );
|
| - ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL);
|
| - pData += n+iDummy;
|
| - nData -= n+iDummy;
|
| - }
|
| -}
|
| -#define ASSERT_VALID_LEAF_NODE(p, n) leafNodeValidate(p, n)
|
| -#else
|
| -#define ASSERT_VALID_LEAF_NODE(p, n) assert( 1 )
|
| -#endif
|
| -
|
| -/* Flush the current leaf node to %_segments, and adding the resulting
|
| -** blockid and the starting term to the interior node which will
|
| -** contain it.
|
| -*/
|
| -static int leafWriterInternalFlush(fulltext_vtab *v, LeafWriter *pWriter,
|
| - int iData, int nData){
|
| - sqlite_int64 iBlockid = 0;
|
| - const char *pStartingTerm;
|
| - int nStartingTerm, rc, n;
|
| -
|
| - /* Must have the leading varint(0) flag, plus at least some
|
| - ** valid-looking data.
|
| - */
|
| - assert( nData>2 );
|
| - assert( iData>=0 );
|
| - assert( iData+nData<=pWriter->data.nData );
|
| - ASSERT_VALID_LEAF_NODE(pWriter->data.pData+iData, nData);
|
| -
|
| - rc = block_insert(v, pWriter->data.pData+iData, nData, &iBlockid);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - assert( iBlockid!=0 );
|
| -
|
| - /* Reconstruct the first term in the leaf for purposes of building
|
| - ** the interior node.
|
| - */
|
| - n = fts3GetVarint32(pWriter->data.pData+iData+1, &nStartingTerm);
|
| - pStartingTerm = pWriter->data.pData+iData+1+n;
|
| - assert( pWriter->data.nData>iData+1+n+nStartingTerm );
|
| - assert( pWriter->nTermDistinct>0 );
|
| - assert( pWriter->nTermDistinct<=nStartingTerm );
|
| - nStartingTerm = pWriter->nTermDistinct;
|
| -
|
| - if( pWriter->has_parent ){
|
| - interiorWriterAppend(&pWriter->parentWriter,
|
| - pStartingTerm, nStartingTerm, iBlockid);
|
| - }else{
|
| - interiorWriterInit(1, pStartingTerm, nStartingTerm, iBlockid,
|
| - &pWriter->parentWriter);
|
| - pWriter->has_parent = 1;
|
| - }
|
| -
|
| - /* Track the span of this segment's leaf nodes. */
|
| - if( pWriter->iEndBlockid==0 ){
|
| - pWriter->iEndBlockid = pWriter->iStartBlockid = iBlockid;
|
| - }else{
|
| - pWriter->iEndBlockid++;
|
| - assert( iBlockid==pWriter->iEndBlockid );
|
| - }
|
| -
|
| - return SQLITE_OK;
|
| -}
|
| -static int leafWriterFlush(fulltext_vtab *v, LeafWriter *pWriter){
|
| - int rc = leafWriterInternalFlush(v, pWriter, 0, pWriter->data.nData);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - /* Re-initialize the output buffer. */
|
| - dataBufferReset(&pWriter->data);
|
| -
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/* Fetch the root info for the segment. If the entire leaf fits
|
| -** within ROOT_MAX, then it will be returned directly, otherwise it
|
| -** will be flushed and the root info will be returned from the
|
| -** interior node. *piEndBlockid is set to the blockid of the last
|
| -** interior or leaf node written to disk (0 if none are written at
|
| -** all).
|
| -*/
|
| -static int leafWriterRootInfo(fulltext_vtab *v, LeafWriter *pWriter,
|
| - char **ppRootInfo, int *pnRootInfo,
|
| - sqlite_int64 *piEndBlockid){
|
| - /* we can fit the segment entirely inline */
|
| - if( !pWriter->has_parent && pWriter->data.nData<ROOT_MAX ){
|
| - *ppRootInfo = pWriter->data.pData;
|
| - *pnRootInfo = pWriter->data.nData;
|
| - *piEndBlockid = 0;
|
| - return SQLITE_OK;
|
| - }
|
| -
|
| - /* Flush remaining leaf data. */
|
| - if( pWriter->data.nData>0 ){
|
| - int rc = leafWriterFlush(v, pWriter);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - }
|
| -
|
| - /* We must have flushed a leaf at some point. */
|
| - assert( pWriter->has_parent );
|
| -
|
| - /* Tenatively set the end leaf blockid as the end blockid. If the
|
| - ** interior node can be returned inline, this will be the final
|
| - ** blockid, otherwise it will be overwritten by
|
| - ** interiorWriterRootInfo().
|
| - */
|
| - *piEndBlockid = pWriter->iEndBlockid;
|
| -
|
| - return interiorWriterRootInfo(v, &pWriter->parentWriter,
|
| - ppRootInfo, pnRootInfo, piEndBlockid);
|
| -}
|
| -
|
| -/* Collect the rootInfo data and store it into the segment directory.
|
| -** This has the effect of flushing the segment's leaf data to
|
| -** %_segments, and also flushing any interior nodes to %_segments.
|
| -*/
|
| -static int leafWriterFinalize(fulltext_vtab *v, LeafWriter *pWriter){
|
| - sqlite_int64 iEndBlockid;
|
| - char *pRootInfo;
|
| - int rc, nRootInfo;
|
| -
|
| - rc = leafWriterRootInfo(v, pWriter, &pRootInfo, &nRootInfo, &iEndBlockid);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - /* Don't bother storing an entirely empty segment. */
|
| - if( iEndBlockid==0 && nRootInfo==0 ) return SQLITE_OK;
|
| -
|
| - return segdir_set(v, pWriter->iLevel, pWriter->idx,
|
| - pWriter->iStartBlockid, pWriter->iEndBlockid,
|
| - iEndBlockid, pRootInfo, nRootInfo);
|
| -}
|
| -
|
| -static void leafWriterDestroy(LeafWriter *pWriter){
|
| - if( pWriter->has_parent ) interiorWriterDestroy(&pWriter->parentWriter);
|
| - dataBufferDestroy(&pWriter->term);
|
| - dataBufferDestroy(&pWriter->data);
|
| -}
|
| -
|
| -/* Encode a term into the leafWriter, delta-encoding as appropriate.
|
| -** Returns the length of the new term which distinguishes it from the
|
| -** previous term, which can be used to set nTermDistinct when a node
|
| -** boundary is crossed.
|
| -*/
|
| -static int leafWriterEncodeTerm(LeafWriter *pWriter,
|
| - const char *pTerm, int nTerm){
|
| - char c[VARINT_MAX+VARINT_MAX];
|
| - int n, nPrefix = 0;
|
| -
|
| - assert( nTerm>0 );
|
| - while( nPrefix<pWriter->term.nData &&
|
| - pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){
|
| - nPrefix++;
|
| - /* Failing this implies that the terms weren't in order. */
|
| - assert( nPrefix<nTerm );
|
| - }
|
| -
|
| - if( pWriter->data.nData==0 ){
|
| - /* Encode the node header and leading term as:
|
| - ** varint(0)
|
| - ** varint(nTerm)
|
| - ** char pTerm[nTerm]
|
| - */
|
| - n = fts3PutVarint(c, '\0');
|
| - n += fts3PutVarint(c+n, nTerm);
|
| - dataBufferAppend2(&pWriter->data, c, n, pTerm, nTerm);
|
| - }else{
|
| - /* Delta-encode the term as:
|
| - ** varint(nPrefix)
|
| - ** varint(nSuffix)
|
| - ** char pTermSuffix[nSuffix]
|
| - */
|
| - n = fts3PutVarint(c, nPrefix);
|
| - n += fts3PutVarint(c+n, nTerm-nPrefix);
|
| - dataBufferAppend2(&pWriter->data, c, n, pTerm+nPrefix, nTerm-nPrefix);
|
| - }
|
| - dataBufferReplace(&pWriter->term, pTerm, nTerm);
|
| -
|
| - return nPrefix+1;
|
| -}
|
| -
|
| -/* Used to avoid a memmove when a large amount of doclist data is in
|
| -** the buffer. This constructs a node and term header before
|
| -** iDoclistData and flushes the resulting complete node using
|
| -** leafWriterInternalFlush().
|
| -*/
|
| -static int leafWriterInlineFlush(fulltext_vtab *v, LeafWriter *pWriter,
|
| - const char *pTerm, int nTerm,
|
| - int iDoclistData){
|
| - char c[VARINT_MAX+VARINT_MAX];
|
| - int iData, n = fts3PutVarint(c, 0);
|
| - n += fts3PutVarint(c+n, nTerm);
|
| -
|
| - /* There should always be room for the header. Even if pTerm shared
|
| - ** a substantial prefix with the previous term, the entire prefix
|
| - ** could be constructed from earlier data in the doclist, so there
|
| - ** should be room.
|
| - */
|
| - assert( iDoclistData>=n+nTerm );
|
| -
|
| - iData = iDoclistData-(n+nTerm);
|
| - memcpy(pWriter->data.pData+iData, c, n);
|
| - memcpy(pWriter->data.pData+iData+n, pTerm, nTerm);
|
| -
|
| - return leafWriterInternalFlush(v, pWriter, iData, pWriter->data.nData-iData);
|
| -}
|
| -
|
| -/* Push pTerm[nTerm] along with the doclist data to the leaf layer of
|
| -** %_segments.
|
| -*/
|
| -static int leafWriterStepMerge(fulltext_vtab *v, LeafWriter *pWriter,
|
| - const char *pTerm, int nTerm,
|
| - DLReader *pReaders, int nReaders){
|
| - char c[VARINT_MAX+VARINT_MAX];
|
| - int iTermData = pWriter->data.nData, iDoclistData;
|
| - int i, nData, n, nActualData, nActual, rc, nTermDistinct;
|
| -
|
| - ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData);
|
| - nTermDistinct = leafWriterEncodeTerm(pWriter, pTerm, nTerm);
|
| -
|
| - /* Remember nTermDistinct if opening a new node. */
|
| - if( iTermData==0 ) pWriter->nTermDistinct = nTermDistinct;
|
| -
|
| - iDoclistData = pWriter->data.nData;
|
| -
|
| - /* Estimate the length of the merged doclist so we can leave space
|
| - ** to encode it.
|
| - */
|
| - for(i=0, nData=0; i<nReaders; i++){
|
| - nData += dlrAllDataBytes(&pReaders[i]);
|
| - }
|
| - n = fts3PutVarint(c, nData);
|
| - dataBufferAppend(&pWriter->data, c, n);
|
| -
|
| - rc = docListMerge(&pWriter->data, pReaders, nReaders);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - ASSERT_VALID_DOCLIST(DL_DEFAULT,
|
| - pWriter->data.pData+iDoclistData+n,
|
| - pWriter->data.nData-iDoclistData-n, NULL);
|
| -
|
| - /* The actual amount of doclist data at this point could be smaller
|
| - ** than the length we encoded. Additionally, the space required to
|
| - ** encode this length could be smaller. For small doclists, this is
|
| - ** not a big deal, we can just use memmove() to adjust things.
|
| - */
|
| - nActualData = pWriter->data.nData-(iDoclistData+n);
|
| - nActual = fts3PutVarint(c, nActualData);
|
| - assert( nActualData<=nData );
|
| - assert( nActual<=n );
|
| -
|
| - /* If the new doclist is big enough for force a standalone leaf
|
| - ** node, we can immediately flush it inline without doing the
|
| - ** memmove().
|
| - */
|
| - /* TODO(shess) This test matches leafWriterStep(), which does this
|
| - ** test before it knows the cost to varint-encode the term and
|
| - ** doclist lengths. At some point, change to
|
| - ** pWriter->data.nData-iTermData>STANDALONE_MIN.
|
| - */
|
| - if( nTerm+nActualData>STANDALONE_MIN ){
|
| - /* Push leaf node from before this term. */
|
| - if( iTermData>0 ){
|
| - rc = leafWriterInternalFlush(v, pWriter, 0, iTermData);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - pWriter->nTermDistinct = nTermDistinct;
|
| - }
|
| -
|
| - /* Fix the encoded doclist length. */
|
| - iDoclistData += n - nActual;
|
| - memcpy(pWriter->data.pData+iDoclistData, c, nActual);
|
| -
|
| - /* Push the standalone leaf node. */
|
| - rc = leafWriterInlineFlush(v, pWriter, pTerm, nTerm, iDoclistData);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - /* Leave the node empty. */
|
| - dataBufferReset(&pWriter->data);
|
| -
|
| - return rc;
|
| - }
|
| -
|
| - /* At this point, we know that the doclist was small, so do the
|
| - ** memmove if indicated.
|
| - */
|
| - if( nActual<n ){
|
| - memmove(pWriter->data.pData+iDoclistData+nActual,
|
| - pWriter->data.pData+iDoclistData+n,
|
| - pWriter->data.nData-(iDoclistData+n));
|
| - pWriter->data.nData -= n-nActual;
|
| - }
|
| -
|
| - /* Replace written length with actual length. */
|
| - memcpy(pWriter->data.pData+iDoclistData, c, nActual);
|
| -
|
| - /* If the node is too large, break things up. */
|
| - /* TODO(shess) This test matches leafWriterStep(), which does this
|
| - ** test before it knows the cost to varint-encode the term and
|
| - ** doclist lengths. At some point, change to
|
| - ** pWriter->data.nData>LEAF_MAX.
|
| - */
|
| - if( iTermData+nTerm+nActualData>LEAF_MAX ){
|
| - /* Flush out the leading data as a node */
|
| - rc = leafWriterInternalFlush(v, pWriter, 0, iTermData);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - pWriter->nTermDistinct = nTermDistinct;
|
| -
|
| - /* Rebuild header using the current term */
|
| - n = fts3PutVarint(pWriter->data.pData, 0);
|
| - n += fts3PutVarint(pWriter->data.pData+n, nTerm);
|
| - memcpy(pWriter->data.pData+n, pTerm, nTerm);
|
| - n += nTerm;
|
| -
|
| - /* There should always be room, because the previous encoding
|
| - ** included all data necessary to construct the term.
|
| - */
|
| - assert( n<iDoclistData );
|
| - /* So long as STANDALONE_MIN is half or less of LEAF_MAX, the
|
| - ** following memcpy() is safe (as opposed to needing a memmove).
|
| - */
|
| - assert( 2*STANDALONE_MIN<=LEAF_MAX );
|
| - assert( n+pWriter->data.nData-iDoclistData<iDoclistData );
|
| - memcpy(pWriter->data.pData+n,
|
| - pWriter->data.pData+iDoclistData,
|
| - pWriter->data.nData-iDoclistData);
|
| - pWriter->data.nData -= iDoclistData-n;
|
| - }
|
| - ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData);
|
| -
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/* Push pTerm[nTerm] along with the doclist data to the leaf layer of
|
| -** %_segments.
|
| -*/
|
| -/* TODO(shess) Revise writeZeroSegment() so that doclists are
|
| -** constructed directly in pWriter->data.
|
| -*/
|
| -static int leafWriterStep(fulltext_vtab *v, LeafWriter *pWriter,
|
| - const char *pTerm, int nTerm,
|
| - const char *pData, int nData){
|
| - int rc;
|
| - DLReader reader;
|
| -
|
| - rc = dlrInit(&reader, DL_DEFAULT, pData, nData);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - rc = leafWriterStepMerge(v, pWriter, pTerm, nTerm, &reader, 1);
|
| - dlrDestroy(&reader);
|
| -
|
| - return rc;
|
| -}
|
| -
|
| -
|
| -/****************************************************************/
|
| -/* LeafReader is used to iterate over an individual leaf node. */
|
| -typedef struct LeafReader {
|
| - DataBuffer term; /* copy of current term. */
|
| -
|
| - const char *pData; /* data for current term. */
|
| - int nData;
|
| -} LeafReader;
|
| -
|
| -static void leafReaderDestroy(LeafReader *pReader){
|
| - dataBufferDestroy(&pReader->term);
|
| - SCRAMBLE(pReader);
|
| -}
|
| -
|
| -static int leafReaderAtEnd(LeafReader *pReader){
|
| - return pReader->nData<=0;
|
| -}
|
| -
|
| -/* Access the current term. */
|
| -static int leafReaderTermBytes(LeafReader *pReader){
|
| - return pReader->term.nData;
|
| -}
|
| -static const char *leafReaderTerm(LeafReader *pReader){
|
| - assert( pReader->term.nData>0 );
|
| - return pReader->term.pData;
|
| -}
|
| -
|
| -/* Access the doclist data for the current term. */
|
| -static int leafReaderDataBytes(LeafReader *pReader){
|
| - int nData;
|
| - assert( pReader->term.nData>0 );
|
| - fts3GetVarint32(pReader->pData, &nData);
|
| - return nData;
|
| -}
|
| -static const char *leafReaderData(LeafReader *pReader){
|
| - int n, nData;
|
| - assert( pReader->term.nData>0 );
|
| - n = fts3GetVarint32Safe(pReader->pData, &nData, pReader->nData);
|
| - if( !n || nData>pReader->nData-n ) return NULL;
|
| - return pReader->pData+n;
|
| -}
|
| -
|
| -static int leafReaderInit(const char *pData, int nData,
|
| - LeafReader *pReader){
|
| - int nTerm, n;
|
| -
|
| - /* All callers check this precondition. */
|
| - assert( nData>0 );
|
| - assert( pData[0]=='\0' );
|
| -
|
| - CLEAR(pReader);
|
| -
|
| - /* Read the first term, skipping the header byte. */
|
| - n = fts3GetVarint32Safe(pData+1, &nTerm, nData-1);
|
| - if( !n || nTerm<0 || nTerm>nData-1-n ) return SQLITE_CORRUPT_BKPT;
|
| - dataBufferInit(&pReader->term, nTerm);
|
| - dataBufferReplace(&pReader->term, pData+1+n, nTerm);
|
| -
|
| - /* Position after the first term. */
|
| - pReader->pData = pData+1+n+nTerm;
|
| - pReader->nData = nData-1-n-nTerm;
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/* Step the reader forward to the next term. */
|
| -static int leafReaderStep(LeafReader *pReader){
|
| - int n, nData, nPrefix, nSuffix;
|
| - assert( !leafReaderAtEnd(pReader) );
|
| -
|
| - /* Skip previous entry's data block. */
|
| - n = fts3GetVarint32Safe(pReader->pData, &nData, pReader->nData);
|
| - if( !n || nData<0 || nData>pReader->nData-n ) return SQLITE_CORRUPT_BKPT;
|
| - pReader->pData += n+nData;
|
| - pReader->nData -= n+nData;
|
| -
|
| - if( !leafReaderAtEnd(pReader) ){
|
| - /* Construct the new term using a prefix from the old term plus a
|
| - ** suffix from the leaf data.
|
| - */
|
| - n = fts3GetVarint32Safe(pReader->pData, &nPrefix, pReader->nData);
|
| - if( !n ) return SQLITE_CORRUPT_BKPT;
|
| - pReader->nData -= n;
|
| - pReader->pData += n;
|
| - n = fts3GetVarint32Safe(pReader->pData, &nSuffix, pReader->nData);
|
| - if( !n ) return SQLITE_CORRUPT_BKPT;
|
| - pReader->nData -= n;
|
| - pReader->pData += n;
|
| - if( nSuffix<0 || nSuffix>pReader->nData ) return SQLITE_CORRUPT_BKPT;
|
| - if( nPrefix<0 || nPrefix>pReader->term.nData ) return SQLITE_CORRUPT_BKPT;
|
| - pReader->term.nData = nPrefix;
|
| - dataBufferAppend(&pReader->term, pReader->pData, nSuffix);
|
| -
|
| - pReader->pData += nSuffix;
|
| - pReader->nData -= nSuffix;
|
| - }
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/* strcmp-style comparison of pReader's current term against pTerm.
|
| -** If isPrefix, equality means equal through nTerm bytes.
|
| -*/
|
| -static int leafReaderTermCmp(LeafReader *pReader,
|
| - const char *pTerm, int nTerm, int isPrefix){
|
| - int c, n = pReader->term.nData<nTerm ? pReader->term.nData : nTerm;
|
| - if( n==0 ){
|
| - if( pReader->term.nData>0 ) return -1;
|
| - if(nTerm>0 ) return 1;
|
| - return 0;
|
| - }
|
| -
|
| - c = memcmp(pReader->term.pData, pTerm, n);
|
| - if( c!=0 ) return c;
|
| - if( isPrefix && n==nTerm ) return 0;
|
| - return pReader->term.nData - nTerm;
|
| -}
|
| -
|
| -
|
| -/****************************************************************/
|
| -/* LeavesReader wraps LeafReader to allow iterating over the entire
|
| -** leaf layer of the tree.
|
| -*/
|
| -typedef struct LeavesReader {
|
| - int idx; /* Index within the segment. */
|
| -
|
| - sqlite3_stmt *pStmt; /* Statement we're streaming leaves from. */
|
| - int eof; /* we've seen SQLITE_DONE from pStmt. */
|
| -
|
| - LeafReader leafReader; /* reader for the current leaf. */
|
| - DataBuffer rootData; /* root data for inline. */
|
| -} LeavesReader;
|
| -
|
| -/* Access the current term. */
|
| -static int leavesReaderTermBytes(LeavesReader *pReader){
|
| - assert( !pReader->eof );
|
| - return leafReaderTermBytes(&pReader->leafReader);
|
| -}
|
| -static const char *leavesReaderTerm(LeavesReader *pReader){
|
| - assert( !pReader->eof );
|
| - return leafReaderTerm(&pReader->leafReader);
|
| -}
|
| -
|
| -/* Access the doclist data for the current term. */
|
| -static int leavesReaderDataBytes(LeavesReader *pReader){
|
| - assert( !pReader->eof );
|
| - return leafReaderDataBytes(&pReader->leafReader);
|
| -}
|
| -static const char *leavesReaderData(LeavesReader *pReader){
|
| - assert( !pReader->eof );
|
| - return leafReaderData(&pReader->leafReader);
|
| -}
|
| -
|
| -static int leavesReaderAtEnd(LeavesReader *pReader){
|
| - return pReader->eof;
|
| -}
|
| -
|
| -/* loadSegmentLeaves() may not read all the way to SQLITE_DONE, thus
|
| -** leaving the statement handle open, which locks the table.
|
| -*/
|
| -/* TODO(shess) This "solution" is not satisfactory. Really, there
|
| -** should be check-in function for all statement handles which
|
| -** arranges to call sqlite3_reset(). This most likely will require
|
| -** modification to control flow all over the place, though, so for now
|
| -** just punt.
|
| -**
|
| -** Note the the current system assumes that segment merges will run to
|
| -** completion, which is why this particular probably hasn't arisen in
|
| -** this case. Probably a brittle assumption.
|
| -*/
|
| -static int leavesReaderReset(LeavesReader *pReader){
|
| - return sqlite3_reset(pReader->pStmt);
|
| -}
|
| -
|
| -static void leavesReaderDestroy(LeavesReader *pReader){
|
| - /* If idx is -1, that means we're using a non-cached statement
|
| - ** handle in the optimize() case, so we need to release it.
|
| - */
|
| - if( pReader->pStmt!=NULL && pReader->idx==-1 ){
|
| - sqlite3_finalize(pReader->pStmt);
|
| - }
|
| - leafReaderDestroy(&pReader->leafReader);
|
| - dataBufferDestroy(&pReader->rootData);
|
| - SCRAMBLE(pReader);
|
| -}
|
| -
|
| -/* Initialize pReader with the given root data (if iStartBlockid==0
|
| -** the leaf data was entirely contained in the root), or from the
|
| -** stream of blocks between iStartBlockid and iEndBlockid, inclusive.
|
| -*/
|
| -static int leavesReaderInit(fulltext_vtab *v,
|
| - int idx,
|
| - sqlite_int64 iStartBlockid,
|
| - sqlite_int64 iEndBlockid,
|
| - const char *pRootData, int nRootData,
|
| - LeavesReader *pReader){
|
| - CLEAR(pReader);
|
| - pReader->idx = idx;
|
| -
|
| - dataBufferInit(&pReader->rootData, 0);
|
| - if( iStartBlockid==0 ){
|
| - int rc;
|
| - /* Corrupt if this can't be a leaf node. */
|
| - if( pRootData==NULL || nRootData<1 || pRootData[0]!='\0' ){
|
| - return SQLITE_CORRUPT_BKPT;
|
| - }
|
| - /* Entire leaf level fit in root data. */
|
| - dataBufferReplace(&pReader->rootData, pRootData, nRootData);
|
| - rc = leafReaderInit(pReader->rootData.pData, pReader->rootData.nData,
|
| - &pReader->leafReader);
|
| - if( rc!=SQLITE_OK ){
|
| - dataBufferDestroy(&pReader->rootData);
|
| - return rc;
|
| - }
|
| - }else{
|
| - sqlite3_stmt *s;
|
| - int rc = sql_get_leaf_statement(v, idx, &s);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = sqlite3_bind_int64(s, 1, iStartBlockid);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| -
|
| - rc = sqlite3_bind_int64(s, 2, iEndBlockid);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| -
|
| - rc = sqlite3_step(s);
|
| -
|
| - /* Corrupt if interior node referenced missing leaf node. */
|
| - if( rc==SQLITE_DONE ){
|
| - rc = SQLITE_CORRUPT_BKPT;
|
| - goto err;
|
| - }
|
| -
|
| - if( rc!=SQLITE_ROW ) goto err;
|
| - rc = SQLITE_OK;
|
| -
|
| - /* Corrupt if leaf data isn't a blob. */
|
| - if( sqlite3_column_type(s, 0)!=SQLITE_BLOB ){
|
| - rc = SQLITE_CORRUPT_BKPT;
|
| - }else{
|
| - const char *pLeafData = sqlite3_column_blob(s, 0);
|
| - int nLeafData = sqlite3_column_bytes(s, 0);
|
| -
|
| - /* Corrupt if this can't be a leaf node. */
|
| - if( pLeafData==NULL || nLeafData<1 || pLeafData[0]!='\0' ){
|
| - rc = SQLITE_CORRUPT_BKPT;
|
| - }else{
|
| - rc = leafReaderInit(pLeafData, nLeafData, &pReader->leafReader);
|
| - }
|
| - }
|
| -
|
| - err:
|
| - if( rc!=SQLITE_OK ){
|
| - if( idx==-1 ){
|
| - sqlite3_finalize(s);
|
| - }else{
|
| - sqlite3_reset(s);
|
| - }
|
| - return rc;
|
| - }
|
| -
|
| - pReader->pStmt = s;
|
| - }
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/* Step the current leaf forward to the next term. If we reach the
|
| -** end of the current leaf, step forward to the next leaf block.
|
| -*/
|
| -static int leavesReaderStep(fulltext_vtab *v, LeavesReader *pReader){
|
| - int rc;
|
| - assert( !leavesReaderAtEnd(pReader) );
|
| - rc = leafReaderStep(&pReader->leafReader);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - if( leafReaderAtEnd(&pReader->leafReader) ){
|
| - if( pReader->rootData.pData ){
|
| - pReader->eof = 1;
|
| - return SQLITE_OK;
|
| - }
|
| - rc = sqlite3_step(pReader->pStmt);
|
| - if( rc!=SQLITE_ROW ){
|
| - pReader->eof = 1;
|
| - return rc==SQLITE_DONE ? SQLITE_OK : rc;
|
| - }
|
| -
|
| - /* Corrupt if leaf data isn't a blob. */
|
| - if( sqlite3_column_type(pReader->pStmt, 0)!=SQLITE_BLOB ){
|
| - return SQLITE_CORRUPT_BKPT;
|
| - }else{
|
| - LeafReader tmp;
|
| - const char *pLeafData = sqlite3_column_blob(pReader->pStmt, 0);
|
| - int nLeafData = sqlite3_column_bytes(pReader->pStmt, 0);
|
| -
|
| - /* Corrupt if this can't be a leaf node. */
|
| - if( pLeafData==NULL || nLeafData<1 || pLeafData[0]!='\0' ){
|
| - return SQLITE_CORRUPT_BKPT;
|
| - }
|
| -
|
| - rc = leafReaderInit(pLeafData, nLeafData, &tmp);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - leafReaderDestroy(&pReader->leafReader);
|
| - pReader->leafReader = tmp;
|
| - }
|
| - }
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/* Order LeavesReaders by their term, ignoring idx. Readers at eof
|
| -** always sort to the end.
|
| -*/
|
| -static int leavesReaderTermCmp(LeavesReader *lr1, LeavesReader *lr2){
|
| - if( leavesReaderAtEnd(lr1) ){
|
| - if( leavesReaderAtEnd(lr2) ) return 0;
|
| - return 1;
|
| - }
|
| - if( leavesReaderAtEnd(lr2) ) return -1;
|
| -
|
| - return leafReaderTermCmp(&lr1->leafReader,
|
| - leavesReaderTerm(lr2), leavesReaderTermBytes(lr2),
|
| - 0);
|
| -}
|
| -
|
| -/* Similar to leavesReaderTermCmp(), with additional ordering by idx
|
| -** so that older segments sort before newer segments.
|
| -*/
|
| -static int leavesReaderCmp(LeavesReader *lr1, LeavesReader *lr2){
|
| - int c = leavesReaderTermCmp(lr1, lr2);
|
| - if( c!=0 ) return c;
|
| - return lr1->idx-lr2->idx;
|
| -}
|
| -
|
| -/* Assume that pLr[1]..pLr[nLr] are sorted. Bubble pLr[0] into its
|
| -** sorted position.
|
| -*/
|
| -static void leavesReaderReorder(LeavesReader *pLr, int nLr){
|
| - while( nLr>1 && leavesReaderCmp(pLr, pLr+1)>0 ){
|
| - LeavesReader tmp = pLr[0];
|
| - pLr[0] = pLr[1];
|
| - pLr[1] = tmp;
|
| - nLr--;
|
| - pLr++;
|
| - }
|
| -}
|
| -
|
| -/* Initializes pReaders with the segments from level iLevel, returning
|
| -** the number of segments in *piReaders. Leaves pReaders in sorted
|
| -** order.
|
| -*/
|
| -static int leavesReadersInit(fulltext_vtab *v, int iLevel,
|
| - LeavesReader *pReaders, int *piReaders){
|
| - sqlite3_stmt *s;
|
| - int i, rc = sql_get_statement(v, SEGDIR_SELECT_LEVEL_STMT, &s);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = sqlite3_bind_int(s, 1, iLevel);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - i = 0;
|
| - while( (rc = sqlite3_step(s))==SQLITE_ROW ){
|
| - sqlite_int64 iStart = sqlite3_column_int64(s, 0);
|
| - sqlite_int64 iEnd = sqlite3_column_int64(s, 1);
|
| - const char *pRootData = sqlite3_column_blob(s, 2);
|
| - int nRootData = sqlite3_column_bytes(s, 2);
|
| - sqlite_int64 iIndex = sqlite3_column_int64(s, 3);
|
| -
|
| - /* Corrupt if we get back different types than we stored. */
|
| - /* Also corrupt if the index is not sequential starting at 0. */
|
| - if( sqlite3_column_type(s, 0)!=SQLITE_INTEGER ||
|
| - sqlite3_column_type(s, 1)!=SQLITE_INTEGER ||
|
| - sqlite3_column_type(s, 2)!=SQLITE_BLOB ||
|
| - i!=iIndex ||
|
| - i>=MERGE_COUNT ){
|
| - rc = SQLITE_CORRUPT_BKPT;
|
| - break;
|
| - }
|
| -
|
| - rc = leavesReaderInit(v, i, iStart, iEnd, pRootData, nRootData,
|
| - &pReaders[i]);
|
| - if( rc!=SQLITE_OK ) break;
|
| -
|
| - i++;
|
| - }
|
| - if( rc!=SQLITE_DONE ){
|
| - while( i-->0 ){
|
| - leavesReaderDestroy(&pReaders[i]);
|
| - }
|
| - sqlite3_reset(s); /* So we don't leave a lock. */
|
| - return rc;
|
| - }
|
| -
|
| - *piReaders = i;
|
| -
|
| - /* Leave our results sorted by term, then age. */
|
| - while( i-- ){
|
| - leavesReaderReorder(pReaders+i, *piReaders-i);
|
| - }
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/* Merge doclists from pReaders[nReaders] into a single doclist, which
|
| -** is written to pWriter. Assumes pReaders is ordered oldest to
|
| -** newest.
|
| -*/
|
| -/* TODO(shess) Consider putting this inline in segmentMerge(). */
|
| -static int leavesReadersMerge(fulltext_vtab *v,
|
| - LeavesReader *pReaders, int nReaders,
|
| - LeafWriter *pWriter){
|
| - DLReader dlReaders[MERGE_COUNT];
|
| - const char *pTerm = leavesReaderTerm(pReaders);
|
| - int i, nTerm = leavesReaderTermBytes(pReaders);
|
| - int rc;
|
| -
|
| - assert( nReaders<=MERGE_COUNT );
|
| -
|
| - for(i=0; i<nReaders; i++){
|
| - const char *pData = leavesReaderData(pReaders+i);
|
| - if( pData==NULL ){
|
| - rc = SQLITE_CORRUPT_BKPT;
|
| - break;
|
| - }
|
| - rc = dlrInit(&dlReaders[i], DL_DEFAULT,
|
| - pData,
|
| - leavesReaderDataBytes(pReaders+i));
|
| - if( rc!=SQLITE_OK ) break;
|
| - }
|
| - if( rc!=SQLITE_OK ){
|
| - while( i-->0 ){
|
| - dlrDestroy(&dlReaders[i]);
|
| - }
|
| - return rc;
|
| - }
|
| -
|
| - return leafWriterStepMerge(v, pWriter, pTerm, nTerm, dlReaders, nReaders);
|
| -}
|
| -
|
| -/* Forward ref due to mutual recursion with segdirNextIndex(). */
|
| -static int segmentMerge(fulltext_vtab *v, int iLevel);
|
| -
|
| -/* Put the next available index at iLevel into *pidx. If iLevel
|
| -** already has MERGE_COUNT segments, they are merged to a higher
|
| -** level to make room.
|
| -*/
|
| -static int segdirNextIndex(fulltext_vtab *v, int iLevel, int *pidx){
|
| - int rc = segdir_max_index(v, iLevel, pidx);
|
| - if( rc==SQLITE_DONE ){ /* No segments at iLevel. */
|
| - *pidx = 0;
|
| - }else if( rc==SQLITE_ROW ){
|
| - if( *pidx==(MERGE_COUNT-1) ){
|
| - rc = segmentMerge(v, iLevel);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - *pidx = 0;
|
| - }else{
|
| - (*pidx)++;
|
| - }
|
| - }else{
|
| - return rc;
|
| - }
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/* Merge MERGE_COUNT segments at iLevel into a new segment at
|
| -** iLevel+1. If iLevel+1 is already full of segments, those will be
|
| -** merged to make room.
|
| -*/
|
| -static int segmentMerge(fulltext_vtab *v, int iLevel){
|
| - LeafWriter writer;
|
| - LeavesReader lrs[MERGE_COUNT];
|
| - int i, rc, idx = 0;
|
| -
|
| - /* Determine the next available segment index at the next level,
|
| - ** merging as necessary.
|
| - */
|
| - rc = segdirNextIndex(v, iLevel+1, &idx);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - /* TODO(shess) This assumes that we'll always see exactly
|
| - ** MERGE_COUNT segments to merge at a given level. That will be
|
| - ** broken if we allow the developer to request preemptive or
|
| - ** deferred merging.
|
| - */
|
| - memset(&lrs, '\0', sizeof(lrs));
|
| - rc = leavesReadersInit(v, iLevel, lrs, &i);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - leafWriterInit(iLevel+1, idx, &writer);
|
| -
|
| - if( i!=MERGE_COUNT ){
|
| - rc = SQLITE_CORRUPT_BKPT;
|
| - goto err;
|
| - }
|
| -
|
| - /* Since leavesReaderReorder() pushes readers at eof to the end,
|
| - ** when the first reader is empty, all will be empty.
|
| - */
|
| - while( !leavesReaderAtEnd(lrs) ){
|
| - /* Figure out how many readers share their next term. */
|
| - for(i=1; i<MERGE_COUNT && !leavesReaderAtEnd(lrs+i); i++){
|
| - if( 0!=leavesReaderTermCmp(lrs, lrs+i) ) break;
|
| - }
|
| -
|
| - rc = leavesReadersMerge(v, lrs, i, &writer);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| -
|
| - /* Step forward those that were merged. */
|
| - while( i-->0 ){
|
| - rc = leavesReaderStep(v, lrs+i);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| -
|
| - /* Reorder by term, then by age. */
|
| - leavesReaderReorder(lrs+i, MERGE_COUNT-i);
|
| - }
|
| - }
|
| -
|
| - for(i=0; i<MERGE_COUNT; i++){
|
| - leavesReaderDestroy(&lrs[i]);
|
| - }
|
| -
|
| - rc = leafWriterFinalize(v, &writer);
|
| - leafWriterDestroy(&writer);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - /* Delete the merged segment data. */
|
| - return segdir_delete(v, iLevel);
|
| -
|
| - err:
|
| - for(i=0; i<MERGE_COUNT; i++){
|
| - leavesReaderDestroy(&lrs[i]);
|
| - }
|
| - leafWriterDestroy(&writer);
|
| - return rc;
|
| -}
|
| -
|
| -/* Accumulate the union of *acc and *pData into *acc. */
|
| -static int docListAccumulateUnion(DataBuffer *acc,
|
| - const char *pData, int nData) {
|
| - DataBuffer tmp = *acc;
|
| - int rc;
|
| - dataBufferInit(acc, tmp.nData+nData);
|
| - rc = docListUnion(tmp.pData, tmp.nData, pData, nData, acc);
|
| - dataBufferDestroy(&tmp);
|
| - return rc;
|
| -}
|
| -
|
| -/* TODO(shess) It might be interesting to explore different merge
|
| -** strategies, here. For instance, since this is a sorted merge, we
|
| -** could easily merge many doclists in parallel. With some
|
| -** comprehension of the storage format, we could merge all of the
|
| -** doclists within a leaf node directly from the leaf node's storage.
|
| -** It may be worthwhile to merge smaller doclists before larger
|
| -** doclists, since they can be traversed more quickly - but the
|
| -** results may have less overlap, making them more expensive in a
|
| -** different way.
|
| -*/
|
| -
|
| -/* Scan pReader for pTerm/nTerm, and merge the term's doclist over
|
| -** *out (any doclists with duplicate docids overwrite those in *out).
|
| -** Internal function for loadSegmentLeaf().
|
| -*/
|
| -static int loadSegmentLeavesInt(fulltext_vtab *v, LeavesReader *pReader,
|
| - const char *pTerm, int nTerm, int isPrefix,
|
| - DataBuffer *out){
|
| - /* doclist data is accumulated into pBuffers similar to how one does
|
| - ** increment in binary arithmetic. If index 0 is empty, the data is
|
| - ** stored there. If there is data there, it is merged and the
|
| - ** results carried into position 1, with further merge-and-carry
|
| - ** until an empty position is found.
|
| - */
|
| - DataBuffer *pBuffers = NULL;
|
| - int nBuffers = 0, nMaxBuffers = 0, rc;
|
| -
|
| - assert( nTerm>0 );
|
| -
|
| - for(rc=SQLITE_OK; rc==SQLITE_OK && !leavesReaderAtEnd(pReader);
|
| - rc=leavesReaderStep(v, pReader)){
|
| - /* TODO(shess) Really want leavesReaderTermCmp(), but that name is
|
| - ** already taken to compare the terms of two LeavesReaders. Think
|
| - ** on a better name. [Meanwhile, break encapsulation rather than
|
| - ** use a confusing name.]
|
| - */
|
| - int c = leafReaderTermCmp(&pReader->leafReader, pTerm, nTerm, isPrefix);
|
| - if( c>0 ) break; /* Past any possible matches. */
|
| - if( c==0 ){
|
| - int iBuffer, nData;
|
| - const char *pData = leavesReaderData(pReader);
|
| - if( pData==NULL ){
|
| - rc = SQLITE_CORRUPT_BKPT;
|
| - break;
|
| - }
|
| - nData = leavesReaderDataBytes(pReader);
|
| -
|
| - /* Find the first empty buffer. */
|
| - for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){
|
| - if( 0==pBuffers[iBuffer].nData ) break;
|
| - }
|
| -
|
| - /* Out of buffers, add an empty one. */
|
| - if( iBuffer==nBuffers ){
|
| - if( nBuffers==nMaxBuffers ){
|
| - DataBuffer *p;
|
| - nMaxBuffers += 20;
|
| -
|
| - /* Manual realloc so we can handle NULL appropriately. */
|
| - p = sqlite3_malloc(nMaxBuffers*sizeof(*pBuffers));
|
| - if( p==NULL ){
|
| - rc = SQLITE_NOMEM;
|
| - break;
|
| - }
|
| -
|
| - if( nBuffers>0 ){
|
| - assert(pBuffers!=NULL);
|
| - memcpy(p, pBuffers, nBuffers*sizeof(*pBuffers));
|
| - sqlite3_free(pBuffers);
|
| - }
|
| - pBuffers = p;
|
| - }
|
| - dataBufferInit(&(pBuffers[nBuffers]), 0);
|
| - nBuffers++;
|
| - }
|
| -
|
| - /* At this point, must have an empty at iBuffer. */
|
| - assert(iBuffer<nBuffers && pBuffers[iBuffer].nData==0);
|
| -
|
| - /* If empty was first buffer, no need for merge logic. */
|
| - if( iBuffer==0 ){
|
| - dataBufferReplace(&(pBuffers[0]), pData, nData);
|
| - }else{
|
| - /* pAcc is the empty buffer the merged data will end up in. */
|
| - DataBuffer *pAcc = &(pBuffers[iBuffer]);
|
| - DataBuffer *p = &(pBuffers[0]);
|
| -
|
| - /* Handle position 0 specially to avoid need to prime pAcc
|
| - ** with pData/nData.
|
| - */
|
| - dataBufferSwap(p, pAcc);
|
| - rc = docListAccumulateUnion(pAcc, pData, nData);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| -
|
| - /* Accumulate remaining doclists into pAcc. */
|
| - for(++p; p<pAcc; ++p){
|
| - rc = docListAccumulateUnion(pAcc, p->pData, p->nData);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| -
|
| - /* dataBufferReset() could allow a large doclist to blow up
|
| - ** our memory requirements.
|
| - */
|
| - if( p->nCapacity<1024 ){
|
| - dataBufferReset(p);
|
| - }else{
|
| - dataBufferDestroy(p);
|
| - dataBufferInit(p, 0);
|
| - }
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| - /* Union all the doclists together into *out. */
|
| - /* TODO(shess) What if *out is big? Sigh. */
|
| - if( rc==SQLITE_OK && nBuffers>0 ){
|
| - int iBuffer;
|
| - for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){
|
| - if( pBuffers[iBuffer].nData>0 ){
|
| - if( out->nData==0 ){
|
| - dataBufferSwap(out, &(pBuffers[iBuffer]));
|
| - }else{
|
| - rc = docListAccumulateUnion(out, pBuffers[iBuffer].pData,
|
| - pBuffers[iBuffer].nData);
|
| - if( rc!=SQLITE_OK ) break;
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| -err:
|
| - while( nBuffers-- ){
|
| - dataBufferDestroy(&(pBuffers[nBuffers]));
|
| - }
|
| - if( pBuffers!=NULL ) sqlite3_free(pBuffers);
|
| -
|
| - return rc;
|
| -}
|
| -
|
| -/* Call loadSegmentLeavesInt() with pData/nData as input. */
|
| -static int loadSegmentLeaf(fulltext_vtab *v, const char *pData, int nData,
|
| - const char *pTerm, int nTerm, int isPrefix,
|
| - DataBuffer *out){
|
| - LeavesReader reader;
|
| - int rc;
|
| -
|
| - assert( nData>1 );
|
| - assert( *pData=='\0' );
|
| - rc = leavesReaderInit(v, 0, 0, 0, pData, nData, &reader);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out);
|
| - leavesReaderReset(&reader);
|
| - leavesReaderDestroy(&reader);
|
| - return rc;
|
| -}
|
| -
|
| -/* Call loadSegmentLeavesInt() with the leaf nodes from iStartLeaf to
|
| -** iEndLeaf (inclusive) as input, and merge the resulting doclist into
|
| -** out.
|
| -*/
|
| -static int loadSegmentLeaves(fulltext_vtab *v,
|
| - sqlite_int64 iStartLeaf, sqlite_int64 iEndLeaf,
|
| - const char *pTerm, int nTerm, int isPrefix,
|
| - DataBuffer *out){
|
| - int rc;
|
| - LeavesReader reader;
|
| -
|
| - assert( iStartLeaf<=iEndLeaf );
|
| - rc = leavesReaderInit(v, 0, iStartLeaf, iEndLeaf, NULL, 0, &reader);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out);
|
| - leavesReaderReset(&reader);
|
| - leavesReaderDestroy(&reader);
|
| - return rc;
|
| -}
|
| -
|
| -/* Taking pData/nData as an interior node, find the sequence of child
|
| -** nodes which could include pTerm/nTerm/isPrefix. Note that the
|
| -** interior node terms logically come between the blocks, so there is
|
| -** one more blockid than there are terms (that block contains terms >=
|
| -** the last interior-node term).
|
| -*/
|
| -/* TODO(shess) The calling code may already know that the end child is
|
| -** not worth calculating, because the end may be in a later sibling
|
| -** node. Consider whether breaking symmetry is worthwhile. I suspect
|
| -** it is not worthwhile.
|
| -*/
|
| -static int getChildrenContaining(const char *pData, int nData,
|
| - const char *pTerm, int nTerm, int isPrefix,
|
| - sqlite_int64 *piStartChild,
|
| - sqlite_int64 *piEndChild){
|
| - InteriorReader reader;
|
| - int rc;
|
| -
|
| - assert( nData>1 );
|
| - assert( *pData!='\0' );
|
| - rc = interiorReaderInit(pData, nData, &reader);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - /* Scan for the first child which could contain pTerm/nTerm. */
|
| - while( !interiorReaderAtEnd(&reader) ){
|
| - if( interiorReaderTermCmp(&reader, pTerm, nTerm, 0)>0 ) break;
|
| - rc = interiorReaderStep(&reader);
|
| - if( rc!=SQLITE_OK ){
|
| - interiorReaderDestroy(&reader);
|
| - return rc;
|
| - }
|
| - }
|
| - *piStartChild = interiorReaderCurrentBlockid(&reader);
|
| -
|
| - /* Keep scanning to find a term greater than our term, using prefix
|
| - ** comparison if indicated. If isPrefix is false, this will be the
|
| - ** same blockid as the starting block.
|
| - */
|
| - while( !interiorReaderAtEnd(&reader) ){
|
| - if( interiorReaderTermCmp(&reader, pTerm, nTerm, isPrefix)>0 ) break;
|
| - rc = interiorReaderStep(&reader);
|
| - if( rc!=SQLITE_OK ){
|
| - interiorReaderDestroy(&reader);
|
| - return rc;
|
| - }
|
| - }
|
| - *piEndChild = interiorReaderCurrentBlockid(&reader);
|
| -
|
| - interiorReaderDestroy(&reader);
|
| -
|
| - /* Children must ascend, and if !prefix, both must be the same. */
|
| - assert( *piEndChild>=*piStartChild );
|
| - assert( isPrefix || *piStartChild==*piEndChild );
|
| - return rc;
|
| -}
|
| -
|
| -/* Read block at iBlockid and pass it with other params to
|
| -** getChildrenContaining().
|
| -*/
|
| -static int loadAndGetChildrenContaining(
|
| - fulltext_vtab *v,
|
| - sqlite_int64 iBlockid,
|
| - const char *pTerm, int nTerm, int isPrefix,
|
| - sqlite_int64 *piStartChild, sqlite_int64 *piEndChild
|
| -){
|
| - sqlite3_stmt *s = NULL;
|
| - int rc;
|
| -
|
| - assert( iBlockid!=0 );
|
| - assert( pTerm!=NULL );
|
| - assert( nTerm!=0 ); /* TODO(shess) Why not allow this? */
|
| - assert( piStartChild!=NULL );
|
| - assert( piEndChild!=NULL );
|
| -
|
| - rc = sql_get_statement(v, BLOCK_SELECT_STMT, &s);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = sqlite3_bind_int64(s, 1, iBlockid);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - rc = sqlite3_step(s);
|
| - /* Corrupt if interior node references missing child node. */
|
| - if( rc==SQLITE_DONE ) return SQLITE_CORRUPT_BKPT;
|
| - if( rc!=SQLITE_ROW ) return rc;
|
| -
|
| - /* Corrupt if child node isn't a blob. */
|
| - if( sqlite3_column_type(s, 0)!=SQLITE_BLOB ){
|
| - sqlite3_reset(s); /* So we don't leave a lock. */
|
| - return SQLITE_CORRUPT_BKPT;
|
| - }else{
|
| - const char *pData = sqlite3_column_blob(s, 0);
|
| - int nData = sqlite3_column_bytes(s, 0);
|
| -
|
| - /* Corrupt if child is not a valid interior node. */
|
| - if( pData==NULL || nData<1 || pData[0]=='\0' ){
|
| - sqlite3_reset(s); /* So we don't leave a lock. */
|
| - return SQLITE_CORRUPT_BKPT;
|
| - }
|
| -
|
| - rc = getChildrenContaining(pData, nData, pTerm, nTerm,
|
| - isPrefix, piStartChild, piEndChild);
|
| - if( rc!=SQLITE_OK ){
|
| - sqlite3_reset(s);
|
| - return rc;
|
| - }
|
| - }
|
| -
|
| - /* We expect only one row. We must execute another sqlite3_step()
|
| - * to complete the iteration; otherwise the table will remain
|
| - * locked. */
|
| - rc = sqlite3_step(s);
|
| - if( rc==SQLITE_ROW ) return SQLITE_ERROR;
|
| - if( rc!=SQLITE_DONE ) return rc;
|
| -
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/* Traverse the tree represented by pData[nData] looking for
|
| -** pTerm[nTerm], placing its doclist into *out. This is internal to
|
| -** loadSegment() to make error-handling cleaner.
|
| -*/
|
| -static int loadSegmentInt(fulltext_vtab *v, const char *pData, int nData,
|
| - sqlite_int64 iLeavesEnd,
|
| - const char *pTerm, int nTerm, int isPrefix,
|
| - DataBuffer *out){
|
| - /* Special case where root is a leaf. */
|
| - if( *pData=='\0' ){
|
| - return loadSegmentLeaf(v, pData, nData, pTerm, nTerm, isPrefix, out);
|
| - }else{
|
| - int rc;
|
| - sqlite_int64 iStartChild, iEndChild;
|
| -
|
| - /* Process pData as an interior node, then loop down the tree
|
| - ** until we find the set of leaf nodes to scan for the term.
|
| - */
|
| - rc = getChildrenContaining(pData, nData, pTerm, nTerm, isPrefix,
|
| - &iStartChild, &iEndChild);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - while( iStartChild>iLeavesEnd ){
|
| - sqlite_int64 iNextStart, iNextEnd;
|
| - rc = loadAndGetChildrenContaining(v, iStartChild, pTerm, nTerm, isPrefix,
|
| - &iNextStart, &iNextEnd);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - /* If we've branched, follow the end branch, too. */
|
| - if( iStartChild!=iEndChild ){
|
| - sqlite_int64 iDummy;
|
| - rc = loadAndGetChildrenContaining(v, iEndChild, pTerm, nTerm, isPrefix,
|
| - &iDummy, &iNextEnd);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - }
|
| -
|
| - assert( iNextStart<=iNextEnd );
|
| - iStartChild = iNextStart;
|
| - iEndChild = iNextEnd;
|
| - }
|
| - assert( iStartChild<=iLeavesEnd );
|
| - assert( iEndChild<=iLeavesEnd );
|
| -
|
| - /* Scan through the leaf segments for doclists. */
|
| - return loadSegmentLeaves(v, iStartChild, iEndChild,
|
| - pTerm, nTerm, isPrefix, out);
|
| - }
|
| -}
|
| -
|
| -/* Call loadSegmentInt() to collect the doclist for pTerm/nTerm, then
|
| -** merge its doclist over *out (any duplicate doclists read from the
|
| -** segment rooted at pData will overwrite those in *out).
|
| -*/
|
| -/* TODO(shess) Consider changing this to determine the depth of the
|
| -** leaves using either the first characters of interior nodes (when
|
| -** ==1, we're one level above the leaves), or the first character of
|
| -** the root (which will describe the height of the tree directly).
|
| -** Either feels somewhat tricky to me.
|
| -*/
|
| -/* TODO(shess) The current merge is likely to be slow for large
|
| -** doclists (though it should process from newest/smallest to
|
| -** oldest/largest, so it may not be that bad). It might be useful to
|
| -** modify things to allow for N-way merging. This could either be
|
| -** within a segment, with pairwise merges across segments, or across
|
| -** all segments at once.
|
| -*/
|
| -static int loadSegment(fulltext_vtab *v, const char *pData, int nData,
|
| - sqlite_int64 iLeavesEnd,
|
| - const char *pTerm, int nTerm, int isPrefix,
|
| - DataBuffer *out){
|
| - DataBuffer result;
|
| - int rc;
|
| -
|
| - /* Corrupt if segment root can't be valid. */
|
| - if( pData==NULL || nData<1 ) return SQLITE_CORRUPT_BKPT;
|
| -
|
| - /* This code should never be called with buffered updates. */
|
| - assert( v->nPendingData<0 );
|
| -
|
| - dataBufferInit(&result, 0);
|
| - rc = loadSegmentInt(v, pData, nData, iLeavesEnd,
|
| - pTerm, nTerm, isPrefix, &result);
|
| - if( rc==SQLITE_OK && result.nData>0 ){
|
| - if( out->nData==0 ){
|
| - DataBuffer tmp = *out;
|
| - *out = result;
|
| - result = tmp;
|
| - }else{
|
| - DataBuffer merged;
|
| - DLReader readers[2];
|
| -
|
| - rc = dlrInit(&readers[0], DL_DEFAULT, out->pData, out->nData);
|
| - if( rc==SQLITE_OK ){
|
| - rc = dlrInit(&readers[1], DL_DEFAULT, result.pData, result.nData);
|
| - if( rc==SQLITE_OK ){
|
| - dataBufferInit(&merged, out->nData+result.nData);
|
| - rc = docListMerge(&merged, readers, 2);
|
| - dataBufferDestroy(out);
|
| - *out = merged;
|
| - dlrDestroy(&readers[1]);
|
| - }
|
| - dlrDestroy(&readers[0]);
|
| - }
|
| - }
|
| - }
|
| -
|
| - dataBufferDestroy(&result);
|
| - return rc;
|
| -}
|
| -
|
| -/* Scan the database and merge together the posting lists for the term
|
| -** into *out.
|
| -*/
|
| -static int termSelect(
|
| - fulltext_vtab *v,
|
| - int iColumn,
|
| - const char *pTerm, int nTerm, /* Term to query for */
|
| - int isPrefix, /* True for a prefix search */
|
| - DocListType iType,
|
| - DataBuffer *out /* Write results here */
|
| -){
|
| - DataBuffer doclist;
|
| - sqlite3_stmt *s;
|
| - int rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - /* This code should never be called with buffered updates. */
|
| - assert( v->nPendingData<0 );
|
| -
|
| - dataBufferInit(&doclist, 0);
|
| - dataBufferInit(out, 0);
|
| -
|
| - /* Traverse the segments from oldest to newest so that newer doclist
|
| - ** elements for given docids overwrite older elements.
|
| - */
|
| - while( (rc = sqlite3_step(s))==SQLITE_ROW ){
|
| - const char *pData = sqlite3_column_blob(s, 2);
|
| - const int nData = sqlite3_column_bytes(s, 2);
|
| - const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1);
|
| -
|
| - /* Corrupt if we get back different types than we stored. */
|
| - if( sqlite3_column_type(s, 1)!=SQLITE_INTEGER ||
|
| - sqlite3_column_type(s, 2)!=SQLITE_BLOB ){
|
| - rc = SQLITE_CORRUPT_BKPT;
|
| - goto err;
|
| - }
|
| -
|
| - rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, isPrefix,
|
| - &doclist);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| - }
|
| - if( rc==SQLITE_DONE ){
|
| - rc = SQLITE_OK;
|
| - if( doclist.nData!=0 ){
|
| - /* TODO(shess) The old term_select_all() code applied the column
|
| - ** restrict as we merged segments, leading to smaller buffers.
|
| - ** This is probably worthwhile to bring back, once the new storage
|
| - ** system is checked in.
|
| - */
|
| - if( iColumn==v->nColumn) iColumn = -1;
|
| - rc = docListTrim(DL_DEFAULT, doclist.pData, doclist.nData,
|
| - iColumn, iType, out);
|
| - }
|
| - }
|
| -
|
| - err:
|
| - sqlite3_reset(s); /* So we don't leave a lock. */
|
| - dataBufferDestroy(&doclist);
|
| - return rc;
|
| -}
|
| -
|
| -/****************************************************************/
|
| -/* Used to hold hashtable data for sorting. */
|
| -typedef struct TermData {
|
| - const char *pTerm;
|
| - int nTerm;
|
| - DLCollector *pCollector;
|
| -} TermData;
|
| -
|
| -/* Orders TermData elements in strcmp fashion ( <0 for less-than, 0
|
| -** for equal, >0 for greater-than).
|
| -*/
|
| -static int termDataCmp(const void *av, const void *bv){
|
| - const TermData *a = (const TermData *)av;
|
| - const TermData *b = (const TermData *)bv;
|
| - int n = a->nTerm<b->nTerm ? a->nTerm : b->nTerm;
|
| - int c = memcmp(a->pTerm, b->pTerm, n);
|
| - if( c!=0 ) return c;
|
| - return a->nTerm-b->nTerm;
|
| -}
|
| -
|
| -/* Order pTerms data by term, then write a new level 0 segment using
|
| -** LeafWriter.
|
| -*/
|
| -static int writeZeroSegment(fulltext_vtab *v, fts3Hash *pTerms){
|
| - fts3HashElem *e;
|
| - int idx, rc, i, n;
|
| - TermData *pData;
|
| - LeafWriter writer;
|
| - DataBuffer dl;
|
| -
|
| - /* Determine the next index at level 0, merging as necessary. */
|
| - rc = segdirNextIndex(v, 0, &idx);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - n = fts3HashCount(pTerms);
|
| - pData = sqlite3_malloc(n*sizeof(TermData));
|
| -
|
| - for(i = 0, e = fts3HashFirst(pTerms); e; i++, e = fts3HashNext(e)){
|
| - assert( i<n );
|
| - pData[i].pTerm = fts3HashKey(e);
|
| - pData[i].nTerm = fts3HashKeysize(e);
|
| - pData[i].pCollector = fts3HashData(e);
|
| - }
|
| - assert( i==n );
|
| -
|
| - /* TODO(shess) Should we allow user-defined collation sequences,
|
| - ** here? I think we only need that once we support prefix searches.
|
| - */
|
| - if( n>1 ) qsort(pData, n, sizeof(*pData), termDataCmp);
|
| -
|
| - /* TODO(shess) Refactor so that we can write directly to the segment
|
| - ** DataBuffer, as happens for segment merges.
|
| - */
|
| - leafWriterInit(0, idx, &writer);
|
| - dataBufferInit(&dl, 0);
|
| - for(i=0; i<n; i++){
|
| - dataBufferReset(&dl);
|
| - dlcAddDoclist(pData[i].pCollector, &dl);
|
| - rc = leafWriterStep(v, &writer,
|
| - pData[i].pTerm, pData[i].nTerm, dl.pData, dl.nData);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| - }
|
| - rc = leafWriterFinalize(v, &writer);
|
| -
|
| - err:
|
| - dataBufferDestroy(&dl);
|
| - sqlite3_free(pData);
|
| - leafWriterDestroy(&writer);
|
| - return rc;
|
| -}
|
| -
|
| -/* If pendingTerms has data, free it. */
|
| -static int clearPendingTerms(fulltext_vtab *v){
|
| - if( v->nPendingData>=0 ){
|
| - fts3HashElem *e;
|
| - for(e=fts3HashFirst(&v->pendingTerms); e; e=fts3HashNext(e)){
|
| - dlcDelete(fts3HashData(e));
|
| - }
|
| - fts3HashClear(&v->pendingTerms);
|
| - v->nPendingData = -1;
|
| - }
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/* If pendingTerms has data, flush it to a level-zero segment, and
|
| -** free it.
|
| -*/
|
| -static int flushPendingTerms(fulltext_vtab *v){
|
| - if( v->nPendingData>=0 ){
|
| - int rc = writeZeroSegment(v, &v->pendingTerms);
|
| - if( rc==SQLITE_OK ) clearPendingTerms(v);
|
| - return rc;
|
| - }
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/* If pendingTerms is "too big", or docid is out of order, flush it.
|
| -** Regardless, be certain that pendingTerms is initialized for use.
|
| -*/
|
| -static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid){
|
| - /* TODO(shess) Explore whether partially flushing the buffer on
|
| - ** forced-flush would provide better performance. I suspect that if
|
| - ** we ordered the doclists by size and flushed the largest until the
|
| - ** buffer was half empty, that would let the less frequent terms
|
| - ** generate longer doclists.
|
| - */
|
| - if( iDocid<=v->iPrevDocid || v->nPendingData>kPendingThreshold ){
|
| - int rc = flushPendingTerms(v);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - }
|
| - if( v->nPendingData<0 ){
|
| - fts3HashInit(&v->pendingTerms, FTS3_HASH_STRING, 1);
|
| - v->nPendingData = 0;
|
| - }
|
| - v->iPrevDocid = iDocid;
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/* This function implements the xUpdate callback; it is the top-level entry
|
| - * point for inserting, deleting or updating a row in a full-text table. */
|
| -static int fulltextUpdate(sqlite3_vtab *pVtab, int nArg, sqlite3_value **ppArg,
|
| - sqlite_int64 *pRowid){
|
| - fulltext_vtab *v = (fulltext_vtab *) pVtab;
|
| - int rc;
|
| -
|
| - FTSTRACE(("FTS3 Update %p\n", pVtab));
|
| -
|
| - if( nArg<2 ){
|
| - rc = index_delete(v, sqlite3_value_int64(ppArg[0]));
|
| - if( rc==SQLITE_OK ){
|
| - /* If we just deleted the last row in the table, clear out the
|
| - ** index data.
|
| - */
|
| - rc = content_exists(v);
|
| - if( rc==SQLITE_ROW ){
|
| - rc = SQLITE_OK;
|
| - }else if( rc==SQLITE_DONE ){
|
| - /* Clear the pending terms so we don't flush a useless level-0
|
| - ** segment when the transaction closes.
|
| - */
|
| - rc = clearPendingTerms(v);
|
| - if( rc==SQLITE_OK ){
|
| - rc = segdir_delete_all(v);
|
| - }
|
| - }
|
| - }
|
| - } else if( sqlite3_value_type(ppArg[0]) != SQLITE_NULL ){
|
| - /* An update:
|
| - * ppArg[0] = old rowid
|
| - * ppArg[1] = new rowid
|
| - * ppArg[2..2+v->nColumn-1] = values
|
| - * ppArg[2+v->nColumn] = value for magic column (we ignore this)
|
| - * ppArg[2+v->nColumn+1] = value for docid
|
| - */
|
| - sqlite_int64 rowid = sqlite3_value_int64(ppArg[0]);
|
| - if( sqlite3_value_type(ppArg[1]) != SQLITE_INTEGER ||
|
| - sqlite3_value_int64(ppArg[1]) != rowid ){
|
| - rc = SQLITE_ERROR; /* we don't allow changing the rowid */
|
| - }else if( sqlite3_value_type(ppArg[2+v->nColumn+1]) != SQLITE_INTEGER ||
|
| - sqlite3_value_int64(ppArg[2+v->nColumn+1]) != rowid ){
|
| - rc = SQLITE_ERROR; /* we don't allow changing the docid */
|
| - }else{
|
| - assert( nArg==2+v->nColumn+2);
|
| - rc = index_update(v, rowid, &ppArg[2]);
|
| - }
|
| - } else {
|
| - /* An insert:
|
| - * ppArg[1] = requested rowid
|
| - * ppArg[2..2+v->nColumn-1] = values
|
| - * ppArg[2+v->nColumn] = value for magic column (we ignore this)
|
| - * ppArg[2+v->nColumn+1] = value for docid
|
| - */
|
| - sqlite3_value *pRequestDocid = ppArg[2+v->nColumn+1];
|
| - assert( nArg==2+v->nColumn+2);
|
| - if( SQLITE_NULL != sqlite3_value_type(pRequestDocid) &&
|
| - SQLITE_NULL != sqlite3_value_type(ppArg[1]) ){
|
| - /* TODO(shess) Consider allowing this to work if the values are
|
| - ** identical. I'm inclined to discourage that usage, though,
|
| - ** given that both rowid and docid are special columns. Better
|
| - ** would be to define one or the other as the default winner,
|
| - ** but should it be fts3-centric (docid) or SQLite-centric
|
| - ** (rowid)?
|
| - */
|
| - rc = SQLITE_ERROR;
|
| - }else{
|
| - if( SQLITE_NULL == sqlite3_value_type(pRequestDocid) ){
|
| - pRequestDocid = ppArg[1];
|
| - }
|
| - rc = index_insert(v, pRequestDocid, &ppArg[2], pRowid);
|
| - }
|
| - }
|
| -
|
| - return rc;
|
| -}
|
| -
|
| -static int fulltextSync(sqlite3_vtab *pVtab){
|
| - FTSTRACE(("FTS3 xSync()\n"));
|
| - return flushPendingTerms((fulltext_vtab *)pVtab);
|
| -}
|
| -
|
| -static int fulltextBegin(sqlite3_vtab *pVtab){
|
| - fulltext_vtab *v = (fulltext_vtab *) pVtab;
|
| - FTSTRACE(("FTS3 xBegin()\n"));
|
| -
|
| - /* Any buffered updates should have been cleared by the previous
|
| - ** transaction.
|
| - */
|
| - assert( v->nPendingData<0 );
|
| - return clearPendingTerms(v);
|
| -}
|
| -
|
| -static int fulltextCommit(sqlite3_vtab *pVtab){
|
| - fulltext_vtab *v = (fulltext_vtab *) pVtab;
|
| - FTSTRACE(("FTS3 xCommit()\n"));
|
| -
|
| - /* Buffered updates should have been cleared by fulltextSync(). */
|
| - assert( v->nPendingData<0 );
|
| - return clearPendingTerms(v);
|
| -}
|
| -
|
| -static int fulltextRollback(sqlite3_vtab *pVtab){
|
| - FTSTRACE(("FTS3 xRollback()\n"));
|
| - return clearPendingTerms((fulltext_vtab *)pVtab);
|
| -}
|
| -
|
| -/*
|
| -** Implementation of the snippet() function for FTS3
|
| -*/
|
| -static void snippetFunc(
|
| - sqlite3_context *pContext,
|
| - int argc,
|
| - sqlite3_value **argv
|
| -){
|
| - fulltext_cursor *pCursor;
|
| - if( argc<1 ) return;
|
| - if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
|
| - sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
|
| - sqlite3_result_error(pContext, "illegal first argument to html_snippet",-1);
|
| - }else{
|
| - const char *zStart = "<b>";
|
| - const char *zEnd = "</b>";
|
| - const char *zEllipsis = "<b>...</b>";
|
| - memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
|
| - if( argc>=2 ){
|
| - zStart = (const char*)sqlite3_value_text(argv[1]);
|
| - if( argc>=3 ){
|
| - zEnd = (const char*)sqlite3_value_text(argv[2]);
|
| - if( argc>=4 ){
|
| - zEllipsis = (const char*)sqlite3_value_text(argv[3]);
|
| - }
|
| - }
|
| - }
|
| - snippetAllOffsets(pCursor);
|
| - snippetText(pCursor, zStart, zEnd, zEllipsis);
|
| - sqlite3_result_text(pContext, pCursor->snippet.zSnippet,
|
| - pCursor->snippet.nSnippet, SQLITE_STATIC);
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Implementation of the offsets() function for FTS3
|
| -*/
|
| -static void snippetOffsetsFunc(
|
| - sqlite3_context *pContext,
|
| - int argc,
|
| - sqlite3_value **argv
|
| -){
|
| - fulltext_cursor *pCursor;
|
| - if( argc<1 ) return;
|
| - if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
|
| - sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
|
| - sqlite3_result_error(pContext, "illegal first argument to offsets",-1);
|
| - }else{
|
| - memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
|
| - snippetAllOffsets(pCursor);
|
| - snippetOffsetText(&pCursor->snippet);
|
| - sqlite3_result_text(pContext,
|
| - pCursor->snippet.zOffset, pCursor->snippet.nOffset,
|
| - SQLITE_STATIC);
|
| - }
|
| -}
|
| -
|
| -/* OptLeavesReader is nearly identical to LeavesReader, except that
|
| -** where LeavesReader is geared towards the merging of complete
|
| -** segment levels (with exactly MERGE_COUNT segments), OptLeavesReader
|
| -** is geared towards implementation of the optimize() function, and
|
| -** can merge all segments simultaneously. This version may be
|
| -** somewhat less efficient than LeavesReader because it merges into an
|
| -** accumulator rather than doing an N-way merge, but since segment
|
| -** size grows exponentially (so segment count logrithmically) this is
|
| -** probably not an immediate problem.
|
| -*/
|
| -/* TODO(shess): Prove that assertion, or extend the merge code to
|
| -** merge tree fashion (like the prefix-searching code does).
|
| -*/
|
| -/* TODO(shess): OptLeavesReader and LeavesReader could probably be
|
| -** merged with little or no loss of performance for LeavesReader. The
|
| -** merged code would need to handle >MERGE_COUNT segments, and would
|
| -** also need to be able to optionally optimize away deletes.
|
| -*/
|
| -typedef struct OptLeavesReader {
|
| - /* Segment number, to order readers by age. */
|
| - int segment;
|
| - LeavesReader reader;
|
| -} OptLeavesReader;
|
| -
|
| -static int optLeavesReaderAtEnd(OptLeavesReader *pReader){
|
| - return leavesReaderAtEnd(&pReader->reader);
|
| -}
|
| -static int optLeavesReaderTermBytes(OptLeavesReader *pReader){
|
| - return leavesReaderTermBytes(&pReader->reader);
|
| -}
|
| -static const char *optLeavesReaderData(OptLeavesReader *pReader){
|
| - return leavesReaderData(&pReader->reader);
|
| -}
|
| -static int optLeavesReaderDataBytes(OptLeavesReader *pReader){
|
| - return leavesReaderDataBytes(&pReader->reader);
|
| -}
|
| -static const char *optLeavesReaderTerm(OptLeavesReader *pReader){
|
| - return leavesReaderTerm(&pReader->reader);
|
| -}
|
| -static int optLeavesReaderStep(fulltext_vtab *v, OptLeavesReader *pReader){
|
| - return leavesReaderStep(v, &pReader->reader);
|
| -}
|
| -static int optLeavesReaderTermCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){
|
| - return leavesReaderTermCmp(&lr1->reader, &lr2->reader);
|
| -}
|
| -/* Order by term ascending, segment ascending (oldest to newest), with
|
| -** exhausted readers to the end.
|
| -*/
|
| -static int optLeavesReaderCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){
|
| - int c = optLeavesReaderTermCmp(lr1, lr2);
|
| - if( c!=0 ) return c;
|
| - return lr1->segment-lr2->segment;
|
| -}
|
| -/* Bubble pLr[0] to appropriate place in pLr[1..nLr-1]. Assumes that
|
| -** pLr[1..nLr-1] is already sorted.
|
| -*/
|
| -static void optLeavesReaderReorder(OptLeavesReader *pLr, int nLr){
|
| - while( nLr>1 && optLeavesReaderCmp(pLr, pLr+1)>0 ){
|
| - OptLeavesReader tmp = pLr[0];
|
| - pLr[0] = pLr[1];
|
| - pLr[1] = tmp;
|
| - nLr--;
|
| - pLr++;
|
| - }
|
| -}
|
| -
|
| -/* optimize() helper function. Put the readers in order and iterate
|
| -** through them, merging doclists for matching terms into pWriter.
|
| -** Returns SQLITE_OK on success, or the SQLite error code which
|
| -** prevented success.
|
| -*/
|
| -static int optimizeInternal(fulltext_vtab *v,
|
| - OptLeavesReader *readers, int nReaders,
|
| - LeafWriter *pWriter){
|
| - int i, rc = SQLITE_OK;
|
| - DataBuffer doclist, merged, tmp;
|
| - const char *pData;
|
| -
|
| - /* Order the readers. */
|
| - i = nReaders;
|
| - while( i-- > 0 ){
|
| - optLeavesReaderReorder(&readers[i], nReaders-i);
|
| - }
|
| -
|
| - dataBufferInit(&doclist, LEAF_MAX);
|
| - dataBufferInit(&merged, LEAF_MAX);
|
| -
|
| - /* Exhausted readers bubble to the end, so when the first reader is
|
| - ** at eof, all are at eof.
|
| - */
|
| - while( !optLeavesReaderAtEnd(&readers[0]) ){
|
| -
|
| - /* Figure out how many readers share the next term. */
|
| - for(i=1; i<nReaders && !optLeavesReaderAtEnd(&readers[i]); i++){
|
| - if( 0!=optLeavesReaderTermCmp(&readers[0], &readers[i]) ) break;
|
| - }
|
| -
|
| - pData = optLeavesReaderData(&readers[0]);
|
| - if( pData==NULL ){
|
| - rc = SQLITE_CORRUPT_BKPT;
|
| - break;
|
| - }
|
| -
|
| - /* Special-case for no merge. */
|
| - if( i==1 ){
|
| - /* Trim deletions from the doclist. */
|
| - dataBufferReset(&merged);
|
| - rc = docListTrim(DL_DEFAULT, pData,
|
| - optLeavesReaderDataBytes(&readers[0]),
|
| - -1, DL_DEFAULT, &merged);
|
| - if( rc!=SQLITE_OK ) break;
|
| - }else{
|
| - DLReader dlReaders[MERGE_COUNT];
|
| - int iReader, nReaders;
|
| -
|
| - /* Prime the pipeline with the first reader's doclist. After
|
| - ** one pass index 0 will reference the accumulated doclist.
|
| - */
|
| - rc = dlrInit(&dlReaders[0], DL_DEFAULT,
|
| - pData,
|
| - optLeavesReaderDataBytes(&readers[0]));
|
| - if( rc!=SQLITE_OK ) break;
|
| - iReader = 1;
|
| -
|
| - assert( iReader<i ); /* Must execute the loop at least once. */
|
| - while( iReader<i ){
|
| - /* Merge 16 inputs per pass. */
|
| - for( nReaders=1; iReader<i && nReaders<MERGE_COUNT;
|
| - iReader++, nReaders++ ){
|
| - pData = optLeavesReaderData(&readers[iReader]);
|
| - if( pData==NULL ){
|
| - rc = SQLITE_CORRUPT_BKPT;
|
| - break;
|
| - }
|
| - rc = dlrInit(&dlReaders[nReaders], DL_DEFAULT, pData,
|
| - optLeavesReaderDataBytes(&readers[iReader]));
|
| - if( rc!=SQLITE_OK ) break;
|
| - }
|
| -
|
| - /* Merge doclists and swap result into accumulator. */
|
| - if( rc==SQLITE_OK ){
|
| - dataBufferReset(&merged);
|
| - rc = docListMerge(&merged, dlReaders, nReaders);
|
| - tmp = merged;
|
| - merged = doclist;
|
| - doclist = tmp;
|
| - }
|
| -
|
| - while( nReaders-- > 0 ){
|
| - dlrDestroy(&dlReaders[nReaders]);
|
| - }
|
| -
|
| - if( rc!=SQLITE_OK ) goto err;
|
| -
|
| - /* Accumulated doclist to reader 0 for next pass. */
|
| - rc = dlrInit(&dlReaders[0], DL_DEFAULT, doclist.pData, doclist.nData);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| - }
|
| -
|
| - /* Destroy reader that was left in the pipeline. */
|
| - dlrDestroy(&dlReaders[0]);
|
| -
|
| - /* Trim deletions from the doclist. */
|
| - dataBufferReset(&merged);
|
| - rc = docListTrim(DL_DEFAULT, doclist.pData, doclist.nData,
|
| - -1, DL_DEFAULT, &merged);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| - }
|
| -
|
| - /* Only pass doclists with hits (skip if all hits deleted). */
|
| - if( merged.nData>0 ){
|
| - rc = leafWriterStep(v, pWriter,
|
| - optLeavesReaderTerm(&readers[0]),
|
| - optLeavesReaderTermBytes(&readers[0]),
|
| - merged.pData, merged.nData);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| - }
|
| -
|
| - /* Step merged readers to next term and reorder. */
|
| - while( i-- > 0 ){
|
| - rc = optLeavesReaderStep(v, &readers[i]);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| -
|
| - optLeavesReaderReorder(&readers[i], nReaders-i);
|
| - }
|
| - }
|
| -
|
| - err:
|
| - dataBufferDestroy(&doclist);
|
| - dataBufferDestroy(&merged);
|
| - return rc;
|
| -}
|
| -
|
| -/* Implement optimize() function for FTS3. optimize(t) merges all
|
| -** segments in the fts index into a single segment. 't' is the magic
|
| -** table-named column.
|
| -*/
|
| -static void optimizeFunc(sqlite3_context *pContext,
|
| - int argc, sqlite3_value **argv){
|
| - fulltext_cursor *pCursor;
|
| - if( argc>1 ){
|
| - sqlite3_result_error(pContext, "excess arguments to optimize()",-1);
|
| - }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
|
| - sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
|
| - sqlite3_result_error(pContext, "illegal first argument to optimize",-1);
|
| - }else{
|
| - fulltext_vtab *v;
|
| - int i, rc, iMaxLevel;
|
| - OptLeavesReader *readers;
|
| - int nReaders;
|
| - LeafWriter writer;
|
| - sqlite3_stmt *s;
|
| -
|
| - memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
|
| - v = cursor_vtab(pCursor);
|
| -
|
| - /* Flush any buffered updates before optimizing. */
|
| - rc = flushPendingTerms(v);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| -
|
| - rc = segdir_count(v, &nReaders, &iMaxLevel);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| - if( nReaders==0 || nReaders==1 ){
|
| - sqlite3_result_text(pContext, "Index already optimal", -1,
|
| - SQLITE_STATIC);
|
| - return;
|
| - }
|
| -
|
| - rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
|
| - if( rc!=SQLITE_OK ) goto err;
|
| -
|
| - readers = sqlite3_malloc(nReaders*sizeof(readers[0]));
|
| - if( readers==NULL ) goto err;
|
| -
|
| - /* Note that there will already be a segment at this position
|
| - ** until we call segdir_delete() on iMaxLevel.
|
| - */
|
| - leafWriterInit(iMaxLevel, 0, &writer);
|
| -
|
| - i = 0;
|
| - while( (rc = sqlite3_step(s))==SQLITE_ROW ){
|
| - sqlite_int64 iStart = sqlite3_column_int64(s, 0);
|
| - sqlite_int64 iEnd = sqlite3_column_int64(s, 1);
|
| - const char *pRootData = sqlite3_column_blob(s, 2);
|
| - int nRootData = sqlite3_column_bytes(s, 2);
|
| -
|
| - /* Corrupt if we get back different types than we stored. */
|
| - if( sqlite3_column_type(s, 0)!=SQLITE_INTEGER ||
|
| - sqlite3_column_type(s, 1)!=SQLITE_INTEGER ||
|
| - sqlite3_column_type(s, 2)!=SQLITE_BLOB ){
|
| - rc = SQLITE_CORRUPT_BKPT;
|
| - break;
|
| - }
|
| -
|
| - assert( i<nReaders );
|
| - rc = leavesReaderInit(v, -1, iStart, iEnd, pRootData, nRootData,
|
| - &readers[i].reader);
|
| - if( rc!=SQLITE_OK ) break;
|
| -
|
| - readers[i].segment = i;
|
| - i++;
|
| - }
|
| -
|
| - /* If we managed to successfully read them all, optimize them. */
|
| - if( rc==SQLITE_DONE ){
|
| - assert( i==nReaders );
|
| - rc = optimizeInternal(v, readers, nReaders, &writer);
|
| - }else{
|
| - sqlite3_reset(s); /* So we don't leave a lock. */
|
| - }
|
| -
|
| - while( i-- > 0 ){
|
| - leavesReaderDestroy(&readers[i].reader);
|
| - }
|
| - sqlite3_free(readers);
|
| -
|
| - /* If we've successfully gotten to here, delete the old segments
|
| - ** and flush the interior structure of the new segment.
|
| - */
|
| - if( rc==SQLITE_OK ){
|
| - for( i=0; i<=iMaxLevel; i++ ){
|
| - rc = segdir_delete(v, i);
|
| - if( rc!=SQLITE_OK ) break;
|
| - }
|
| -
|
| - if( rc==SQLITE_OK ) rc = leafWriterFinalize(v, &writer);
|
| - }
|
| -
|
| - leafWriterDestroy(&writer);
|
| -
|
| - if( rc!=SQLITE_OK ) goto err;
|
| -
|
| - sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC);
|
| - return;
|
| -
|
| - /* TODO(shess): Error-handling needs to be improved along the
|
| - ** lines of the dump_ functions.
|
| - */
|
| - err:
|
| - {
|
| - char buf[512];
|
| - sqlite3_snprintf(sizeof(buf), buf, "Error in optimize: %s",
|
| - sqlite3_errmsg(sqlite3_context_db_handle(pContext)));
|
| - sqlite3_result_error(pContext, buf, -1);
|
| - }
|
| - }
|
| -}
|
| -
|
| -#ifdef SQLITE_TEST
|
| -/* Generate an error of the form "<prefix>: <msg>". If msg is NULL,
|
| -** pull the error from the context's db handle.
|
| -*/
|
| -static void generateError(sqlite3_context *pContext,
|
| - const char *prefix, const char *msg){
|
| - char buf[512];
|
| - if( msg==NULL ) msg = sqlite3_errmsg(sqlite3_context_db_handle(pContext));
|
| - sqlite3_snprintf(sizeof(buf), buf, "%s: %s", prefix, msg);
|
| - sqlite3_result_error(pContext, buf, -1);
|
| -}
|
| -
|
| -/* Helper function to collect the set of terms in the segment into
|
| -** pTerms. The segment is defined by the leaf nodes between
|
| -** iStartBlockid and iEndBlockid, inclusive, or by the contents of
|
| -** pRootData if iStartBlockid is 0 (in which case the entire segment
|
| -** fit in a leaf).
|
| -*/
|
| -static int collectSegmentTerms(fulltext_vtab *v, sqlite3_stmt *s,
|
| - fts3Hash *pTerms){
|
| - const sqlite_int64 iStartBlockid = sqlite3_column_int64(s, 0);
|
| - const sqlite_int64 iEndBlockid = sqlite3_column_int64(s, 1);
|
| - const char *pRootData = sqlite3_column_blob(s, 2);
|
| - const int nRootData = sqlite3_column_bytes(s, 2);
|
| - int rc;
|
| - LeavesReader reader;
|
| -
|
| - /* Corrupt if we get back different types than we stored. */
|
| - if( sqlite3_column_type(s, 0)!=SQLITE_INTEGER ||
|
| - sqlite3_column_type(s, 1)!=SQLITE_INTEGER ||
|
| - sqlite3_column_type(s, 2)!=SQLITE_BLOB ){
|
| - return SQLITE_CORRUPT_BKPT;
|
| - }
|
| -
|
| - rc = leavesReaderInit(v, 0, iStartBlockid, iEndBlockid,
|
| - pRootData, nRootData, &reader);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - while( rc==SQLITE_OK && !leavesReaderAtEnd(&reader) ){
|
| - const char *pTerm = leavesReaderTerm(&reader);
|
| - const int nTerm = leavesReaderTermBytes(&reader);
|
| - void *oldValue = sqlite3Fts3HashFind(pTerms, pTerm, nTerm);
|
| - void *newValue = (void *)((char *)oldValue+1);
|
| -
|
| - /* From the comment before sqlite3Fts3HashInsert in fts3_hash.c,
|
| - ** the data value passed is returned in case of malloc failure.
|
| - */
|
| - if( newValue==sqlite3Fts3HashInsert(pTerms, pTerm, nTerm, newValue) ){
|
| - rc = SQLITE_NOMEM;
|
| - }else{
|
| - rc = leavesReaderStep(v, &reader);
|
| - }
|
| - }
|
| -
|
| - leavesReaderDestroy(&reader);
|
| - return rc;
|
| -}
|
| -
|
| -/* Helper function to build the result string for dump_terms(). */
|
| -static int generateTermsResult(sqlite3_context *pContext, fts3Hash *pTerms){
|
| - int iTerm, nTerms, nResultBytes, iByte;
|
| - char *result;
|
| - TermData *pData;
|
| - fts3HashElem *e;
|
| -
|
| - /* Iterate pTerms to generate an array of terms in pData for
|
| - ** sorting.
|
| - */
|
| - nTerms = fts3HashCount(pTerms);
|
| - assert( nTerms>0 );
|
| - pData = sqlite3_malloc(nTerms*sizeof(TermData));
|
| - if( pData==NULL ) return SQLITE_NOMEM;
|
| -
|
| - nResultBytes = 0;
|
| - for(iTerm = 0, e = fts3HashFirst(pTerms); e; iTerm++, e = fts3HashNext(e)){
|
| - nResultBytes += fts3HashKeysize(e)+1; /* Term plus trailing space */
|
| - assert( iTerm<nTerms );
|
| - pData[iTerm].pTerm = fts3HashKey(e);
|
| - pData[iTerm].nTerm = fts3HashKeysize(e);
|
| - pData[iTerm].pCollector = fts3HashData(e); /* unused */
|
| - }
|
| - assert( iTerm==nTerms );
|
| -
|
| - assert( nResultBytes>0 ); /* nTerms>0, nResultsBytes must be, too. */
|
| - result = sqlite3_malloc(nResultBytes);
|
| - if( result==NULL ){
|
| - sqlite3_free(pData);
|
| - return SQLITE_NOMEM;
|
| - }
|
| -
|
| - if( nTerms>1 ) qsort(pData, nTerms, sizeof(*pData), termDataCmp);
|
| -
|
| - /* Read the terms in order to build the result. */
|
| - iByte = 0;
|
| - for(iTerm=0; iTerm<nTerms; ++iTerm){
|
| - memcpy(result+iByte, pData[iTerm].pTerm, pData[iTerm].nTerm);
|
| - iByte += pData[iTerm].nTerm;
|
| - result[iByte++] = ' ';
|
| - }
|
| - assert( iByte==nResultBytes );
|
| - assert( result[nResultBytes-1]==' ' );
|
| - result[nResultBytes-1] = '\0';
|
| -
|
| - /* Passes away ownership of result. */
|
| - sqlite3_result_text(pContext, result, nResultBytes-1, sqlite3_free);
|
| - sqlite3_free(pData);
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/* Implements dump_terms() for use in inspecting the fts3 index from
|
| -** tests. TEXT result containing the ordered list of terms joined by
|
| -** spaces. dump_terms(t, level, idx) dumps the terms for the segment
|
| -** specified by level, idx (in %_segdir), while dump_terms(t) dumps
|
| -** all terms in the index. In both cases t is the fts table's magic
|
| -** table-named column.
|
| -*/
|
| -static void dumpTermsFunc(
|
| - sqlite3_context *pContext,
|
| - int argc, sqlite3_value **argv
|
| -){
|
| - fulltext_cursor *pCursor;
|
| - if( argc!=3 && argc!=1 ){
|
| - generateError(pContext, "dump_terms", "incorrect arguments");
|
| - }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
|
| - sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
|
| - generateError(pContext, "dump_terms", "illegal first argument");
|
| - }else{
|
| - fulltext_vtab *v;
|
| - fts3Hash terms;
|
| - sqlite3_stmt *s = NULL;
|
| - int rc;
|
| -
|
| - memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
|
| - v = cursor_vtab(pCursor);
|
| -
|
| - /* If passed only the cursor column, get all segments. Otherwise
|
| - ** get the segment described by the following two arguments.
|
| - */
|
| - if( argc==1 ){
|
| - rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
|
| - }else{
|
| - rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s);
|
| - if( rc==SQLITE_OK ){
|
| - rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[1]));
|
| - if( rc==SQLITE_OK ){
|
| - rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[2]));
|
| - }
|
| - }
|
| - }
|
| -
|
| - if( rc!=SQLITE_OK ){
|
| - generateError(pContext, "dump_terms", NULL);
|
| - return;
|
| - }
|
| -
|
| - /* Collect the terms for each segment. */
|
| - sqlite3Fts3HashInit(&terms, FTS3_HASH_STRING, 1);
|
| - while( (rc = sqlite3_step(s))==SQLITE_ROW ){
|
| - rc = collectSegmentTerms(v, s, &terms);
|
| - if( rc!=SQLITE_OK ) break;
|
| - }
|
| -
|
| - if( rc!=SQLITE_DONE ){
|
| - sqlite3_reset(s);
|
| - generateError(pContext, "dump_terms", NULL);
|
| - }else{
|
| - const int nTerms = fts3HashCount(&terms);
|
| - if( nTerms>0 ){
|
| - rc = generateTermsResult(pContext, &terms);
|
| - if( rc==SQLITE_NOMEM ){
|
| - generateError(pContext, "dump_terms", "out of memory");
|
| - }else{
|
| - assert( rc==SQLITE_OK );
|
| - }
|
| - }else if( argc==3 ){
|
| - /* The specific segment asked for could not be found. */
|
| - generateError(pContext, "dump_terms", "segment not found");
|
| - }else{
|
| - /* No segments found. */
|
| - /* TODO(shess): It should be impossible to reach this. This
|
| - ** case can only happen for an empty table, in which case
|
| - ** SQLite has no rows to call this function on.
|
| - */
|
| - sqlite3_result_null(pContext);
|
| - }
|
| - }
|
| - sqlite3Fts3HashClear(&terms);
|
| - }
|
| -}
|
| -
|
| -/* Expand the DL_DEFAULT doclist in pData into a text result in
|
| -** pContext.
|
| -*/
|
| -static void createDoclistResult(sqlite3_context *pContext,
|
| - const char *pData, int nData){
|
| - DataBuffer dump;
|
| - DLReader dlReader;
|
| - int rc;
|
| -
|
| - assert( pData!=NULL && nData>0 );
|
| -
|
| - rc = dlrInit(&dlReader, DL_DEFAULT, pData, nData);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - dataBufferInit(&dump, 0);
|
| - for( ; rc==SQLITE_OK && !dlrAtEnd(&dlReader); rc = dlrStep(&dlReader) ){
|
| - char buf[256];
|
| - PLReader plReader;
|
| -
|
| - rc = plrInit(&plReader, &dlReader);
|
| - if( rc!=SQLITE_OK ) break;
|
| - if( DL_DEFAULT==DL_DOCIDS || plrAtEnd(&plReader) ){
|
| - sqlite3_snprintf(sizeof(buf), buf, "[%lld] ", dlrDocid(&dlReader));
|
| - dataBufferAppend(&dump, buf, strlen(buf));
|
| - }else{
|
| - int iColumn = plrColumn(&plReader);
|
| -
|
| - sqlite3_snprintf(sizeof(buf), buf, "[%lld %d[",
|
| - dlrDocid(&dlReader), iColumn);
|
| - dataBufferAppend(&dump, buf, strlen(buf));
|
| -
|
| - for( ; !plrAtEnd(&plReader); rc = plrStep(&plReader) ){
|
| - if( rc!=SQLITE_OK ) break;
|
| - if( plrColumn(&plReader)!=iColumn ){
|
| - iColumn = plrColumn(&plReader);
|
| - sqlite3_snprintf(sizeof(buf), buf, "] %d[", iColumn);
|
| - assert( dump.nData>0 );
|
| - dump.nData--; /* Overwrite trailing space. */
|
| - assert( dump.pData[dump.nData]==' ');
|
| - dataBufferAppend(&dump, buf, strlen(buf));
|
| - }
|
| - if( DL_DEFAULT==DL_POSITIONS_OFFSETS ){
|
| - sqlite3_snprintf(sizeof(buf), buf, "%d,%d,%d ",
|
| - plrPosition(&plReader),
|
| - plrStartOffset(&plReader), plrEndOffset(&plReader));
|
| - }else if( DL_DEFAULT==DL_POSITIONS ){
|
| - sqlite3_snprintf(sizeof(buf), buf, "%d ", plrPosition(&plReader));
|
| - }else{
|
| - assert( NULL=="Unhandled DL_DEFAULT value");
|
| - }
|
| - dataBufferAppend(&dump, buf, strlen(buf));
|
| - }
|
| - plrDestroy(&plReader);
|
| - if( rc!= SQLITE_OK ) break;
|
| -
|
| - assert( dump.nData>0 );
|
| - dump.nData--; /* Overwrite trailing space. */
|
| - assert( dump.pData[dump.nData]==' ');
|
| - dataBufferAppend(&dump, "]] ", 3);
|
| - }
|
| - }
|
| - dlrDestroy(&dlReader);
|
| - if( rc!=SQLITE_OK ){
|
| - dataBufferDestroy(&dump);
|
| - return rc;
|
| - }
|
| -
|
| - assert( dump.nData>0 );
|
| - dump.nData--; /* Overwrite trailing space. */
|
| - assert( dump.pData[dump.nData]==' ');
|
| - dump.pData[dump.nData] = '\0';
|
| - assert( dump.nData>0 );
|
| -
|
| - /* Passes ownership of dump's buffer to pContext. */
|
| - sqlite3_result_text(pContext, dump.pData, dump.nData, sqlite3_free);
|
| - dump.pData = NULL;
|
| - dump.nData = dump.nCapacity = 0;
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/* Implements dump_doclist() for use in inspecting the fts3 index from
|
| -** tests. TEXT result containing a string representation of the
|
| -** doclist for the indicated term. dump_doclist(t, term, level, idx)
|
| -** dumps the doclist for term from the segment specified by level, idx
|
| -** (in %_segdir), while dump_doclist(t, term) dumps the logical
|
| -** doclist for the term across all segments. The per-segment doclist
|
| -** can contain deletions, while the full-index doclist will not
|
| -** (deletions are omitted).
|
| -**
|
| -** Result formats differ with the setting of DL_DEFAULTS. Examples:
|
| -**
|
| -** DL_DOCIDS: [1] [3] [7]
|
| -** DL_POSITIONS: [1 0[0 4] 1[17]] [3 1[5]]
|
| -** DL_POSITIONS_OFFSETS: [1 0[0,0,3 4,23,26] 1[17,102,105]] [3 1[5,20,23]]
|
| -**
|
| -** In each case the number after the outer '[' is the docid. In the
|
| -** latter two cases, the number before the inner '[' is the column
|
| -** associated with the values within. For DL_POSITIONS the numbers
|
| -** within are the positions, for DL_POSITIONS_OFFSETS they are the
|
| -** position, the start offset, and the end offset.
|
| -*/
|
| -static void dumpDoclistFunc(
|
| - sqlite3_context *pContext,
|
| - int argc, sqlite3_value **argv
|
| -){
|
| - fulltext_cursor *pCursor;
|
| - if( argc!=2 && argc!=4 ){
|
| - generateError(pContext, "dump_doclist", "incorrect arguments");
|
| - }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
|
| - sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
|
| - generateError(pContext, "dump_doclist", "illegal first argument");
|
| - }else if( sqlite3_value_text(argv[1])==NULL ||
|
| - sqlite3_value_text(argv[1])[0]=='\0' ){
|
| - generateError(pContext, "dump_doclist", "empty second argument");
|
| - }else{
|
| - const char *pTerm = (const char *)sqlite3_value_text(argv[1]);
|
| - const int nTerm = strlen(pTerm);
|
| - fulltext_vtab *v;
|
| - int rc;
|
| - DataBuffer doclist;
|
| -
|
| - memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
|
| - v = cursor_vtab(pCursor);
|
| -
|
| - dataBufferInit(&doclist, 0);
|
| -
|
| - /* termSelect() yields the same logical doclist that queries are
|
| - ** run against.
|
| - */
|
| - if( argc==2 ){
|
| - rc = termSelect(v, v->nColumn, pTerm, nTerm, 0, DL_DEFAULT, &doclist);
|
| - }else{
|
| - sqlite3_stmt *s = NULL;
|
| -
|
| - /* Get our specific segment's information. */
|
| - rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s);
|
| - if( rc==SQLITE_OK ){
|
| - rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[2]));
|
| - if( rc==SQLITE_OK ){
|
| - rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[3]));
|
| - }
|
| - }
|
| -
|
| - if( rc==SQLITE_OK ){
|
| - rc = sqlite3_step(s);
|
| -
|
| - if( rc==SQLITE_DONE ){
|
| - dataBufferDestroy(&doclist);
|
| - generateError(pContext, "dump_doclist", "segment not found");
|
| - return;
|
| - }
|
| -
|
| - /* Found a segment, load it into doclist. */
|
| - if( rc==SQLITE_ROW ){
|
| - const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1);
|
| - const char *pData = sqlite3_column_blob(s, 2);
|
| - const int nData = sqlite3_column_bytes(s, 2);
|
| -
|
| - /* loadSegment() is used by termSelect() to load each
|
| - ** segment's data.
|
| - */
|
| - rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, 0,
|
| - &doclist);
|
| - if( rc==SQLITE_OK ){
|
| - rc = sqlite3_step(s);
|
| -
|
| - /* Should not have more than one matching segment. */
|
| - if( rc!=SQLITE_DONE ){
|
| - sqlite3_reset(s);
|
| - dataBufferDestroy(&doclist);
|
| - generateError(pContext, "dump_doclist", "invalid segdir");
|
| - return;
|
| - }
|
| - rc = SQLITE_OK;
|
| - }
|
| - }
|
| - }
|
| -
|
| - sqlite3_reset(s);
|
| - }
|
| -
|
| - if( rc==SQLITE_OK ){
|
| - if( doclist.nData>0 ){
|
| - createDoclistResult(pContext, doclist.pData, doclist.nData);
|
| - }else{
|
| - /* TODO(shess): This can happen if the term is not present, or
|
| - ** if all instances of the term have been deleted and this is
|
| - ** an all-index dump. It may be interesting to distinguish
|
| - ** these cases.
|
| - */
|
| - sqlite3_result_text(pContext, "", 0, SQLITE_STATIC);
|
| - }
|
| - }else if( rc==SQLITE_NOMEM ){
|
| - /* Handle out-of-memory cases specially because if they are
|
| - ** generated in fts3 code they may not be reflected in the db
|
| - ** handle.
|
| - */
|
| - /* TODO(shess): Handle this more comprehensively.
|
| - ** sqlite3ErrStr() has what I need, but is internal.
|
| - */
|
| - generateError(pContext, "dump_doclist", "out of memory");
|
| - }else{
|
| - generateError(pContext, "dump_doclist", NULL);
|
| - }
|
| -
|
| - dataBufferDestroy(&doclist);
|
| - }
|
| -}
|
| -#endif
|
| -
|
| -/*
|
| -** This routine implements the xFindFunction method for the FTS3
|
| -** virtual table.
|
| -*/
|
| -static int fulltextFindFunction(
|
| - sqlite3_vtab *pVtab,
|
| - int nArg,
|
| - const char *zName,
|
| - void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
|
| - void **ppArg
|
| -){
|
| - if( strcmp(zName,"snippet")==0 ){
|
| - *pxFunc = snippetFunc;
|
| - return 1;
|
| - }else if( strcmp(zName,"offsets")==0 ){
|
| - *pxFunc = snippetOffsetsFunc;
|
| - return 1;
|
| - }else if( strcmp(zName,"optimize")==0 ){
|
| - *pxFunc = optimizeFunc;
|
| - return 1;
|
| -#ifdef SQLITE_TEST
|
| - /* NOTE(shess): These functions are present only for testing
|
| - ** purposes. No particular effort is made to optimize their
|
| - ** execution or how they build their results.
|
| - */
|
| - }else if( strcmp(zName,"dump_terms")==0 ){
|
| - /* fprintf(stderr, "Found dump_terms\n"); */
|
| - *pxFunc = dumpTermsFunc;
|
| - return 1;
|
| - }else if( strcmp(zName,"dump_doclist")==0 ){
|
| - /* fprintf(stderr, "Found dump_doclist\n"); */
|
| - *pxFunc = dumpDoclistFunc;
|
| - return 1;
|
| -#endif
|
| - }
|
| - return 0;
|
| -}
|
| -
|
| -/*
|
| -** Rename an fts3 table.
|
| -*/
|
| -static int fulltextRename(
|
| - sqlite3_vtab *pVtab,
|
| - const char *zName
|
| -){
|
| - fulltext_vtab *p = (fulltext_vtab *)pVtab;
|
| - int rc = SQLITE_NOMEM;
|
| - char *zSql = sqlite3_mprintf(
|
| - "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';"
|
| - "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';"
|
| - "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';"
|
| - , p->zDb, p->zName, zName
|
| - , p->zDb, p->zName, zName
|
| - , p->zDb, p->zName, zName
|
| - );
|
| - if( zSql ){
|
| - rc = sqlite3_exec(p->db, zSql, 0, 0, 0);
|
| - sqlite3_free(zSql);
|
| - }
|
| - return rc;
|
| -}
|
| -
|
| -static const sqlite3_module fts3Module = {
|
| - /* iVersion */ 0,
|
| - /* xCreate */ fulltextCreate,
|
| - /* xConnect */ fulltextConnect,
|
| - /* xBestIndex */ fulltextBestIndex,
|
| - /* xDisconnect */ fulltextDisconnect,
|
| - /* xDestroy */ fulltextDestroy,
|
| - /* xOpen */ fulltextOpen,
|
| - /* xClose */ fulltextClose,
|
| - /* xFilter */ fulltextFilter,
|
| - /* xNext */ fulltextNext,
|
| - /* xEof */ fulltextEof,
|
| - /* xColumn */ fulltextColumn,
|
| - /* xRowid */ fulltextRowid,
|
| - /* xUpdate */ fulltextUpdate,
|
| - /* xBegin */ fulltextBegin,
|
| - /* xSync */ fulltextSync,
|
| - /* xCommit */ fulltextCommit,
|
| - /* xRollback */ fulltextRollback,
|
| - /* xFindFunction */ fulltextFindFunction,
|
| - /* xRename */ fulltextRename,
|
| -};
|
| -
|
| -static void hashDestroy(void *p){
|
| - fts3Hash *pHash = (fts3Hash *)p;
|
| - sqlite3Fts3HashClear(pHash);
|
| - sqlite3_free(pHash);
|
| -}
|
| -
|
| -/*
|
| -** The fts3 built-in tokenizers - "simple" and "porter" - are implemented
|
| -** in files fts3_tokenizer1.c and fts3_porter.c respectively. The following
|
| -** two forward declarations are for functions declared in these files
|
| -** used to retrieve the respective implementations.
|
| -**
|
| -** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
|
| -** to by the argument to point a the "simple" tokenizer implementation.
|
| -** Function ...PorterTokenizerModule() sets *pModule to point to the
|
| -** porter tokenizer/stemmer implementation.
|
| -*/
|
| -void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
|
| -void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);
|
| -void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);
|
| -
|
| -int sqlite3Fts3InitHashTable(sqlite3 *, fts3Hash *, const char *);
|
| -
|
| -/*
|
| -** Initialise the fts3 extension. If this extension is built as part
|
| -** of the sqlite library, then this function is called directly by
|
| -** SQLite. If fts3 is built as a dynamically loadable extension, this
|
| -** function is called by the sqlite3_extension_init() entry point.
|
| -*/
|
| -int sqlite3Fts3Init(sqlite3 *db){
|
| - int rc = SQLITE_OK;
|
| - fts3Hash *pHash = 0;
|
| - const sqlite3_tokenizer_module *pSimple = 0;
|
| - const sqlite3_tokenizer_module *pPorter = 0;
|
| - const sqlite3_tokenizer_module *pIcu = 0;
|
| -
|
| - sqlite3Fts3SimpleTokenizerModule(&pSimple);
|
| - sqlite3Fts3PorterTokenizerModule(&pPorter);
|
| -#ifdef SQLITE_ENABLE_ICU
|
| - sqlite3Fts3IcuTokenizerModule(&pIcu);
|
| -#endif
|
| -
|
| - /* Allocate and initialise the hash-table used to store tokenizers. */
|
| - pHash = sqlite3_malloc(sizeof(fts3Hash));
|
| - if( !pHash ){
|
| - rc = SQLITE_NOMEM;
|
| - }else{
|
| - sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
|
| - }
|
| -
|
| - /* Load the built-in tokenizers into the hash table */
|
| - if( rc==SQLITE_OK ){
|
| - if( sqlite3Fts3HashInsert(pHash, "simple", 7, (void *)pSimple)
|
| - || sqlite3Fts3HashInsert(pHash, "porter", 7, (void *)pPorter)
|
| - || (pIcu && sqlite3Fts3HashInsert(pHash, "icu", 4, (void *)pIcu))
|
| - ){
|
| - rc = SQLITE_NOMEM;
|
| - }
|
| - }
|
| -
|
| -#ifdef SQLITE_TEST
|
| - sqlite3Fts3ExprInitTestInterface(db);
|
| -#endif
|
| -
|
| - /* Create the virtual table wrapper around the hash-table and overload
|
| - ** the two scalar functions. If this is successful, register the
|
| - ** module with sqlite.
|
| - */
|
| - if( SQLITE_OK==rc
|
| -#if CHROMIUM_FTS3_CHANGES && !SQLITE_TEST
|
| - /* fts3_tokenizer() disabled for security reasons. */
|
| -#else
|
| - && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer"))
|
| -#endif
|
| - && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
|
| - && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", -1))
|
| - && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", -1))
|
| -#ifdef SQLITE_TEST
|
| - && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_terms", -1))
|
| - && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_doclist", -1))
|
| -#endif
|
| - ){
|
| - return sqlite3_create_module_v2(
|
| - db, "fts3", &fts3Module, (void *)pHash, hashDestroy
|
| - );
|
| - }
|
| -
|
| - /* An error has occurred. Delete the hash table and return the error code. */
|
| - assert( rc!=SQLITE_OK );
|
| - if( pHash ){
|
| - sqlite3Fts3HashClear(pHash);
|
| - sqlite3_free(pHash);
|
| - }
|
| - return rc;
|
| -}
|
| -
|
| -#if !SQLITE_CORE
|
| -int sqlite3_extension_init(
|
| - sqlite3 *db,
|
| - char **pzErrMsg,
|
| - const sqlite3_api_routines *pApi
|
| -){
|
| - SQLITE_EXTENSION_INIT2(pApi)
|
| - return sqlite3Fts3Init(db);
|
| -}
|
| -#endif
|
| -
|
| -#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
|
|
|