Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(217)

Unified Diff: third_party/sqlite/src/vdbeaux.c

Issue 3108030: Move bundled copy of sqlite one level deeper to better separate it... (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src/
Patch Set: Created 10 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « third_party/sqlite/src/vdbeapi.c ('k') | third_party/sqlite/src/vdbeblob.c » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: third_party/sqlite/src/vdbeaux.c
===================================================================
--- third_party/sqlite/src/vdbeaux.c (revision 56608)
+++ third_party/sqlite/src/vdbeaux.c (working copy)
@@ -1,2980 +0,0 @@
-/*
-** 2003 September 6
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains code used for creating, destroying, and populating
-** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior
-** to version 2.8.7, all this code was combined into the vdbe.c source file.
-** But that file was getting too big so this subroutines were split out.
-**
-** $Id: vdbeaux.c,v 1.480 2009/08/08 18:01:08 drh Exp $
-*/
-#include "sqliteInt.h"
-#include "vdbeInt.h"
-
-
-
-/*
-** When debugging the code generator in a symbolic debugger, one can
-** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed
-** as they are added to the instruction stream.
-*/
-#ifdef SQLITE_DEBUG
-int sqlite3VdbeAddopTrace = 0;
-#endif
-
-
-/*
-** Create a new virtual database engine.
-*/
-Vdbe *sqlite3VdbeCreate(sqlite3 *db){
- Vdbe *p;
- p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
- if( p==0 ) return 0;
- p->db = db;
- if( db->pVdbe ){
- db->pVdbe->pPrev = p;
- }
- p->pNext = db->pVdbe;
- p->pPrev = 0;
- db->pVdbe = p;
- p->magic = VDBE_MAGIC_INIT;
- return p;
-}
-
-/*
-** Remember the SQL string for a prepared statement.
-*/
-void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
- if( p==0 ) return;
-#ifdef SQLITE_OMIT_TRACE
- if( !isPrepareV2 ) return;
-#endif
- assert( p->zSql==0 );
- p->zSql = sqlite3DbStrNDup(p->db, z, n);
- p->isPrepareV2 = isPrepareV2 ? 1 : 0;
-}
-
-/*
-** Return the SQL associated with a prepared statement
-*/
-const char *sqlite3_sql(sqlite3_stmt *pStmt){
- Vdbe *p = (Vdbe *)pStmt;
- return (p->isPrepareV2 ? p->zSql : 0);
-}
-
-/*
-** Swap all content between two VDBE structures.
-*/
-void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
- Vdbe tmp, *pTmp;
- char *zTmp;
- tmp = *pA;
- *pA = *pB;
- *pB = tmp;
- pTmp = pA->pNext;
- pA->pNext = pB->pNext;
- pB->pNext = pTmp;
- pTmp = pA->pPrev;
- pA->pPrev = pB->pPrev;
- pB->pPrev = pTmp;
- zTmp = pA->zSql;
- pA->zSql = pB->zSql;
- pB->zSql = zTmp;
- pB->isPrepareV2 = pA->isPrepareV2;
-}
-
-#ifdef SQLITE_DEBUG
-/*
-** Turn tracing on or off
-*/
-void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
- p->trace = trace;
-}
-#endif
-
-/*
-** Resize the Vdbe.aOp array so that it is at least one op larger than
-** it was.
-**
-** If an out-of-memory error occurs while resizing the array, return
-** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
-** unchanged (this is so that any opcodes already allocated can be
-** correctly deallocated along with the rest of the Vdbe).
-*/
-static int growOpArray(Vdbe *p){
- VdbeOp *pNew;
- int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
- pNew = sqlite3DbRealloc(p->db, p->aOp, nNew*sizeof(Op));
- if( pNew ){
- p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op);
- p->aOp = pNew;
- }
- return (pNew ? SQLITE_OK : SQLITE_NOMEM);
-}
-
-/*
-** Add a new instruction to the list of instructions current in the
-** VDBE. Return the address of the new instruction.
-**
-** Parameters:
-**
-** p Pointer to the VDBE
-**
-** op The opcode for this instruction
-**
-** p1, p2, p3 Operands
-**
-** Use the sqlite3VdbeResolveLabel() function to fix an address and
-** the sqlite3VdbeChangeP4() function to change the value of the P4
-** operand.
-*/
-int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
- int i;
- VdbeOp *pOp;
-
- i = p->nOp;
- assert( p->magic==VDBE_MAGIC_INIT );
- assert( op>0 && op<0xff );
- if( p->nOpAlloc<=i ){
- if( growOpArray(p) ){
- return 1;
- }
- }
- p->nOp++;
- pOp = &p->aOp[i];
- pOp->opcode = (u8)op;
- pOp->p5 = 0;
- pOp->p1 = p1;
- pOp->p2 = p2;
- pOp->p3 = p3;
- pOp->p4.p = 0;
- pOp->p4type = P4_NOTUSED;
- p->expired = 0;
-#ifdef SQLITE_DEBUG
- pOp->zComment = 0;
- if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
-#endif
-#ifdef VDBE_PROFILE
- pOp->cycles = 0;
- pOp->cnt = 0;
-#endif
- return i;
-}
-int sqlite3VdbeAddOp0(Vdbe *p, int op){
- return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
-}
-int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
- return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
-}
-int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
- return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
-}
-
-
-/*
-** Add an opcode that includes the p4 value as a pointer.
-*/
-int sqlite3VdbeAddOp4(
- Vdbe *p, /* Add the opcode to this VM */
- int op, /* The new opcode */
- int p1, /* The P1 operand */
- int p2, /* The P2 operand */
- int p3, /* The P3 operand */
- const char *zP4, /* The P4 operand */
- int p4type /* P4 operand type */
-){
- int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
- sqlite3VdbeChangeP4(p, addr, zP4, p4type);
- return addr;
-}
-
-/*
-** Create a new symbolic label for an instruction that has yet to be
-** coded. The symbolic label is really just a negative number. The
-** label can be used as the P2 value of an operation. Later, when
-** the label is resolved to a specific address, the VDBE will scan
-** through its operation list and change all values of P2 which match
-** the label into the resolved address.
-**
-** The VDBE knows that a P2 value is a label because labels are
-** always negative and P2 values are suppose to be non-negative.
-** Hence, a negative P2 value is a label that has yet to be resolved.
-**
-** Zero is returned if a malloc() fails.
-*/
-int sqlite3VdbeMakeLabel(Vdbe *p){
- int i;
- i = p->nLabel++;
- assert( p->magic==VDBE_MAGIC_INIT );
- if( i>=p->nLabelAlloc ){
- int n = p->nLabelAlloc*2 + 5;
- p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
- n*sizeof(p->aLabel[0]));
- p->nLabelAlloc = sqlite3DbMallocSize(p->db, p->aLabel)/sizeof(p->aLabel[0]);
- }
- if( p->aLabel ){
- p->aLabel[i] = -1;
- }
- return -1-i;
-}
-
-/*
-** Resolve label "x" to be the address of the next instruction to
-** be inserted. The parameter "x" must have been obtained from
-** a prior call to sqlite3VdbeMakeLabel().
-*/
-void sqlite3VdbeResolveLabel(Vdbe *p, int x){
- int j = -1-x;
- assert( p->magic==VDBE_MAGIC_INIT );
- assert( j>=0 && j<p->nLabel );
- if( p->aLabel ){
- p->aLabel[j] = p->nOp;
- }
-}
-
-#ifdef SQLITE_DEBUG
-
-/*
-** The following type and function are used to iterate through all opcodes
-** in a Vdbe main program and each of the sub-programs (triggers) it may
-** invoke directly or indirectly. It should be used as follows:
-**
-** Op *pOp;
-** VdbeOpIter sIter;
-**
-** memset(&sIter, 0, sizeof(sIter));
-** sIter.v = v; // v is of type Vdbe*
-** while( (pOp = opIterNext(&sIter)) ){
-** // Do something with pOp
-** }
-** sqlite3DbFree(v->db, sIter.apSub);
-**
-*/
-typedef struct VdbeOpIter VdbeOpIter;
-struct VdbeOpIter {
- Vdbe *v; /* Vdbe to iterate through the opcodes of */
- SubProgram **apSub; /* Array of subprograms */
- int nSub; /* Number of entries in apSub */
- int iAddr; /* Address of next instruction to return */
- int iSub; /* 0 = main program, 1 = first sub-program etc. */
-};
-static Op *opIterNext(VdbeOpIter *p){
- Vdbe *v = p->v;
- Op *pRet = 0;
- Op *aOp;
- int nOp;
-
- if( p->iSub<=p->nSub ){
-
- if( p->iSub==0 ){
- aOp = v->aOp;
- nOp = v->nOp;
- }else{
- aOp = p->apSub[p->iSub-1]->aOp;
- nOp = p->apSub[p->iSub-1]->nOp;
- }
- assert( p->iAddr<nOp );
-
- pRet = &aOp[p->iAddr];
- p->iAddr++;
- if( p->iAddr==nOp ){
- p->iSub++;
- p->iAddr = 0;
- }
-
- if( pRet->p4type==P4_SUBPROGRAM ){
- int nByte = (p->nSub+1)*sizeof(SubProgram*);
- int j;
- for(j=0; j<p->nSub; j++){
- if( p->apSub[j]==pRet->p4.pProgram ) break;
- }
- if( j==p->nSub ){
- p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
- if( !p->apSub ){
- pRet = 0;
- }else{
- p->apSub[p->nSub++] = pRet->p4.pProgram;
- }
- }
- }
- }
-
- return pRet;
-}
-
-/*
-** Check if the program stored in the VM associated with pParse may
-** throw an ABORT exception (causing the statement, but not transaction
-** to be rolled back). This condition is true if the main program or any
-** sub-programs contains any of the following:
-**
-** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
-** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
-** * OP_Destroy
-** * OP_VUpdate
-** * OP_VRename
-**
-** Then check that the value of Parse.mayAbort is true if an
-** ABORT may be thrown, or false otherwise. Return true if it does
-** match, or false otherwise. This function is intended to be used as
-** part of an assert statement in the compiler. Similar to:
-**
-** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
-*/
-int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
- int hasAbort = 0;
- Op *pOp;
- VdbeOpIter sIter;
- memset(&sIter, 0, sizeof(sIter));
- sIter.v = v;
-
- while( (pOp = opIterNext(&sIter))!=0 ){
- int opcode = pOp->opcode;
- if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
- || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
- && (pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
- ){
- hasAbort = 1;
- break;
- }
- }
- sqlite3DbFree(v->db, sIter.apSub);
-
- /* Return true if hasAbort==mayAbort. Or if a malloc failure occured.
- ** If malloc failed, then the while() loop above may not have iterated
- ** through all opcodes and hasAbort may be set incorrectly. Return
- ** true for this case to prevent the assert() in the callers frame
- ** from failing. */
- return ( v->db->mallocFailed || hasAbort==mayAbort );
-}
-#endif
-
-/*
-** Loop through the program looking for P2 values that are negative
-** on jump instructions. Each such value is a label. Resolve the
-** label by setting the P2 value to its correct non-zero value.
-**
-** This routine is called once after all opcodes have been inserted.
-**
-** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument
-** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by
-** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
-*/
-static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
- int i;
- int nMaxArgs = *pMaxFuncArgs;
- Op *pOp;
- int *aLabel = p->aLabel;
- p->readOnly = 1;
- for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
- u8 opcode = pOp->opcode;
-
- if( opcode==OP_Function || opcode==OP_AggStep ){
- if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- }else if( opcode==OP_VUpdate ){
- if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
-#endif
- }else if( opcode==OP_Transaction && pOp->p2!=0 ){
- p->readOnly = 0;
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- }else if( opcode==OP_VFilter ){
- int n;
- assert( p->nOp - i >= 3 );
- assert( pOp[-1].opcode==OP_Integer );
- n = pOp[-1].p1;
- if( n>nMaxArgs ) nMaxArgs = n;
-#endif
- }
-
- if( sqlite3VdbeOpcodeHasProperty(opcode, OPFLG_JUMP) && pOp->p2<0 ){
- assert( -1-pOp->p2<p->nLabel );
- pOp->p2 = aLabel[-1-pOp->p2];
- }
- }
- sqlite3DbFree(p->db, p->aLabel);
- p->aLabel = 0;
-
- *pMaxFuncArgs = nMaxArgs;
-}
-
-/*
-** Return the address of the next instruction to be inserted.
-*/
-int sqlite3VdbeCurrentAddr(Vdbe *p){
- assert( p->magic==VDBE_MAGIC_INIT );
- return p->nOp;
-}
-
-/*
-** This function returns a pointer to the array of opcodes associated with
-** the Vdbe passed as the first argument. It is the callers responsibility
-** to arrange for the returned array to be eventually freed using the
-** vdbeFreeOpArray() function.
-**
-** Before returning, *pnOp is set to the number of entries in the returned
-** array. Also, *pnMaxArg is set to the larger of its current value and
-** the number of entries in the Vdbe.apArg[] array required to execute the
-** returned program.
-*/
-VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
- VdbeOp *aOp = p->aOp;
- assert( aOp && !p->db->mallocFailed );
-
- /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
- assert( p->aMutex.nMutex==0 );
-
- resolveP2Values(p, pnMaxArg);
- *pnOp = p->nOp;
- p->aOp = 0;
- return aOp;
-}
-
-/*
-** Add a whole list of operations to the operation stack. Return the
-** address of the first operation added.
-*/
-int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
- int addr;
- assert( p->magic==VDBE_MAGIC_INIT );
- if( p->nOp + nOp > p->nOpAlloc && growOpArray(p) ){
- return 0;
- }
- addr = p->nOp;
- if( ALWAYS(nOp>0) ){
- int i;
- VdbeOpList const *pIn = aOp;
- for(i=0; i<nOp; i++, pIn++){
- int p2 = pIn->p2;
- VdbeOp *pOut = &p->aOp[i+addr];
- pOut->opcode = pIn->opcode;
- pOut->p1 = pIn->p1;
- if( p2<0 && sqlite3VdbeOpcodeHasProperty(pOut->opcode, OPFLG_JUMP) ){
- pOut->p2 = addr + ADDR(p2);
- }else{
- pOut->p2 = p2;
- }
- pOut->p3 = pIn->p3;
- pOut->p4type = P4_NOTUSED;
- pOut->p4.p = 0;
- pOut->p5 = 0;
-#ifdef SQLITE_DEBUG
- pOut->zComment = 0;
- if( sqlite3VdbeAddopTrace ){
- sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
- }
-#endif
- }
- p->nOp += nOp;
- }
- return addr;
-}
-
-/*
-** Change the value of the P1 operand for a specific instruction.
-** This routine is useful when a large program is loaded from a
-** static array using sqlite3VdbeAddOpList but we want to make a
-** few minor changes to the program.
-*/
-void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
- assert( p!=0 );
- assert( addr>=0 );
- if( p->nOp>addr ){
- p->aOp[addr].p1 = val;
- }
-}
-
-/*
-** Change the value of the P2 operand for a specific instruction.
-** This routine is useful for setting a jump destination.
-*/
-void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
- assert( p!=0 );
- assert( addr>=0 );
- if( p->nOp>addr ){
- p->aOp[addr].p2 = val;
- }
-}
-
-/*
-** Change the value of the P3 operand for a specific instruction.
-*/
-void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
- assert( p!=0 );
- assert( addr>=0 );
- if( p->nOp>addr ){
- p->aOp[addr].p3 = val;
- }
-}
-
-/*
-** Change the value of the P5 operand for the most recently
-** added operation.
-*/
-void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
- assert( p!=0 );
- if( p->aOp ){
- assert( p->nOp>0 );
- p->aOp[p->nOp-1].p5 = val;
- }
-}
-
-/*
-** Change the P2 operand of instruction addr so that it points to
-** the address of the next instruction to be coded.
-*/
-void sqlite3VdbeJumpHere(Vdbe *p, int addr){
- sqlite3VdbeChangeP2(p, addr, p->nOp);
-}
-
-
-/*
-** If the input FuncDef structure is ephemeral, then free it. If
-** the FuncDef is not ephermal, then do nothing.
-*/
-static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
- if( ALWAYS(pDef) && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
- sqlite3DbFree(db, pDef);
- }
-}
-
-/*
-** Delete a P4 value if necessary.
-*/
-static void freeP4(sqlite3 *db, int p4type, void *p4){
- if( p4 ){
- switch( p4type ){
- case P4_REAL:
- case P4_INT64:
- case P4_MPRINTF:
- case P4_DYNAMIC:
- case P4_KEYINFO:
- case P4_INTARRAY:
- case P4_KEYINFO_HANDOFF: {
- sqlite3DbFree(db, p4);
- break;
- }
- case P4_VDBEFUNC: {
- VdbeFunc *pVdbeFunc = (VdbeFunc *)p4;
- freeEphemeralFunction(db, pVdbeFunc->pFunc);
- sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
- sqlite3DbFree(db, pVdbeFunc);
- break;
- }
- case P4_FUNCDEF: {
- freeEphemeralFunction(db, (FuncDef*)p4);
- break;
- }
- case P4_MEM: {
- sqlite3ValueFree((sqlite3_value*)p4);
- break;
- }
- case P4_VTAB : {
- sqlite3VtabUnlock((VTable *)p4);
- break;
- }
- case P4_SUBPROGRAM : {
- sqlite3VdbeProgramDelete(db, (SubProgram *)p4, 1);
- break;
- }
- }
- }
-}
-
-/*
-** Free the space allocated for aOp and any p4 values allocated for the
-** opcodes contained within. If aOp is not NULL it is assumed to contain
-** nOp entries.
-*/
-static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
- if( aOp ){
- Op *pOp;
- for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
- freeP4(db, pOp->p4type, pOp->p4.p);
-#ifdef SQLITE_DEBUG
- sqlite3DbFree(db, pOp->zComment);
-#endif
- }
- }
- sqlite3DbFree(db, aOp);
-}
-
-/*
-** Decrement the ref-count on the SubProgram structure passed as the
-** second argument. If the ref-count reaches zero, free the structure.
-**
-** The array of VDBE opcodes stored as SubProgram.aOp is freed if
-** either the ref-count reaches zero or parameter freeop is non-zero.
-**
-** Since the array of opcodes pointed to by SubProgram.aOp may directly
-** or indirectly contain a reference to the SubProgram structure itself.
-** By passing a non-zero freeop parameter, the caller may ensure that all
-** SubProgram structures and their aOp arrays are freed, even when there
-** are such circular references.
-*/
-void sqlite3VdbeProgramDelete(sqlite3 *db, SubProgram *p, int freeop){
- if( p ){
- assert( p->nRef>0 );
- if( freeop || p->nRef==1 ){
- Op *aOp = p->aOp;
- p->aOp = 0;
- vdbeFreeOpArray(db, aOp, p->nOp);
- p->nOp = 0;
- }
- p->nRef--;
- if( p->nRef==0 ){
- sqlite3DbFree(db, p);
- }
- }
-}
-
-
-/*
-** Change N opcodes starting at addr to No-ops.
-*/
-void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
- if( p->aOp ){
- VdbeOp *pOp = &p->aOp[addr];
- sqlite3 *db = p->db;
- while( N-- ){
- freeP4(db, pOp->p4type, pOp->p4.p);
- memset(pOp, 0, sizeof(pOp[0]));
- pOp->opcode = OP_Noop;
- pOp++;
- }
- }
-}
-
-/*
-** Change the value of the P4 operand for a specific instruction.
-** This routine is useful when a large program is loaded from a
-** static array using sqlite3VdbeAddOpList but we want to make a
-** few minor changes to the program.
-**
-** If n>=0 then the P4 operand is dynamic, meaning that a copy of
-** the string is made into memory obtained from sqlite3_malloc().
-** A value of n==0 means copy bytes of zP4 up to and including the
-** first null byte. If n>0 then copy n+1 bytes of zP4.
-**
-** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure.
-** A copy is made of the KeyInfo structure into memory obtained from
-** sqlite3_malloc, to be freed when the Vdbe is finalized.
-** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure
-** stored in memory that the caller has obtained from sqlite3_malloc. The
-** caller should not free the allocation, it will be freed when the Vdbe is
-** finalized.
-**
-** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
-** to a string or structure that is guaranteed to exist for the lifetime of
-** the Vdbe. In these cases we can just copy the pointer.
-**
-** If addr<0 then change P4 on the most recently inserted instruction.
-*/
-void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
- Op *pOp;
- sqlite3 *db;
- assert( p!=0 );
- db = p->db;
- assert( p->magic==VDBE_MAGIC_INIT );
- if( p->aOp==0 || db->mallocFailed ){
- if ( n!=P4_KEYINFO && n!=P4_VTAB ) {
- freeP4(db, n, (void*)*(char**)&zP4);
- }
- return;
- }
- assert( p->nOp>0 );
- assert( addr<p->nOp );
- if( addr<0 ){
- addr = p->nOp - 1;
- }
- pOp = &p->aOp[addr];
- freeP4(db, pOp->p4type, pOp->p4.p);
- pOp->p4.p = 0;
- if( n==P4_INT32 ){
- /* Note: this cast is safe, because the origin data point was an int
- ** that was cast to a (const char *). */
- pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
- pOp->p4type = P4_INT32;
- }else if( zP4==0 ){
- pOp->p4.p = 0;
- pOp->p4type = P4_NOTUSED;
- }else if( n==P4_KEYINFO ){
- KeyInfo *pKeyInfo;
- int nField, nByte;
-
- nField = ((KeyInfo*)zP4)->nField;
- nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
- pKeyInfo = sqlite3Malloc( nByte );
- pOp->p4.pKeyInfo = pKeyInfo;
- if( pKeyInfo ){
- u8 *aSortOrder;
- memcpy(pKeyInfo, zP4, nByte);
- aSortOrder = pKeyInfo->aSortOrder;
- if( aSortOrder ){
- pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
- memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
- }
- pOp->p4type = P4_KEYINFO;
- }else{
- p->db->mallocFailed = 1;
- pOp->p4type = P4_NOTUSED;
- }
- }else if( n==P4_KEYINFO_HANDOFF ){
- pOp->p4.p = (void*)zP4;
- pOp->p4type = P4_KEYINFO;
- }else if( n==P4_VTAB ){
- pOp->p4.p = (void*)zP4;
- pOp->p4type = P4_VTAB;
- sqlite3VtabLock((VTable *)zP4);
- assert( ((VTable *)zP4)->db==p->db );
- }else if( n<0 ){
- pOp->p4.p = (void*)zP4;
- pOp->p4type = (signed char)n;
- }else{
- if( n==0 ) n = sqlite3Strlen30(zP4);
- pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
- pOp->p4type = P4_DYNAMIC;
- }
-}
-
-#ifndef NDEBUG
-/*
-** Change the comment on the the most recently coded instruction. Or
-** insert a No-op and add the comment to that new instruction. This
-** makes the code easier to read during debugging. None of this happens
-** in a production build.
-*/
-void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
- va_list ap;
- if( !p ) return;
- assert( p->nOp>0 || p->aOp==0 );
- assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
- if( p->nOp ){
- char **pz = &p->aOp[p->nOp-1].zComment;
- va_start(ap, zFormat);
- sqlite3DbFree(p->db, *pz);
- *pz = sqlite3VMPrintf(p->db, zFormat, ap);
- va_end(ap);
- }
-}
-void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
- va_list ap;
- if( !p ) return;
- sqlite3VdbeAddOp0(p, OP_Noop);
- assert( p->nOp>0 || p->aOp==0 );
- assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
- if( p->nOp ){
- char **pz = &p->aOp[p->nOp-1].zComment;
- va_start(ap, zFormat);
- sqlite3DbFree(p->db, *pz);
- *pz = sqlite3VMPrintf(p->db, zFormat, ap);
- va_end(ap);
- }
-}
-#endif /* NDEBUG */
-
-/*
-** Return the opcode for a given address. If the address is -1, then
-** return the most recently inserted opcode.
-**
-** If a memory allocation error has occurred prior to the calling of this
-** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
-** is readable and writable, but it has no effect. The return of a dummy
-** opcode allows the call to continue functioning after a OOM fault without
-** having to check to see if the return from this routine is a valid pointer.
-**
-** About the #ifdef SQLITE_OMIT_TRACE: Normally, this routine is never called
-** unless p->nOp>0. This is because in the absense of SQLITE_OMIT_TRACE,
-** an OP_Trace instruction is always inserted by sqlite3VdbeGet() as soon as
-** a new VDBE is created. So we are free to set addr to p->nOp-1 without
-** having to double-check to make sure that the result is non-negative. But
-** if SQLITE_OMIT_TRACE is defined, the OP_Trace is omitted and we do need to
-** check the value of p->nOp-1 before continuing.
-*/
-VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
- static VdbeOp dummy;
- assert( p->magic==VDBE_MAGIC_INIT );
- if( addr<0 ){
-#ifdef SQLITE_OMIT_TRACE
- if( p->nOp==0 ) return &dummy;
-#endif
- addr = p->nOp - 1;
- }
- assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
- if( p->db->mallocFailed ){
- return &dummy;
- }else{
- return &p->aOp[addr];
- }
-}
-
-#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
- || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
-/*
-** Compute a string that describes the P4 parameter for an opcode.
-** Use zTemp for any required temporary buffer space.
-*/
-static char *displayP4(Op *pOp, char *zTemp, int nTemp){
- char *zP4 = zTemp;
- assert( nTemp>=20 );
- switch( pOp->p4type ){
- case P4_KEYINFO_STATIC:
- case P4_KEYINFO: {
- int i, j;
- KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
- sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
- i = sqlite3Strlen30(zTemp);
- for(j=0; j<pKeyInfo->nField; j++){
- CollSeq *pColl = pKeyInfo->aColl[j];
- if( pColl ){
- int n = sqlite3Strlen30(pColl->zName);
- if( i+n>nTemp-6 ){
- memcpy(&zTemp[i],",...",4);
- break;
- }
- zTemp[i++] = ',';
- if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
- zTemp[i++] = '-';
- }
- memcpy(&zTemp[i], pColl->zName,n+1);
- i += n;
- }else if( i+4<nTemp-6 ){
- memcpy(&zTemp[i],",nil",4);
- i += 4;
- }
- }
- zTemp[i++] = ')';
- zTemp[i] = 0;
- assert( i<nTemp );
- break;
- }
- case P4_COLLSEQ: {
- CollSeq *pColl = pOp->p4.pColl;
- sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
- break;
- }
- case P4_FUNCDEF: {
- FuncDef *pDef = pOp->p4.pFunc;
- sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
- break;
- }
- case P4_INT64: {
- sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
- break;
- }
- case P4_INT32: {
- sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
- break;
- }
- case P4_REAL: {
- sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
- break;
- }
- case P4_MEM: {
- Mem *pMem = pOp->p4.pMem;
- assert( (pMem->flags & MEM_Null)==0 );
- if( pMem->flags & MEM_Str ){
- zP4 = pMem->z;
- }else if( pMem->flags & MEM_Int ){
- sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
- }else if( pMem->flags & MEM_Real ){
- sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
- }else{
- assert( pMem->flags & MEM_Blob );
- zP4 = "(blob)";
- }
- break;
- }
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- case P4_VTAB: {
- sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
- sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
- break;
- }
-#endif
- case P4_INTARRAY: {
- sqlite3_snprintf(nTemp, zTemp, "intarray");
- break;
- }
- case P4_SUBPROGRAM: {
- sqlite3_snprintf(nTemp, zTemp, "program");
- break;
- }
- default: {
- zP4 = pOp->p4.z;
- if( zP4==0 ){
- zP4 = zTemp;
- zTemp[0] = 0;
- }
- }
- }
- assert( zP4!=0 );
- return zP4;
-}
-#endif
-
-/*
-** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
-*/
-void sqlite3VdbeUsesBtree(Vdbe *p, int i){
- int mask;
- assert( i>=0 && i<p->db->nDb && i<sizeof(u32)*8 );
- assert( i<(int)sizeof(p->btreeMask)*8 );
- mask = ((u32)1)<<i;
- if( (p->btreeMask & mask)==0 ){
- p->btreeMask |= mask;
- sqlite3BtreeMutexArrayInsert(&p->aMutex, p->db->aDb[i].pBt);
- }
-}
-
-
-#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
-/*
-** Print a single opcode. This routine is used for debugging only.
-*/
-void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
- char *zP4;
- char zPtr[50];
- static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n";
- if( pOut==0 ) pOut = stdout;
- zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
- fprintf(pOut, zFormat1, pc,
- sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
-#ifdef SQLITE_DEBUG
- pOp->zComment ? pOp->zComment : ""
-#else
- ""
-#endif
- );
- fflush(pOut);
-}
-#endif
-
-/*
-** Release an array of N Mem elements
-*/
-static void releaseMemArray(Mem *p, int N){
- if( p && N ){
- Mem *pEnd;
- sqlite3 *db = p->db;
- u8 malloc_failed = db->mallocFailed;
- for(pEnd=&p[N]; p<pEnd; p++){
- assert( (&p[1])==pEnd || p[0].db==p[1].db );
-
- /* This block is really an inlined version of sqlite3VdbeMemRelease()
- ** that takes advantage of the fact that the memory cell value is
- ** being set to NULL after releasing any dynamic resources.
- **
- ** The justification for duplicating code is that according to
- ** callgrind, this causes a certain test case to hit the CPU 4.7
- ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
- ** sqlite3MemRelease() were called from here. With -O2, this jumps
- ** to 6.6 percent. The test case is inserting 1000 rows into a table
- ** with no indexes using a single prepared INSERT statement, bind()
- ** and reset(). Inserts are grouped into a transaction.
- */
- if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
- sqlite3VdbeMemRelease(p);
- }else if( p->zMalloc ){
- sqlite3DbFree(db, p->zMalloc);
- p->zMalloc = 0;
- }
-
- p->flags = MEM_Null;
- }
- db->mallocFailed = malloc_failed;
- }
-}
-
-/*
-** Delete a VdbeFrame object and its contents. VdbeFrame objects are
-** allocated by the OP_Program opcode in sqlite3VdbeExec().
-*/
-void sqlite3VdbeFrameDelete(VdbeFrame *p){
- int i;
- Mem *aMem = VdbeFrameMem(p);
- VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
- for(i=0; i<p->nChildCsr; i++){
- sqlite3VdbeFreeCursor(p->v, apCsr[i]);
- }
- releaseMemArray(aMem, p->nChildMem);
- sqlite3DbFree(p->v->db, p);
-}
-
-
-#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
-int sqlite3VdbeReleaseBuffers(Vdbe *p){
- int ii;
- int nFree = 0;
- assert( sqlite3_mutex_held(p->db->mutex) );
- for(ii=1; ii<=p->nMem; ii++){
- Mem *pMem = &p->aMem[ii];
- if( pMem->flags & MEM_RowSet ){
- sqlite3RowSetClear(pMem->u.pRowSet);
- }
- if( pMem->z && pMem->flags&MEM_Dyn ){
- assert( !pMem->xDel );
- nFree += sqlite3DbMallocSize(pMem->db, pMem->z);
- sqlite3VdbeMemRelease(pMem);
- }
- }
- return nFree;
-}
-#endif
-
-#ifndef SQLITE_OMIT_EXPLAIN
-/*
-** Give a listing of the program in the virtual machine.
-**
-** The interface is the same as sqlite3VdbeExec(). But instead of
-** running the code, it invokes the callback once for each instruction.
-** This feature is used to implement "EXPLAIN".
-**
-** When p->explain==1, each instruction is listed. When
-** p->explain==2, only OP_Explain instructions are listed and these
-** are shown in a different format. p->explain==2 is used to implement
-** EXPLAIN QUERY PLAN.
-*/
-int sqlite3VdbeList(
- Vdbe *p /* The VDBE */
-){
- int nRow; /* Total number of rows to return */
- int nSub = 0; /* Number of sub-vdbes seen so far */
- SubProgram **apSub = 0; /* Array of sub-vdbes */
- Mem *pSub = 0;
- sqlite3 *db = p->db;
- int i;
- int rc = SQLITE_OK;
- Mem *pMem = p->pResultSet = &p->aMem[1];
-
- assert( p->explain );
- assert( p->magic==VDBE_MAGIC_RUN );
- assert( db->magic==SQLITE_MAGIC_BUSY );
- assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
-
- /* Even though this opcode does not use dynamic strings for
- ** the result, result columns may become dynamic if the user calls
- ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
- */
- releaseMemArray(pMem, 8);
-
- if( p->rc==SQLITE_NOMEM ){
- /* This happens if a malloc() inside a call to sqlite3_column_text() or
- ** sqlite3_column_text16() failed. */
- db->mallocFailed = 1;
- return SQLITE_ERROR;
- }
-
- /* Figure out total number of rows that will be returned by this
- ** EXPLAIN program. */
- nRow = p->nOp;
- if( p->explain==1 ){
- pSub = &p->aMem[9];
- if( pSub->flags&MEM_Blob ){
- nSub = pSub->n/sizeof(Vdbe*);
- apSub = (SubProgram **)pSub->z;
- }
- for(i=0; i<nSub; i++){
- nRow += apSub[i]->nOp;
- }
- }
-
- do{
- i = p->pc++;
- }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
- if( i>=nRow ){
- p->rc = SQLITE_OK;
- rc = SQLITE_DONE;
- }else if( db->u1.isInterrupted ){
- p->rc = SQLITE_INTERRUPT;
- rc = SQLITE_ERROR;
- sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
- }else{
- char *z;
- Op *pOp;
- if( i<p->nOp ){
- pOp = &p->aOp[i];
- }else{
- int j;
- i -= p->nOp;
- for(j=0; i>=apSub[j]->nOp; j++){
- i -= apSub[j]->nOp;
- }
- pOp = &apSub[j]->aOp[i];
- }
- if( p->explain==1 ){
- pMem->flags = MEM_Int;
- pMem->type = SQLITE_INTEGER;
- pMem->u.i = i; /* Program counter */
- pMem++;
-
- pMem->flags = MEM_Static|MEM_Str|MEM_Term;
- pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
- assert( pMem->z!=0 );
- pMem->n = sqlite3Strlen30(pMem->z);
- pMem->type = SQLITE_TEXT;
- pMem->enc = SQLITE_UTF8;
- pMem++;
-
- if( pOp->p4type==P4_SUBPROGRAM ){
- int nByte = (nSub+1)*sizeof(SubProgram*);
- int j;
- for(j=0; j<nSub; j++){
- if( apSub[j]==pOp->p4.pProgram ) break;
- }
- if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, 1) ){
- apSub = (SubProgram **)pSub->z;
- apSub[nSub++] = pOp->p4.pProgram;
- pSub->flags |= MEM_Blob;
- pSub->n = nSub*sizeof(SubProgram*);
- }
- }
- }
-
- pMem->flags = MEM_Int;
- pMem->u.i = pOp->p1; /* P1 */
- pMem->type = SQLITE_INTEGER;
- pMem++;
-
- pMem->flags = MEM_Int;
- pMem->u.i = pOp->p2; /* P2 */
- pMem->type = SQLITE_INTEGER;
- pMem++;
-
- if( p->explain==1 ){
- pMem->flags = MEM_Int;
- pMem->u.i = pOp->p3; /* P3 */
- pMem->type = SQLITE_INTEGER;
- pMem++;
- }
-
- if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */
- assert( p->db->mallocFailed );
- return SQLITE_ERROR;
- }
- pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
- z = displayP4(pOp, pMem->z, 32);
- if( z!=pMem->z ){
- sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0);
- }else{
- assert( pMem->z!=0 );
- pMem->n = sqlite3Strlen30(pMem->z);
- pMem->enc = SQLITE_UTF8;
- }
- pMem->type = SQLITE_TEXT;
- pMem++;
-
- if( p->explain==1 ){
- if( sqlite3VdbeMemGrow(pMem, 4, 0) ){
- assert( p->db->mallocFailed );
- return SQLITE_ERROR;
- }
- pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
- pMem->n = 2;
- sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
- pMem->type = SQLITE_TEXT;
- pMem->enc = SQLITE_UTF8;
- pMem++;
-
-#ifdef SQLITE_DEBUG
- if( pOp->zComment ){
- pMem->flags = MEM_Str|MEM_Term;
- pMem->z = pOp->zComment;
- pMem->n = sqlite3Strlen30(pMem->z);
- pMem->enc = SQLITE_UTF8;
- pMem->type = SQLITE_TEXT;
- }else
-#endif
- {
- pMem->flags = MEM_Null; /* Comment */
- pMem->type = SQLITE_NULL;
- }
- }
-
- p->nResColumn = 8 - 5*(p->explain-1);
- p->rc = SQLITE_OK;
- rc = SQLITE_ROW;
- }
- return rc;
-}
-#endif /* SQLITE_OMIT_EXPLAIN */
-
-#ifdef SQLITE_DEBUG
-/*
-** Print the SQL that was used to generate a VDBE program.
-*/
-void sqlite3VdbePrintSql(Vdbe *p){
- int nOp = p->nOp;
- VdbeOp *pOp;
- if( nOp<1 ) return;
- pOp = &p->aOp[0];
- if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
- const char *z = pOp->p4.z;
- while( sqlite3Isspace(*z) ) z++;
- printf("SQL: [%s]\n", z);
- }
-}
-#endif
-
-#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
-/*
-** Print an IOTRACE message showing SQL content.
-*/
-void sqlite3VdbeIOTraceSql(Vdbe *p){
- int nOp = p->nOp;
- VdbeOp *pOp;
- if( sqlite3IoTrace==0 ) return;
- if( nOp<1 ) return;
- pOp = &p->aOp[0];
- if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
- int i, j;
- char z[1000];
- sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
- for(i=0; sqlite3Isspace(z[i]); i++){}
- for(j=0; z[i]; i++){
- if( sqlite3Isspace(z[i]) ){
- if( z[i-1]!=' ' ){
- z[j++] = ' ';
- }
- }else{
- z[j++] = z[i];
- }
- }
- z[j] = 0;
- sqlite3IoTrace("SQL %s\n", z);
- }
-}
-#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
-
-/*
-** Allocate space from a fixed size buffer. Make *pp point to the
-** allocated space. (Note: pp is a char* rather than a void** to
-** work around the pointer aliasing rules of C.) *pp should initially
-** be zero. If *pp is not zero, that means that the space has already
-** been allocated and this routine is a noop.
-**
-** nByte is the number of bytes of space needed.
-**
-** *ppFrom point to available space and pEnd points to the end of the
-** available space.
-**
-** *pnByte is a counter of the number of bytes of space that have failed
-** to allocate. If there is insufficient space in *ppFrom to satisfy the
-** request, then increment *pnByte by the amount of the request.
-*/
-static void allocSpace(
- char *pp, /* IN/OUT: Set *pp to point to allocated buffer */
- int nByte, /* Number of bytes to allocate */
- u8 **ppFrom, /* IN/OUT: Allocate from *ppFrom */
- u8 *pEnd, /* Pointer to 1 byte past the end of *ppFrom buffer */
- int *pnByte /* If allocation cannot be made, increment *pnByte */
-){
- assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) );
- if( (*(void**)pp)==0 ){
- nByte = ROUND8(nByte);
- if( &(*ppFrom)[nByte] <= pEnd ){
- *(void**)pp = (void *)*ppFrom;
- *ppFrom += nByte;
- }else{
- *pnByte += nByte;
- }
- }
-}
-
-/*
-** Prepare a virtual machine for execution. This involves things such
-** as allocating stack space and initializing the program counter.
-** After the VDBE has be prepped, it can be executed by one or more
-** calls to sqlite3VdbeExec().
-**
-** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
-** VDBE_MAGIC_RUN.
-**
-** This function may be called more than once on a single virtual machine.
-** The first call is made while compiling the SQL statement. Subsequent
-** calls are made as part of the process of resetting a statement to be
-** re-executed (from a call to sqlite3_reset()). The nVar, nMem, nCursor
-** and isExplain parameters are only passed correct values the first time
-** the function is called. On subsequent calls, from sqlite3_reset(), nVar
-** is passed -1 and nMem, nCursor and isExplain are all passed zero.
-*/
-void sqlite3VdbeMakeReady(
- Vdbe *p, /* The VDBE */
- int nVar, /* Number of '?' see in the SQL statement */
- int nMem, /* Number of memory cells to allocate */
- int nCursor, /* Number of cursors to allocate */
- int nArg, /* Maximum number of args in SubPrograms */
- int isExplain, /* True if the EXPLAIN keywords is present */
- int usesStmtJournal /* True to set Vdbe.usesStmtJournal */
-){
- int n;
- sqlite3 *db = p->db;
-
- assert( p!=0 );
- assert( p->magic==VDBE_MAGIC_INIT );
-
- /* There should be at least one opcode.
- */
- assert( p->nOp>0 );
-
- /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
- p->magic = VDBE_MAGIC_RUN;
-
- /* For each cursor required, also allocate a memory cell. Memory
- ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
- ** the vdbe program. Instead they are used to allocate space for
- ** VdbeCursor/BtCursor structures. The blob of memory associated with
- ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
- ** stores the blob of memory associated with cursor 1, etc.
- **
- ** See also: allocateCursor().
- */
- nMem += nCursor;
-
- /* Allocate space for memory registers, SQL variables, VDBE cursors and
- ** an array to marshal SQL function arguments in. This is only done the
- ** first time this function is called for a given VDBE, not when it is
- ** being called from sqlite3_reset() to reset the virtual machine.
- */
- if( nVar>=0 && ALWAYS(db->mallocFailed==0) ){
- u8 *zCsr = (u8 *)&p->aOp[p->nOp];
- u8 *zEnd = (u8 *)&p->aOp[p->nOpAlloc];
- int nByte;
- resolveP2Values(p, &nArg);
- p->usesStmtJournal = (u8)usesStmtJournal;
- if( isExplain && nMem<10 ){
- nMem = 10;
- }
- memset(zCsr, 0, zEnd-zCsr);
- zCsr += (zCsr - (u8*)0)&7;
- assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
-
- do {
- nByte = 0;
- allocSpace((char*)&p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
- allocSpace((char*)&p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
- allocSpace((char*)&p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
- allocSpace((char*)&p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
- allocSpace((char*)&p->apCsr,
- nCursor*sizeof(VdbeCursor*), &zCsr, zEnd, &nByte
- );
- if( nByte ){
- p->pFree = sqlite3DbMallocZero(db, nByte);
- }
- zCsr = p->pFree;
- zEnd = &zCsr[nByte];
- }while( nByte && !db->mallocFailed );
-
- p->nCursor = (u16)nCursor;
- if( p->aVar ){
- p->nVar = (u16)nVar;
- for(n=0; n<nVar; n++){
- p->aVar[n].flags = MEM_Null;
- p->aVar[n].db = db;
- }
- }
- if( p->aMem ){
- p->aMem--; /* aMem[] goes from 1..nMem */
- p->nMem = nMem; /* not from 0..nMem-1 */
- for(n=1; n<=nMem; n++){
- p->aMem[n].flags = MEM_Null;
- p->aMem[n].db = db;
- }
- }
- }
-#ifdef SQLITE_DEBUG
- for(n=1; n<p->nMem; n++){
- assert( p->aMem[n].db==db );
- }
-#endif
-
- p->pc = -1;
- p->rc = SQLITE_OK;
- p->errorAction = OE_Abort;
- p->explain |= isExplain;
- p->magic = VDBE_MAGIC_RUN;
- p->nChange = 0;
- p->cacheCtr = 1;
- p->minWriteFileFormat = 255;
- p->iStatement = 0;
-#ifdef VDBE_PROFILE
- {
- int i;
- for(i=0; i<p->nOp; i++){
- p->aOp[i].cnt = 0;
- p->aOp[i].cycles = 0;
- }
- }
-#endif
-}
-
-/*
-** Close a VDBE cursor and release all the resources that cursor
-** happens to hold.
-*/
-void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
- if( pCx==0 ){
- return;
- }
- if( pCx->pBt ){
- sqlite3BtreeClose(pCx->pBt);
- /* The pCx->pCursor will be close automatically, if it exists, by
- ** the call above. */
- }else if( pCx->pCursor ){
- sqlite3BtreeCloseCursor(pCx->pCursor);
- }
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( pCx->pVtabCursor ){
- sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
- const sqlite3_module *pModule = pCx->pModule;
- p->inVtabMethod = 1;
- (void)sqlite3SafetyOff(p->db);
- pModule->xClose(pVtabCursor);
- (void)sqlite3SafetyOn(p->db);
- p->inVtabMethod = 0;
- }
-#endif
-}
-
-/*
-** Copy the values stored in the VdbeFrame structure to its Vdbe. This
-** is used, for example, when a trigger sub-program is halted to restore
-** control to the main program.
-*/
-int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
- Vdbe *v = pFrame->v;
- v->aOp = pFrame->aOp;
- v->nOp = pFrame->nOp;
- v->aMem = pFrame->aMem;
- v->nMem = pFrame->nMem;
- v->apCsr = pFrame->apCsr;
- v->nCursor = pFrame->nCursor;
- v->db->lastRowid = pFrame->lastRowid;
- v->nChange = pFrame->nChange;
- return pFrame->pc;
-}
-
-/*
-** Close all cursors.
-**
-** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
-** cell array. This is necessary as the memory cell array may contain
-** pointers to VdbeFrame objects, which may in turn contain pointers to
-** open cursors.
-*/
-static void closeAllCursors(Vdbe *p){
- if( p->pFrame ){
- VdbeFrame *pFrame = p->pFrame;
- for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
- sqlite3VdbeFrameRestore(pFrame);
- }
- p->pFrame = 0;
- p->nFrame = 0;
-
- if( p->apCsr ){
- int i;
- for(i=0; i<p->nCursor; i++){
- VdbeCursor *pC = p->apCsr[i];
- if( pC ){
- sqlite3VdbeFreeCursor(p, pC);
- p->apCsr[i] = 0;
- }
- }
- }
- if( p->aMem ){
- releaseMemArray(&p->aMem[1], p->nMem);
- }
-}
-
-/*
-** Clean up the VM after execution.
-**
-** This routine will automatically close any cursors, lists, and/or
-** sorters that were left open. It also deletes the values of
-** variables in the aVar[] array.
-*/
-static void Cleanup(Vdbe *p){
- sqlite3 *db = p->db;
-
-#ifdef SQLITE_DEBUG
- /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
- ** Vdbe.aMem[] arrays have already been cleaned up. */
- int i;
- for(i=0; i<p->nCursor; i++) assert( p->apCsr==0 || p->apCsr[i]==0 );
- for(i=1; i<=p->nMem; i++) assert( p->aMem==0 || p->aMem[i].flags==MEM_Null );
-#endif
-
- sqlite3DbFree(db, p->zErrMsg);
- p->zErrMsg = 0;
- p->pResultSet = 0;
-}
-
-/*
-** Set the number of result columns that will be returned by this SQL
-** statement. This is now set at compile time, rather than during
-** execution of the vdbe program so that sqlite3_column_count() can
-** be called on an SQL statement before sqlite3_step().
-*/
-void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
- Mem *pColName;
- int n;
- sqlite3 *db = p->db;
-
- releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
- sqlite3DbFree(db, p->aColName);
- n = nResColumn*COLNAME_N;
- p->nResColumn = (u16)nResColumn;
- p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
- if( p->aColName==0 ) return;
- while( n-- > 0 ){
- pColName->flags = MEM_Null;
- pColName->db = p->db;
- pColName++;
- }
-}
-
-/*
-** Set the name of the idx'th column to be returned by the SQL statement.
-** zName must be a pointer to a nul terminated string.
-**
-** This call must be made after a call to sqlite3VdbeSetNumCols().
-**
-** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
-** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
-** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
-*/
-int sqlite3VdbeSetColName(
- Vdbe *p, /* Vdbe being configured */
- int idx, /* Index of column zName applies to */
- int var, /* One of the COLNAME_* constants */
- const char *zName, /* Pointer to buffer containing name */
- void (*xDel)(void*) /* Memory management strategy for zName */
-){
- int rc;
- Mem *pColName;
- assert( idx<p->nResColumn );
- assert( var<COLNAME_N );
- if( p->db->mallocFailed ){
- assert( !zName || xDel!=SQLITE_DYNAMIC );
- return SQLITE_NOMEM;
- }
- assert( p->aColName!=0 );
- pColName = &(p->aColName[idx+var*p->nResColumn]);
- rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
- assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
- return rc;
-}
-
-/*
-** A read or write transaction may or may not be active on database handle
-** db. If a transaction is active, commit it. If there is a
-** write-transaction spanning more than one database file, this routine
-** takes care of the master journal trickery.
-*/
-static int vdbeCommit(sqlite3 *db, Vdbe *p){
- int i;
- int nTrans = 0; /* Number of databases with an active write-transaction */
- int rc = SQLITE_OK;
- int needXcommit = 0;
-
-#ifdef SQLITE_OMIT_VIRTUALTABLE
- /* With this option, sqlite3VtabSync() is defined to be simply
- ** SQLITE_OK so p is not used.
- */
- UNUSED_PARAMETER(p);
-#endif
-
- /* Before doing anything else, call the xSync() callback for any
- ** virtual module tables written in this transaction. This has to
- ** be done before determining whether a master journal file is
- ** required, as an xSync() callback may add an attached database
- ** to the transaction.
- */
- rc = sqlite3VtabSync(db, &p->zErrMsg);
- if( rc!=SQLITE_OK ){
- return rc;
- }
-
- /* This loop determines (a) if the commit hook should be invoked and
- ** (b) how many database files have open write transactions, not
- ** including the temp database. (b) is important because if more than
- ** one database file has an open write transaction, a master journal
- ** file is required for an atomic commit.
- */
- for(i=0; i<db->nDb; i++){
- Btree *pBt = db->aDb[i].pBt;
- if( sqlite3BtreeIsInTrans(pBt) ){
- needXcommit = 1;
- if( i!=1 ) nTrans++;
- }
- }
-
- /* If there are any write-transactions at all, invoke the commit hook */
- if( needXcommit && db->xCommitCallback ){
- (void)sqlite3SafetyOff(db);
- rc = db->xCommitCallback(db->pCommitArg);
- (void)sqlite3SafetyOn(db);
- if( rc ){
- return SQLITE_CONSTRAINT;
- }
- }
-
- /* The simple case - no more than one database file (not counting the
- ** TEMP database) has a transaction active. There is no need for the
- ** master-journal.
- **
- ** If the return value of sqlite3BtreeGetFilename() is a zero length
- ** string, it means the main database is :memory: or a temp file. In
- ** that case we do not support atomic multi-file commits, so use the
- ** simple case then too.
- */
- if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
- || nTrans<=1
- ){
- for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
- Btree *pBt = db->aDb[i].pBt;
- if( pBt ){
- rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
- }
- }
-
- /* Do the commit only if all databases successfully complete phase 1.
- ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
- ** IO error while deleting or truncating a journal file. It is unlikely,
- ** but could happen. In this case abandon processing and return the error.
- */
- for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
- Btree *pBt = db->aDb[i].pBt;
- if( pBt ){
- rc = sqlite3BtreeCommitPhaseTwo(pBt);
- }
- }
- if( rc==SQLITE_OK ){
- sqlite3VtabCommit(db);
- }
- }
-
- /* The complex case - There is a multi-file write-transaction active.
- ** This requires a master journal file to ensure the transaction is
- ** committed atomicly.
- */
-#ifndef SQLITE_OMIT_DISKIO
- else{
- sqlite3_vfs *pVfs = db->pVfs;
- int needSync = 0;
- char *zMaster = 0; /* File-name for the master journal */
- char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
- sqlite3_file *pMaster = 0;
- i64 offset = 0;
- int res;
-
- /* Select a master journal file name */
- do {
- u32 iRandom;
- sqlite3DbFree(db, zMaster);
- sqlite3_randomness(sizeof(iRandom), &iRandom);
- zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, iRandom&0x7fffffff);
- if( !zMaster ){
- return SQLITE_NOMEM;
- }
- rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
- }while( rc==SQLITE_OK && res );
- if( rc==SQLITE_OK ){
- /* Open the master journal. */
- rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
- SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
- SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
- );
- }
- if( rc!=SQLITE_OK ){
- sqlite3DbFree(db, zMaster);
- return rc;
- }
-
- /* Write the name of each database file in the transaction into the new
- ** master journal file. If an error occurs at this point close
- ** and delete the master journal file. All the individual journal files
- ** still have 'null' as the master journal pointer, so they will roll
- ** back independently if a failure occurs.
- */
- for(i=0; i<db->nDb; i++){
- Btree *pBt = db->aDb[i].pBt;
- if( i==1 ) continue; /* Ignore the TEMP database */
- if( sqlite3BtreeIsInTrans(pBt) ){
- char const *zFile = sqlite3BtreeGetJournalname(pBt);
- if( zFile[0]==0 ) continue; /* Ignore :memory: databases */
- if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
- needSync = 1;
- }
- rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
- offset += sqlite3Strlen30(zFile)+1;
- if( rc!=SQLITE_OK ){
- sqlite3OsCloseFree(pMaster);
- sqlite3OsDelete(pVfs, zMaster, 0);
- sqlite3DbFree(db, zMaster);
- return rc;
- }
- }
- }
-
- /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
- ** flag is set this is not required.
- */
- if( needSync
- && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
- && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
- ){
- sqlite3OsCloseFree(pMaster);
- sqlite3OsDelete(pVfs, zMaster, 0);
- sqlite3DbFree(db, zMaster);
- return rc;
- }
-
- /* Sync all the db files involved in the transaction. The same call
- ** sets the master journal pointer in each individual journal. If
- ** an error occurs here, do not delete the master journal file.
- **
- ** If the error occurs during the first call to
- ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
- ** master journal file will be orphaned. But we cannot delete it,
- ** in case the master journal file name was written into the journal
- ** file before the failure occurred.
- */
- for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
- Btree *pBt = db->aDb[i].pBt;
- if( pBt ){
- rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
- }
- }
- sqlite3OsCloseFree(pMaster);
- if( rc!=SQLITE_OK ){
- sqlite3DbFree(db, zMaster);
- return rc;
- }
-
- /* Delete the master journal file. This commits the transaction. After
- ** doing this the directory is synced again before any individual
- ** transaction files are deleted.
- */
- rc = sqlite3OsDelete(pVfs, zMaster, 1);
- sqlite3DbFree(db, zMaster);
- zMaster = 0;
- if( rc ){
- return rc;
- }
-
- /* All files and directories have already been synced, so the following
- ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
- ** deleting or truncating journals. If something goes wrong while
- ** this is happening we don't really care. The integrity of the
- ** transaction is already guaranteed, but some stray 'cold' journals
- ** may be lying around. Returning an error code won't help matters.
- */
- disable_simulated_io_errors();
- sqlite3BeginBenignMalloc();
- for(i=0; i<db->nDb; i++){
- Btree *pBt = db->aDb[i].pBt;
- if( pBt ){
- sqlite3BtreeCommitPhaseTwo(pBt);
- }
- }
- sqlite3EndBenignMalloc();
- enable_simulated_io_errors();
-
- sqlite3VtabCommit(db);
- }
-#endif
-
- return rc;
-}
-
-/*
-** This routine checks that the sqlite3.activeVdbeCnt count variable
-** matches the number of vdbe's in the list sqlite3.pVdbe that are
-** currently active. An assertion fails if the two counts do not match.
-** This is an internal self-check only - it is not an essential processing
-** step.
-**
-** This is a no-op if NDEBUG is defined.
-*/
-#ifndef NDEBUG
-static void checkActiveVdbeCnt(sqlite3 *db){
- Vdbe *p;
- int cnt = 0;
- int nWrite = 0;
- p = db->pVdbe;
- while( p ){
- if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
- cnt++;
- if( p->readOnly==0 ) nWrite++;
- }
- p = p->pNext;
- }
- assert( cnt==db->activeVdbeCnt );
- assert( nWrite==db->writeVdbeCnt );
-}
-#else
-#define checkActiveVdbeCnt(x)
-#endif
-
-/*
-** For every Btree that in database connection db which
-** has been modified, "trip" or invalidate each cursor in
-** that Btree might have been modified so that the cursor
-** can never be used again. This happens when a rollback
-*** occurs. We have to trip all the other cursors, even
-** cursor from other VMs in different database connections,
-** so that none of them try to use the data at which they
-** were pointing and which now may have been changed due
-** to the rollback.
-**
-** Remember that a rollback can delete tables complete and
-** reorder rootpages. So it is not sufficient just to save
-** the state of the cursor. We have to invalidate the cursor
-** so that it is never used again.
-*/
-static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){
- int i;
- for(i=0; i<db->nDb; i++){
- Btree *p = db->aDb[i].pBt;
- if( p && sqlite3BtreeIsInTrans(p) ){
- sqlite3BtreeTripAllCursors(p, SQLITE_ABORT);
- }
- }
-}
-
-/*
-** If the Vdbe passed as the first argument opened a statement-transaction,
-** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
-** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
-** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
-** statement transaction is commtted.
-**
-** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
-** Otherwise SQLITE_OK.
-*/
-int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
- sqlite3 *const db = p->db;
- int rc = SQLITE_OK;
-
- /* If p->iStatement is greater than zero, then this Vdbe opened a
- ** statement transaction that should be closed here. The only exception
- ** is that an IO error may have occured, causing an emergency rollback.
- ** In this case (db->nStatement==0), and there is nothing to do.
- */
- if( db->nStatement && p->iStatement ){
- int i;
- const int iSavepoint = p->iStatement-1;
-
- assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
- assert( db->nStatement>0 );
- assert( p->iStatement==(db->nStatement+db->nSavepoint) );
-
- for(i=0; i<db->nDb; i++){
- int rc2 = SQLITE_OK;
- Btree *pBt = db->aDb[i].pBt;
- if( pBt ){
- if( eOp==SAVEPOINT_ROLLBACK ){
- rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
- }
- if( rc2==SQLITE_OK ){
- rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
- }
- if( rc==SQLITE_OK ){
- rc = rc2;
- }
- }
- }
- db->nStatement--;
- p->iStatement = 0;
- }
- return rc;
-}
-
-/*
-** If SQLite is compiled to support shared-cache mode and to be threadsafe,
-** this routine obtains the mutex associated with each BtShared structure
-** that may be accessed by the VM passed as an argument. In doing so it
-** sets the BtShared.db member of each of the BtShared structures, ensuring
-** that the correct busy-handler callback is invoked if required.
-**
-** If SQLite is not threadsafe but does support shared-cache mode, then
-** sqlite3BtreeEnterAll() is invoked to set the BtShared.db variables
-** of all of BtShared structures accessible via the database handle
-** associated with the VM. Of course only a subset of these structures
-** will be accessed by the VM, and we could use Vdbe.btreeMask to figure
-** that subset out, but there is no advantage to doing so.
-**
-** If SQLite is not threadsafe and does not support shared-cache mode, this
-** function is a no-op.
-*/
-#ifndef SQLITE_OMIT_SHARED_CACHE
-void sqlite3VdbeMutexArrayEnter(Vdbe *p){
-#if SQLITE_THREADSAFE
- sqlite3BtreeMutexArrayEnter(&p->aMutex);
-#else
- sqlite3BtreeEnterAll(p->db);
-#endif
-}
-#endif
-
-/*
-** This routine is called the when a VDBE tries to halt. If the VDBE
-** has made changes and is in autocommit mode, then commit those
-** changes. If a rollback is needed, then do the rollback.
-**
-** This routine is the only way to move the state of a VM from
-** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
-** call this on a VM that is in the SQLITE_MAGIC_HALT state.
-**
-** Return an error code. If the commit could not complete because of
-** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
-** means the close did not happen and needs to be repeated.
-*/
-int sqlite3VdbeHalt(Vdbe *p){
- int rc; /* Used to store transient return codes */
- sqlite3 *db = p->db;
-
- /* This function contains the logic that determines if a statement or
- ** transaction will be committed or rolled back as a result of the
- ** execution of this virtual machine.
- **
- ** If any of the following errors occur:
- **
- ** SQLITE_NOMEM
- ** SQLITE_IOERR
- ** SQLITE_FULL
- ** SQLITE_INTERRUPT
- **
- ** Then the internal cache might have been left in an inconsistent
- ** state. We need to rollback the statement transaction, if there is
- ** one, or the complete transaction if there is no statement transaction.
- */
-
- if( p->db->mallocFailed ){
- p->rc = SQLITE_NOMEM;
- }
- closeAllCursors(p);
- if( p->magic!=VDBE_MAGIC_RUN ){
- return SQLITE_OK;
- }
- checkActiveVdbeCnt(db);
-
- /* No commit or rollback needed if the program never started */
- if( p->pc>=0 ){
- int mrc; /* Primary error code from p->rc */
- int eStatementOp = 0;
- int isSpecialError; /* Set to true if a 'special' error */
-
- /* Lock all btrees used by the statement */
- sqlite3VdbeMutexArrayEnter(p);
-
- /* Check for one of the special errors */
- mrc = p->rc & 0xff;
- assert( p->rc!=SQLITE_IOERR_BLOCKED ); /* This error no longer exists */
- isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
- || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
- if( isSpecialError ){
- /* If the query was read-only, we need do no rollback at all. Otherwise,
- ** proceed with the special handling.
- */
- if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
- if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
- eStatementOp = SAVEPOINT_ROLLBACK;
- }else{
- /* We are forced to roll back the active transaction. Before doing
- ** so, abort any other statements this handle currently has active.
- */
- invalidateCursorsOnModifiedBtrees(db);
- sqlite3RollbackAll(db);
- sqlite3CloseSavepoints(db);
- db->autoCommit = 1;
- }
- }
- }
-
- /* If the auto-commit flag is set and this is the only active writer
- ** VM, then we do either a commit or rollback of the current transaction.
- **
- ** Note: This block also runs if one of the special errors handled
- ** above has occurred.
- */
- if( !sqlite3VtabInSync(db)
- && db->autoCommit
- && db->writeVdbeCnt==(p->readOnly==0)
- ){
- if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
- /* The auto-commit flag is true, and the vdbe program was
- ** successful or hit an 'OR FAIL' constraint. This means a commit
- ** is required.
- */
- rc = vdbeCommit(db, p);
- if( rc==SQLITE_BUSY ){
- sqlite3BtreeMutexArrayLeave(&p->aMutex);
- return SQLITE_BUSY;
- }else if( rc!=SQLITE_OK ){
- p->rc = rc;
- sqlite3RollbackAll(db);
- }else{
- sqlite3CommitInternalChanges(db);
- }
- }else{
- sqlite3RollbackAll(db);
- }
- db->nStatement = 0;
- }else if( eStatementOp==0 ){
- if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
- eStatementOp = SAVEPOINT_RELEASE;
- }else if( p->errorAction==OE_Abort ){
- eStatementOp = SAVEPOINT_ROLLBACK;
- }else{
- invalidateCursorsOnModifiedBtrees(db);
- sqlite3RollbackAll(db);
- sqlite3CloseSavepoints(db);
- db->autoCommit = 1;
- }
- }
-
- /* If eStatementOp is non-zero, then a statement transaction needs to
- ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
- ** do so. If this operation returns an error, and the current statement
- ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then set the error
- ** code to the new value.
- */
- if( eStatementOp ){
- rc = sqlite3VdbeCloseStatement(p, eStatementOp);
- if( rc && (p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT) ){
- p->rc = rc;
- sqlite3DbFree(db, p->zErrMsg);
- p->zErrMsg = 0;
- }
- }
-
- /* If this was an INSERT, UPDATE or DELETE and no statement transaction
- ** has been rolled back, update the database connection change-counter.
- */
- if( p->changeCntOn ){
- if( eStatementOp!=SAVEPOINT_ROLLBACK ){
- sqlite3VdbeSetChanges(db, p->nChange);
- }else{
- sqlite3VdbeSetChanges(db, 0);
- }
- p->nChange = 0;
- }
-
- /* Rollback or commit any schema changes that occurred. */
- if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){
- sqlite3ResetInternalSchema(db, 0);
- db->flags = (db->flags | SQLITE_InternChanges);
- }
-
- /* Release the locks */
- sqlite3BtreeMutexArrayLeave(&p->aMutex);
- }
-
- /* We have successfully halted and closed the VM. Record this fact. */
- if( p->pc>=0 ){
- db->activeVdbeCnt--;
- if( !p->readOnly ){
- db->writeVdbeCnt--;
- }
- assert( db->activeVdbeCnt>=db->writeVdbeCnt );
- }
- p->magic = VDBE_MAGIC_HALT;
- checkActiveVdbeCnt(db);
- if( p->db->mallocFailed ){
- p->rc = SQLITE_NOMEM;
- }
-
- /* If the auto-commit flag is set to true, then any locks that were held
- ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
- ** to invoke any required unlock-notify callbacks.
- */
- if( db->autoCommit ){
- sqlite3ConnectionUnlocked(db);
- }
-
- assert( db->activeVdbeCnt>0 || db->autoCommit==0 || db->nStatement==0 );
- return SQLITE_OK;
-}
-
-
-/*
-** Each VDBE holds the result of the most recent sqlite3_step() call
-** in p->rc. This routine sets that result back to SQLITE_OK.
-*/
-void sqlite3VdbeResetStepResult(Vdbe *p){
- p->rc = SQLITE_OK;
-}
-
-/*
-** Clean up a VDBE after execution but do not delete the VDBE just yet.
-** Write any error messages into *pzErrMsg. Return the result code.
-**
-** After this routine is run, the VDBE should be ready to be executed
-** again.
-**
-** To look at it another way, this routine resets the state of the
-** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
-** VDBE_MAGIC_INIT.
-*/
-int sqlite3VdbeReset(Vdbe *p){
- sqlite3 *db;
- db = p->db;
-
- /* If the VM did not run to completion or if it encountered an
- ** error, then it might not have been halted properly. So halt
- ** it now.
- */
- (void)sqlite3SafetyOn(db);
- sqlite3VdbeHalt(p);
- (void)sqlite3SafetyOff(db);
-
- /* If the VDBE has be run even partially, then transfer the error code
- ** and error message from the VDBE into the main database structure. But
- ** if the VDBE has just been set to run but has not actually executed any
- ** instructions yet, leave the main database error information unchanged.
- */
- if( p->pc>=0 ){
- if( p->zErrMsg ){
- sqlite3BeginBenignMalloc();
- sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,SQLITE_TRANSIENT);
- sqlite3EndBenignMalloc();
- db->errCode = p->rc;
- sqlite3DbFree(db, p->zErrMsg);
- p->zErrMsg = 0;
- }else if( p->rc ){
- sqlite3Error(db, p->rc, 0);
- }else{
- sqlite3Error(db, SQLITE_OK, 0);
- }
- }else if( p->rc && p->expired ){
- /* The expired flag was set on the VDBE before the first call
- ** to sqlite3_step(). For consistency (since sqlite3_step() was
- ** called), set the database error in this case as well.
- */
- sqlite3Error(db, p->rc, 0);
- sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
- sqlite3DbFree(db, p->zErrMsg);
- p->zErrMsg = 0;
- }
-
- /* Reclaim all memory used by the VDBE
- */
- Cleanup(p);
-
- /* Save profiling information from this VDBE run.
- */
-#ifdef VDBE_PROFILE
- {
- FILE *out = fopen("vdbe_profile.out", "a");
- if( out ){
- int i;
- fprintf(out, "---- ");
- for(i=0; i<p->nOp; i++){
- fprintf(out, "%02x", p->aOp[i].opcode);
- }
- fprintf(out, "\n");
- for(i=0; i<p->nOp; i++){
- fprintf(out, "%6d %10lld %8lld ",
- p->aOp[i].cnt,
- p->aOp[i].cycles,
- p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
- );
- sqlite3VdbePrintOp(out, i, &p->aOp[i]);
- }
- fclose(out);
- }
- }
-#endif
- p->magic = VDBE_MAGIC_INIT;
- return p->rc & db->errMask;
-}
-
-/*
-** Clean up and delete a VDBE after execution. Return an integer which is
-** the result code. Write any error message text into *pzErrMsg.
-*/
-int sqlite3VdbeFinalize(Vdbe *p){
- int rc = SQLITE_OK;
- if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
- rc = sqlite3VdbeReset(p);
- assert( (rc & p->db->errMask)==rc );
- }
- sqlite3VdbeDelete(p);
- return rc;
-}
-
-/*
-** Call the destructor for each auxdata entry in pVdbeFunc for which
-** the corresponding bit in mask is clear. Auxdata entries beyond 31
-** are always destroyed. To destroy all auxdata entries, call this
-** routine with mask==0.
-*/
-void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
- int i;
- for(i=0; i<pVdbeFunc->nAux; i++){
- struct AuxData *pAux = &pVdbeFunc->apAux[i];
- if( (i>31 || !(mask&(((u32)1)<<i))) && pAux->pAux ){
- if( pAux->xDelete ){
- pAux->xDelete(pAux->pAux);
- }
- pAux->pAux = 0;
- }
- }
-}
-
-/*
-** Delete an entire VDBE.
-*/
-void sqlite3VdbeDelete(Vdbe *p){
- sqlite3 *db;
-
- if( NEVER(p==0) ) return;
- db = p->db;
- if( p->pPrev ){
- p->pPrev->pNext = p->pNext;
- }else{
- assert( db->pVdbe==p );
- db->pVdbe = p->pNext;
- }
- if( p->pNext ){
- p->pNext->pPrev = p->pPrev;
- }
- releaseMemArray(p->aVar, p->nVar);
- releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
- vdbeFreeOpArray(db, p->aOp, p->nOp);
- sqlite3DbFree(db, p->aLabel);
- sqlite3DbFree(db, p->aColName);
- sqlite3DbFree(db, p->zSql);
- p->magic = VDBE_MAGIC_DEAD;
- sqlite3DbFree(db, p->pFree);
- sqlite3DbFree(db, p);
-}
-
-/*
-** Make sure the cursor p is ready to read or write the row to which it
-** was last positioned. Return an error code if an OOM fault or I/O error
-** prevents us from positioning the cursor to its correct position.
-**
-** If a MoveTo operation is pending on the given cursor, then do that
-** MoveTo now. If no move is pending, check to see if the row has been
-** deleted out from under the cursor and if it has, mark the row as
-** a NULL row.
-**
-** If the cursor is already pointing to the correct row and that row has
-** not been deleted out from under the cursor, then this routine is a no-op.
-*/
-int sqlite3VdbeCursorMoveto(VdbeCursor *p){
- if( p->deferredMoveto ){
- int res, rc;
-#ifdef SQLITE_TEST
- extern int sqlite3_search_count;
-#endif
- assert( p->isTable );
- rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
- if( rc ) return rc;
- p->lastRowid = p->movetoTarget;
- p->rowidIsValid = ALWAYS(res==0) ?1:0;
- if( NEVER(res<0) ){
- rc = sqlite3BtreeNext(p->pCursor, &res);
- if( rc ) return rc;
- }
-#ifdef SQLITE_TEST
- sqlite3_search_count++;
-#endif
- p->deferredMoveto = 0;
- p->cacheStatus = CACHE_STALE;
- }else if( ALWAYS(p->pCursor) ){
- int hasMoved;
- int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved);
- if( rc ) return rc;
- if( hasMoved ){
- p->cacheStatus = CACHE_STALE;
- p->nullRow = 1;
- }
- }
- return SQLITE_OK;
-}
-
-/*
-** The following functions:
-**
-** sqlite3VdbeSerialType()
-** sqlite3VdbeSerialTypeLen()
-** sqlite3VdbeSerialLen()
-** sqlite3VdbeSerialPut()
-** sqlite3VdbeSerialGet()
-**
-** encapsulate the code that serializes values for storage in SQLite
-** data and index records. Each serialized value consists of a
-** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
-** integer, stored as a varint.
-**
-** In an SQLite index record, the serial type is stored directly before
-** the blob of data that it corresponds to. In a table record, all serial
-** types are stored at the start of the record, and the blobs of data at
-** the end. Hence these functions allow the caller to handle the
-** serial-type and data blob seperately.
-**
-** The following table describes the various storage classes for data:
-**
-** serial type bytes of data type
-** -------------- --------------- ---------------
-** 0 0 NULL
-** 1 1 signed integer
-** 2 2 signed integer
-** 3 3 signed integer
-** 4 4 signed integer
-** 5 6 signed integer
-** 6 8 signed integer
-** 7 8 IEEE float
-** 8 0 Integer constant 0
-** 9 0 Integer constant 1
-** 10,11 reserved for expansion
-** N>=12 and even (N-12)/2 BLOB
-** N>=13 and odd (N-13)/2 text
-**
-** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
-** of SQLite will not understand those serial types.
-*/
-
-/*
-** Return the serial-type for the value stored in pMem.
-*/
-u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
- int flags = pMem->flags;
- int n;
-
- if( flags&MEM_Null ){
- return 0;
- }
- if( flags&MEM_Int ){
- /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
-# define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
- i64 i = pMem->u.i;
- u64 u;
- if( file_format>=4 && (i&1)==i ){
- return 8+(u32)i;
- }
- u = i<0 ? -i : i;
- if( u<=127 ) return 1;
- if( u<=32767 ) return 2;
- if( u<=8388607 ) return 3;
- if( u<=2147483647 ) return 4;
- if( u<=MAX_6BYTE ) return 5;
- return 6;
- }
- if( flags&MEM_Real ){
- return 7;
- }
- assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
- n = pMem->n;
- if( flags & MEM_Zero ){
- n += pMem->u.nZero;
- }
- assert( n>=0 );
- return ((n*2) + 12 + ((flags&MEM_Str)!=0));
-}
-
-/*
-** Return the length of the data corresponding to the supplied serial-type.
-*/
-u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
- if( serial_type>=12 ){
- return (serial_type-12)/2;
- }else{
- static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
- return aSize[serial_type];
- }
-}
-
-/*
-** If we are on an architecture with mixed-endian floating
-** points (ex: ARM7) then swap the lower 4 bytes with the
-** upper 4 bytes. Return the result.
-**
-** For most architectures, this is a no-op.
-**
-** (later): It is reported to me that the mixed-endian problem
-** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
-** that early versions of GCC stored the two words of a 64-bit
-** float in the wrong order. And that error has been propagated
-** ever since. The blame is not necessarily with GCC, though.
-** GCC might have just copying the problem from a prior compiler.
-** I am also told that newer versions of GCC that follow a different
-** ABI get the byte order right.
-**
-** Developers using SQLite on an ARM7 should compile and run their
-** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
-** enabled, some asserts below will ensure that the byte order of
-** floating point values is correct.
-**
-** (2007-08-30) Frank van Vugt has studied this problem closely
-** and has send his findings to the SQLite developers. Frank
-** writes that some Linux kernels offer floating point hardware
-** emulation that uses only 32-bit mantissas instead of a full
-** 48-bits as required by the IEEE standard. (This is the
-** CONFIG_FPE_FASTFPE option.) On such systems, floating point
-** byte swapping becomes very complicated. To avoid problems,
-** the necessary byte swapping is carried out using a 64-bit integer
-** rather than a 64-bit float. Frank assures us that the code here
-** works for him. We, the developers, have no way to independently
-** verify this, but Frank seems to know what he is talking about
-** so we trust him.
-*/
-#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
-static u64 floatSwap(u64 in){
- union {
- u64 r;
- u32 i[2];
- } u;
- u32 t;
-
- u.r = in;
- t = u.i[0];
- u.i[0] = u.i[1];
- u.i[1] = t;
- return u.r;
-}
-# define swapMixedEndianFloat(X) X = floatSwap(X)
-#else
-# define swapMixedEndianFloat(X)
-#endif
-
-/*
-** Write the serialized data blob for the value stored in pMem into
-** buf. It is assumed that the caller has allocated sufficient space.
-** Return the number of bytes written.
-**
-** nBuf is the amount of space left in buf[]. nBuf must always be
-** large enough to hold the entire field. Except, if the field is
-** a blob with a zero-filled tail, then buf[] might be just the right
-** size to hold everything except for the zero-filled tail. If buf[]
-** is only big enough to hold the non-zero prefix, then only write that
-** prefix into buf[]. But if buf[] is large enough to hold both the
-** prefix and the tail then write the prefix and set the tail to all
-** zeros.
-**
-** Return the number of bytes actually written into buf[]. The number
-** of bytes in the zero-filled tail is included in the return value only
-** if those bytes were zeroed in buf[].
-*/
-u32 sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
- u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
- u32 len;
-
- /* Integer and Real */
- if( serial_type<=7 && serial_type>0 ){
- u64 v;
- u32 i;
- if( serial_type==7 ){
- assert( sizeof(v)==sizeof(pMem->r) );
- memcpy(&v, &pMem->r, sizeof(v));
- swapMixedEndianFloat(v);
- }else{
- v = pMem->u.i;
- }
- len = i = sqlite3VdbeSerialTypeLen(serial_type);
- assert( len<=(u32)nBuf );
- while( i-- ){
- buf[i] = (u8)(v&0xFF);
- v >>= 8;
- }
- return len;
- }
-
- /* String or blob */
- if( serial_type>=12 ){
- assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
- == (int)sqlite3VdbeSerialTypeLen(serial_type) );
- assert( pMem->n<=nBuf );
- len = pMem->n;
- memcpy(buf, pMem->z, len);
- if( pMem->flags & MEM_Zero ){
- len += pMem->u.nZero;
- assert( nBuf>=0 );
- if( len > (u32)nBuf ){
- len = (u32)nBuf;
- }
- memset(&buf[pMem->n], 0, len-pMem->n);
- }
- return len;
- }
-
- /* NULL or constants 0 or 1 */
- return 0;
-}
-
-/*
-** Deserialize the data blob pointed to by buf as serial type serial_type
-** and store the result in pMem. Return the number of bytes read.
-*/
-u32 sqlite3VdbeSerialGet(
- const unsigned char *buf, /* Buffer to deserialize from */
- u32 serial_type, /* Serial type to deserialize */
- Mem *pMem /* Memory cell to write value into */
-){
- switch( serial_type ){
- case 10: /* Reserved for future use */
- case 11: /* Reserved for future use */
- case 0: { /* NULL */
- pMem->flags = MEM_Null;
- break;
- }
- case 1: { /* 1-byte signed integer */
- pMem->u.i = (signed char)buf[0];
- pMem->flags = MEM_Int;
- return 1;
- }
- case 2: { /* 2-byte signed integer */
- pMem->u.i = (((signed char)buf[0])<<8) | buf[1];
- pMem->flags = MEM_Int;
- return 2;
- }
- case 3: { /* 3-byte signed integer */
- pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
- pMem->flags = MEM_Int;
- return 3;
- }
- case 4: { /* 4-byte signed integer */
- pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
- pMem->flags = MEM_Int;
- return 4;
- }
- case 5: { /* 6-byte signed integer */
- u64 x = (((signed char)buf[0])<<8) | buf[1];
- u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
- x = (x<<32) | y;
- pMem->u.i = *(i64*)&x;
- pMem->flags = MEM_Int;
- return 6;
- }
- case 6: /* 8-byte signed integer */
- case 7: { /* IEEE floating point */
- u64 x;
- u32 y;
-#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
- /* Verify that integers and floating point values use the same
- ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
- ** defined that 64-bit floating point values really are mixed
- ** endian.
- */
- static const u64 t1 = ((u64)0x3ff00000)<<32;
- static const double r1 = 1.0;
- u64 t2 = t1;
- swapMixedEndianFloat(t2);
- assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
-#endif
-
- x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
- y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
- x = (x<<32) | y;
- if( serial_type==6 ){
- pMem->u.i = *(i64*)&x;
- pMem->flags = MEM_Int;
- }else{
- assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
- swapMixedEndianFloat(x);
- memcpy(&pMem->r, &x, sizeof(x));
- pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real;
- }
- return 8;
- }
- case 8: /* Integer 0 */
- case 9: { /* Integer 1 */
- pMem->u.i = serial_type-8;
- pMem->flags = MEM_Int;
- return 0;
- }
- default: {
- u32 len = (serial_type-12)/2;
- pMem->z = (char *)buf;
- pMem->n = len;
- pMem->xDel = 0;
- if( serial_type&0x01 ){
- pMem->flags = MEM_Str | MEM_Ephem;
- }else{
- pMem->flags = MEM_Blob | MEM_Ephem;
- }
- return len;
- }
- }
- return 0;
-}
-
-
-/*
-** Given the nKey-byte encoding of a record in pKey[], parse the
-** record into a UnpackedRecord structure. Return a pointer to
-** that structure.
-**
-** The calling function might provide szSpace bytes of memory
-** space at pSpace. This space can be used to hold the returned
-** VDbeParsedRecord structure if it is large enough. If it is
-** not big enough, space is obtained from sqlite3_malloc().
-**
-** The returned structure should be closed by a call to
-** sqlite3VdbeDeleteUnpackedRecord().
-*/
-UnpackedRecord *sqlite3VdbeRecordUnpack(
- KeyInfo *pKeyInfo, /* Information about the record format */
- int nKey, /* Size of the binary record */
- const void *pKey, /* The binary record */
- char *pSpace, /* Unaligned space available to hold the object */
- int szSpace /* Size of pSpace[] in bytes */
-){
- const unsigned char *aKey = (const unsigned char *)pKey;
- UnpackedRecord *p; /* The unpacked record that we will return */
- int nByte; /* Memory space needed to hold p, in bytes */
- int d;
- u32 idx;
- u16 u; /* Unsigned loop counter */
- u32 szHdr;
- Mem *pMem;
- int nOff; /* Increase pSpace by this much to 8-byte align it */
-
- /*
- ** We want to shift the pointer pSpace up such that it is 8-byte aligned.
- ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift
- ** it by. If pSpace is already 8-byte aligned, nOff should be zero.
- */
- nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
- pSpace += nOff;
- szSpace -= nOff;
- nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
- if( nByte>szSpace ){
- p = sqlite3DbMallocRaw(pKeyInfo->db, nByte);
- if( p==0 ) return 0;
- p->flags = UNPACKED_NEED_FREE | UNPACKED_NEED_DESTROY;
- }else{
- p = (UnpackedRecord*)pSpace;
- p->flags = UNPACKED_NEED_DESTROY;
- }
- p->pKeyInfo = pKeyInfo;
- p->nField = pKeyInfo->nField + 1;
- p->aMem = pMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
- assert( EIGHT_BYTE_ALIGNMENT(pMem) );
- idx = getVarint32(aKey, szHdr);
- d = szHdr;
- u = 0;
- while( idx<szHdr && u<p->nField && d<=nKey ){
- u32 serial_type;
-
- idx += getVarint32(&aKey[idx], serial_type);
- pMem->enc = pKeyInfo->enc;
- pMem->db = pKeyInfo->db;
- pMem->flags = 0;
- pMem->zMalloc = 0;
- d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
- pMem++;
- u++;
- }
- assert( u<=pKeyInfo->nField + 1 );
- p->nField = u;
- return (void*)p;
-}
-
-/*
-** This routine destroys a UnpackedRecord object.
-*/
-void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){
- int i;
- Mem *pMem;
-
- assert( p!=0 );
- assert( p->flags & UNPACKED_NEED_DESTROY );
- for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){
- /* The unpacked record is always constructed by the
- ** sqlite3VdbeUnpackRecord() function above, which makes all
- ** strings and blobs static. And none of the elements are
- ** ever transformed, so there is never anything to delete.
- */
- if( NEVER(pMem->zMalloc) ) sqlite3VdbeMemRelease(pMem);
- }
- if( p->flags & UNPACKED_NEED_FREE ){
- sqlite3DbFree(p->pKeyInfo->db, p);
- }
-}
-
-/*
-** This function compares the two table rows or index records
-** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
-** or positive integer if key1 is less than, equal to or
-** greater than key2. The {nKey1, pKey1} key must be a blob
-** created by th OP_MakeRecord opcode of the VDBE. The pPKey2
-** key must be a parsed key such as obtained from
-** sqlite3VdbeParseRecord.
-**
-** Key1 and Key2 do not have to contain the same number of fields.
-** The key with fewer fields is usually compares less than the
-** longer key. However if the UNPACKED_INCRKEY flags in pPKey2 is set
-** and the common prefixes are equal, then key1 is less than key2.
-** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are
-** equal, then the keys are considered to be equal and
-** the parts beyond the common prefix are ignored.
-**
-** If the UNPACKED_IGNORE_ROWID flag is set, then the last byte of
-** the header of pKey1 is ignored. It is assumed that pKey1 is
-** an index key, and thus ends with a rowid value. The last byte
-** of the header will therefore be the serial type of the rowid:
-** one of 1, 2, 3, 4, 5, 6, 8, or 9 - the integer serial types.
-** The serial type of the final rowid will always be a single byte.
-** By ignoring this last byte of the header, we force the comparison
-** to ignore the rowid at the end of key1.
-*/
-int sqlite3VdbeRecordCompare(
- int nKey1, const void *pKey1, /* Left key */
- UnpackedRecord *pPKey2 /* Right key */
-){
- int d1; /* Offset into aKey[] of next data element */
- u32 idx1; /* Offset into aKey[] of next header element */
- u32 szHdr1; /* Number of bytes in header */
- int i = 0;
- int nField;
- int rc = 0;
- const unsigned char *aKey1 = (const unsigned char *)pKey1;
- KeyInfo *pKeyInfo;
- Mem mem1;
-
- pKeyInfo = pPKey2->pKeyInfo;
- mem1.enc = pKeyInfo->enc;
- mem1.db = pKeyInfo->db;
- mem1.flags = 0;
- mem1.u.i = 0; /* not needed, here to silence compiler warning */
- mem1.zMalloc = 0;
-
- idx1 = getVarint32(aKey1, szHdr1);
- d1 = szHdr1;
- if( pPKey2->flags & UNPACKED_IGNORE_ROWID ){
- szHdr1--;
- }
- nField = pKeyInfo->nField;
- while( idx1<szHdr1 && i<pPKey2->nField ){
- u32 serial_type1;
-
- /* Read the serial types for the next element in each key. */
- idx1 += getVarint32( aKey1+idx1, serial_type1 );
- if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
-
- /* Extract the values to be compared.
- */
- d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
-
- /* Do the comparison
- */
- rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
- i<nField ? pKeyInfo->aColl[i] : 0);
- if( rc!=0 ){
- break;
- }
- i++;
- }
-
- /* No memory allocation is ever used on mem1. */
- if( NEVER(mem1.zMalloc) ) sqlite3VdbeMemRelease(&mem1);
-
- /* If the PREFIX_SEARCH flag is set and all fields except the final
- ** rowid field were equal, then clear the PREFIX_SEARCH flag and set
- ** pPKey2->rowid to the value of the rowid field in (pKey1, nKey1).
- ** This is used by the OP_IsUnique opcode.
- */
- if( (pPKey2->flags & UNPACKED_PREFIX_SEARCH) && i==(pPKey2->nField-1) ){
- assert( idx1==szHdr1 && rc );
- assert( mem1.flags & MEM_Int );
- pPKey2->flags &= ~UNPACKED_PREFIX_SEARCH;
- pPKey2->rowid = mem1.u.i;
- }
-
- if( rc==0 ){
- /* rc==0 here means that one of the keys ran out of fields and
- ** all the fields up to that point were equal. If the UNPACKED_INCRKEY
- ** flag is set, then break the tie by treating key2 as larger.
- ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes
- ** are considered to be equal. Otherwise, the longer key is the
- ** larger. As it happens, the pPKey2 will always be the longer
- ** if there is a difference.
- */
- if( pPKey2->flags & UNPACKED_INCRKEY ){
- rc = -1;
- }else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){
- /* Leave rc==0 */
- }else if( idx1<szHdr1 ){
- rc = 1;
- }
- }else if( pKeyInfo->aSortOrder && i<pKeyInfo->nField
- && pKeyInfo->aSortOrder[i] ){
- rc = -rc;
- }
-
- return rc;
-}
-
-
-/*
-** pCur points at an index entry created using the OP_MakeRecord opcode.
-** Read the rowid (the last field in the record) and store it in *rowid.
-** Return SQLITE_OK if everything works, or an error code otherwise.
-**
-** pCur might be pointing to text obtained from a corrupt database file.
-** So the content cannot be trusted. Do appropriate checks on the content.
-*/
-int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
- i64 nCellKey = 0;
- int rc;
- u32 szHdr; /* Size of the header */
- u32 typeRowid; /* Serial type of the rowid */
- u32 lenRowid; /* Size of the rowid */
- Mem m, v;
-
- UNUSED_PARAMETER(db);
-
- /* Get the size of the index entry. Only indices entries of less
- ** than 2GiB are support - anything large must be database corruption.
- ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
- ** this code can safely assume that nCellKey is 32-bits
- */
- assert( sqlite3BtreeCursorIsValid(pCur) );
- rc = sqlite3BtreeKeySize(pCur, &nCellKey);
- assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
- assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
-
- /* Read in the complete content of the index entry */
- memset(&m, 0, sizeof(m));
- rc = sqlite3VdbeMemFromBtree(pCur, 0, (int)nCellKey, 1, &m);
- if( rc ){
- return rc;
- }
-
- /* The index entry must begin with a header size */
- (void)getVarint32((u8*)m.z, szHdr);
- testcase( szHdr==3 );
- testcase( szHdr==m.n );
- if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
- goto idx_rowid_corruption;
- }
-
- /* The last field of the index should be an integer - the ROWID.
- ** Verify that the last entry really is an integer. */
- (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
- testcase( typeRowid==1 );
- testcase( typeRowid==2 );
- testcase( typeRowid==3 );
- testcase( typeRowid==4 );
- testcase( typeRowid==5 );
- testcase( typeRowid==6 );
- testcase( typeRowid==8 );
- testcase( typeRowid==9 );
- if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
- goto idx_rowid_corruption;
- }
- lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
- testcase( (u32)m.n==szHdr+lenRowid );
- if( unlikely((u32)m.n<szHdr+lenRowid) ){
- goto idx_rowid_corruption;
- }
-
- /* Fetch the integer off the end of the index record */
- sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
- *rowid = v.u.i;
- sqlite3VdbeMemRelease(&m);
- return SQLITE_OK;
-
- /* Jump here if database corruption is detected after m has been
- ** allocated. Free the m object and return SQLITE_CORRUPT. */
-idx_rowid_corruption:
- testcase( m.zMalloc!=0 );
- sqlite3VdbeMemRelease(&m);
- return SQLITE_CORRUPT_BKPT;
-}
-
-/*
-** Compare the key of the index entry that cursor pC is pointing to against
-** the key string in pUnpacked. Write into *pRes a number
-** that is negative, zero, or positive if pC is less than, equal to,
-** or greater than pUnpacked. Return SQLITE_OK on success.
-**
-** pUnpacked is either created without a rowid or is truncated so that it
-** omits the rowid at the end. The rowid at the end of the index entry
-** is ignored as well. Hence, this routine only compares the prefixes
-** of the keys prior to the final rowid, not the entire key.
-*/
-int sqlite3VdbeIdxKeyCompare(
- VdbeCursor *pC, /* The cursor to compare against */
- UnpackedRecord *pUnpacked, /* Unpacked version of key to compare against */
- int *res /* Write the comparison result here */
-){
- i64 nCellKey = 0;
- int rc;
- BtCursor *pCur = pC->pCursor;
- Mem m;
-
- assert( sqlite3BtreeCursorIsValid(pCur) );
- rc = sqlite3BtreeKeySize(pCur, &nCellKey);
- assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
- /* nCellKey will always be between 0 and 0xffffffff because of the say
- ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
- if( nCellKey<=0 || nCellKey>0x7fffffff ){
- *res = 0;
- return SQLITE_CORRUPT;
- }
- memset(&m, 0, sizeof(m));
- rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (int)nCellKey, 1, &m);
- if( rc ){
- return rc;
- }
- assert( pUnpacked->flags & UNPACKED_IGNORE_ROWID );
- *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
- sqlite3VdbeMemRelease(&m);
- return SQLITE_OK;
-}
-
-/*
-** This routine sets the value to be returned by subsequent calls to
-** sqlite3_changes() on the database handle 'db'.
-*/
-void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
- assert( sqlite3_mutex_held(db->mutex) );
- db->nChange = nChange;
- db->nTotalChange += nChange;
-}
-
-/*
-** Set a flag in the vdbe to update the change counter when it is finalised
-** or reset.
-*/
-void sqlite3VdbeCountChanges(Vdbe *v){
- v->changeCntOn = 1;
-}
-
-/*
-** Mark every prepared statement associated with a database connection
-** as expired.
-**
-** An expired statement means that recompilation of the statement is
-** recommend. Statements expire when things happen that make their
-** programs obsolete. Removing user-defined functions or collating
-** sequences, or changing an authorization function are the types of
-** things that make prepared statements obsolete.
-*/
-void sqlite3ExpirePreparedStatements(sqlite3 *db){
- Vdbe *p;
- for(p = db->pVdbe; p; p=p->pNext){
- p->expired = 1;
- }
-}
-
-/*
-** Return the database associated with the Vdbe.
-*/
-sqlite3 *sqlite3VdbeDb(Vdbe *v){
- return v->db;
-}
« no previous file with comments | « third_party/sqlite/src/vdbeapi.c ('k') | third_party/sqlite/src/vdbeblob.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698