| Index: third_party/sqlite/src/expr.c
|
| ===================================================================
|
| --- third_party/sqlite/src/expr.c (revision 56608)
|
| +++ third_party/sqlite/src/expr.c (working copy)
|
| @@ -1,3543 +0,0 @@
|
| -/*
|
| -** 2001 September 15
|
| -**
|
| -** The author disclaims copyright to this source code. In place of
|
| -** a legal notice, here is a blessing:
|
| -**
|
| -** May you do good and not evil.
|
| -** May you find forgiveness for yourself and forgive others.
|
| -** May you share freely, never taking more than you give.
|
| -**
|
| -*************************************************************************
|
| -** This file contains routines used for analyzing expressions and
|
| -** for generating VDBE code that evaluates expressions in SQLite.
|
| -*/
|
| -#include "sqliteInt.h"
|
| -
|
| -/*
|
| -** Return the 'affinity' of the expression pExpr if any.
|
| -**
|
| -** If pExpr is a column, a reference to a column via an 'AS' alias,
|
| -** or a sub-select with a column as the return value, then the
|
| -** affinity of that column is returned. Otherwise, 0x00 is returned,
|
| -** indicating no affinity for the expression.
|
| -**
|
| -** i.e. the WHERE clause expresssions in the following statements all
|
| -** have an affinity:
|
| -**
|
| -** CREATE TABLE t1(a);
|
| -** SELECT * FROM t1 WHERE a;
|
| -** SELECT a AS b FROM t1 WHERE b;
|
| -** SELECT * FROM t1 WHERE (select a from t1);
|
| -*/
|
| -char sqlite3ExprAffinity(Expr *pExpr){
|
| - int op = pExpr->op;
|
| - if( op==TK_SELECT ){
|
| - assert( pExpr->flags&EP_xIsSelect );
|
| - return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
|
| - }
|
| -#ifndef SQLITE_OMIT_CAST
|
| - if( op==TK_CAST ){
|
| - assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| - return sqlite3AffinityType(pExpr->u.zToken);
|
| - }
|
| -#endif
|
| - if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
|
| - && pExpr->pTab!=0
|
| - ){
|
| - /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
|
| - ** a TK_COLUMN but was previously evaluated and cached in a register */
|
| - int j = pExpr->iColumn;
|
| - if( j<0 ) return SQLITE_AFF_INTEGER;
|
| - assert( pExpr->pTab && j<pExpr->pTab->nCol );
|
| - return pExpr->pTab->aCol[j].affinity;
|
| - }
|
| - return pExpr->affinity;
|
| -}
|
| -
|
| -/*
|
| -** Set the collating sequence for expression pExpr to be the collating
|
| -** sequence named by pToken. Return a pointer to the revised expression.
|
| -** The collating sequence is marked as "explicit" using the EP_ExpCollate
|
| -** flag. An explicit collating sequence will override implicit
|
| -** collating sequences.
|
| -*/
|
| -Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pCollName){
|
| - char *zColl = 0; /* Dequoted name of collation sequence */
|
| - CollSeq *pColl;
|
| - sqlite3 *db = pParse->db;
|
| - zColl = sqlite3NameFromToken(db, pCollName);
|
| - if( pExpr && zColl ){
|
| - pColl = sqlite3LocateCollSeq(pParse, zColl);
|
| - if( pColl ){
|
| - pExpr->pColl = pColl;
|
| - pExpr->flags |= EP_ExpCollate;
|
| - }
|
| - }
|
| - sqlite3DbFree(db, zColl);
|
| - return pExpr;
|
| -}
|
| -
|
| -/*
|
| -** Return the default collation sequence for the expression pExpr. If
|
| -** there is no default collation type, return 0.
|
| -*/
|
| -CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
|
| - CollSeq *pColl = 0;
|
| - Expr *p = pExpr;
|
| - while( ALWAYS(p) ){
|
| - int op;
|
| - pColl = p->pColl;
|
| - if( pColl ) break;
|
| - op = p->op;
|
| - if( p->pTab!=0 && (
|
| - op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER
|
| - )){
|
| - /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
|
| - ** a TK_COLUMN but was previously evaluated and cached in a register */
|
| - const char *zColl;
|
| - int j = p->iColumn;
|
| - if( j>=0 ){
|
| - sqlite3 *db = pParse->db;
|
| - zColl = p->pTab->aCol[j].zColl;
|
| - pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
|
| - pExpr->pColl = pColl;
|
| - }
|
| - break;
|
| - }
|
| - if( op!=TK_CAST && op!=TK_UPLUS ){
|
| - break;
|
| - }
|
| - p = p->pLeft;
|
| - }
|
| - if( sqlite3CheckCollSeq(pParse, pColl) ){
|
| - pColl = 0;
|
| - }
|
| - return pColl;
|
| -}
|
| -
|
| -/*
|
| -** pExpr is an operand of a comparison operator. aff2 is the
|
| -** type affinity of the other operand. This routine returns the
|
| -** type affinity that should be used for the comparison operator.
|
| -*/
|
| -char sqlite3CompareAffinity(Expr *pExpr, char aff2){
|
| - char aff1 = sqlite3ExprAffinity(pExpr);
|
| - if( aff1 && aff2 ){
|
| - /* Both sides of the comparison are columns. If one has numeric
|
| - ** affinity, use that. Otherwise use no affinity.
|
| - */
|
| - if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
|
| - return SQLITE_AFF_NUMERIC;
|
| - }else{
|
| - return SQLITE_AFF_NONE;
|
| - }
|
| - }else if( !aff1 && !aff2 ){
|
| - /* Neither side of the comparison is a column. Compare the
|
| - ** results directly.
|
| - */
|
| - return SQLITE_AFF_NONE;
|
| - }else{
|
| - /* One side is a column, the other is not. Use the columns affinity. */
|
| - assert( aff1==0 || aff2==0 );
|
| - return (aff1 + aff2);
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** pExpr is a comparison operator. Return the type affinity that should
|
| -** be applied to both operands prior to doing the comparison.
|
| -*/
|
| -static char comparisonAffinity(Expr *pExpr){
|
| - char aff;
|
| - assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
|
| - pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
|
| - pExpr->op==TK_NE );
|
| - assert( pExpr->pLeft );
|
| - aff = sqlite3ExprAffinity(pExpr->pLeft);
|
| - if( pExpr->pRight ){
|
| - aff = sqlite3CompareAffinity(pExpr->pRight, aff);
|
| - }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
|
| - aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
|
| - }else if( !aff ){
|
| - aff = SQLITE_AFF_NONE;
|
| - }
|
| - return aff;
|
| -}
|
| -
|
| -/*
|
| -** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
|
| -** idx_affinity is the affinity of an indexed column. Return true
|
| -** if the index with affinity idx_affinity may be used to implement
|
| -** the comparison in pExpr.
|
| -*/
|
| -int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
|
| - char aff = comparisonAffinity(pExpr);
|
| - switch( aff ){
|
| - case SQLITE_AFF_NONE:
|
| - return 1;
|
| - case SQLITE_AFF_TEXT:
|
| - return idx_affinity==SQLITE_AFF_TEXT;
|
| - default:
|
| - return sqlite3IsNumericAffinity(idx_affinity);
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Return the P5 value that should be used for a binary comparison
|
| -** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
|
| -*/
|
| -static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
|
| - u8 aff = (char)sqlite3ExprAffinity(pExpr2);
|
| - aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
|
| - return aff;
|
| -}
|
| -
|
| -/*
|
| -** Return a pointer to the collation sequence that should be used by
|
| -** a binary comparison operator comparing pLeft and pRight.
|
| -**
|
| -** If the left hand expression has a collating sequence type, then it is
|
| -** used. Otherwise the collation sequence for the right hand expression
|
| -** is used, or the default (BINARY) if neither expression has a collating
|
| -** type.
|
| -**
|
| -** Argument pRight (but not pLeft) may be a null pointer. In this case,
|
| -** it is not considered.
|
| -*/
|
| -CollSeq *sqlite3BinaryCompareCollSeq(
|
| - Parse *pParse,
|
| - Expr *pLeft,
|
| - Expr *pRight
|
| -){
|
| - CollSeq *pColl;
|
| - assert( pLeft );
|
| - if( pLeft->flags & EP_ExpCollate ){
|
| - assert( pLeft->pColl );
|
| - pColl = pLeft->pColl;
|
| - }else if( pRight && pRight->flags & EP_ExpCollate ){
|
| - assert( pRight->pColl );
|
| - pColl = pRight->pColl;
|
| - }else{
|
| - pColl = sqlite3ExprCollSeq(pParse, pLeft);
|
| - if( !pColl ){
|
| - pColl = sqlite3ExprCollSeq(pParse, pRight);
|
| - }
|
| - }
|
| - return pColl;
|
| -}
|
| -
|
| -/*
|
| -** Generate the operands for a comparison operation. Before
|
| -** generating the code for each operand, set the EP_AnyAff
|
| -** flag on the expression so that it will be able to used a
|
| -** cached column value that has previously undergone an
|
| -** affinity change.
|
| -*/
|
| -static void codeCompareOperands(
|
| - Parse *pParse, /* Parsing and code generating context */
|
| - Expr *pLeft, /* The left operand */
|
| - int *pRegLeft, /* Register where left operand is stored */
|
| - int *pFreeLeft, /* Free this register when done */
|
| - Expr *pRight, /* The right operand */
|
| - int *pRegRight, /* Register where right operand is stored */
|
| - int *pFreeRight /* Write temp register for right operand there */
|
| -){
|
| - while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft;
|
| - pLeft->flags |= EP_AnyAff;
|
| - *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft);
|
| - while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft;
|
| - pRight->flags |= EP_AnyAff;
|
| - *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight);
|
| -}
|
| -
|
| -/*
|
| -** Generate code for a comparison operator.
|
| -*/
|
| -static int codeCompare(
|
| - Parse *pParse, /* The parsing (and code generating) context */
|
| - Expr *pLeft, /* The left operand */
|
| - Expr *pRight, /* The right operand */
|
| - int opcode, /* The comparison opcode */
|
| - int in1, int in2, /* Register holding operands */
|
| - int dest, /* Jump here if true. */
|
| - int jumpIfNull /* If true, jump if either operand is NULL */
|
| -){
|
| - int p5;
|
| - int addr;
|
| - CollSeq *p4;
|
| -
|
| - p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
|
| - p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
|
| - addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
|
| - (void*)p4, P4_COLLSEQ);
|
| - sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
|
| - if( (p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_NONE ){
|
| - sqlite3ExprCacheAffinityChange(pParse, in1, 1);
|
| - sqlite3ExprCacheAffinityChange(pParse, in2, 1);
|
| - }
|
| - return addr;
|
| -}
|
| -
|
| -#if SQLITE_MAX_EXPR_DEPTH>0
|
| -/*
|
| -** Check that argument nHeight is less than or equal to the maximum
|
| -** expression depth allowed. If it is not, leave an error message in
|
| -** pParse.
|
| -*/
|
| -int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
|
| - int rc = SQLITE_OK;
|
| - int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
|
| - if( nHeight>mxHeight ){
|
| - sqlite3ErrorMsg(pParse,
|
| - "Expression tree is too large (maximum depth %d)", mxHeight
|
| - );
|
| - rc = SQLITE_ERROR;
|
| - }
|
| - return rc;
|
| -}
|
| -
|
| -/* The following three functions, heightOfExpr(), heightOfExprList()
|
| -** and heightOfSelect(), are used to determine the maximum height
|
| -** of any expression tree referenced by the structure passed as the
|
| -** first argument.
|
| -**
|
| -** If this maximum height is greater than the current value pointed
|
| -** to by pnHeight, the second parameter, then set *pnHeight to that
|
| -** value.
|
| -*/
|
| -static void heightOfExpr(Expr *p, int *pnHeight){
|
| - if( p ){
|
| - if( p->nHeight>*pnHeight ){
|
| - *pnHeight = p->nHeight;
|
| - }
|
| - }
|
| -}
|
| -static void heightOfExprList(ExprList *p, int *pnHeight){
|
| - if( p ){
|
| - int i;
|
| - for(i=0; i<p->nExpr; i++){
|
| - heightOfExpr(p->a[i].pExpr, pnHeight);
|
| - }
|
| - }
|
| -}
|
| -static void heightOfSelect(Select *p, int *pnHeight){
|
| - if( p ){
|
| - heightOfExpr(p->pWhere, pnHeight);
|
| - heightOfExpr(p->pHaving, pnHeight);
|
| - heightOfExpr(p->pLimit, pnHeight);
|
| - heightOfExpr(p->pOffset, pnHeight);
|
| - heightOfExprList(p->pEList, pnHeight);
|
| - heightOfExprList(p->pGroupBy, pnHeight);
|
| - heightOfExprList(p->pOrderBy, pnHeight);
|
| - heightOfSelect(p->pPrior, pnHeight);
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Set the Expr.nHeight variable in the structure passed as an
|
| -** argument. An expression with no children, Expr.pList or
|
| -** Expr.pSelect member has a height of 1. Any other expression
|
| -** has a height equal to the maximum height of any other
|
| -** referenced Expr plus one.
|
| -*/
|
| -static void exprSetHeight(Expr *p){
|
| - int nHeight = 0;
|
| - heightOfExpr(p->pLeft, &nHeight);
|
| - heightOfExpr(p->pRight, &nHeight);
|
| - if( ExprHasProperty(p, EP_xIsSelect) ){
|
| - heightOfSelect(p->x.pSelect, &nHeight);
|
| - }else{
|
| - heightOfExprList(p->x.pList, &nHeight);
|
| - }
|
| - p->nHeight = nHeight + 1;
|
| -}
|
| -
|
| -/*
|
| -** Set the Expr.nHeight variable using the exprSetHeight() function. If
|
| -** the height is greater than the maximum allowed expression depth,
|
| -** leave an error in pParse.
|
| -*/
|
| -void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
|
| - exprSetHeight(p);
|
| - sqlite3ExprCheckHeight(pParse, p->nHeight);
|
| -}
|
| -
|
| -/*
|
| -** Return the maximum height of any expression tree referenced
|
| -** by the select statement passed as an argument.
|
| -*/
|
| -int sqlite3SelectExprHeight(Select *p){
|
| - int nHeight = 0;
|
| - heightOfSelect(p, &nHeight);
|
| - return nHeight;
|
| -}
|
| -#else
|
| - #define exprSetHeight(y)
|
| -#endif /* SQLITE_MAX_EXPR_DEPTH>0 */
|
| -
|
| -/*
|
| -** This routine is the core allocator for Expr nodes.
|
| -**
|
| -** Construct a new expression node and return a pointer to it. Memory
|
| -** for this node and for the pToken argument is a single allocation
|
| -** obtained from sqlite3DbMalloc(). The calling function
|
| -** is responsible for making sure the node eventually gets freed.
|
| -**
|
| -** If dequote is true, then the token (if it exists) is dequoted.
|
| -** If dequote is false, no dequoting is performance. The deQuote
|
| -** parameter is ignored if pToken is NULL or if the token does not
|
| -** appear to be quoted. If the quotes were of the form "..." (double-quotes)
|
| -** then the EP_DblQuoted flag is set on the expression node.
|
| -**
|
| -** Special case: If op==TK_INTEGER and pToken points to a string that
|
| -** can be translated into a 32-bit integer, then the token is not
|
| -** stored in u.zToken. Instead, the integer values is written
|
| -** into u.iValue and the EP_IntValue flag is set. No extra storage
|
| -** is allocated to hold the integer text and the dequote flag is ignored.
|
| -*/
|
| -Expr *sqlite3ExprAlloc(
|
| - sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
|
| - int op, /* Expression opcode */
|
| - const Token *pToken, /* Token argument. Might be NULL */
|
| - int dequote /* True to dequote */
|
| -){
|
| - Expr *pNew;
|
| - int nExtra = 0;
|
| - int iValue = 0;
|
| -
|
| - if( pToken ){
|
| - if( op!=TK_INTEGER || pToken->z==0
|
| - || sqlite3GetInt32(pToken->z, &iValue)==0 ){
|
| - nExtra = pToken->n+1;
|
| - }
|
| - }
|
| - pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
|
| - if( pNew ){
|
| - pNew->op = (u8)op;
|
| - pNew->iAgg = -1;
|
| - if( pToken ){
|
| - if( nExtra==0 ){
|
| - pNew->flags |= EP_IntValue;
|
| - pNew->u.iValue = iValue;
|
| - }else{
|
| - int c;
|
| - pNew->u.zToken = (char*)&pNew[1];
|
| - memcpy(pNew->u.zToken, pToken->z, pToken->n);
|
| - pNew->u.zToken[pToken->n] = 0;
|
| - if( dequote && nExtra>=3
|
| - && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
|
| - sqlite3Dequote(pNew->u.zToken);
|
| - if( c=='"' ) pNew->flags |= EP_DblQuoted;
|
| - }
|
| - }
|
| - }
|
| -#if SQLITE_MAX_EXPR_DEPTH>0
|
| - pNew->nHeight = 1;
|
| -#endif
|
| - }
|
| - return pNew;
|
| -}
|
| -
|
| -/*
|
| -** Allocate a new expression node from a zero-terminated token that has
|
| -** already been dequoted.
|
| -*/
|
| -Expr *sqlite3Expr(
|
| - sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
|
| - int op, /* Expression opcode */
|
| - const char *zToken /* Token argument. Might be NULL */
|
| -){
|
| - Token x;
|
| - x.z = zToken;
|
| - x.n = zToken ? sqlite3Strlen30(zToken) : 0;
|
| - return sqlite3ExprAlloc(db, op, &x, 0);
|
| -}
|
| -
|
| -/*
|
| -** Attach subtrees pLeft and pRight to the Expr node pRoot.
|
| -**
|
| -** If pRoot==NULL that means that a memory allocation error has occurred.
|
| -** In that case, delete the subtrees pLeft and pRight.
|
| -*/
|
| -void sqlite3ExprAttachSubtrees(
|
| - sqlite3 *db,
|
| - Expr *pRoot,
|
| - Expr *pLeft,
|
| - Expr *pRight
|
| -){
|
| - if( pRoot==0 ){
|
| - assert( db->mallocFailed );
|
| - sqlite3ExprDelete(db, pLeft);
|
| - sqlite3ExprDelete(db, pRight);
|
| - }else{
|
| - if( pRight ){
|
| - pRoot->pRight = pRight;
|
| - if( pRight->flags & EP_ExpCollate ){
|
| - pRoot->flags |= EP_ExpCollate;
|
| - pRoot->pColl = pRight->pColl;
|
| - }
|
| - }
|
| - if( pLeft ){
|
| - pRoot->pLeft = pLeft;
|
| - if( pLeft->flags & EP_ExpCollate ){
|
| - pRoot->flags |= EP_ExpCollate;
|
| - pRoot->pColl = pLeft->pColl;
|
| - }
|
| - }
|
| - exprSetHeight(pRoot);
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Allocate a Expr node which joins as many as two subtrees.
|
| -**
|
| -** One or both of the subtrees can be NULL. Return a pointer to the new
|
| -** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed,
|
| -** free the subtrees and return NULL.
|
| -*/
|
| -Expr *sqlite3PExpr(
|
| - Parse *pParse, /* Parsing context */
|
| - int op, /* Expression opcode */
|
| - Expr *pLeft, /* Left operand */
|
| - Expr *pRight, /* Right operand */
|
| - const Token *pToken /* Argument token */
|
| -){
|
| - Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
|
| - sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
|
| - return p;
|
| -}
|
| -
|
| -/*
|
| -** Join two expressions using an AND operator. If either expression is
|
| -** NULL, then just return the other expression.
|
| -*/
|
| -Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
|
| - if( pLeft==0 ){
|
| - return pRight;
|
| - }else if( pRight==0 ){
|
| - return pLeft;
|
| - }else{
|
| - Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
|
| - sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
|
| - return pNew;
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Construct a new expression node for a function with multiple
|
| -** arguments.
|
| -*/
|
| -Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
|
| - Expr *pNew;
|
| - sqlite3 *db = pParse->db;
|
| - assert( pToken );
|
| - pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
|
| - if( pNew==0 ){
|
| - sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
|
| - return 0;
|
| - }
|
| - pNew->x.pList = pList;
|
| - assert( !ExprHasProperty(pNew, EP_xIsSelect) );
|
| - sqlite3ExprSetHeight(pParse, pNew);
|
| - return pNew;
|
| -}
|
| -
|
| -/*
|
| -** Assign a variable number to an expression that encodes a wildcard
|
| -** in the original SQL statement.
|
| -**
|
| -** Wildcards consisting of a single "?" are assigned the next sequential
|
| -** variable number.
|
| -**
|
| -** Wildcards of the form "?nnn" are assigned the number "nnn". We make
|
| -** sure "nnn" is not too be to avoid a denial of service attack when
|
| -** the SQL statement comes from an external source.
|
| -**
|
| -** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
|
| -** as the previous instance of the same wildcard. Or if this is the first
|
| -** instance of the wildcard, the next sequenial variable number is
|
| -** assigned.
|
| -*/
|
| -void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
|
| - sqlite3 *db = pParse->db;
|
| - const char *z;
|
| -
|
| - if( pExpr==0 ) return;
|
| - assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
|
| - z = pExpr->u.zToken;
|
| - assert( z!=0 );
|
| - assert( z[0]!=0 );
|
| - if( z[1]==0 ){
|
| - /* Wildcard of the form "?". Assign the next variable number */
|
| - assert( z[0]=='?' );
|
| - pExpr->iTable = ++pParse->nVar;
|
| - }else if( z[0]=='?' ){
|
| - /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
|
| - ** use it as the variable number */
|
| - int i;
|
| - pExpr->iTable = i = atoi((char*)&z[1]);
|
| - testcase( i==0 );
|
| - testcase( i==1 );
|
| - testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
|
| - testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
|
| - if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
|
| - sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
|
| - db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
|
| - }
|
| - if( i>pParse->nVar ){
|
| - pParse->nVar = i;
|
| - }
|
| - }else{
|
| - /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
|
| - ** number as the prior appearance of the same name, or if the name
|
| - ** has never appeared before, reuse the same variable number
|
| - */
|
| - int i;
|
| - u32 n;
|
| - n = sqlite3Strlen30(z);
|
| - for(i=0; i<pParse->nVarExpr; i++){
|
| - Expr *pE = pParse->apVarExpr[i];
|
| - assert( pE!=0 );
|
| - if( memcmp(pE->u.zToken, z, n)==0 && pE->u.zToken[n]==0 ){
|
| - pExpr->iTable = pE->iTable;
|
| - break;
|
| - }
|
| - }
|
| - if( i>=pParse->nVarExpr ){
|
| - pExpr->iTable = ++pParse->nVar;
|
| - if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
|
| - pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
|
| - pParse->apVarExpr =
|
| - sqlite3DbReallocOrFree(
|
| - db,
|
| - pParse->apVarExpr,
|
| - pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
|
| - );
|
| - }
|
| - if( !db->mallocFailed ){
|
| - assert( pParse->apVarExpr!=0 );
|
| - pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
|
| - }
|
| - }
|
| - }
|
| - if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
|
| - sqlite3ErrorMsg(pParse, "too many SQL variables");
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Clear an expression structure without deleting the structure itself.
|
| -** Substructure is deleted.
|
| -*/
|
| -void sqlite3ExprClear(sqlite3 *db, Expr *p){
|
| - assert( p!=0 );
|
| - if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
|
| - sqlite3ExprDelete(db, p->pLeft);
|
| - sqlite3ExprDelete(db, p->pRight);
|
| - if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){
|
| - sqlite3DbFree(db, p->u.zToken);
|
| - }
|
| - if( ExprHasProperty(p, EP_xIsSelect) ){
|
| - sqlite3SelectDelete(db, p->x.pSelect);
|
| - }else{
|
| - sqlite3ExprListDelete(db, p->x.pList);
|
| - }
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Recursively delete an expression tree.
|
| -*/
|
| -void sqlite3ExprDelete(sqlite3 *db, Expr *p){
|
| - if( p==0 ) return;
|
| - sqlite3ExprClear(db, p);
|
| - if( !ExprHasProperty(p, EP_Static) ){
|
| - sqlite3DbFree(db, p);
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Return the number of bytes allocated for the expression structure
|
| -** passed as the first argument. This is always one of EXPR_FULLSIZE,
|
| -** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
|
| -*/
|
| -static int exprStructSize(Expr *p){
|
| - if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
|
| - if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
|
| - return EXPR_FULLSIZE;
|
| -}
|
| -
|
| -/*
|
| -** The dupedExpr*Size() routines each return the number of bytes required
|
| -** to store a copy of an expression or expression tree. They differ in
|
| -** how much of the tree is measured.
|
| -**
|
| -** dupedExprStructSize() Size of only the Expr structure
|
| -** dupedExprNodeSize() Size of Expr + space for token
|
| -** dupedExprSize() Expr + token + subtree components
|
| -**
|
| -***************************************************************************
|
| -**
|
| -** The dupedExprStructSize() function returns two values OR-ed together:
|
| -** (1) the space required for a copy of the Expr structure only and
|
| -** (2) the EP_xxx flags that indicate what the structure size should be.
|
| -** The return values is always one of:
|
| -**
|
| -** EXPR_FULLSIZE
|
| -** EXPR_REDUCEDSIZE | EP_Reduced
|
| -** EXPR_TOKENONLYSIZE | EP_TokenOnly
|
| -**
|
| -** The size of the structure can be found by masking the return value
|
| -** of this routine with 0xfff. The flags can be found by masking the
|
| -** return value with EP_Reduced|EP_TokenOnly.
|
| -**
|
| -** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
|
| -** (unreduced) Expr objects as they or originally constructed by the parser.
|
| -** During expression analysis, extra information is computed and moved into
|
| -** later parts of teh Expr object and that extra information might get chopped
|
| -** off if the expression is reduced. Note also that it does not work to
|
| -** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal
|
| -** to reduce a pristine expression tree from the parser. The implementation
|
| -** of dupedExprStructSize() contain multiple assert() statements that attempt
|
| -** to enforce this constraint.
|
| -*/
|
| -static int dupedExprStructSize(Expr *p, int flags){
|
| - int nSize;
|
| - assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
|
| - if( 0==(flags&EXPRDUP_REDUCE) ){
|
| - nSize = EXPR_FULLSIZE;
|
| - }else{
|
| - assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
|
| - assert( !ExprHasProperty(p, EP_FromJoin) );
|
| - assert( (p->flags2 & EP2_MallocedToken)==0 );
|
| - assert( (p->flags2 & EP2_Irreducible)==0 );
|
| - if( p->pLeft || p->pRight || p->pColl || p->x.pList ){
|
| - nSize = EXPR_REDUCEDSIZE | EP_Reduced;
|
| - }else{
|
| - nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
|
| - }
|
| - }
|
| - return nSize;
|
| -}
|
| -
|
| -/*
|
| -** This function returns the space in bytes required to store the copy
|
| -** of the Expr structure and a copy of the Expr.u.zToken string (if that
|
| -** string is defined.)
|
| -*/
|
| -static int dupedExprNodeSize(Expr *p, int flags){
|
| - int nByte = dupedExprStructSize(p, flags) & 0xfff;
|
| - if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
|
| - nByte += sqlite3Strlen30(p->u.zToken)+1;
|
| - }
|
| - return ROUND8(nByte);
|
| -}
|
| -
|
| -/*
|
| -** Return the number of bytes required to create a duplicate of the
|
| -** expression passed as the first argument. The second argument is a
|
| -** mask containing EXPRDUP_XXX flags.
|
| -**
|
| -** The value returned includes space to create a copy of the Expr struct
|
| -** itself and the buffer referred to by Expr.u.zToken, if any.
|
| -**
|
| -** If the EXPRDUP_REDUCE flag is set, then the return value includes
|
| -** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
|
| -** and Expr.pRight variables (but not for any structures pointed to or
|
| -** descended from the Expr.x.pList or Expr.x.pSelect variables).
|
| -*/
|
| -static int dupedExprSize(Expr *p, int flags){
|
| - int nByte = 0;
|
| - if( p ){
|
| - nByte = dupedExprNodeSize(p, flags);
|
| - if( flags&EXPRDUP_REDUCE ){
|
| - nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
|
| - }
|
| - }
|
| - return nByte;
|
| -}
|
| -
|
| -/*
|
| -** This function is similar to sqlite3ExprDup(), except that if pzBuffer
|
| -** is not NULL then *pzBuffer is assumed to point to a buffer large enough
|
| -** to store the copy of expression p, the copies of p->u.zToken
|
| -** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
|
| -** if any. Before returning, *pzBuffer is set to the first byte passed the
|
| -** portion of the buffer copied into by this function.
|
| -*/
|
| -static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
|
| - Expr *pNew = 0; /* Value to return */
|
| - if( p ){
|
| - const int isReduced = (flags&EXPRDUP_REDUCE);
|
| - u8 *zAlloc;
|
| - u32 staticFlag = 0;
|
| -
|
| - assert( pzBuffer==0 || isReduced );
|
| -
|
| - /* Figure out where to write the new Expr structure. */
|
| - if( pzBuffer ){
|
| - zAlloc = *pzBuffer;
|
| - staticFlag = EP_Static;
|
| - }else{
|
| - zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
|
| - }
|
| - pNew = (Expr *)zAlloc;
|
| -
|
| - if( pNew ){
|
| - /* Set nNewSize to the size allocated for the structure pointed to
|
| - ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
|
| - ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
|
| - ** by the copy of the p->u.zToken string (if any).
|
| - */
|
| - const unsigned nStructSize = dupedExprStructSize(p, flags);
|
| - const int nNewSize = nStructSize & 0xfff;
|
| - int nToken;
|
| - if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
|
| - nToken = sqlite3Strlen30(p->u.zToken) + 1;
|
| - }else{
|
| - nToken = 0;
|
| - }
|
| - if( isReduced ){
|
| - assert( ExprHasProperty(p, EP_Reduced)==0 );
|
| - memcpy(zAlloc, p, nNewSize);
|
| - }else{
|
| - int nSize = exprStructSize(p);
|
| - memcpy(zAlloc, p, nSize);
|
| - if( EXPR_FULLSIZE>nSize ){
|
| - memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
|
| - }
|
| - }
|
| -
|
| - /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
|
| - pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
|
| - pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
|
| - pNew->flags |= staticFlag;
|
| -
|
| - /* Copy the p->u.zToken string, if any. */
|
| - if( nToken ){
|
| - char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
|
| - memcpy(zToken, p->u.zToken, nToken);
|
| - }
|
| -
|
| - if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
|
| - /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
|
| - if( ExprHasProperty(p, EP_xIsSelect) ){
|
| - pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
|
| - }else{
|
| - pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
|
| - }
|
| - }
|
| -
|
| - /* Fill in pNew->pLeft and pNew->pRight. */
|
| - if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){
|
| - zAlloc += dupedExprNodeSize(p, flags);
|
| - if( ExprHasProperty(pNew, EP_Reduced) ){
|
| - pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
|
| - pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
|
| - }
|
| - if( pzBuffer ){
|
| - *pzBuffer = zAlloc;
|
| - }
|
| - }else{
|
| - pNew->flags2 = 0;
|
| - if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
|
| - pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
|
| - pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
|
| - }
|
| - }
|
| -
|
| - }
|
| - }
|
| - return pNew;
|
| -}
|
| -
|
| -/*
|
| -** The following group of routines make deep copies of expressions,
|
| -** expression lists, ID lists, and select statements. The copies can
|
| -** be deleted (by being passed to their respective ...Delete() routines)
|
| -** without effecting the originals.
|
| -**
|
| -** The expression list, ID, and source lists return by sqlite3ExprListDup(),
|
| -** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
|
| -** by subsequent calls to sqlite*ListAppend() routines.
|
| -**
|
| -** Any tables that the SrcList might point to are not duplicated.
|
| -**
|
| -** The flags parameter contains a combination of the EXPRDUP_XXX flags.
|
| -** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
|
| -** truncated version of the usual Expr structure that will be stored as
|
| -** part of the in-memory representation of the database schema.
|
| -*/
|
| -Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
|
| - return exprDup(db, p, flags, 0);
|
| -}
|
| -ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
|
| - ExprList *pNew;
|
| - struct ExprList_item *pItem, *pOldItem;
|
| - int i;
|
| - if( p==0 ) return 0;
|
| - pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
|
| - if( pNew==0 ) return 0;
|
| - pNew->iECursor = 0;
|
| - pNew->nExpr = pNew->nAlloc = p->nExpr;
|
| - pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) );
|
| - if( pItem==0 ){
|
| - sqlite3DbFree(db, pNew);
|
| - return 0;
|
| - }
|
| - pOldItem = p->a;
|
| - for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
|
| - Expr *pOldExpr = pOldItem->pExpr;
|
| - pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
|
| - pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
|
| - pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
|
| - pItem->sortOrder = pOldItem->sortOrder;
|
| - pItem->done = 0;
|
| - pItem->iCol = pOldItem->iCol;
|
| - pItem->iAlias = pOldItem->iAlias;
|
| - }
|
| - return pNew;
|
| -}
|
| -
|
| -/*
|
| -** If cursors, triggers, views and subqueries are all omitted from
|
| -** the build, then none of the following routines, except for
|
| -** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
|
| -** called with a NULL argument.
|
| -*/
|
| -#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
|
| - || !defined(SQLITE_OMIT_SUBQUERY)
|
| -SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
|
| - SrcList *pNew;
|
| - int i;
|
| - int nByte;
|
| - if( p==0 ) return 0;
|
| - nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
|
| - pNew = sqlite3DbMallocRaw(db, nByte );
|
| - if( pNew==0 ) return 0;
|
| - pNew->nSrc = pNew->nAlloc = p->nSrc;
|
| - for(i=0; i<p->nSrc; i++){
|
| - struct SrcList_item *pNewItem = &pNew->a[i];
|
| - struct SrcList_item *pOldItem = &p->a[i];
|
| - Table *pTab;
|
| - pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
|
| - pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
|
| - pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
|
| - pNewItem->jointype = pOldItem->jointype;
|
| - pNewItem->iCursor = pOldItem->iCursor;
|
| - pNewItem->isPopulated = pOldItem->isPopulated;
|
| - pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
|
| - pNewItem->notIndexed = pOldItem->notIndexed;
|
| - pNewItem->pIndex = pOldItem->pIndex;
|
| - pTab = pNewItem->pTab = pOldItem->pTab;
|
| - if( pTab ){
|
| - pTab->nRef++;
|
| - }
|
| - pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
|
| - pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
|
| - pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
|
| - pNewItem->colUsed = pOldItem->colUsed;
|
| - }
|
| - return pNew;
|
| -}
|
| -IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
|
| - IdList *pNew;
|
| - int i;
|
| - if( p==0 ) return 0;
|
| - pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
|
| - if( pNew==0 ) return 0;
|
| - pNew->nId = pNew->nAlloc = p->nId;
|
| - pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
|
| - if( pNew->a==0 ){
|
| - sqlite3DbFree(db, pNew);
|
| - return 0;
|
| - }
|
| - for(i=0; i<p->nId; i++){
|
| - struct IdList_item *pNewItem = &pNew->a[i];
|
| - struct IdList_item *pOldItem = &p->a[i];
|
| - pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
|
| - pNewItem->idx = pOldItem->idx;
|
| - }
|
| - return pNew;
|
| -}
|
| -Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
|
| - Select *pNew;
|
| - if( p==0 ) return 0;
|
| - pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
|
| - if( pNew==0 ) return 0;
|
| - pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
|
| - pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
|
| - pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
|
| - pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
|
| - pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
|
| - pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
|
| - pNew->op = p->op;
|
| - pNew->pPrior = sqlite3SelectDup(db, p->pPrior, flags);
|
| - pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
|
| - pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
|
| - pNew->iLimit = 0;
|
| - pNew->iOffset = 0;
|
| - pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
|
| - pNew->pRightmost = 0;
|
| - pNew->addrOpenEphm[0] = -1;
|
| - pNew->addrOpenEphm[1] = -1;
|
| - pNew->addrOpenEphm[2] = -1;
|
| - return pNew;
|
| -}
|
| -#else
|
| -Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
|
| - assert( p==0 );
|
| - return 0;
|
| -}
|
| -#endif
|
| -
|
| -
|
| -/*
|
| -** Add a new element to the end of an expression list. If pList is
|
| -** initially NULL, then create a new expression list.
|
| -**
|
| -** If a memory allocation error occurs, the entire list is freed and
|
| -** NULL is returned. If non-NULL is returned, then it is guaranteed
|
| -** that the new entry was successfully appended.
|
| -*/
|
| -ExprList *sqlite3ExprListAppend(
|
| - Parse *pParse, /* Parsing context */
|
| - ExprList *pList, /* List to which to append. Might be NULL */
|
| - Expr *pExpr /* Expression to be appended. Might be NULL */
|
| -){
|
| - sqlite3 *db = pParse->db;
|
| - if( pList==0 ){
|
| - pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
|
| - if( pList==0 ){
|
| - goto no_mem;
|
| - }
|
| - assert( pList->nAlloc==0 );
|
| - }
|
| - if( pList->nAlloc<=pList->nExpr ){
|
| - struct ExprList_item *a;
|
| - int n = pList->nAlloc*2 + 4;
|
| - a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
|
| - if( a==0 ){
|
| - goto no_mem;
|
| - }
|
| - pList->a = a;
|
| - pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]);
|
| - }
|
| - assert( pList->a!=0 );
|
| - if( 1 ){
|
| - struct ExprList_item *pItem = &pList->a[pList->nExpr++];
|
| - memset(pItem, 0, sizeof(*pItem));
|
| - pItem->pExpr = pExpr;
|
| - }
|
| - return pList;
|
| -
|
| -no_mem:
|
| - /* Avoid leaking memory if malloc has failed. */
|
| - sqlite3ExprDelete(db, pExpr);
|
| - sqlite3ExprListDelete(db, pList);
|
| - return 0;
|
| -}
|
| -
|
| -/*
|
| -** Set the ExprList.a[].zName element of the most recently added item
|
| -** on the expression list.
|
| -**
|
| -** pList might be NULL following an OOM error. But pName should never be
|
| -** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
|
| -** is set.
|
| -*/
|
| -void sqlite3ExprListSetName(
|
| - Parse *pParse, /* Parsing context */
|
| - ExprList *pList, /* List to which to add the span. */
|
| - Token *pName, /* Name to be added */
|
| - int dequote /* True to cause the name to be dequoted */
|
| -){
|
| - assert( pList!=0 || pParse->db->mallocFailed!=0 );
|
| - if( pList ){
|
| - struct ExprList_item *pItem;
|
| - assert( pList->nExpr>0 );
|
| - pItem = &pList->a[pList->nExpr-1];
|
| - assert( pItem->zName==0 );
|
| - pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
|
| - if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Set the ExprList.a[].zSpan element of the most recently added item
|
| -** on the expression list.
|
| -**
|
| -** pList might be NULL following an OOM error. But pSpan should never be
|
| -** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
|
| -** is set.
|
| -*/
|
| -void sqlite3ExprListSetSpan(
|
| - Parse *pParse, /* Parsing context */
|
| - ExprList *pList, /* List to which to add the span. */
|
| - ExprSpan *pSpan /* The span to be added */
|
| -){
|
| - sqlite3 *db = pParse->db;
|
| - assert( pList!=0 || db->mallocFailed!=0 );
|
| - if( pList ){
|
| - struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
|
| - assert( pList->nExpr>0 );
|
| - assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
|
| - sqlite3DbFree(db, pItem->zSpan);
|
| - pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
|
| - (int)(pSpan->zEnd - pSpan->zStart));
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** If the expression list pEList contains more than iLimit elements,
|
| -** leave an error message in pParse.
|
| -*/
|
| -void sqlite3ExprListCheckLength(
|
| - Parse *pParse,
|
| - ExprList *pEList,
|
| - const char *zObject
|
| -){
|
| - int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
|
| - testcase( pEList && pEList->nExpr==mx );
|
| - testcase( pEList && pEList->nExpr==mx+1 );
|
| - if( pEList && pEList->nExpr>mx ){
|
| - sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Delete an entire expression list.
|
| -*/
|
| -void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
|
| - int i;
|
| - struct ExprList_item *pItem;
|
| - if( pList==0 ) return;
|
| - assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
|
| - assert( pList->nExpr<=pList->nAlloc );
|
| - for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
|
| - sqlite3ExprDelete(db, pItem->pExpr);
|
| - sqlite3DbFree(db, pItem->zName);
|
| - sqlite3DbFree(db, pItem->zSpan);
|
| - }
|
| - sqlite3DbFree(db, pList->a);
|
| - sqlite3DbFree(db, pList);
|
| -}
|
| -
|
| -/*
|
| -** These routines are Walker callbacks. Walker.u.pi is a pointer
|
| -** to an integer. These routines are checking an expression to see
|
| -** if it is a constant. Set *Walker.u.pi to 0 if the expression is
|
| -** not constant.
|
| -**
|
| -** These callback routines are used to implement the following:
|
| -**
|
| -** sqlite3ExprIsConstant()
|
| -** sqlite3ExprIsConstantNotJoin()
|
| -** sqlite3ExprIsConstantOrFunction()
|
| -**
|
| -*/
|
| -static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
|
| -
|
| - /* If pWalker->u.i is 3 then any term of the expression that comes from
|
| - ** the ON or USING clauses of a join disqualifies the expression
|
| - ** from being considered constant. */
|
| - if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
|
| - pWalker->u.i = 0;
|
| - return WRC_Abort;
|
| - }
|
| -
|
| - switch( pExpr->op ){
|
| - /* Consider functions to be constant if all their arguments are constant
|
| - ** and pWalker->u.i==2 */
|
| - case TK_FUNCTION:
|
| - if( pWalker->u.i==2 ) return 0;
|
| - /* Fall through */
|
| - case TK_ID:
|
| - case TK_COLUMN:
|
| - case TK_AGG_FUNCTION:
|
| - case TK_AGG_COLUMN:
|
| - testcase( pExpr->op==TK_ID );
|
| - testcase( pExpr->op==TK_COLUMN );
|
| - testcase( pExpr->op==TK_AGG_FUNCTION );
|
| - testcase( pExpr->op==TK_AGG_COLUMN );
|
| - pWalker->u.i = 0;
|
| - return WRC_Abort;
|
| - default:
|
| - testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
|
| - testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
|
| - return WRC_Continue;
|
| - }
|
| -}
|
| -static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
|
| - UNUSED_PARAMETER(NotUsed);
|
| - pWalker->u.i = 0;
|
| - return WRC_Abort;
|
| -}
|
| -static int exprIsConst(Expr *p, int initFlag){
|
| - Walker w;
|
| - w.u.i = initFlag;
|
| - w.xExprCallback = exprNodeIsConstant;
|
| - w.xSelectCallback = selectNodeIsConstant;
|
| - sqlite3WalkExpr(&w, p);
|
| - return w.u.i;
|
| -}
|
| -
|
| -/*
|
| -** Walk an expression tree. Return 1 if the expression is constant
|
| -** and 0 if it involves variables or function calls.
|
| -**
|
| -** For the purposes of this function, a double-quoted string (ex: "abc")
|
| -** is considered a variable but a single-quoted string (ex: 'abc') is
|
| -** a constant.
|
| -*/
|
| -int sqlite3ExprIsConstant(Expr *p){
|
| - return exprIsConst(p, 1);
|
| -}
|
| -
|
| -/*
|
| -** Walk an expression tree. Return 1 if the expression is constant
|
| -** that does no originate from the ON or USING clauses of a join.
|
| -** Return 0 if it involves variables or function calls or terms from
|
| -** an ON or USING clause.
|
| -*/
|
| -int sqlite3ExprIsConstantNotJoin(Expr *p){
|
| - return exprIsConst(p, 3);
|
| -}
|
| -
|
| -/*
|
| -** Walk an expression tree. Return 1 if the expression is constant
|
| -** or a function call with constant arguments. Return and 0 if there
|
| -** are any variables.
|
| -**
|
| -** For the purposes of this function, a double-quoted string (ex: "abc")
|
| -** is considered a variable but a single-quoted string (ex: 'abc') is
|
| -** a constant.
|
| -*/
|
| -int sqlite3ExprIsConstantOrFunction(Expr *p){
|
| - return exprIsConst(p, 2);
|
| -}
|
| -
|
| -/*
|
| -** If the expression p codes a constant integer that is small enough
|
| -** to fit in a 32-bit integer, return 1 and put the value of the integer
|
| -** in *pValue. If the expression is not an integer or if it is too big
|
| -** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
|
| -*/
|
| -int sqlite3ExprIsInteger(Expr *p, int *pValue){
|
| - int rc = 0;
|
| - if( p->flags & EP_IntValue ){
|
| - *pValue = p->u.iValue;
|
| - return 1;
|
| - }
|
| - switch( p->op ){
|
| - case TK_INTEGER: {
|
| - rc = sqlite3GetInt32(p->u.zToken, pValue);
|
| - assert( rc==0 );
|
| - break;
|
| - }
|
| - case TK_UPLUS: {
|
| - rc = sqlite3ExprIsInteger(p->pLeft, pValue);
|
| - break;
|
| - }
|
| - case TK_UMINUS: {
|
| - int v;
|
| - if( sqlite3ExprIsInteger(p->pLeft, &v) ){
|
| - *pValue = -v;
|
| - rc = 1;
|
| - }
|
| - break;
|
| - }
|
| - default: break;
|
| - }
|
| - if( rc ){
|
| - assert( ExprHasAnyProperty(p, EP_Reduced|EP_TokenOnly)
|
| - || (p->flags2 & EP2_MallocedToken)==0 );
|
| - p->op = TK_INTEGER;
|
| - p->flags |= EP_IntValue;
|
| - p->u.iValue = *pValue;
|
| - }
|
| - return rc;
|
| -}
|
| -
|
| -/*
|
| -** Return TRUE if the given string is a row-id column name.
|
| -*/
|
| -int sqlite3IsRowid(const char *z){
|
| - if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
|
| - if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
|
| - if( sqlite3StrICmp(z, "OID")==0 ) return 1;
|
| - return 0;
|
| -}
|
| -
|
| -/*
|
| -** Return true if we are able to the IN operator optimization on a
|
| -** query of the form
|
| -**
|
| -** x IN (SELECT ...)
|
| -**
|
| -** Where the SELECT... clause is as specified by the parameter to this
|
| -** routine.
|
| -**
|
| -** The Select object passed in has already been preprocessed and no
|
| -** errors have been found.
|
| -*/
|
| -#ifndef SQLITE_OMIT_SUBQUERY
|
| -static int isCandidateForInOpt(Select *p){
|
| - SrcList *pSrc;
|
| - ExprList *pEList;
|
| - Table *pTab;
|
| - if( p==0 ) return 0; /* right-hand side of IN is SELECT */
|
| - if( p->pPrior ) return 0; /* Not a compound SELECT */
|
| - if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
|
| - testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
|
| - testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
|
| - return 0; /* No DISTINCT keyword and no aggregate functions */
|
| - }
|
| - assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */
|
| - if( p->pLimit ) return 0; /* Has no LIMIT clause */
|
| - assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */
|
| - if( p->pWhere ) return 0; /* Has no WHERE clause */
|
| - pSrc = p->pSrc;
|
| - assert( pSrc!=0 );
|
| - if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */
|
| - if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */
|
| - pTab = pSrc->a[0].pTab;
|
| - if( NEVER(pTab==0) ) return 0;
|
| - assert( pTab->pSelect==0 ); /* FROM clause is not a view */
|
| - if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */
|
| - pEList = p->pEList;
|
| - if( pEList->nExpr!=1 ) return 0; /* One column in the result set */
|
| - if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
|
| - return 1;
|
| -}
|
| -#endif /* SQLITE_OMIT_SUBQUERY */
|
| -
|
| -/*
|
| -** This function is used by the implementation of the IN (...) operator.
|
| -** It's job is to find or create a b-tree structure that may be used
|
| -** either to test for membership of the (...) set or to iterate through
|
| -** its members, skipping duplicates.
|
| -**
|
| -** The index of the cursor opened on the b-tree (database table, database index
|
| -** or ephermal table) is stored in pX->iTable before this function returns.
|
| -** The returned value of this function indicates the b-tree type, as follows:
|
| -**
|
| -** IN_INDEX_ROWID - The cursor was opened on a database table.
|
| -** IN_INDEX_INDEX - The cursor was opened on a database index.
|
| -** IN_INDEX_EPH - The cursor was opened on a specially created and
|
| -** populated epheremal table.
|
| -**
|
| -** An existing b-tree may only be used if the SELECT is of the simple
|
| -** form:
|
| -**
|
| -** SELECT <column> FROM <table>
|
| -**
|
| -** If the prNotFound parameter is 0, then the b-tree will be used to iterate
|
| -** through the set members, skipping any duplicates. In this case an
|
| -** epheremal table must be used unless the selected <column> is guaranteed
|
| -** to be unique - either because it is an INTEGER PRIMARY KEY or it
|
| -** has a UNIQUE constraint or UNIQUE index.
|
| -**
|
| -** If the prNotFound parameter is not 0, then the b-tree will be used
|
| -** for fast set membership tests. In this case an epheremal table must
|
| -** be used unless <column> is an INTEGER PRIMARY KEY or an index can
|
| -** be found with <column> as its left-most column.
|
| -**
|
| -** When the b-tree is being used for membership tests, the calling function
|
| -** needs to know whether or not the structure contains an SQL NULL
|
| -** value in order to correctly evaluate expressions like "X IN (Y, Z)".
|
| -** If there is a chance that the b-tree might contain a NULL value at
|
| -** runtime, then a register is allocated and the register number written
|
| -** to *prNotFound. If there is no chance that the b-tree contains a
|
| -** NULL value, then *prNotFound is left unchanged.
|
| -**
|
| -** If a register is allocated and its location stored in *prNotFound, then
|
| -** its initial value is NULL. If the b-tree does not remain constant
|
| -** for the duration of the query (i.e. the SELECT that generates the b-tree
|
| -** is a correlated subquery) then the value of the allocated register is
|
| -** reset to NULL each time the b-tree is repopulated. This allows the
|
| -** caller to use vdbe code equivalent to the following:
|
| -**
|
| -** if( register==NULL ){
|
| -** has_null = <test if data structure contains null>
|
| -** register = 1
|
| -** }
|
| -**
|
| -** in order to avoid running the <test if data structure contains null>
|
| -** test more often than is necessary.
|
| -*/
|
| -#ifndef SQLITE_OMIT_SUBQUERY
|
| -int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
|
| - Select *p; /* SELECT to the right of IN operator */
|
| - int eType = 0; /* Type of RHS table. IN_INDEX_* */
|
| - int iTab = pParse->nTab++; /* Cursor of the RHS table */
|
| - int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */
|
| -
|
| - /* Check to see if an existing table or index can be used to
|
| - ** satisfy the query. This is preferable to generating a new
|
| - ** ephemeral table.
|
| - */
|
| - p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
|
| - if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
|
| - sqlite3 *db = pParse->db; /* Database connection */
|
| - Expr *pExpr = p->pEList->a[0].pExpr; /* Expression <column> */
|
| - int iCol = pExpr->iColumn; /* Index of column <column> */
|
| - Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
|
| - Table *pTab = p->pSrc->a[0].pTab; /* Table <table>. */
|
| - int iDb; /* Database idx for pTab */
|
| -
|
| - /* Code an OP_VerifyCookie and OP_TableLock for <table>. */
|
| - iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
| - sqlite3CodeVerifySchema(pParse, iDb);
|
| - sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
|
| -
|
| - /* This function is only called from two places. In both cases the vdbe
|
| - ** has already been allocated. So assume sqlite3GetVdbe() is always
|
| - ** successful here.
|
| - */
|
| - assert(v);
|
| - if( iCol<0 ){
|
| - int iMem = ++pParse->nMem;
|
| - int iAddr;
|
| -
|
| - iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
|
| - sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
|
| -
|
| - sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
|
| - eType = IN_INDEX_ROWID;
|
| -
|
| - sqlite3VdbeJumpHere(v, iAddr);
|
| - }else{
|
| - Index *pIdx; /* Iterator variable */
|
| -
|
| - /* The collation sequence used by the comparison. If an index is to
|
| - ** be used in place of a temp-table, it must be ordered according
|
| - ** to this collation sequence. */
|
| - CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
|
| -
|
| - /* Check that the affinity that will be used to perform the
|
| - ** comparison is the same as the affinity of the column. If
|
| - ** it is not, it is not possible to use any index.
|
| - */
|
| - char aff = comparisonAffinity(pX);
|
| - int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
|
| -
|
| - for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
|
| - if( (pIdx->aiColumn[0]==iCol)
|
| - && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
|
| - && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
|
| - ){
|
| - int iMem = ++pParse->nMem;
|
| - int iAddr;
|
| - char *pKey;
|
| -
|
| - pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
|
| - iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
|
| - sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
|
| -
|
| - sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
|
| - pKey,P4_KEYINFO_HANDOFF);
|
| - VdbeComment((v, "%s", pIdx->zName));
|
| - eType = IN_INDEX_INDEX;
|
| -
|
| - sqlite3VdbeJumpHere(v, iAddr);
|
| - if( prNotFound && !pTab->aCol[iCol].notNull ){
|
| - *prNotFound = ++pParse->nMem;
|
| - }
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| - if( eType==0 ){
|
| - /* Could not found an existing able or index to use as the RHS b-tree.
|
| - ** We will have to generate an ephemeral table to do the job.
|
| - */
|
| - int rMayHaveNull = 0;
|
| - eType = IN_INDEX_EPH;
|
| - if( prNotFound ){
|
| - *prNotFound = rMayHaveNull = ++pParse->nMem;
|
| - }else if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){
|
| - eType = IN_INDEX_ROWID;
|
| - }
|
| - sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
|
| - }else{
|
| - pX->iTable = iTab;
|
| - }
|
| - return eType;
|
| -}
|
| -#endif
|
| -
|
| -/*
|
| -** Generate code for scalar subqueries used as an expression
|
| -** and IN operators. Examples:
|
| -**
|
| -** (SELECT a FROM b) -- subquery
|
| -** EXISTS (SELECT a FROM b) -- EXISTS subquery
|
| -** x IN (4,5,11) -- IN operator with list on right-hand side
|
| -** x IN (SELECT a FROM b) -- IN operator with subquery on the right
|
| -**
|
| -** The pExpr parameter describes the expression that contains the IN
|
| -** operator or subquery.
|
| -**
|
| -** If parameter isRowid is non-zero, then expression pExpr is guaranteed
|
| -** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
|
| -** to some integer key column of a table B-Tree. In this case, use an
|
| -** intkey B-Tree to store the set of IN(...) values instead of the usual
|
| -** (slower) variable length keys B-Tree.
|
| -**
|
| -** If rMayHaveNull is non-zero, that means that the operation is an IN
|
| -** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
|
| -** Furthermore, the IN is in a WHERE clause and that we really want
|
| -** to iterate over the RHS of the IN operator in order to quickly locate
|
| -** all corresponding LHS elements. All this routine does is initialize
|
| -** the register given by rMayHaveNull to NULL. Calling routines will take
|
| -** care of changing this register value to non-NULL if the RHS is NULL-free.
|
| -**
|
| -** If rMayHaveNull is zero, that means that the subquery is being used
|
| -** for membership testing only. There is no need to initialize any
|
| -** registers to indicate the presense or absence of NULLs on the RHS.
|
| -*/
|
| -#ifndef SQLITE_OMIT_SUBQUERY
|
| -void sqlite3CodeSubselect(
|
| - Parse *pParse, /* Parsing context */
|
| - Expr *pExpr, /* The IN, SELECT, or EXISTS operator */
|
| - int rMayHaveNull, /* Register that records whether NULLs exist in RHS */
|
| - int isRowid /* If true, LHS of IN operator is a rowid */
|
| -){
|
| - int testAddr = 0; /* One-time test address */
|
| - Vdbe *v = sqlite3GetVdbe(pParse);
|
| - if( NEVER(v==0) ) return;
|
| - sqlite3ExprCachePush(pParse);
|
| -
|
| - /* This code must be run in its entirety every time it is encountered
|
| - ** if any of the following is true:
|
| - **
|
| - ** * The right-hand side is a correlated subquery
|
| - ** * The right-hand side is an expression list containing variables
|
| - ** * We are inside a trigger
|
| - **
|
| - ** If all of the above are false, then we can run this code just once
|
| - ** save the results, and reuse the same result on subsequent invocations.
|
| - */
|
| - if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->pTriggerTab ){
|
| - int mem = ++pParse->nMem;
|
| - sqlite3VdbeAddOp1(v, OP_If, mem);
|
| - testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
|
| - assert( testAddr>0 || pParse->db->mallocFailed );
|
| - }
|
| -
|
| - switch( pExpr->op ){
|
| - case TK_IN: {
|
| - char affinity;
|
| - KeyInfo keyInfo;
|
| - int addr; /* Address of OP_OpenEphemeral instruction */
|
| - Expr *pLeft = pExpr->pLeft;
|
| -
|
| - if( rMayHaveNull ){
|
| - sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
|
| - }
|
| -
|
| - affinity = sqlite3ExprAffinity(pLeft);
|
| -
|
| - /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
|
| - ** expression it is handled the same way. A virtual table is
|
| - ** filled with single-field index keys representing the results
|
| - ** from the SELECT or the <exprlist>.
|
| - **
|
| - ** If the 'x' expression is a column value, or the SELECT...
|
| - ** statement returns a column value, then the affinity of that
|
| - ** column is used to build the index keys. If both 'x' and the
|
| - ** SELECT... statement are columns, then numeric affinity is used
|
| - ** if either column has NUMERIC or INTEGER affinity. If neither
|
| - ** 'x' nor the SELECT... statement are columns, then numeric affinity
|
| - ** is used.
|
| - */
|
| - pExpr->iTable = pParse->nTab++;
|
| - addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
|
| - memset(&keyInfo, 0, sizeof(keyInfo));
|
| - keyInfo.nField = 1;
|
| -
|
| - if( ExprHasProperty(pExpr, EP_xIsSelect) ){
|
| - /* Case 1: expr IN (SELECT ...)
|
| - **
|
| - ** Generate code to write the results of the select into the temporary
|
| - ** table allocated and opened above.
|
| - */
|
| - SelectDest dest;
|
| - ExprList *pEList;
|
| -
|
| - assert( !isRowid );
|
| - sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
|
| - dest.affinity = (u8)affinity;
|
| - assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
|
| - if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
|
| - return;
|
| - }
|
| - pEList = pExpr->x.pSelect->pEList;
|
| - if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){
|
| - keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
|
| - pEList->a[0].pExpr);
|
| - }
|
| - }else if( pExpr->x.pList!=0 ){
|
| - /* Case 2: expr IN (exprlist)
|
| - **
|
| - ** For each expression, build an index key from the evaluation and
|
| - ** store it in the temporary table. If <expr> is a column, then use
|
| - ** that columns affinity when building index keys. If <expr> is not
|
| - ** a column, use numeric affinity.
|
| - */
|
| - int i;
|
| - ExprList *pList = pExpr->x.pList;
|
| - struct ExprList_item *pItem;
|
| - int r1, r2, r3;
|
| -
|
| - if( !affinity ){
|
| - affinity = SQLITE_AFF_NONE;
|
| - }
|
| - keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
|
| -
|
| - /* Loop through each expression in <exprlist>. */
|
| - r1 = sqlite3GetTempReg(pParse);
|
| - r2 = sqlite3GetTempReg(pParse);
|
| - sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
|
| - for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
|
| - Expr *pE2 = pItem->pExpr;
|
| -
|
| - /* If the expression is not constant then we will need to
|
| - ** disable the test that was generated above that makes sure
|
| - ** this code only executes once. Because for a non-constant
|
| - ** expression we need to rerun this code each time.
|
| - */
|
| - if( testAddr && !sqlite3ExprIsConstant(pE2) ){
|
| - sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
|
| - testAddr = 0;
|
| - }
|
| -
|
| - /* Evaluate the expression and insert it into the temp table */
|
| - r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
|
| - if( isRowid ){
|
| - sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, sqlite3VdbeCurrentAddr(v)+2);
|
| - sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
|
| - }else{
|
| - sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
|
| - sqlite3ExprCacheAffinityChange(pParse, r3, 1);
|
| - sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
|
| - }
|
| - }
|
| - sqlite3ReleaseTempReg(pParse, r1);
|
| - sqlite3ReleaseTempReg(pParse, r2);
|
| - }
|
| - if( !isRowid ){
|
| - sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
|
| - }
|
| - break;
|
| - }
|
| -
|
| - case TK_EXISTS:
|
| - case TK_SELECT:
|
| - default: {
|
| - /* If this has to be a scalar SELECT. Generate code to put the
|
| - ** value of this select in a memory cell and record the number
|
| - ** of the memory cell in iColumn. If this is an EXISTS, write
|
| - ** an integer 0 (not exists) or 1 (exists) into a memory cell
|
| - ** and record that memory cell in iColumn.
|
| - */
|
| - static const Token one = { "1", 1 }; /* Token for literal value 1 */
|
| - Select *pSel; /* SELECT statement to encode */
|
| - SelectDest dest; /* How to deal with SELECt result */
|
| -
|
| - testcase( pExpr->op==TK_EXISTS );
|
| - testcase( pExpr->op==TK_SELECT );
|
| - assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
|
| -
|
| - assert( ExprHasProperty(pExpr, EP_xIsSelect) );
|
| - pSel = pExpr->x.pSelect;
|
| - sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
|
| - if( pExpr->op==TK_SELECT ){
|
| - dest.eDest = SRT_Mem;
|
| - sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
|
| - VdbeComment((v, "Init subquery result"));
|
| - }else{
|
| - dest.eDest = SRT_Exists;
|
| - sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
|
| - VdbeComment((v, "Init EXISTS result"));
|
| - }
|
| - sqlite3ExprDelete(pParse->db, pSel->pLimit);
|
| - pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
|
| - if( sqlite3Select(pParse, pSel, &dest) ){
|
| - return;
|
| - }
|
| - pExpr->iColumn = (i16)dest.iParm;
|
| - ExprSetIrreducible(pExpr);
|
| - break;
|
| - }
|
| - }
|
| -
|
| - if( testAddr ){
|
| - sqlite3VdbeJumpHere(v, testAddr-1);
|
| - }
|
| - sqlite3ExprCachePop(pParse, 1);
|
| -
|
| - return;
|
| -}
|
| -#endif /* SQLITE_OMIT_SUBQUERY */
|
| -
|
| -/*
|
| -** Duplicate an 8-byte value
|
| -*/
|
| -static char *dup8bytes(Vdbe *v, const char *in){
|
| - char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
|
| - if( out ){
|
| - memcpy(out, in, 8);
|
| - }
|
| - return out;
|
| -}
|
| -
|
| -/*
|
| -** Generate an instruction that will put the floating point
|
| -** value described by z[0..n-1] into register iMem.
|
| -**
|
| -** The z[] string will probably not be zero-terminated. But the
|
| -** z[n] character is guaranteed to be something that does not look
|
| -** like the continuation of the number.
|
| -*/
|
| -static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
|
| - if( ALWAYS(z!=0) ){
|
| - double value;
|
| - char *zV;
|
| - sqlite3AtoF(z, &value);
|
| - assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
|
| - if( negateFlag ) value = -value;
|
| - zV = dup8bytes(v, (char*)&value);
|
| - sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
|
| - }
|
| -}
|
| -
|
| -
|
| -/*
|
| -** Generate an instruction that will put the integer describe by
|
| -** text z[0..n-1] into register iMem.
|
| -**
|
| -** The z[] string will probably not be zero-terminated. But the
|
| -** z[n] character is guaranteed to be something that does not look
|
| -** like the continuation of the number.
|
| -*/
|
| -static void codeInteger(Vdbe *v, Expr *pExpr, int negFlag, int iMem){
|
| - if( pExpr->flags & EP_IntValue ){
|
| - int i = pExpr->u.iValue;
|
| - if( negFlag ) i = -i;
|
| - sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
|
| - }else{
|
| - const char *z = pExpr->u.zToken;
|
| - assert( z!=0 );
|
| - if( sqlite3FitsIn64Bits(z, negFlag) ){
|
| - i64 value;
|
| - char *zV;
|
| - sqlite3Atoi64(z, &value);
|
| - if( negFlag ) value = -value;
|
| - zV = dup8bytes(v, (char*)&value);
|
| - sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
|
| - }else{
|
| - codeReal(v, z, negFlag, iMem);
|
| - }
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Clear a cache entry.
|
| -*/
|
| -static void cacheEntryClear(Parse *pParse, struct yColCache *p){
|
| - if( p->tempReg ){
|
| - if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
|
| - pParse->aTempReg[pParse->nTempReg++] = p->iReg;
|
| - }
|
| - p->tempReg = 0;
|
| - }
|
| -}
|
| -
|
| -
|
| -/*
|
| -** Record in the column cache that a particular column from a
|
| -** particular table is stored in a particular register.
|
| -*/
|
| -void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
|
| - int i;
|
| - int minLru;
|
| - int idxLru;
|
| - struct yColCache *p;
|
| -
|
| - assert( iReg>0 ); /* Register numbers are always positive */
|
| - assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */
|
| -
|
| - /* First replace any existing entry */
|
| - for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| - if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){
|
| - cacheEntryClear(pParse, p);
|
| - p->iLevel = pParse->iCacheLevel;
|
| - p->iReg = iReg;
|
| - p->affChange = 0;
|
| - p->lru = pParse->iCacheCnt++;
|
| - return;
|
| - }
|
| - }
|
| -
|
| - /* Find an empty slot and replace it */
|
| - for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| - if( p->iReg==0 ){
|
| - p->iLevel = pParse->iCacheLevel;
|
| - p->iTable = iTab;
|
| - p->iColumn = iCol;
|
| - p->iReg = iReg;
|
| - p->affChange = 0;
|
| - p->tempReg = 0;
|
| - p->lru = pParse->iCacheCnt++;
|
| - return;
|
| - }
|
| - }
|
| -
|
| - /* Replace the last recently used */
|
| - minLru = 0x7fffffff;
|
| - idxLru = -1;
|
| - for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| - if( p->lru<minLru ){
|
| - idxLru = i;
|
| - minLru = p->lru;
|
| - }
|
| - }
|
| - if( ALWAYS(idxLru>=0) ){
|
| - p = &pParse->aColCache[idxLru];
|
| - p->iLevel = pParse->iCacheLevel;
|
| - p->iTable = iTab;
|
| - p->iColumn = iCol;
|
| - p->iReg = iReg;
|
| - p->affChange = 0;
|
| - p->tempReg = 0;
|
| - p->lru = pParse->iCacheCnt++;
|
| - return;
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Indicate that a register is being overwritten. Purge the register
|
| -** from the column cache.
|
| -*/
|
| -void sqlite3ExprCacheRemove(Parse *pParse, int iReg){
|
| - int i;
|
| - struct yColCache *p;
|
| - for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| - if( p->iReg==iReg ){
|
| - cacheEntryClear(pParse, p);
|
| - p->iReg = 0;
|
| - }
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Remember the current column cache context. Any new entries added
|
| -** added to the column cache after this call are removed when the
|
| -** corresponding pop occurs.
|
| -*/
|
| -void sqlite3ExprCachePush(Parse *pParse){
|
| - pParse->iCacheLevel++;
|
| -}
|
| -
|
| -/*
|
| -** Remove from the column cache any entries that were added since the
|
| -** the previous N Push operations. In other words, restore the cache
|
| -** to the state it was in N Pushes ago.
|
| -*/
|
| -void sqlite3ExprCachePop(Parse *pParse, int N){
|
| - int i;
|
| - struct yColCache *p;
|
| - assert( N>0 );
|
| - assert( pParse->iCacheLevel>=N );
|
| - pParse->iCacheLevel -= N;
|
| - for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| - if( p->iReg && p->iLevel>pParse->iCacheLevel ){
|
| - cacheEntryClear(pParse, p);
|
| - p->iReg = 0;
|
| - }
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** When a cached column is reused, make sure that its register is
|
| -** no longer available as a temp register. ticket #3879: that same
|
| -** register might be in the cache in multiple places, so be sure to
|
| -** get them all.
|
| -*/
|
| -static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
|
| - int i;
|
| - struct yColCache *p;
|
| - for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| - if( p->iReg==iReg ){
|
| - p->tempReg = 0;
|
| - }
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Generate code that will extract the iColumn-th column from
|
| -** table pTab and store the column value in a register. An effort
|
| -** is made to store the column value in register iReg, but this is
|
| -** not guaranteed. The location of the column value is returned.
|
| -**
|
| -** There must be an open cursor to pTab in iTable when this routine
|
| -** is called. If iColumn<0 then code is generated that extracts the rowid.
|
| -**
|
| -** This routine might attempt to reuse the value of the column that
|
| -** has already been loaded into a register. The value will always
|
| -** be used if it has not undergone any affinity changes. But if
|
| -** an affinity change has occurred, then the cached value will only be
|
| -** used if allowAffChng is true.
|
| -*/
|
| -int sqlite3ExprCodeGetColumn(
|
| - Parse *pParse, /* Parsing and code generating context */
|
| - Table *pTab, /* Description of the table we are reading from */
|
| - int iColumn, /* Index of the table column */
|
| - int iTable, /* The cursor pointing to the table */
|
| - int iReg, /* Store results here */
|
| - int allowAffChng /* True if prior affinity changes are OK */
|
| -){
|
| - Vdbe *v = pParse->pVdbe;
|
| - int i;
|
| - struct yColCache *p;
|
| -
|
| - for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| - if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn
|
| - && (!p->affChange || allowAffChng) ){
|
| - p->lru = pParse->iCacheCnt++;
|
| - sqlite3ExprCachePinRegister(pParse, p->iReg);
|
| - return p->iReg;
|
| - }
|
| - }
|
| - assert( v!=0 );
|
| - if( iColumn<0 ){
|
| - sqlite3VdbeAddOp2(v, OP_Rowid, iTable, iReg);
|
| - }else if( ALWAYS(pTab!=0) ){
|
| - int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
|
| - sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg);
|
| - sqlite3ColumnDefault(v, pTab, iColumn, iReg);
|
| - }
|
| - sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
|
| - return iReg;
|
| -}
|
| -
|
| -/*
|
| -** Clear all column cache entries.
|
| -*/
|
| -void sqlite3ExprCacheClear(Parse *pParse){
|
| - int i;
|
| - struct yColCache *p;
|
| -
|
| - for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| - if( p->iReg ){
|
| - cacheEntryClear(pParse, p);
|
| - p->iReg = 0;
|
| - }
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Record the fact that an affinity change has occurred on iCount
|
| -** registers starting with iStart.
|
| -*/
|
| -void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
|
| - int iEnd = iStart + iCount - 1;
|
| - int i;
|
| - struct yColCache *p;
|
| - for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| - int r = p->iReg;
|
| - if( r>=iStart && r<=iEnd ){
|
| - p->affChange = 1;
|
| - }
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Generate code to move content from registers iFrom...iFrom+nReg-1
|
| -** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
|
| -*/
|
| -void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
|
| - int i;
|
| - struct yColCache *p;
|
| - if( NEVER(iFrom==iTo) ) return;
|
| - sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
|
| - for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| - int x = p->iReg;
|
| - if( x>=iFrom && x<iFrom+nReg ){
|
| - p->iReg += iTo-iFrom;
|
| - }
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Generate code to copy content from registers iFrom...iFrom+nReg-1
|
| -** over to iTo..iTo+nReg-1.
|
| -*/
|
| -void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
|
| - int i;
|
| - if( NEVER(iFrom==iTo) ) return;
|
| - for(i=0; i<nReg; i++){
|
| - sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Return true if any register in the range iFrom..iTo (inclusive)
|
| -** is used as part of the column cache.
|
| -*/
|
| -static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
|
| - int i;
|
| - struct yColCache *p;
|
| - for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| - int r = p->iReg;
|
| - if( r>=iFrom && r<=iTo ) return 1;
|
| - }
|
| - return 0;
|
| -}
|
| -
|
| -/*
|
| -** If the last instruction coded is an ephemeral copy of any of
|
| -** the registers in the nReg registers beginning with iReg, then
|
| -** convert the last instruction from OP_SCopy to OP_Copy.
|
| -*/
|
| -void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){
|
| - VdbeOp *pOp;
|
| - Vdbe *v;
|
| -
|
| - assert( pParse->db->mallocFailed==0 );
|
| - v = pParse->pVdbe;
|
| - assert( v!=0 );
|
| - pOp = sqlite3VdbeGetOp(v, -1);
|
| - assert( pOp!=0 );
|
| - if( pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){
|
| - pOp->opcode = OP_Copy;
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Generate code to store the value of the iAlias-th alias in register
|
| -** target. The first time this is called, pExpr is evaluated to compute
|
| -** the value of the alias. The value is stored in an auxiliary register
|
| -** and the number of that register is returned. On subsequent calls,
|
| -** the register number is returned without generating any code.
|
| -**
|
| -** Note that in order for this to work, code must be generated in the
|
| -** same order that it is executed.
|
| -**
|
| -** Aliases are numbered starting with 1. So iAlias is in the range
|
| -** of 1 to pParse->nAlias inclusive.
|
| -**
|
| -** pParse->aAlias[iAlias-1] records the register number where the value
|
| -** of the iAlias-th alias is stored. If zero, that means that the
|
| -** alias has not yet been computed.
|
| -*/
|
| -static int codeAlias(Parse *pParse, int iAlias, Expr *pExpr, int target){
|
| -#if 0
|
| - sqlite3 *db = pParse->db;
|
| - int iReg;
|
| - if( pParse->nAliasAlloc<pParse->nAlias ){
|
| - pParse->aAlias = sqlite3DbReallocOrFree(db, pParse->aAlias,
|
| - sizeof(pParse->aAlias[0])*pParse->nAlias );
|
| - testcase( db->mallocFailed && pParse->nAliasAlloc>0 );
|
| - if( db->mallocFailed ) return 0;
|
| - memset(&pParse->aAlias[pParse->nAliasAlloc], 0,
|
| - (pParse->nAlias-pParse->nAliasAlloc)*sizeof(pParse->aAlias[0]));
|
| - pParse->nAliasAlloc = pParse->nAlias;
|
| - }
|
| - assert( iAlias>0 && iAlias<=pParse->nAlias );
|
| - iReg = pParse->aAlias[iAlias-1];
|
| - if( iReg==0 ){
|
| - if( pParse->iCacheLevel>0 ){
|
| - iReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
|
| - }else{
|
| - iReg = ++pParse->nMem;
|
| - sqlite3ExprCode(pParse, pExpr, iReg);
|
| - pParse->aAlias[iAlias-1] = iReg;
|
| - }
|
| - }
|
| - return iReg;
|
| -#else
|
| - UNUSED_PARAMETER(iAlias);
|
| - return sqlite3ExprCodeTarget(pParse, pExpr, target);
|
| -#endif
|
| -}
|
| -
|
| -/*
|
| -** Generate code into the current Vdbe to evaluate the given
|
| -** expression. Attempt to store the results in register "target".
|
| -** Return the register where results are stored.
|
| -**
|
| -** With this routine, there is no guarantee that results will
|
| -** be stored in target. The result might be stored in some other
|
| -** register if it is convenient to do so. The calling function
|
| -** must check the return code and move the results to the desired
|
| -** register.
|
| -*/
|
| -int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
|
| - Vdbe *v = pParse->pVdbe; /* The VM under construction */
|
| - int op; /* The opcode being coded */
|
| - int inReg = target; /* Results stored in register inReg */
|
| - int regFree1 = 0; /* If non-zero free this temporary register */
|
| - int regFree2 = 0; /* If non-zero free this temporary register */
|
| - int r1, r2, r3, r4; /* Various register numbers */
|
| - sqlite3 *db = pParse->db; /* The database connection */
|
| -
|
| - assert( target>0 && target<=pParse->nMem );
|
| - if( v==0 ){
|
| - assert( pParse->db->mallocFailed );
|
| - return 0;
|
| - }
|
| -
|
| - if( pExpr==0 ){
|
| - op = TK_NULL;
|
| - }else{
|
| - op = pExpr->op;
|
| - }
|
| - switch( op ){
|
| - case TK_AGG_COLUMN: {
|
| - AggInfo *pAggInfo = pExpr->pAggInfo;
|
| - struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
|
| - if( !pAggInfo->directMode ){
|
| - assert( pCol->iMem>0 );
|
| - inReg = pCol->iMem;
|
| - break;
|
| - }else if( pAggInfo->useSortingIdx ){
|
| - sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
|
| - pCol->iSorterColumn, target);
|
| - break;
|
| - }
|
| - /* Otherwise, fall thru into the TK_COLUMN case */
|
| - }
|
| - case TK_COLUMN: {
|
| - if( pExpr->iTable<0 ){
|
| - /* This only happens when coding check constraints */
|
| - assert( pParse->ckBase>0 );
|
| - inReg = pExpr->iColumn + pParse->ckBase;
|
| - }else{
|
| - testcase( (pExpr->flags & EP_AnyAff)!=0 );
|
| - inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
|
| - pExpr->iColumn, pExpr->iTable, target,
|
| - pExpr->flags & EP_AnyAff);
|
| - }
|
| - break;
|
| - }
|
| - case TK_INTEGER: {
|
| - codeInteger(v, pExpr, 0, target);
|
| - break;
|
| - }
|
| - case TK_FLOAT: {
|
| - assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| - codeReal(v, pExpr->u.zToken, 0, target);
|
| - break;
|
| - }
|
| - case TK_STRING: {
|
| - assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| - sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
|
| - break;
|
| - }
|
| - case TK_NULL: {
|
| - sqlite3VdbeAddOp2(v, OP_Null, 0, target);
|
| - break;
|
| - }
|
| -#ifndef SQLITE_OMIT_BLOB_LITERAL
|
| - case TK_BLOB: {
|
| - int n;
|
| - const char *z;
|
| - char *zBlob;
|
| - assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| - assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
|
| - assert( pExpr->u.zToken[1]=='\'' );
|
| - z = &pExpr->u.zToken[2];
|
| - n = sqlite3Strlen30(z) - 1;
|
| - assert( z[n]=='\'' );
|
| - zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
|
| - sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
|
| - break;
|
| - }
|
| -#endif
|
| - case TK_VARIABLE: {
|
| - VdbeOp *pOp;
|
| - assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| - assert( pExpr->u.zToken!=0 );
|
| - assert( pExpr->u.zToken[0]!=0 );
|
| - if( pExpr->u.zToken[1]==0
|
| - && (pOp = sqlite3VdbeGetOp(v, -1))->opcode==OP_Variable
|
| - && pOp->p1+pOp->p3==pExpr->iTable
|
| - && pOp->p2+pOp->p3==target
|
| - && pOp->p4.z==0
|
| - ){
|
| - /* If the previous instruction was a copy of the previous unnamed
|
| - ** parameter into the previous register, then simply increment the
|
| - ** repeat count on the prior instruction rather than making a new
|
| - ** instruction.
|
| - */
|
| - pOp->p3++;
|
| - }else{
|
| - sqlite3VdbeAddOp3(v, OP_Variable, pExpr->iTable, target, 1);
|
| - if( pExpr->u.zToken[1]!=0 ){
|
| - sqlite3VdbeChangeP4(v, -1, pExpr->u.zToken, 0);
|
| - }
|
| - }
|
| - break;
|
| - }
|
| - case TK_REGISTER: {
|
| - inReg = pExpr->iTable;
|
| - break;
|
| - }
|
| - case TK_AS: {
|
| - inReg = codeAlias(pParse, pExpr->iTable, pExpr->pLeft, target);
|
| - break;
|
| - }
|
| -#ifndef SQLITE_OMIT_CAST
|
| - case TK_CAST: {
|
| - /* Expressions of the form: CAST(pLeft AS token) */
|
| - int aff, to_op;
|
| - inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
|
| - assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| - aff = sqlite3AffinityType(pExpr->u.zToken);
|
| - to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
|
| - assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT );
|
| - assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE );
|
| - assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
|
| - assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER );
|
| - assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL );
|
| - testcase( to_op==OP_ToText );
|
| - testcase( to_op==OP_ToBlob );
|
| - testcase( to_op==OP_ToNumeric );
|
| - testcase( to_op==OP_ToInt );
|
| - testcase( to_op==OP_ToReal );
|
| - if( inReg!=target ){
|
| - sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
|
| - inReg = target;
|
| - }
|
| - sqlite3VdbeAddOp1(v, to_op, inReg);
|
| - testcase( usedAsColumnCache(pParse, inReg, inReg) );
|
| - sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
|
| - break;
|
| - }
|
| -#endif /* SQLITE_OMIT_CAST */
|
| - case TK_LT:
|
| - case TK_LE:
|
| - case TK_GT:
|
| - case TK_GE:
|
| - case TK_NE:
|
| - case TK_EQ: {
|
| - assert( TK_LT==OP_Lt );
|
| - assert( TK_LE==OP_Le );
|
| - assert( TK_GT==OP_Gt );
|
| - assert( TK_GE==OP_Ge );
|
| - assert( TK_EQ==OP_Eq );
|
| - assert( TK_NE==OP_Ne );
|
| - testcase( op==TK_LT );
|
| - testcase( op==TK_LE );
|
| - testcase( op==TK_GT );
|
| - testcase( op==TK_GE );
|
| - testcase( op==TK_EQ );
|
| - testcase( op==TK_NE );
|
| - codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1,
|
| - pExpr->pRight, &r2, ®Free2);
|
| - codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
| - r1, r2, inReg, SQLITE_STOREP2);
|
| - testcase( regFree1==0 );
|
| - testcase( regFree2==0 );
|
| - break;
|
| - }
|
| - case TK_AND:
|
| - case TK_OR:
|
| - case TK_PLUS:
|
| - case TK_STAR:
|
| - case TK_MINUS:
|
| - case TK_REM:
|
| - case TK_BITAND:
|
| - case TK_BITOR:
|
| - case TK_SLASH:
|
| - case TK_LSHIFT:
|
| - case TK_RSHIFT:
|
| - case TK_CONCAT: {
|
| - assert( TK_AND==OP_And );
|
| - assert( TK_OR==OP_Or );
|
| - assert( TK_PLUS==OP_Add );
|
| - assert( TK_MINUS==OP_Subtract );
|
| - assert( TK_REM==OP_Remainder );
|
| - assert( TK_BITAND==OP_BitAnd );
|
| - assert( TK_BITOR==OP_BitOr );
|
| - assert( TK_SLASH==OP_Divide );
|
| - assert( TK_LSHIFT==OP_ShiftLeft );
|
| - assert( TK_RSHIFT==OP_ShiftRight );
|
| - assert( TK_CONCAT==OP_Concat );
|
| - testcase( op==TK_AND );
|
| - testcase( op==TK_OR );
|
| - testcase( op==TK_PLUS );
|
| - testcase( op==TK_MINUS );
|
| - testcase( op==TK_REM );
|
| - testcase( op==TK_BITAND );
|
| - testcase( op==TK_BITOR );
|
| - testcase( op==TK_SLASH );
|
| - testcase( op==TK_LSHIFT );
|
| - testcase( op==TK_RSHIFT );
|
| - testcase( op==TK_CONCAT );
|
| - r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| - r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
|
| - sqlite3VdbeAddOp3(v, op, r2, r1, target);
|
| - testcase( regFree1==0 );
|
| - testcase( regFree2==0 );
|
| - break;
|
| - }
|
| - case TK_UMINUS: {
|
| - Expr *pLeft = pExpr->pLeft;
|
| - assert( pLeft );
|
| - if( pLeft->op==TK_FLOAT ){
|
| - assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| - codeReal(v, pLeft->u.zToken, 1, target);
|
| - }else if( pLeft->op==TK_INTEGER ){
|
| - codeInteger(v, pLeft, 1, target);
|
| - }else{
|
| - regFree1 = r1 = sqlite3GetTempReg(pParse);
|
| - sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
|
| - r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2);
|
| - sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
|
| - testcase( regFree2==0 );
|
| - }
|
| - inReg = target;
|
| - break;
|
| - }
|
| - case TK_BITNOT:
|
| - case TK_NOT: {
|
| - assert( TK_BITNOT==OP_BitNot );
|
| - assert( TK_NOT==OP_Not );
|
| - testcase( op==TK_BITNOT );
|
| - testcase( op==TK_NOT );
|
| - r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| - testcase( regFree1==0 );
|
| - inReg = target;
|
| - sqlite3VdbeAddOp2(v, op, r1, inReg);
|
| - break;
|
| - }
|
| - case TK_ISNULL:
|
| - case TK_NOTNULL: {
|
| - int addr;
|
| - assert( TK_ISNULL==OP_IsNull );
|
| - assert( TK_NOTNULL==OP_NotNull );
|
| - testcase( op==TK_ISNULL );
|
| - testcase( op==TK_NOTNULL );
|
| - sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
|
| - r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| - testcase( regFree1==0 );
|
| - addr = sqlite3VdbeAddOp1(v, op, r1);
|
| - sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
|
| - sqlite3VdbeJumpHere(v, addr);
|
| - break;
|
| - }
|
| - case TK_AGG_FUNCTION: {
|
| - AggInfo *pInfo = pExpr->pAggInfo;
|
| - if( pInfo==0 ){
|
| - assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| - sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
|
| - }else{
|
| - inReg = pInfo->aFunc[pExpr->iAgg].iMem;
|
| - }
|
| - break;
|
| - }
|
| - case TK_CONST_FUNC:
|
| - case TK_FUNCTION: {
|
| - ExprList *pFarg; /* List of function arguments */
|
| - int nFarg; /* Number of function arguments */
|
| - FuncDef *pDef; /* The function definition object */
|
| - int nId; /* Length of the function name in bytes */
|
| - const char *zId; /* The function name */
|
| - int constMask = 0; /* Mask of function arguments that are constant */
|
| - int i; /* Loop counter */
|
| - u8 enc = ENC(db); /* The text encoding used by this database */
|
| - CollSeq *pColl = 0; /* A collating sequence */
|
| -
|
| - assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
|
| - testcase( op==TK_CONST_FUNC );
|
| - testcase( op==TK_FUNCTION );
|
| - if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
|
| - pFarg = 0;
|
| - }else{
|
| - pFarg = pExpr->x.pList;
|
| - }
|
| - nFarg = pFarg ? pFarg->nExpr : 0;
|
| - assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| - zId = pExpr->u.zToken;
|
| - nId = sqlite3Strlen30(zId);
|
| - pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
|
| - if( pDef==0 ){
|
| - sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
|
| - break;
|
| - }
|
| - if( pFarg ){
|
| - r1 = sqlite3GetTempRange(pParse, nFarg);
|
| - sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */
|
| - sqlite3ExprCodeExprList(pParse, pFarg, r1, 1);
|
| - sqlite3ExprCachePop(pParse, 1); /* Ticket 2ea2425d34be */
|
| - }else{
|
| - r1 = 0;
|
| - }
|
| -#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| - /* Possibly overload the function if the first argument is
|
| - ** a virtual table column.
|
| - **
|
| - ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
|
| - ** second argument, not the first, as the argument to test to
|
| - ** see if it is a column in a virtual table. This is done because
|
| - ** the left operand of infix functions (the operand we want to
|
| - ** control overloading) ends up as the second argument to the
|
| - ** function. The expression "A glob B" is equivalent to
|
| - ** "glob(B,A). We want to use the A in "A glob B" to test
|
| - ** for function overloading. But we use the B term in "glob(B,A)".
|
| - */
|
| - if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
|
| - pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
|
| - }else if( nFarg>0 ){
|
| - pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
|
| - }
|
| -#endif
|
| - for(i=0; i<nFarg; i++){
|
| - if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
|
| - constMask |= (1<<i);
|
| - }
|
| - if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
|
| - pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
|
| - }
|
| - }
|
| - if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){
|
| - if( !pColl ) pColl = db->pDfltColl;
|
| - sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
|
| - }
|
| - sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
|
| - (char*)pDef, P4_FUNCDEF);
|
| - sqlite3VdbeChangeP5(v, (u8)nFarg);
|
| - if( nFarg ){
|
| - sqlite3ReleaseTempRange(pParse, r1, nFarg);
|
| - }
|
| - sqlite3ExprCacheAffinityChange(pParse, r1, nFarg);
|
| - break;
|
| - }
|
| -#ifndef SQLITE_OMIT_SUBQUERY
|
| - case TK_EXISTS:
|
| - case TK_SELECT: {
|
| - testcase( op==TK_EXISTS );
|
| - testcase( op==TK_SELECT );
|
| - sqlite3CodeSubselect(pParse, pExpr, 0, 0);
|
| - inReg = pExpr->iColumn;
|
| - break;
|
| - }
|
| - case TK_IN: {
|
| - int rNotFound = 0;
|
| - int rMayHaveNull = 0;
|
| - int j2, j3, j4, j5;
|
| - char affinity;
|
| - int eType;
|
| -
|
| - VdbeNoopComment((v, "begin IN expr r%d", target));
|
| - eType = sqlite3FindInIndex(pParse, pExpr, &rMayHaveNull);
|
| - if( rMayHaveNull ){
|
| - rNotFound = ++pParse->nMem;
|
| - }
|
| -
|
| - /* Figure out the affinity to use to create a key from the results
|
| - ** of the expression. affinityStr stores a static string suitable for
|
| - ** P4 of OP_MakeRecord.
|
| - */
|
| - affinity = comparisonAffinity(pExpr);
|
| -
|
| -
|
| - /* Code the <expr> from "<expr> IN (...)". The temporary table
|
| - ** pExpr->iTable contains the values that make up the (...) set.
|
| - */
|
| - sqlite3ExprCachePush(pParse);
|
| - sqlite3ExprCode(pParse, pExpr->pLeft, target);
|
| - j2 = sqlite3VdbeAddOp1(v, OP_IsNull, target);
|
| - if( eType==IN_INDEX_ROWID ){
|
| - j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, target);
|
| - j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, target);
|
| - sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
|
| - j5 = sqlite3VdbeAddOp0(v, OP_Goto);
|
| - sqlite3VdbeJumpHere(v, j3);
|
| - sqlite3VdbeJumpHere(v, j4);
|
| - sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
|
| - }else{
|
| - r2 = regFree2 = sqlite3GetTempReg(pParse);
|
| -
|
| - /* Create a record and test for set membership. If the set contains
|
| - ** the value, then jump to the end of the test code. The target
|
| - ** register still contains the true (1) value written to it earlier.
|
| - */
|
| - sqlite3VdbeAddOp4(v, OP_MakeRecord, target, 1, r2, &affinity, 1);
|
| - sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
|
| - j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2);
|
| -
|
| - /* If the set membership test fails, then the result of the
|
| - ** "x IN (...)" expression must be either 0 or NULL. If the set
|
| - ** contains no NULL values, then the result is 0. If the set
|
| - ** contains one or more NULL values, then the result of the
|
| - ** expression is also NULL.
|
| - */
|
| - if( rNotFound==0 ){
|
| - /* This branch runs if it is known at compile time (now) that
|
| - ** the set contains no NULL values. This happens as the result
|
| - ** of a "NOT NULL" constraint in the database schema. No need
|
| - ** to test the data structure at runtime in this case.
|
| - */
|
| - sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
|
| - }else{
|
| - /* This block populates the rNotFound register with either NULL
|
| - ** or 0 (an integer value). If the data structure contains one
|
| - ** or more NULLs, then set rNotFound to NULL. Otherwise, set it
|
| - ** to 0. If register rMayHaveNull is already set to some value
|
| - ** other than NULL, then the test has already been run and
|
| - ** rNotFound is already populated.
|
| - */
|
| - static const char nullRecord[] = { 0x02, 0x00 };
|
| - j3 = sqlite3VdbeAddOp1(v, OP_NotNull, rMayHaveNull);
|
| - sqlite3VdbeAddOp2(v, OP_Null, 0, rNotFound);
|
| - sqlite3VdbeAddOp4(v, OP_Blob, 2, rMayHaveNull, 0,
|
| - nullRecord, P4_STATIC);
|
| - j4 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, rMayHaveNull);
|
| - sqlite3VdbeAddOp2(v, OP_Integer, 0, rNotFound);
|
| - sqlite3VdbeJumpHere(v, j4);
|
| - sqlite3VdbeJumpHere(v, j3);
|
| -
|
| - /* Copy the value of register rNotFound (which is either NULL or 0)
|
| - ** into the target register. This will be the result of the
|
| - ** expression.
|
| - */
|
| - sqlite3VdbeAddOp2(v, OP_Copy, rNotFound, target);
|
| - }
|
| - }
|
| - sqlite3VdbeJumpHere(v, j2);
|
| - sqlite3VdbeJumpHere(v, j5);
|
| - sqlite3ExprCachePop(pParse, 1);
|
| - VdbeComment((v, "end IN expr r%d", target));
|
| - break;
|
| - }
|
| -#endif
|
| - /*
|
| - ** x BETWEEN y AND z
|
| - **
|
| - ** This is equivalent to
|
| - **
|
| - ** x>=y AND x<=z
|
| - **
|
| - ** X is stored in pExpr->pLeft.
|
| - ** Y is stored in pExpr->pList->a[0].pExpr.
|
| - ** Z is stored in pExpr->pList->a[1].pExpr.
|
| - */
|
| - case TK_BETWEEN: {
|
| - Expr *pLeft = pExpr->pLeft;
|
| - struct ExprList_item *pLItem = pExpr->x.pList->a;
|
| - Expr *pRight = pLItem->pExpr;
|
| -
|
| - codeCompareOperands(pParse, pLeft, &r1, ®Free1,
|
| - pRight, &r2, ®Free2);
|
| - testcase( regFree1==0 );
|
| - testcase( regFree2==0 );
|
| - r3 = sqlite3GetTempReg(pParse);
|
| - r4 = sqlite3GetTempReg(pParse);
|
| - codeCompare(pParse, pLeft, pRight, OP_Ge,
|
| - r1, r2, r3, SQLITE_STOREP2);
|
| - pLItem++;
|
| - pRight = pLItem->pExpr;
|
| - sqlite3ReleaseTempReg(pParse, regFree2);
|
| - r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2);
|
| - testcase( regFree2==0 );
|
| - codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
|
| - sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
|
| - sqlite3ReleaseTempReg(pParse, r3);
|
| - sqlite3ReleaseTempReg(pParse, r4);
|
| - break;
|
| - }
|
| - case TK_UPLUS: {
|
| - inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
|
| - break;
|
| - }
|
| -
|
| - case TK_TRIGGER: {
|
| - /* If the opcode is TK_TRIGGER, then the expression is a reference
|
| - ** to a column in the new.* or old.* pseudo-tables available to
|
| - ** trigger programs. In this case Expr.iTable is set to 1 for the
|
| - ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
|
| - ** is set to the column of the pseudo-table to read, or to -1 to
|
| - ** read the rowid field.
|
| - **
|
| - ** The expression is implemented using an OP_Param opcode. The p1
|
| - ** parameter is set to 0 for an old.rowid reference, or to (i+1)
|
| - ** to reference another column of the old.* pseudo-table, where
|
| - ** i is the index of the column. For a new.rowid reference, p1 is
|
| - ** set to (n+1), where n is the number of columns in each pseudo-table.
|
| - ** For a reference to any other column in the new.* pseudo-table, p1
|
| - ** is set to (n+2+i), where n and i are as defined previously. For
|
| - ** example, if the table on which triggers are being fired is
|
| - ** declared as:
|
| - **
|
| - ** CREATE TABLE t1(a, b);
|
| - **
|
| - ** Then p1 is interpreted as follows:
|
| - **
|
| - ** p1==0 -> old.rowid p1==3 -> new.rowid
|
| - ** p1==1 -> old.a p1==4 -> new.a
|
| - ** p1==2 -> old.b p1==5 -> new.b
|
| - */
|
| - Table *pTab = pExpr->pTab;
|
| - int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
|
| -
|
| - assert( pExpr->iTable==0 || pExpr->iTable==1 );
|
| - assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
|
| - assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
|
| - assert( p1>=0 && p1<(pTab->nCol*2+2) );
|
| -
|
| - sqlite3VdbeAddOp2(v, OP_Param, p1, target);
|
| - VdbeComment((v, "%s.%s -> $%d",
|
| - (pExpr->iTable ? "new" : "old"),
|
| - (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
|
| - target
|
| - ));
|
| -
|
| - /* If the column has REAL affinity, it may currently be stored as an
|
| - ** integer. Use OP_RealAffinity to make sure it is really real. */
|
| - if( pExpr->iColumn>=0
|
| - && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
|
| - ){
|
| - sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
|
| - }
|
| - break;
|
| - }
|
| -
|
| -
|
| - /*
|
| - ** Form A:
|
| - ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
|
| - **
|
| - ** Form B:
|
| - ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
|
| - **
|
| - ** Form A is can be transformed into the equivalent form B as follows:
|
| - ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
|
| - ** WHEN x=eN THEN rN ELSE y END
|
| - **
|
| - ** X (if it exists) is in pExpr->pLeft.
|
| - ** Y is in pExpr->pRight. The Y is also optional. If there is no
|
| - ** ELSE clause and no other term matches, then the result of the
|
| - ** exprssion is NULL.
|
| - ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
|
| - **
|
| - ** The result of the expression is the Ri for the first matching Ei,
|
| - ** or if there is no matching Ei, the ELSE term Y, or if there is
|
| - ** no ELSE term, NULL.
|
| - */
|
| - default: assert( op==TK_CASE ); {
|
| - int endLabel; /* GOTO label for end of CASE stmt */
|
| - int nextCase; /* GOTO label for next WHEN clause */
|
| - int nExpr; /* 2x number of WHEN terms */
|
| - int i; /* Loop counter */
|
| - ExprList *pEList; /* List of WHEN terms */
|
| - struct ExprList_item *aListelem; /* Array of WHEN terms */
|
| - Expr opCompare; /* The X==Ei expression */
|
| - Expr cacheX; /* Cached expression X */
|
| - Expr *pX; /* The X expression */
|
| - Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */
|
| - VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
|
| -
|
| - assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
|
| - assert((pExpr->x.pList->nExpr % 2) == 0);
|
| - assert(pExpr->x.pList->nExpr > 0);
|
| - pEList = pExpr->x.pList;
|
| - aListelem = pEList->a;
|
| - nExpr = pEList->nExpr;
|
| - endLabel = sqlite3VdbeMakeLabel(v);
|
| - if( (pX = pExpr->pLeft)!=0 ){
|
| - cacheX = *pX;
|
| - testcase( pX->op==TK_COLUMN );
|
| - testcase( pX->op==TK_REGISTER );
|
| - cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1);
|
| - testcase( regFree1==0 );
|
| - cacheX.op = TK_REGISTER;
|
| - opCompare.op = TK_EQ;
|
| - opCompare.pLeft = &cacheX;
|
| - pTest = &opCompare;
|
| - }
|
| - for(i=0; i<nExpr; i=i+2){
|
| - sqlite3ExprCachePush(pParse);
|
| - if( pX ){
|
| - assert( pTest!=0 );
|
| - opCompare.pRight = aListelem[i].pExpr;
|
| - }else{
|
| - pTest = aListelem[i].pExpr;
|
| - }
|
| - nextCase = sqlite3VdbeMakeLabel(v);
|
| - testcase( pTest->op==TK_COLUMN );
|
| - sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
|
| - testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
|
| - testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
|
| - sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
|
| - sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
|
| - sqlite3ExprCachePop(pParse, 1);
|
| - sqlite3VdbeResolveLabel(v, nextCase);
|
| - }
|
| - if( pExpr->pRight ){
|
| - sqlite3ExprCachePush(pParse);
|
| - sqlite3ExprCode(pParse, pExpr->pRight, target);
|
| - sqlite3ExprCachePop(pParse, 1);
|
| - }else{
|
| - sqlite3VdbeAddOp2(v, OP_Null, 0, target);
|
| - }
|
| - assert( db->mallocFailed || pParse->nErr>0
|
| - || pParse->iCacheLevel==iCacheLevel );
|
| - sqlite3VdbeResolveLabel(v, endLabel);
|
| - break;
|
| - }
|
| -#ifndef SQLITE_OMIT_TRIGGER
|
| - case TK_RAISE: {
|
| - assert( pExpr->affinity==OE_Rollback
|
| - || pExpr->affinity==OE_Abort
|
| - || pExpr->affinity==OE_Fail
|
| - || pExpr->affinity==OE_Ignore
|
| - );
|
| - if( !pParse->pTriggerTab ){
|
| - sqlite3ErrorMsg(pParse,
|
| - "RAISE() may only be used within a trigger-program");
|
| - return 0;
|
| - }
|
| - if( pExpr->affinity==OE_Abort ){
|
| - sqlite3MayAbort(pParse);
|
| - }
|
| - assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| - if( pExpr->affinity==OE_Ignore ){
|
| - sqlite3VdbeAddOp4(
|
| - v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
|
| - }else{
|
| - sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0);
|
| - }
|
| -
|
| - break;
|
| - }
|
| -#endif
|
| - }
|
| - sqlite3ReleaseTempReg(pParse, regFree1);
|
| - sqlite3ReleaseTempReg(pParse, regFree2);
|
| - return inReg;
|
| -}
|
| -
|
| -/*
|
| -** Generate code to evaluate an expression and store the results
|
| -** into a register. Return the register number where the results
|
| -** are stored.
|
| -**
|
| -** If the register is a temporary register that can be deallocated,
|
| -** then write its number into *pReg. If the result register is not
|
| -** a temporary, then set *pReg to zero.
|
| -*/
|
| -int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
|
| - int r1 = sqlite3GetTempReg(pParse);
|
| - int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
|
| - if( r2==r1 ){
|
| - *pReg = r1;
|
| - }else{
|
| - sqlite3ReleaseTempReg(pParse, r1);
|
| - *pReg = 0;
|
| - }
|
| - return r2;
|
| -}
|
| -
|
| -/*
|
| -** Generate code that will evaluate expression pExpr and store the
|
| -** results in register target. The results are guaranteed to appear
|
| -** in register target.
|
| -*/
|
| -int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
|
| - int inReg;
|
| -
|
| - assert( target>0 && target<=pParse->nMem );
|
| - inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
|
| - assert( pParse->pVdbe || pParse->db->mallocFailed );
|
| - if( inReg!=target && pParse->pVdbe ){
|
| - sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
|
| - }
|
| - return target;
|
| -}
|
| -
|
| -/*
|
| -** Generate code that evalutes the given expression and puts the result
|
| -** in register target.
|
| -**
|
| -** Also make a copy of the expression results into another "cache" register
|
| -** and modify the expression so that the next time it is evaluated,
|
| -** the result is a copy of the cache register.
|
| -**
|
| -** This routine is used for expressions that are used multiple
|
| -** times. They are evaluated once and the results of the expression
|
| -** are reused.
|
| -*/
|
| -int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
|
| - Vdbe *v = pParse->pVdbe;
|
| - int inReg;
|
| - inReg = sqlite3ExprCode(pParse, pExpr, target);
|
| - assert( target>0 );
|
| - /* This routine is called for terms to INSERT or UPDATE. And the only
|
| - ** other place where expressions can be converted into TK_REGISTER is
|
| - ** in WHERE clause processing. So as currently implemented, there is
|
| - ** no way for a TK_REGISTER to exist here. But it seems prudent to
|
| - ** keep the ALWAYS() in case the conditions above change with future
|
| - ** modifications or enhancements. */
|
| - if( ALWAYS(pExpr->op!=TK_REGISTER) ){
|
| - int iMem;
|
| - iMem = ++pParse->nMem;
|
| - sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
|
| - pExpr->iTable = iMem;
|
| - pExpr->op = TK_REGISTER;
|
| - }
|
| - return inReg;
|
| -}
|
| -
|
| -/*
|
| -** Return TRUE if pExpr is an constant expression that is appropriate
|
| -** for factoring out of a loop. Appropriate expressions are:
|
| -**
|
| -** * Any expression that evaluates to two or more opcodes.
|
| -**
|
| -** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
|
| -** or OP_Variable that does not need to be placed in a
|
| -** specific register.
|
| -**
|
| -** There is no point in factoring out single-instruction constant
|
| -** expressions that need to be placed in a particular register.
|
| -** We could factor them out, but then we would end up adding an
|
| -** OP_SCopy instruction to move the value into the correct register
|
| -** later. We might as well just use the original instruction and
|
| -** avoid the OP_SCopy.
|
| -*/
|
| -static int isAppropriateForFactoring(Expr *p){
|
| - if( !sqlite3ExprIsConstantNotJoin(p) ){
|
| - return 0; /* Only constant expressions are appropriate for factoring */
|
| - }
|
| - if( (p->flags & EP_FixedDest)==0 ){
|
| - return 1; /* Any constant without a fixed destination is appropriate */
|
| - }
|
| - while( p->op==TK_UPLUS ) p = p->pLeft;
|
| - switch( p->op ){
|
| -#ifndef SQLITE_OMIT_BLOB_LITERAL
|
| - case TK_BLOB:
|
| -#endif
|
| - case TK_VARIABLE:
|
| - case TK_INTEGER:
|
| - case TK_FLOAT:
|
| - case TK_NULL:
|
| - case TK_STRING: {
|
| - testcase( p->op==TK_BLOB );
|
| - testcase( p->op==TK_VARIABLE );
|
| - testcase( p->op==TK_INTEGER );
|
| - testcase( p->op==TK_FLOAT );
|
| - testcase( p->op==TK_NULL );
|
| - testcase( p->op==TK_STRING );
|
| - /* Single-instruction constants with a fixed destination are
|
| - ** better done in-line. If we factor them, they will just end
|
| - ** up generating an OP_SCopy to move the value to the destination
|
| - ** register. */
|
| - return 0;
|
| - }
|
| - case TK_UMINUS: {
|
| - if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
|
| - return 0;
|
| - }
|
| - break;
|
| - }
|
| - default: {
|
| - break;
|
| - }
|
| - }
|
| - return 1;
|
| -}
|
| -
|
| -/*
|
| -** If pExpr is a constant expression that is appropriate for
|
| -** factoring out of a loop, then evaluate the expression
|
| -** into a register and convert the expression into a TK_REGISTER
|
| -** expression.
|
| -*/
|
| -static int evalConstExpr(Walker *pWalker, Expr *pExpr){
|
| - Parse *pParse = pWalker->pParse;
|
| - switch( pExpr->op ){
|
| - case TK_REGISTER: {
|
| - return WRC_Prune;
|
| - }
|
| - case TK_FUNCTION:
|
| - case TK_AGG_FUNCTION:
|
| - case TK_CONST_FUNC: {
|
| - /* The arguments to a function have a fixed destination.
|
| - ** Mark them this way to avoid generated unneeded OP_SCopy
|
| - ** instructions.
|
| - */
|
| - ExprList *pList = pExpr->x.pList;
|
| - assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
|
| - if( pList ){
|
| - int i = pList->nExpr;
|
| - struct ExprList_item *pItem = pList->a;
|
| - for(; i>0; i--, pItem++){
|
| - if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest;
|
| - }
|
| - }
|
| - break;
|
| - }
|
| - }
|
| - if( isAppropriateForFactoring(pExpr) ){
|
| - int r1 = ++pParse->nMem;
|
| - int r2;
|
| - r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
|
| - if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1);
|
| - pExpr->op2 = pExpr->op;
|
| - pExpr->op = TK_REGISTER;
|
| - pExpr->iTable = r2;
|
| - return WRC_Prune;
|
| - }
|
| - return WRC_Continue;
|
| -}
|
| -
|
| -/*
|
| -** Preevaluate constant subexpressions within pExpr and store the
|
| -** results in registers. Modify pExpr so that the constant subexpresions
|
| -** are TK_REGISTER opcodes that refer to the precomputed values.
|
| -*/
|
| -void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
|
| - Walker w;
|
| - w.xExprCallback = evalConstExpr;
|
| - w.xSelectCallback = 0;
|
| - w.pParse = pParse;
|
| - sqlite3WalkExpr(&w, pExpr);
|
| -}
|
| -
|
| -
|
| -/*
|
| -** Generate code that pushes the value of every element of the given
|
| -** expression list into a sequence of registers beginning at target.
|
| -**
|
| -** Return the number of elements evaluated.
|
| -*/
|
| -int sqlite3ExprCodeExprList(
|
| - Parse *pParse, /* Parsing context */
|
| - ExprList *pList, /* The expression list to be coded */
|
| - int target, /* Where to write results */
|
| - int doHardCopy /* Make a hard copy of every element */
|
| -){
|
| - struct ExprList_item *pItem;
|
| - int i, n;
|
| - assert( pList!=0 );
|
| - assert( target>0 );
|
| - n = pList->nExpr;
|
| - for(pItem=pList->a, i=0; i<n; i++, pItem++){
|
| - if( pItem->iAlias ){
|
| - int iReg = codeAlias(pParse, pItem->iAlias, pItem->pExpr, target+i);
|
| - Vdbe *v = sqlite3GetVdbe(pParse);
|
| - if( iReg!=target+i ){
|
| - sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target+i);
|
| - }
|
| - }else{
|
| - sqlite3ExprCode(pParse, pItem->pExpr, target+i);
|
| - }
|
| - if( doHardCopy && !pParse->db->mallocFailed ){
|
| - sqlite3ExprHardCopy(pParse, target, n);
|
| - }
|
| - }
|
| - return n;
|
| -}
|
| -
|
| -/*
|
| -** Generate code for a boolean expression such that a jump is made
|
| -** to the label "dest" if the expression is true but execution
|
| -** continues straight thru if the expression is false.
|
| -**
|
| -** If the expression evaluates to NULL (neither true nor false), then
|
| -** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
|
| -**
|
| -** This code depends on the fact that certain token values (ex: TK_EQ)
|
| -** are the same as opcode values (ex: OP_Eq) that implement the corresponding
|
| -** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
|
| -** the make process cause these values to align. Assert()s in the code
|
| -** below verify that the numbers are aligned correctly.
|
| -*/
|
| -void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
| - Vdbe *v = pParse->pVdbe;
|
| - int op = 0;
|
| - int regFree1 = 0;
|
| - int regFree2 = 0;
|
| - int r1, r2;
|
| -
|
| - assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
|
| - if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */
|
| - if( NEVER(pExpr==0) ) return; /* No way this can happen */
|
| - op = pExpr->op;
|
| - switch( op ){
|
| - case TK_AND: {
|
| - int d2 = sqlite3VdbeMakeLabel(v);
|
| - testcase( jumpIfNull==0 );
|
| - sqlite3ExprCachePush(pParse);
|
| - sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
|
| - sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
|
| - sqlite3VdbeResolveLabel(v, d2);
|
| - sqlite3ExprCachePop(pParse, 1);
|
| - break;
|
| - }
|
| - case TK_OR: {
|
| - testcase( jumpIfNull==0 );
|
| - sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
|
| - sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
|
| - break;
|
| - }
|
| - case TK_NOT: {
|
| - testcase( jumpIfNull==0 );
|
| - sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
|
| - break;
|
| - }
|
| - case TK_LT:
|
| - case TK_LE:
|
| - case TK_GT:
|
| - case TK_GE:
|
| - case TK_NE:
|
| - case TK_EQ: {
|
| - assert( TK_LT==OP_Lt );
|
| - assert( TK_LE==OP_Le );
|
| - assert( TK_GT==OP_Gt );
|
| - assert( TK_GE==OP_Ge );
|
| - assert( TK_EQ==OP_Eq );
|
| - assert( TK_NE==OP_Ne );
|
| - testcase( op==TK_LT );
|
| - testcase( op==TK_LE );
|
| - testcase( op==TK_GT );
|
| - testcase( op==TK_GE );
|
| - testcase( op==TK_EQ );
|
| - testcase( op==TK_NE );
|
| - testcase( jumpIfNull==0 );
|
| - codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1,
|
| - pExpr->pRight, &r2, ®Free2);
|
| - codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
| - r1, r2, dest, jumpIfNull);
|
| - testcase( regFree1==0 );
|
| - testcase( regFree2==0 );
|
| - break;
|
| - }
|
| - case TK_ISNULL:
|
| - case TK_NOTNULL: {
|
| - assert( TK_ISNULL==OP_IsNull );
|
| - assert( TK_NOTNULL==OP_NotNull );
|
| - testcase( op==TK_ISNULL );
|
| - testcase( op==TK_NOTNULL );
|
| - r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| - sqlite3VdbeAddOp2(v, op, r1, dest);
|
| - testcase( regFree1==0 );
|
| - break;
|
| - }
|
| - case TK_BETWEEN: {
|
| - /* x BETWEEN y AND z
|
| - **
|
| - ** Is equivalent to
|
| - **
|
| - ** x>=y AND x<=z
|
| - **
|
| - ** Code it as such, taking care to do the common subexpression
|
| - ** elementation of x.
|
| - */
|
| - Expr exprAnd;
|
| - Expr compLeft;
|
| - Expr compRight;
|
| - Expr exprX;
|
| -
|
| - assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
|
| - exprX = *pExpr->pLeft;
|
| - exprAnd.op = TK_AND;
|
| - exprAnd.pLeft = &compLeft;
|
| - exprAnd.pRight = &compRight;
|
| - compLeft.op = TK_GE;
|
| - compLeft.pLeft = &exprX;
|
| - compLeft.pRight = pExpr->x.pList->a[0].pExpr;
|
| - compRight.op = TK_LE;
|
| - compRight.pLeft = &exprX;
|
| - compRight.pRight = pExpr->x.pList->a[1].pExpr;
|
| - exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1);
|
| - testcase( regFree1==0 );
|
| - exprX.op = TK_REGISTER;
|
| - testcase( jumpIfNull==0 );
|
| - sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
|
| - break;
|
| - }
|
| - default: {
|
| - r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1);
|
| - sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
|
| - testcase( regFree1==0 );
|
| - testcase( jumpIfNull==0 );
|
| - break;
|
| - }
|
| - }
|
| - sqlite3ReleaseTempReg(pParse, regFree1);
|
| - sqlite3ReleaseTempReg(pParse, regFree2);
|
| -}
|
| -
|
| -/*
|
| -** Generate code for a boolean expression such that a jump is made
|
| -** to the label "dest" if the expression is false but execution
|
| -** continues straight thru if the expression is true.
|
| -**
|
| -** If the expression evaluates to NULL (neither true nor false) then
|
| -** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
|
| -** is 0.
|
| -*/
|
| -void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
|
| - Vdbe *v = pParse->pVdbe;
|
| - int op = 0;
|
| - int regFree1 = 0;
|
| - int regFree2 = 0;
|
| - int r1, r2;
|
| -
|
| - assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
|
| - if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */
|
| - if( pExpr==0 ) return;
|
| -
|
| - /* The value of pExpr->op and op are related as follows:
|
| - **
|
| - ** pExpr->op op
|
| - ** --------- ----------
|
| - ** TK_ISNULL OP_NotNull
|
| - ** TK_NOTNULL OP_IsNull
|
| - ** TK_NE OP_Eq
|
| - ** TK_EQ OP_Ne
|
| - ** TK_GT OP_Le
|
| - ** TK_LE OP_Gt
|
| - ** TK_GE OP_Lt
|
| - ** TK_LT OP_Ge
|
| - **
|
| - ** For other values of pExpr->op, op is undefined and unused.
|
| - ** The value of TK_ and OP_ constants are arranged such that we
|
| - ** can compute the mapping above using the following expression.
|
| - ** Assert()s verify that the computation is correct.
|
| - */
|
| - op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
|
| -
|
| - /* Verify correct alignment of TK_ and OP_ constants
|
| - */
|
| - assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
|
| - assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
|
| - assert( pExpr->op!=TK_NE || op==OP_Eq );
|
| - assert( pExpr->op!=TK_EQ || op==OP_Ne );
|
| - assert( pExpr->op!=TK_LT || op==OP_Ge );
|
| - assert( pExpr->op!=TK_LE || op==OP_Gt );
|
| - assert( pExpr->op!=TK_GT || op==OP_Le );
|
| - assert( pExpr->op!=TK_GE || op==OP_Lt );
|
| -
|
| - switch( pExpr->op ){
|
| - case TK_AND: {
|
| - testcase( jumpIfNull==0 );
|
| - sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
|
| - sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
|
| - break;
|
| - }
|
| - case TK_OR: {
|
| - int d2 = sqlite3VdbeMakeLabel(v);
|
| - testcase( jumpIfNull==0 );
|
| - sqlite3ExprCachePush(pParse);
|
| - sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
|
| - sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
|
| - sqlite3VdbeResolveLabel(v, d2);
|
| - sqlite3ExprCachePop(pParse, 1);
|
| - break;
|
| - }
|
| - case TK_NOT: {
|
| - sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
|
| - break;
|
| - }
|
| - case TK_LT:
|
| - case TK_LE:
|
| - case TK_GT:
|
| - case TK_GE:
|
| - case TK_NE:
|
| - case TK_EQ: {
|
| - testcase( op==TK_LT );
|
| - testcase( op==TK_LE );
|
| - testcase( op==TK_GT );
|
| - testcase( op==TK_GE );
|
| - testcase( op==TK_EQ );
|
| - testcase( op==TK_NE );
|
| - testcase( jumpIfNull==0 );
|
| - codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1,
|
| - pExpr->pRight, &r2, ®Free2);
|
| - codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
|
| - r1, r2, dest, jumpIfNull);
|
| - testcase( regFree1==0 );
|
| - testcase( regFree2==0 );
|
| - break;
|
| - }
|
| - case TK_ISNULL:
|
| - case TK_NOTNULL: {
|
| - testcase( op==TK_ISNULL );
|
| - testcase( op==TK_NOTNULL );
|
| - r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
|
| - sqlite3VdbeAddOp2(v, op, r1, dest);
|
| - testcase( regFree1==0 );
|
| - break;
|
| - }
|
| - case TK_BETWEEN: {
|
| - /* x BETWEEN y AND z
|
| - **
|
| - ** Is equivalent to
|
| - **
|
| - ** x>=y AND x<=z
|
| - **
|
| - ** Code it as such, taking care to do the common subexpression
|
| - ** elementation of x.
|
| - */
|
| - Expr exprAnd;
|
| - Expr compLeft;
|
| - Expr compRight;
|
| - Expr exprX;
|
| -
|
| - assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
|
| - exprX = *pExpr->pLeft;
|
| - exprAnd.op = TK_AND;
|
| - exprAnd.pLeft = &compLeft;
|
| - exprAnd.pRight = &compRight;
|
| - compLeft.op = TK_GE;
|
| - compLeft.pLeft = &exprX;
|
| - compLeft.pRight = pExpr->x.pList->a[0].pExpr;
|
| - compRight.op = TK_LE;
|
| - compRight.pLeft = &exprX;
|
| - compRight.pRight = pExpr->x.pList->a[1].pExpr;
|
| - exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1);
|
| - testcase( regFree1==0 );
|
| - exprX.op = TK_REGISTER;
|
| - testcase( jumpIfNull==0 );
|
| - sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
|
| - break;
|
| - }
|
| - default: {
|
| - r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1);
|
| - sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
|
| - testcase( regFree1==0 );
|
| - testcase( jumpIfNull==0 );
|
| - break;
|
| - }
|
| - }
|
| - sqlite3ReleaseTempReg(pParse, regFree1);
|
| - sqlite3ReleaseTempReg(pParse, regFree2);
|
| -}
|
| -
|
| -/*
|
| -** Do a deep comparison of two expression trees. Return TRUE (non-zero)
|
| -** if they are identical and return FALSE if they differ in any way.
|
| -**
|
| -** Sometimes this routine will return FALSE even if the two expressions
|
| -** really are equivalent. If we cannot prove that the expressions are
|
| -** identical, we return FALSE just to be safe. So if this routine
|
| -** returns false, then you do not really know for certain if the two
|
| -** expressions are the same. But if you get a TRUE return, then you
|
| -** can be sure the expressions are the same. In the places where
|
| -** this routine is used, it does not hurt to get an extra FALSE - that
|
| -** just might result in some slightly slower code. But returning
|
| -** an incorrect TRUE could lead to a malfunction.
|
| -*/
|
| -int sqlite3ExprCompare(Expr *pA, Expr *pB){
|
| - int i;
|
| - if( pA==0||pB==0 ){
|
| - return pB==pA;
|
| - }
|
| - assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) );
|
| - assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) );
|
| - if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){
|
| - return 0;
|
| - }
|
| - if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
|
| - if( pA->op!=pB->op ) return 0;
|
| - if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
|
| - if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
|
| -
|
| - if( pA->x.pList && pB->x.pList ){
|
| - if( pA->x.pList->nExpr!=pB->x.pList->nExpr ) return 0;
|
| - for(i=0; i<pA->x.pList->nExpr; i++){
|
| - Expr *pExprA = pA->x.pList->a[i].pExpr;
|
| - Expr *pExprB = pB->x.pList->a[i].pExpr;
|
| - if( !sqlite3ExprCompare(pExprA, pExprB) ) return 0;
|
| - }
|
| - }else if( pA->x.pList || pB->x.pList ){
|
| - return 0;
|
| - }
|
| -
|
| - if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
|
| - if( ExprHasProperty(pA, EP_IntValue) ){
|
| - if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){
|
| - return 0;
|
| - }
|
| - }else if( pA->op!=TK_COLUMN && pA->u.zToken ){
|
| - if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 0;
|
| - if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ){
|
| - return 0;
|
| - }
|
| - }
|
| - return 1;
|
| -}
|
| -
|
| -
|
| -/*
|
| -** Add a new element to the pAggInfo->aCol[] array. Return the index of
|
| -** the new element. Return a negative number if malloc fails.
|
| -*/
|
| -static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
|
| - int i;
|
| - pInfo->aCol = sqlite3ArrayAllocate(
|
| - db,
|
| - pInfo->aCol,
|
| - sizeof(pInfo->aCol[0]),
|
| - 3,
|
| - &pInfo->nColumn,
|
| - &pInfo->nColumnAlloc,
|
| - &i
|
| - );
|
| - return i;
|
| -}
|
| -
|
| -/*
|
| -** Add a new element to the pAggInfo->aFunc[] array. Return the index of
|
| -** the new element. Return a negative number if malloc fails.
|
| -*/
|
| -static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
|
| - int i;
|
| - pInfo->aFunc = sqlite3ArrayAllocate(
|
| - db,
|
| - pInfo->aFunc,
|
| - sizeof(pInfo->aFunc[0]),
|
| - 3,
|
| - &pInfo->nFunc,
|
| - &pInfo->nFuncAlloc,
|
| - &i
|
| - );
|
| - return i;
|
| -}
|
| -
|
| -/*
|
| -** This is the xExprCallback for a tree walker. It is used to
|
| -** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
|
| -** for additional information.
|
| -*/
|
| -static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
|
| - int i;
|
| - NameContext *pNC = pWalker->u.pNC;
|
| - Parse *pParse = pNC->pParse;
|
| - SrcList *pSrcList = pNC->pSrcList;
|
| - AggInfo *pAggInfo = pNC->pAggInfo;
|
| -
|
| - switch( pExpr->op ){
|
| - case TK_AGG_COLUMN:
|
| - case TK_COLUMN: {
|
| - testcase( pExpr->op==TK_AGG_COLUMN );
|
| - testcase( pExpr->op==TK_COLUMN );
|
| - /* Check to see if the column is in one of the tables in the FROM
|
| - ** clause of the aggregate query */
|
| - if( ALWAYS(pSrcList!=0) ){
|
| - struct SrcList_item *pItem = pSrcList->a;
|
| - for(i=0; i<pSrcList->nSrc; i++, pItem++){
|
| - struct AggInfo_col *pCol;
|
| - assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
|
| - if( pExpr->iTable==pItem->iCursor ){
|
| - /* If we reach this point, it means that pExpr refers to a table
|
| - ** that is in the FROM clause of the aggregate query.
|
| - **
|
| - ** Make an entry for the column in pAggInfo->aCol[] if there
|
| - ** is not an entry there already.
|
| - */
|
| - int k;
|
| - pCol = pAggInfo->aCol;
|
| - for(k=0; k<pAggInfo->nColumn; k++, pCol++){
|
| - if( pCol->iTable==pExpr->iTable &&
|
| - pCol->iColumn==pExpr->iColumn ){
|
| - break;
|
| - }
|
| - }
|
| - if( (k>=pAggInfo->nColumn)
|
| - && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
|
| - ){
|
| - pCol = &pAggInfo->aCol[k];
|
| - pCol->pTab = pExpr->pTab;
|
| - pCol->iTable = pExpr->iTable;
|
| - pCol->iColumn = pExpr->iColumn;
|
| - pCol->iMem = ++pParse->nMem;
|
| - pCol->iSorterColumn = -1;
|
| - pCol->pExpr = pExpr;
|
| - if( pAggInfo->pGroupBy ){
|
| - int j, n;
|
| - ExprList *pGB = pAggInfo->pGroupBy;
|
| - struct ExprList_item *pTerm = pGB->a;
|
| - n = pGB->nExpr;
|
| - for(j=0; j<n; j++, pTerm++){
|
| - Expr *pE = pTerm->pExpr;
|
| - if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
|
| - pE->iColumn==pExpr->iColumn ){
|
| - pCol->iSorterColumn = j;
|
| - break;
|
| - }
|
| - }
|
| - }
|
| - if( pCol->iSorterColumn<0 ){
|
| - pCol->iSorterColumn = pAggInfo->nSortingColumn++;
|
| - }
|
| - }
|
| - /* There is now an entry for pExpr in pAggInfo->aCol[] (either
|
| - ** because it was there before or because we just created it).
|
| - ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
|
| - ** pAggInfo->aCol[] entry.
|
| - */
|
| - ExprSetIrreducible(pExpr);
|
| - pExpr->pAggInfo = pAggInfo;
|
| - pExpr->op = TK_AGG_COLUMN;
|
| - pExpr->iAgg = (i16)k;
|
| - break;
|
| - } /* endif pExpr->iTable==pItem->iCursor */
|
| - } /* end loop over pSrcList */
|
| - }
|
| - return WRC_Prune;
|
| - }
|
| - case TK_AGG_FUNCTION: {
|
| - /* The pNC->nDepth==0 test causes aggregate functions in subqueries
|
| - ** to be ignored */
|
| - if( pNC->nDepth==0 ){
|
| - /* Check to see if pExpr is a duplicate of another aggregate
|
| - ** function that is already in the pAggInfo structure
|
| - */
|
| - struct AggInfo_func *pItem = pAggInfo->aFunc;
|
| - for(i=0; i<pAggInfo->nFunc; i++, pItem++){
|
| - if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
|
| - break;
|
| - }
|
| - }
|
| - if( i>=pAggInfo->nFunc ){
|
| - /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
|
| - */
|
| - u8 enc = ENC(pParse->db);
|
| - i = addAggInfoFunc(pParse->db, pAggInfo);
|
| - if( i>=0 ){
|
| - assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
|
| - pItem = &pAggInfo->aFunc[i];
|
| - pItem->pExpr = pExpr;
|
| - pItem->iMem = ++pParse->nMem;
|
| - assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
| - pItem->pFunc = sqlite3FindFunction(pParse->db,
|
| - pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
|
| - pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
|
| - if( pExpr->flags & EP_Distinct ){
|
| - pItem->iDistinct = pParse->nTab++;
|
| - }else{
|
| - pItem->iDistinct = -1;
|
| - }
|
| - }
|
| - }
|
| - /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
|
| - */
|
| - assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
|
| - ExprSetIrreducible(pExpr);
|
| - pExpr->iAgg = (i16)i;
|
| - pExpr->pAggInfo = pAggInfo;
|
| - return WRC_Prune;
|
| - }
|
| - }
|
| - }
|
| - return WRC_Continue;
|
| -}
|
| -static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
|
| - NameContext *pNC = pWalker->u.pNC;
|
| - if( pNC->nDepth==0 ){
|
| - pNC->nDepth++;
|
| - sqlite3WalkSelect(pWalker, pSelect);
|
| - pNC->nDepth--;
|
| - return WRC_Prune;
|
| - }else{
|
| - return WRC_Continue;
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Analyze the given expression looking for aggregate functions and
|
| -** for variables that need to be added to the pParse->aAgg[] array.
|
| -** Make additional entries to the pParse->aAgg[] array as necessary.
|
| -**
|
| -** This routine should only be called after the expression has been
|
| -** analyzed by sqlite3ResolveExprNames().
|
| -*/
|
| -void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
|
| - Walker w;
|
| - w.xExprCallback = analyzeAggregate;
|
| - w.xSelectCallback = analyzeAggregatesInSelect;
|
| - w.u.pNC = pNC;
|
| - assert( pNC->pSrcList!=0 );
|
| - sqlite3WalkExpr(&w, pExpr);
|
| -}
|
| -
|
| -/*
|
| -** Call sqlite3ExprAnalyzeAggregates() for every expression in an
|
| -** expression list. Return the number of errors.
|
| -**
|
| -** If an error is found, the analysis is cut short.
|
| -*/
|
| -void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
|
| - struct ExprList_item *pItem;
|
| - int i;
|
| - if( pList ){
|
| - for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
|
| - sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
|
| - }
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Allocate a single new register for use to hold some intermediate result.
|
| -*/
|
| -int sqlite3GetTempReg(Parse *pParse){
|
| - if( pParse->nTempReg==0 ){
|
| - return ++pParse->nMem;
|
| - }
|
| - return pParse->aTempReg[--pParse->nTempReg];
|
| -}
|
| -
|
| -/*
|
| -** Deallocate a register, making available for reuse for some other
|
| -** purpose.
|
| -**
|
| -** If a register is currently being used by the column cache, then
|
| -** the dallocation is deferred until the column cache line that uses
|
| -** the register becomes stale.
|
| -*/
|
| -void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
|
| - if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
|
| - int i;
|
| - struct yColCache *p;
|
| - for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
|
| - if( p->iReg==iReg ){
|
| - p->tempReg = 1;
|
| - return;
|
| - }
|
| - }
|
| - pParse->aTempReg[pParse->nTempReg++] = iReg;
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Allocate or deallocate a block of nReg consecutive registers
|
| -*/
|
| -int sqlite3GetTempRange(Parse *pParse, int nReg){
|
| - int i, n;
|
| - i = pParse->iRangeReg;
|
| - n = pParse->nRangeReg;
|
| - if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){
|
| - pParse->iRangeReg += nReg;
|
| - pParse->nRangeReg -= nReg;
|
| - }else{
|
| - i = pParse->nMem+1;
|
| - pParse->nMem += nReg;
|
| - }
|
| - return i;
|
| -}
|
| -void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
|
| - if( nReg>pParse->nRangeReg ){
|
| - pParse->nRangeReg = nReg;
|
| - pParse->iRangeReg = iReg;
|
| - }
|
| -}
|
|
|