| Index: third_party/sqlite/src/btmutex.c
|
| ===================================================================
|
| --- third_party/sqlite/src/btmutex.c (revision 56608)
|
| +++ third_party/sqlite/src/btmutex.c (working copy)
|
| @@ -1,360 +0,0 @@
|
| -/*
|
| -** 2007 August 27
|
| -**
|
| -** The author disclaims copyright to this source code. In place of
|
| -** a legal notice, here is a blessing:
|
| -**
|
| -** May you do good and not evil.
|
| -** May you find forgiveness for yourself and forgive others.
|
| -** May you share freely, never taking more than you give.
|
| -**
|
| -*************************************************************************
|
| -**
|
| -** $Id: btmutex.c,v 1.17 2009/07/20 12:33:33 drh Exp $
|
| -**
|
| -** This file contains code used to implement mutexes on Btree objects.
|
| -** This code really belongs in btree.c. But btree.c is getting too
|
| -** big and we want to break it down some. This packaged seemed like
|
| -** a good breakout.
|
| -*/
|
| -#include "btreeInt.h"
|
| -#ifndef SQLITE_OMIT_SHARED_CACHE
|
| -#if SQLITE_THREADSAFE
|
| -
|
| -/*
|
| -** Obtain the BtShared mutex associated with B-Tree handle p. Also,
|
| -** set BtShared.db to the database handle associated with p and the
|
| -** p->locked boolean to true.
|
| -*/
|
| -static void lockBtreeMutex(Btree *p){
|
| - assert( p->locked==0 );
|
| - assert( sqlite3_mutex_notheld(p->pBt->mutex) );
|
| - assert( sqlite3_mutex_held(p->db->mutex) );
|
| -
|
| - sqlite3_mutex_enter(p->pBt->mutex);
|
| - p->pBt->db = p->db;
|
| - p->locked = 1;
|
| -}
|
| -
|
| -/*
|
| -** Release the BtShared mutex associated with B-Tree handle p and
|
| -** clear the p->locked boolean.
|
| -*/
|
| -static void unlockBtreeMutex(Btree *p){
|
| - assert( p->locked==1 );
|
| - assert( sqlite3_mutex_held(p->pBt->mutex) );
|
| - assert( sqlite3_mutex_held(p->db->mutex) );
|
| - assert( p->db==p->pBt->db );
|
| -
|
| - sqlite3_mutex_leave(p->pBt->mutex);
|
| - p->locked = 0;
|
| -}
|
| -
|
| -/*
|
| -** Enter a mutex on the given BTree object.
|
| -**
|
| -** If the object is not sharable, then no mutex is ever required
|
| -** and this routine is a no-op. The underlying mutex is non-recursive.
|
| -** But we keep a reference count in Btree.wantToLock so the behavior
|
| -** of this interface is recursive.
|
| -**
|
| -** To avoid deadlocks, multiple Btrees are locked in the same order
|
| -** by all database connections. The p->pNext is a list of other
|
| -** Btrees belonging to the same database connection as the p Btree
|
| -** which need to be locked after p. If we cannot get a lock on
|
| -** p, then first unlock all of the others on p->pNext, then wait
|
| -** for the lock to become available on p, then relock all of the
|
| -** subsequent Btrees that desire a lock.
|
| -*/
|
| -void sqlite3BtreeEnter(Btree *p){
|
| - Btree *pLater;
|
| -
|
| - /* Some basic sanity checking on the Btree. The list of Btrees
|
| - ** connected by pNext and pPrev should be in sorted order by
|
| - ** Btree.pBt value. All elements of the list should belong to
|
| - ** the same connection. Only shared Btrees are on the list. */
|
| - assert( p->pNext==0 || p->pNext->pBt>p->pBt );
|
| - assert( p->pPrev==0 || p->pPrev->pBt<p->pBt );
|
| - assert( p->pNext==0 || p->pNext->db==p->db );
|
| - assert( p->pPrev==0 || p->pPrev->db==p->db );
|
| - assert( p->sharable || (p->pNext==0 && p->pPrev==0) );
|
| -
|
| - /* Check for locking consistency */
|
| - assert( !p->locked || p->wantToLock>0 );
|
| - assert( p->sharable || p->wantToLock==0 );
|
| -
|
| - /* We should already hold a lock on the database connection */
|
| - assert( sqlite3_mutex_held(p->db->mutex) );
|
| -
|
| - /* Unless the database is sharable and unlocked, then BtShared.db
|
| - ** should already be set correctly. */
|
| - assert( (p->locked==0 && p->sharable) || p->pBt->db==p->db );
|
| -
|
| - if( !p->sharable ) return;
|
| - p->wantToLock++;
|
| - if( p->locked ) return;
|
| -
|
| - /* In most cases, we should be able to acquire the lock we
|
| - ** want without having to go throught the ascending lock
|
| - ** procedure that follows. Just be sure not to block.
|
| - */
|
| - if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){
|
| - p->pBt->db = p->db;
|
| - p->locked = 1;
|
| - return;
|
| - }
|
| -
|
| - /* To avoid deadlock, first release all locks with a larger
|
| - ** BtShared address. Then acquire our lock. Then reacquire
|
| - ** the other BtShared locks that we used to hold in ascending
|
| - ** order.
|
| - */
|
| - for(pLater=p->pNext; pLater; pLater=pLater->pNext){
|
| - assert( pLater->sharable );
|
| - assert( pLater->pNext==0 || pLater->pNext->pBt>pLater->pBt );
|
| - assert( !pLater->locked || pLater->wantToLock>0 );
|
| - if( pLater->locked ){
|
| - unlockBtreeMutex(pLater);
|
| - }
|
| - }
|
| - lockBtreeMutex(p);
|
| - for(pLater=p->pNext; pLater; pLater=pLater->pNext){
|
| - if( pLater->wantToLock ){
|
| - lockBtreeMutex(pLater);
|
| - }
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Exit the recursive mutex on a Btree.
|
| -*/
|
| -void sqlite3BtreeLeave(Btree *p){
|
| - if( p->sharable ){
|
| - assert( p->wantToLock>0 );
|
| - p->wantToLock--;
|
| - if( p->wantToLock==0 ){
|
| - unlockBtreeMutex(p);
|
| - }
|
| - }
|
| -}
|
| -
|
| -#ifndef NDEBUG
|
| -/*
|
| -** Return true if the BtShared mutex is held on the btree, or if the
|
| -** B-Tree is not marked as sharable.
|
| -**
|
| -** This routine is used only from within assert() statements.
|
| -*/
|
| -int sqlite3BtreeHoldsMutex(Btree *p){
|
| - assert( p->sharable==0 || p->locked==0 || p->wantToLock>0 );
|
| - assert( p->sharable==0 || p->locked==0 || p->db==p->pBt->db );
|
| - assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->pBt->mutex) );
|
| - assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->db->mutex) );
|
| -
|
| - return (p->sharable==0 || p->locked);
|
| -}
|
| -#endif
|
| -
|
| -
|
| -#ifndef SQLITE_OMIT_INCRBLOB
|
| -/*
|
| -** Enter and leave a mutex on a Btree given a cursor owned by that
|
| -** Btree. These entry points are used by incremental I/O and can be
|
| -** omitted if that module is not used.
|
| -*/
|
| -void sqlite3BtreeEnterCursor(BtCursor *pCur){
|
| - sqlite3BtreeEnter(pCur->pBtree);
|
| -}
|
| -void sqlite3BtreeLeaveCursor(BtCursor *pCur){
|
| - sqlite3BtreeLeave(pCur->pBtree);
|
| -}
|
| -#endif /* SQLITE_OMIT_INCRBLOB */
|
| -
|
| -
|
| -/*
|
| -** Enter the mutex on every Btree associated with a database
|
| -** connection. This is needed (for example) prior to parsing
|
| -** a statement since we will be comparing table and column names
|
| -** against all schemas and we do not want those schemas being
|
| -** reset out from under us.
|
| -**
|
| -** There is a corresponding leave-all procedures.
|
| -**
|
| -** Enter the mutexes in accending order by BtShared pointer address
|
| -** to avoid the possibility of deadlock when two threads with
|
| -** two or more btrees in common both try to lock all their btrees
|
| -** at the same instant.
|
| -*/
|
| -void sqlite3BtreeEnterAll(sqlite3 *db){
|
| - int i;
|
| - Btree *p, *pLater;
|
| - assert( sqlite3_mutex_held(db->mutex) );
|
| - for(i=0; i<db->nDb; i++){
|
| - p = db->aDb[i].pBt;
|
| - assert( !p || (p->locked==0 && p->sharable) || p->pBt->db==p->db );
|
| - if( p && p->sharable ){
|
| - p->wantToLock++;
|
| - if( !p->locked ){
|
| - assert( p->wantToLock==1 );
|
| - while( p->pPrev ) p = p->pPrev;
|
| - /* Reason for ALWAYS: There must be at least on unlocked Btree in
|
| - ** the chain. Otherwise the !p->locked test above would have failed */
|
| - while( p->locked && ALWAYS(p->pNext) ) p = p->pNext;
|
| - for(pLater = p->pNext; pLater; pLater=pLater->pNext){
|
| - if( pLater->locked ){
|
| - unlockBtreeMutex(pLater);
|
| - }
|
| - }
|
| - while( p ){
|
| - lockBtreeMutex(p);
|
| - p = p->pNext;
|
| - }
|
| - }
|
| - }
|
| - }
|
| -}
|
| -void sqlite3BtreeLeaveAll(sqlite3 *db){
|
| - int i;
|
| - Btree *p;
|
| - assert( sqlite3_mutex_held(db->mutex) );
|
| - for(i=0; i<db->nDb; i++){
|
| - p = db->aDb[i].pBt;
|
| - if( p && p->sharable ){
|
| - assert( p->wantToLock>0 );
|
| - p->wantToLock--;
|
| - if( p->wantToLock==0 ){
|
| - unlockBtreeMutex(p);
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -#ifndef NDEBUG
|
| -/*
|
| -** Return true if the current thread holds the database connection
|
| -** mutex and all required BtShared mutexes.
|
| -**
|
| -** This routine is used inside assert() statements only.
|
| -*/
|
| -int sqlite3BtreeHoldsAllMutexes(sqlite3 *db){
|
| - int i;
|
| - if( !sqlite3_mutex_held(db->mutex) ){
|
| - return 0;
|
| - }
|
| - for(i=0; i<db->nDb; i++){
|
| - Btree *p;
|
| - p = db->aDb[i].pBt;
|
| - if( p && p->sharable &&
|
| - (p->wantToLock==0 || !sqlite3_mutex_held(p->pBt->mutex)) ){
|
| - return 0;
|
| - }
|
| - }
|
| - return 1;
|
| -}
|
| -#endif /* NDEBUG */
|
| -
|
| -/*
|
| -** Add a new Btree pointer to a BtreeMutexArray.
|
| -** if the pointer can possibly be shared with
|
| -** another database connection.
|
| -**
|
| -** The pointers are kept in sorted order by pBtree->pBt. That
|
| -** way when we go to enter all the mutexes, we can enter them
|
| -** in order without every having to backup and retry and without
|
| -** worrying about deadlock.
|
| -**
|
| -** The number of shared btrees will always be small (usually 0 or 1)
|
| -** so an insertion sort is an adequate algorithm here.
|
| -*/
|
| -void sqlite3BtreeMutexArrayInsert(BtreeMutexArray *pArray, Btree *pBtree){
|
| - int i, j;
|
| - BtShared *pBt;
|
| - if( pBtree==0 || pBtree->sharable==0 ) return;
|
| -#ifndef NDEBUG
|
| - {
|
| - for(i=0; i<pArray->nMutex; i++){
|
| - assert( pArray->aBtree[i]!=pBtree );
|
| - }
|
| - }
|
| -#endif
|
| - assert( pArray->nMutex>=0 );
|
| - assert( pArray->nMutex<ArraySize(pArray->aBtree)-1 );
|
| - pBt = pBtree->pBt;
|
| - for(i=0; i<pArray->nMutex; i++){
|
| - assert( pArray->aBtree[i]!=pBtree );
|
| - if( pArray->aBtree[i]->pBt>pBt ){
|
| - for(j=pArray->nMutex; j>i; j--){
|
| - pArray->aBtree[j] = pArray->aBtree[j-1];
|
| - }
|
| - pArray->aBtree[i] = pBtree;
|
| - pArray->nMutex++;
|
| - return;
|
| - }
|
| - }
|
| - pArray->aBtree[pArray->nMutex++] = pBtree;
|
| -}
|
| -
|
| -/*
|
| -** Enter the mutex of every btree in the array. This routine is
|
| -** called at the beginning of sqlite3VdbeExec(). The mutexes are
|
| -** exited at the end of the same function.
|
| -*/
|
| -void sqlite3BtreeMutexArrayEnter(BtreeMutexArray *pArray){
|
| - int i;
|
| - for(i=0; i<pArray->nMutex; i++){
|
| - Btree *p = pArray->aBtree[i];
|
| - /* Some basic sanity checking */
|
| - assert( i==0 || pArray->aBtree[i-1]->pBt<p->pBt );
|
| - assert( !p->locked || p->wantToLock>0 );
|
| -
|
| - /* We should already hold a lock on the database connection */
|
| - assert( sqlite3_mutex_held(p->db->mutex) );
|
| -
|
| - /* The Btree is sharable because only sharable Btrees are entered
|
| - ** into the array in the first place. */
|
| - assert( p->sharable );
|
| -
|
| - p->wantToLock++;
|
| - if( !p->locked ){
|
| - lockBtreeMutex(p);
|
| - }
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Leave the mutex of every btree in the group.
|
| -*/
|
| -void sqlite3BtreeMutexArrayLeave(BtreeMutexArray *pArray){
|
| - int i;
|
| - for(i=0; i<pArray->nMutex; i++){
|
| - Btree *p = pArray->aBtree[i];
|
| - /* Some basic sanity checking */
|
| - assert( i==0 || pArray->aBtree[i-1]->pBt<p->pBt );
|
| - assert( p->locked );
|
| - assert( p->wantToLock>0 );
|
| -
|
| - /* We should already hold a lock on the database connection */
|
| - assert( sqlite3_mutex_held(p->db->mutex) );
|
| -
|
| - p->wantToLock--;
|
| - if( p->wantToLock==0 ){
|
| - unlockBtreeMutex(p);
|
| - }
|
| - }
|
| -}
|
| -
|
| -#else
|
| -void sqlite3BtreeEnter(Btree *p){
|
| - p->pBt->db = p->db;
|
| -}
|
| -void sqlite3BtreeEnterAll(sqlite3 *db){
|
| - int i;
|
| - for(i=0; i<db->nDb; i++){
|
| - Btree *p = db->aDb[i].pBt;
|
| - if( p ){
|
| - p->pBt->db = p->db;
|
| - }
|
| - }
|
| -}
|
| -#endif /* if SQLITE_THREADSAFE */
|
| -#endif /* ifndef SQLITE_OMIT_SHARED_CACHE */
|
|
|