| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 ** 2001 September 15 | |
| 3 ** | |
| 4 ** The author disclaims copyright to this source code. In place of | |
| 5 ** a legal notice, here is a blessing: | |
| 6 ** | |
| 7 ** May you do good and not evil. | |
| 8 ** May you find forgiveness for yourself and forgive others. | |
| 9 ** May you share freely, never taking more than you give. | |
| 10 ** | |
| 11 ************************************************************************* | |
| 12 ** This module contains C code that generates VDBE code used to process | |
| 13 ** the WHERE clause of SQL statements. This module is responsible for | |
| 14 ** generating the code that loops through a table looking for applicable | |
| 15 ** rows. Indices are selected and used to speed the search when doing | |
| 16 ** so is applicable. Because this module is responsible for selecting | |
| 17 ** indices, you might also think of this module as the "query optimizer". | |
| 18 ** | |
| 19 ** $Id: where.c,v 1.411 2009/07/31 06:14:52 danielk1977 Exp $ | |
| 20 */ | |
| 21 #include "sqliteInt.h" | |
| 22 | |
| 23 /* | |
| 24 ** Trace output macros | |
| 25 */ | |
| 26 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) | |
| 27 int sqlite3WhereTrace = 0; | |
| 28 #endif | |
| 29 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) | |
| 30 # define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X | |
| 31 #else | |
| 32 # define WHERETRACE(X) | |
| 33 #endif | |
| 34 | |
| 35 /* Forward reference | |
| 36 */ | |
| 37 typedef struct WhereClause WhereClause; | |
| 38 typedef struct WhereMaskSet WhereMaskSet; | |
| 39 typedef struct WhereOrInfo WhereOrInfo; | |
| 40 typedef struct WhereAndInfo WhereAndInfo; | |
| 41 typedef struct WhereCost WhereCost; | |
| 42 | |
| 43 /* | |
| 44 ** The query generator uses an array of instances of this structure to | |
| 45 ** help it analyze the subexpressions of the WHERE clause. Each WHERE | |
| 46 ** clause subexpression is separated from the others by AND operators, | |
| 47 ** usually, or sometimes subexpressions separated by OR. | |
| 48 ** | |
| 49 ** All WhereTerms are collected into a single WhereClause structure. | |
| 50 ** The following identity holds: | |
| 51 ** | |
| 52 ** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm | |
| 53 ** | |
| 54 ** When a term is of the form: | |
| 55 ** | |
| 56 ** X <op> <expr> | |
| 57 ** | |
| 58 ** where X is a column name and <op> is one of certain operators, | |
| 59 ** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the | |
| 60 ** cursor number and column number for X. WhereTerm.eOperator records | |
| 61 ** the <op> using a bitmask encoding defined by WO_xxx below. The | |
| 62 ** use of a bitmask encoding for the operator allows us to search | |
| 63 ** quickly for terms that match any of several different operators. | |
| 64 ** | |
| 65 ** A WhereTerm might also be two or more subterms connected by OR: | |
| 66 ** | |
| 67 ** (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR .... | |
| 68 ** | |
| 69 ** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR | |
| 70 ** and the WhereTerm.u.pOrInfo field points to auxiliary information that | |
| 71 ** is collected about the | |
| 72 ** | |
| 73 ** If a term in the WHERE clause does not match either of the two previous | |
| 74 ** categories, then eOperator==0. The WhereTerm.pExpr field is still set | |
| 75 ** to the original subexpression content and wtFlags is set up appropriately | |
| 76 ** but no other fields in the WhereTerm object are meaningful. | |
| 77 ** | |
| 78 ** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers, | |
| 79 ** but they do so indirectly. A single WhereMaskSet structure translates | |
| 80 ** cursor number into bits and the translated bit is stored in the prereq | |
| 81 ** fields. The translation is used in order to maximize the number of | |
| 82 ** bits that will fit in a Bitmask. The VDBE cursor numbers might be | |
| 83 ** spread out over the non-negative integers. For example, the cursor | |
| 84 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The WhereMaskSet | |
| 85 ** translates these sparse cursor numbers into consecutive integers | |
| 86 ** beginning with 0 in order to make the best possible use of the available | |
| 87 ** bits in the Bitmask. So, in the example above, the cursor numbers | |
| 88 ** would be mapped into integers 0 through 7. | |
| 89 ** | |
| 90 ** The number of terms in a join is limited by the number of bits | |
| 91 ** in prereqRight and prereqAll. The default is 64 bits, hence SQLite | |
| 92 ** is only able to process joins with 64 or fewer tables. | |
| 93 */ | |
| 94 typedef struct WhereTerm WhereTerm; | |
| 95 struct WhereTerm { | |
| 96 Expr *pExpr; /* Pointer to the subexpression that is this term */ | |
| 97 int iParent; /* Disable pWC->a[iParent] when this term disabled */ | |
| 98 int leftCursor; /* Cursor number of X in "X <op> <expr>" */ | |
| 99 union { | |
| 100 int leftColumn; /* Column number of X in "X <op> <expr>" */ | |
| 101 WhereOrInfo *pOrInfo; /* Extra information if eOperator==WO_OR */ | |
| 102 WhereAndInfo *pAndInfo; /* Extra information if eOperator==WO_AND */ | |
| 103 } u; | |
| 104 u16 eOperator; /* A WO_xx value describing <op> */ | |
| 105 u8 wtFlags; /* TERM_xxx bit flags. See below */ | |
| 106 u8 nChild; /* Number of children that must disable us */ | |
| 107 WhereClause *pWC; /* The clause this term is part of */ | |
| 108 Bitmask prereqRight; /* Bitmask of tables used by pExpr->pRight */ | |
| 109 Bitmask prereqAll; /* Bitmask of tables referenced by pExpr */ | |
| 110 }; | |
| 111 | |
| 112 /* | |
| 113 ** Allowed values of WhereTerm.wtFlags | |
| 114 */ | |
| 115 #define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */ | |
| 116 #define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */ | |
| 117 #define TERM_CODED 0x04 /* This term is already coded */ | |
| 118 #define TERM_COPIED 0x08 /* Has a child */ | |
| 119 #define TERM_ORINFO 0x10 /* Need to free the WhereTerm.u.pOrInfo object */ | |
| 120 #define TERM_ANDINFO 0x20 /* Need to free the WhereTerm.u.pAndInfo obj */ | |
| 121 #define TERM_OR_OK 0x40 /* Used during OR-clause processing */ | |
| 122 | |
| 123 /* | |
| 124 ** An instance of the following structure holds all information about a | |
| 125 ** WHERE clause. Mostly this is a container for one or more WhereTerms. | |
| 126 */ | |
| 127 struct WhereClause { | |
| 128 Parse *pParse; /* The parser context */ | |
| 129 WhereMaskSet *pMaskSet; /* Mapping of table cursor numbers to bitmasks */ | |
| 130 Bitmask vmask; /* Bitmask identifying virtual table cursors */ | |
| 131 u8 op; /* Split operator. TK_AND or TK_OR */ | |
| 132 int nTerm; /* Number of terms */ | |
| 133 int nSlot; /* Number of entries in a[] */ | |
| 134 WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */ | |
| 135 #if defined(SQLITE_SMALL_STACK) | |
| 136 WhereTerm aStatic[1]; /* Initial static space for a[] */ | |
| 137 #else | |
| 138 WhereTerm aStatic[8]; /* Initial static space for a[] */ | |
| 139 #endif | |
| 140 }; | |
| 141 | |
| 142 /* | |
| 143 ** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to | |
| 144 ** a dynamically allocated instance of the following structure. | |
| 145 */ | |
| 146 struct WhereOrInfo { | |
| 147 WhereClause wc; /* Decomposition into subterms */ | |
| 148 Bitmask indexable; /* Bitmask of all indexable tables in the clause */ | |
| 149 }; | |
| 150 | |
| 151 /* | |
| 152 ** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to | |
| 153 ** a dynamically allocated instance of the following structure. | |
| 154 */ | |
| 155 struct WhereAndInfo { | |
| 156 WhereClause wc; /* The subexpression broken out */ | |
| 157 }; | |
| 158 | |
| 159 /* | |
| 160 ** An instance of the following structure keeps track of a mapping | |
| 161 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm. | |
| 162 ** | |
| 163 ** The VDBE cursor numbers are small integers contained in | |
| 164 ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE | |
| 165 ** clause, the cursor numbers might not begin with 0 and they might | |
| 166 ** contain gaps in the numbering sequence. But we want to make maximum | |
| 167 ** use of the bits in our bitmasks. This structure provides a mapping | |
| 168 ** from the sparse cursor numbers into consecutive integers beginning | |
| 169 ** with 0. | |
| 170 ** | |
| 171 ** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask | |
| 172 ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A. | |
| 173 ** | |
| 174 ** For example, if the WHERE clause expression used these VDBE | |
| 175 ** cursors: 4, 5, 8, 29, 57, 73. Then the WhereMaskSet structure | |
| 176 ** would map those cursor numbers into bits 0 through 5. | |
| 177 ** | |
| 178 ** Note that the mapping is not necessarily ordered. In the example | |
| 179 ** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0, | |
| 180 ** 57->5, 73->4. Or one of 719 other combinations might be used. It | |
| 181 ** does not really matter. What is important is that sparse cursor | |
| 182 ** numbers all get mapped into bit numbers that begin with 0 and contain | |
| 183 ** no gaps. | |
| 184 */ | |
| 185 struct WhereMaskSet { | |
| 186 int n; /* Number of assigned cursor values */ | |
| 187 int ix[BMS]; /* Cursor assigned to each bit */ | |
| 188 }; | |
| 189 | |
| 190 /* | |
| 191 ** A WhereCost object records a lookup strategy and the estimated | |
| 192 ** cost of pursuing that strategy. | |
| 193 */ | |
| 194 struct WhereCost { | |
| 195 WherePlan plan; /* The lookup strategy */ | |
| 196 double rCost; /* Overall cost of pursuing this search strategy */ | |
| 197 double nRow; /* Estimated number of output rows */ | |
| 198 Bitmask used; /* Bitmask of cursors used by this plan */ | |
| 199 }; | |
| 200 | |
| 201 /* | |
| 202 ** Bitmasks for the operators that indices are able to exploit. An | |
| 203 ** OR-ed combination of these values can be used when searching for | |
| 204 ** terms in the where clause. | |
| 205 */ | |
| 206 #define WO_IN 0x001 | |
| 207 #define WO_EQ 0x002 | |
| 208 #define WO_LT (WO_EQ<<(TK_LT-TK_EQ)) | |
| 209 #define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) | |
| 210 #define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) | |
| 211 #define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) | |
| 212 #define WO_MATCH 0x040 | |
| 213 #define WO_ISNULL 0x080 | |
| 214 #define WO_OR 0x100 /* Two or more OR-connected terms */ | |
| 215 #define WO_AND 0x200 /* Two or more AND-connected terms */ | |
| 216 | |
| 217 #define WO_ALL 0xfff /* Mask of all possible WO_* values */ | |
| 218 #define WO_SINGLE 0x0ff /* Mask of all non-compound WO_* values */ | |
| 219 | |
| 220 /* | |
| 221 ** Value for wsFlags returned by bestIndex() and stored in | |
| 222 ** WhereLevel.wsFlags. These flags determine which search | |
| 223 ** strategies are appropriate. | |
| 224 ** | |
| 225 ** The least significant 12 bits is reserved as a mask for WO_ values above. | |
| 226 ** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL. | |
| 227 ** But if the table is the right table of a left join, WhereLevel.wsFlags | |
| 228 ** is set to WO_IN|WO_EQ. The WhereLevel.wsFlags field can then be used as | |
| 229 ** the "op" parameter to findTerm when we are resolving equality constraints. | |
| 230 ** ISNULL constraints will then not be used on the right table of a left | |
| 231 ** join. Tickets #2177 and #2189. | |
| 232 */ | |
| 233 #define WHERE_ROWID_EQ 0x00001000 /* rowid=EXPR or rowid IN (...) */ | |
| 234 #define WHERE_ROWID_RANGE 0x00002000 /* rowid<EXPR and/or rowid>EXPR */ | |
| 235 #define WHERE_COLUMN_EQ 0x00010000 /* x=EXPR or x IN (...) or x IS NULL */ | |
| 236 #define WHERE_COLUMN_RANGE 0x00020000 /* x<EXPR and/or x>EXPR */ | |
| 237 #define WHERE_COLUMN_IN 0x00040000 /* x IN (...) */ | |
| 238 #define WHERE_COLUMN_NULL 0x00080000 /* x IS NULL */ | |
| 239 #define WHERE_INDEXED 0x000f0000 /* Anything that uses an index */ | |
| 240 #define WHERE_IN_ABLE 0x000f1000 /* Able to support an IN operator */ | |
| 241 #define WHERE_TOP_LIMIT 0x00100000 /* x<EXPR or x<=EXPR constraint */ | |
| 242 #define WHERE_BTM_LIMIT 0x00200000 /* x>EXPR or x>=EXPR constraint */ | |
| 243 #define WHERE_IDX_ONLY 0x00800000 /* Use index only - omit table */ | |
| 244 #define WHERE_ORDERBY 0x01000000 /* Output will appear in correct order */ | |
| 245 #define WHERE_REVERSE 0x02000000 /* Scan in reverse order */ | |
| 246 #define WHERE_UNIQUE 0x04000000 /* Selects no more than one row */ | |
| 247 #define WHERE_VIRTUALTABLE 0x08000000 /* Use virtual-table processing */ | |
| 248 #define WHERE_MULTI_OR 0x10000000 /* OR using multiple indices */ | |
| 249 | |
| 250 /* | |
| 251 ** Initialize a preallocated WhereClause structure. | |
| 252 */ | |
| 253 static void whereClauseInit( | |
| 254 WhereClause *pWC, /* The WhereClause to be initialized */ | |
| 255 Parse *pParse, /* The parsing context */ | |
| 256 WhereMaskSet *pMaskSet /* Mapping from table cursor numbers to bitmasks */ | |
| 257 ){ | |
| 258 pWC->pParse = pParse; | |
| 259 pWC->pMaskSet = pMaskSet; | |
| 260 pWC->nTerm = 0; | |
| 261 pWC->nSlot = ArraySize(pWC->aStatic); | |
| 262 pWC->a = pWC->aStatic; | |
| 263 pWC->vmask = 0; | |
| 264 } | |
| 265 | |
| 266 /* Forward reference */ | |
| 267 static void whereClauseClear(WhereClause*); | |
| 268 | |
| 269 /* | |
| 270 ** Deallocate all memory associated with a WhereOrInfo object. | |
| 271 */ | |
| 272 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ | |
| 273 whereClauseClear(&p->wc); | |
| 274 sqlite3DbFree(db, p); | |
| 275 } | |
| 276 | |
| 277 /* | |
| 278 ** Deallocate all memory associated with a WhereAndInfo object. | |
| 279 */ | |
| 280 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ | |
| 281 whereClauseClear(&p->wc); | |
| 282 sqlite3DbFree(db, p); | |
| 283 } | |
| 284 | |
| 285 /* | |
| 286 ** Deallocate a WhereClause structure. The WhereClause structure | |
| 287 ** itself is not freed. This routine is the inverse of whereClauseInit(). | |
| 288 */ | |
| 289 static void whereClauseClear(WhereClause *pWC){ | |
| 290 int i; | |
| 291 WhereTerm *a; | |
| 292 sqlite3 *db = pWC->pParse->db; | |
| 293 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ | |
| 294 if( a->wtFlags & TERM_DYNAMIC ){ | |
| 295 sqlite3ExprDelete(db, a->pExpr); | |
| 296 } | |
| 297 if( a->wtFlags & TERM_ORINFO ){ | |
| 298 whereOrInfoDelete(db, a->u.pOrInfo); | |
| 299 }else if( a->wtFlags & TERM_ANDINFO ){ | |
| 300 whereAndInfoDelete(db, a->u.pAndInfo); | |
| 301 } | |
| 302 } | |
| 303 if( pWC->a!=pWC->aStatic ){ | |
| 304 sqlite3DbFree(db, pWC->a); | |
| 305 } | |
| 306 } | |
| 307 | |
| 308 /* | |
| 309 ** Add a single new WhereTerm entry to the WhereClause object pWC. | |
| 310 ** The new WhereTerm object is constructed from Expr p and with wtFlags. | |
| 311 ** The index in pWC->a[] of the new WhereTerm is returned on success. | |
| 312 ** 0 is returned if the new WhereTerm could not be added due to a memory | |
| 313 ** allocation error. The memory allocation failure will be recorded in | |
| 314 ** the db->mallocFailed flag so that higher-level functions can detect it. | |
| 315 ** | |
| 316 ** This routine will increase the size of the pWC->a[] array as necessary. | |
| 317 ** | |
| 318 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility | |
| 319 ** for freeing the expression p is assumed by the WhereClause object pWC. | |
| 320 ** This is true even if this routine fails to allocate a new WhereTerm. | |
| 321 ** | |
| 322 ** WARNING: This routine might reallocate the space used to store | |
| 323 ** WhereTerms. All pointers to WhereTerms should be invalidated after | |
| 324 ** calling this routine. Such pointers may be reinitialized by referencing | |
| 325 ** the pWC->a[] array. | |
| 326 */ | |
| 327 static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){ | |
| 328 WhereTerm *pTerm; | |
| 329 int idx; | |
| 330 if( pWC->nTerm>=pWC->nSlot ){ | |
| 331 WhereTerm *pOld = pWC->a; | |
| 332 sqlite3 *db = pWC->pParse->db; | |
| 333 pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); | |
| 334 if( pWC->a==0 ){ | |
| 335 if( wtFlags & TERM_DYNAMIC ){ | |
| 336 sqlite3ExprDelete(db, p); | |
| 337 } | |
| 338 pWC->a = pOld; | |
| 339 return 0; | |
| 340 } | |
| 341 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); | |
| 342 if( pOld!=pWC->aStatic ){ | |
| 343 sqlite3DbFree(db, pOld); | |
| 344 } | |
| 345 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); | |
| 346 } | |
| 347 pTerm = &pWC->a[idx = pWC->nTerm++]; | |
| 348 pTerm->pExpr = p; | |
| 349 pTerm->wtFlags = wtFlags; | |
| 350 pTerm->pWC = pWC; | |
| 351 pTerm->iParent = -1; | |
| 352 return idx; | |
| 353 } | |
| 354 | |
| 355 /* | |
| 356 ** This routine identifies subexpressions in the WHERE clause where | |
| 357 ** each subexpression is separated by the AND operator or some other | |
| 358 ** operator specified in the op parameter. The WhereClause structure | |
| 359 ** is filled with pointers to subexpressions. For example: | |
| 360 ** | |
| 361 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) | |
| 362 ** \________/ \_______________/ \________________/ | |
| 363 ** slot[0] slot[1] slot[2] | |
| 364 ** | |
| 365 ** The original WHERE clause in pExpr is unaltered. All this routine | |
| 366 ** does is make slot[] entries point to substructure within pExpr. | |
| 367 ** | |
| 368 ** In the previous sentence and in the diagram, "slot[]" refers to | |
| 369 ** the WhereClause.a[] array. The slot[] array grows as needed to contain | |
| 370 ** all terms of the WHERE clause. | |
| 371 */ | |
| 372 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){ | |
| 373 pWC->op = (u8)op; | |
| 374 if( pExpr==0 ) return; | |
| 375 if( pExpr->op!=op ){ | |
| 376 whereClauseInsert(pWC, pExpr, 0); | |
| 377 }else{ | |
| 378 whereSplit(pWC, pExpr->pLeft, op); | |
| 379 whereSplit(pWC, pExpr->pRight, op); | |
| 380 } | |
| 381 } | |
| 382 | |
| 383 /* | |
| 384 ** Initialize an expression mask set (a WhereMaskSet object) | |
| 385 */ | |
| 386 #define initMaskSet(P) memset(P, 0, sizeof(*P)) | |
| 387 | |
| 388 /* | |
| 389 ** Return the bitmask for the given cursor number. Return 0 if | |
| 390 ** iCursor is not in the set. | |
| 391 */ | |
| 392 static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){ | |
| 393 int i; | |
| 394 assert( pMaskSet->n<=sizeof(Bitmask)*8 ); | |
| 395 for(i=0; i<pMaskSet->n; i++){ | |
| 396 if( pMaskSet->ix[i]==iCursor ){ | |
| 397 return ((Bitmask)1)<<i; | |
| 398 } | |
| 399 } | |
| 400 return 0; | |
| 401 } | |
| 402 | |
| 403 /* | |
| 404 ** Create a new mask for cursor iCursor. | |
| 405 ** | |
| 406 ** There is one cursor per table in the FROM clause. The number of | |
| 407 ** tables in the FROM clause is limited by a test early in the | |
| 408 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] | |
| 409 ** array will never overflow. | |
| 410 */ | |
| 411 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ | |
| 412 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); | |
| 413 pMaskSet->ix[pMaskSet->n++] = iCursor; | |
| 414 } | |
| 415 | |
| 416 /* | |
| 417 ** This routine walks (recursively) an expression tree and generates | |
| 418 ** a bitmask indicating which tables are used in that expression | |
| 419 ** tree. | |
| 420 ** | |
| 421 ** In order for this routine to work, the calling function must have | |
| 422 ** previously invoked sqlite3ResolveExprNames() on the expression. See | |
| 423 ** the header comment on that routine for additional information. | |
| 424 ** The sqlite3ResolveExprNames() routines looks for column names and | |
| 425 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to | |
| 426 ** the VDBE cursor number of the table. This routine just has to | |
| 427 ** translate the cursor numbers into bitmask values and OR all | |
| 428 ** the bitmasks together. | |
| 429 */ | |
| 430 static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*); | |
| 431 static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*); | |
| 432 static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){ | |
| 433 Bitmask mask = 0; | |
| 434 if( p==0 ) return 0; | |
| 435 if( p->op==TK_COLUMN ){ | |
| 436 mask = getMask(pMaskSet, p->iTable); | |
| 437 return mask; | |
| 438 } | |
| 439 mask = exprTableUsage(pMaskSet, p->pRight); | |
| 440 mask |= exprTableUsage(pMaskSet, p->pLeft); | |
| 441 if( ExprHasProperty(p, EP_xIsSelect) ){ | |
| 442 mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect); | |
| 443 }else{ | |
| 444 mask |= exprListTableUsage(pMaskSet, p->x.pList); | |
| 445 } | |
| 446 return mask; | |
| 447 } | |
| 448 static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){ | |
| 449 int i; | |
| 450 Bitmask mask = 0; | |
| 451 if( pList ){ | |
| 452 for(i=0; i<pList->nExpr; i++){ | |
| 453 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); | |
| 454 } | |
| 455 } | |
| 456 return mask; | |
| 457 } | |
| 458 static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){ | |
| 459 Bitmask mask = 0; | |
| 460 while( pS ){ | |
| 461 mask |= exprListTableUsage(pMaskSet, pS->pEList); | |
| 462 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); | |
| 463 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); | |
| 464 mask |= exprTableUsage(pMaskSet, pS->pWhere); | |
| 465 mask |= exprTableUsage(pMaskSet, pS->pHaving); | |
| 466 pS = pS->pPrior; | |
| 467 } | |
| 468 return mask; | |
| 469 } | |
| 470 | |
| 471 /* | |
| 472 ** Return TRUE if the given operator is one of the operators that is | |
| 473 ** allowed for an indexable WHERE clause term. The allowed operators are | |
| 474 ** "=", "<", ">", "<=", ">=", and "IN". | |
| 475 */ | |
| 476 static int allowedOp(int op){ | |
| 477 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); | |
| 478 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); | |
| 479 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); | |
| 480 assert( TK_GE==TK_EQ+4 ); | |
| 481 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL; | |
| 482 } | |
| 483 | |
| 484 /* | |
| 485 ** Swap two objects of type TYPE. | |
| 486 */ | |
| 487 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} | |
| 488 | |
| 489 /* | |
| 490 ** Commute a comparison operator. Expressions of the form "X op Y" | |
| 491 ** are converted into "Y op X". | |
| 492 ** | |
| 493 ** If a collation sequence is associated with either the left or right | |
| 494 ** side of the comparison, it remains associated with the same side after | |
| 495 ** the commutation. So "Y collate NOCASE op X" becomes | |
| 496 ** "X collate NOCASE op Y". This is because any collation sequence on | |
| 497 ** the left hand side of a comparison overrides any collation sequence | |
| 498 ** attached to the right. For the same reason the EP_ExpCollate flag | |
| 499 ** is not commuted. | |
| 500 */ | |
| 501 static void exprCommute(Parse *pParse, Expr *pExpr){ | |
| 502 u16 expRight = (pExpr->pRight->flags & EP_ExpCollate); | |
| 503 u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate); | |
| 504 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); | |
| 505 pExpr->pRight->pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight); | |
| 506 pExpr->pLeft->pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); | |
| 507 SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl); | |
| 508 pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft; | |
| 509 pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight; | |
| 510 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); | |
| 511 if( pExpr->op>=TK_GT ){ | |
| 512 assert( TK_LT==TK_GT+2 ); | |
| 513 assert( TK_GE==TK_LE+2 ); | |
| 514 assert( TK_GT>TK_EQ ); | |
| 515 assert( TK_GT<TK_LE ); | |
| 516 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); | |
| 517 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; | |
| 518 } | |
| 519 } | |
| 520 | |
| 521 /* | |
| 522 ** Translate from TK_xx operator to WO_xx bitmask. | |
| 523 */ | |
| 524 static u16 operatorMask(int op){ | |
| 525 u16 c; | |
| 526 assert( allowedOp(op) ); | |
| 527 if( op==TK_IN ){ | |
| 528 c = WO_IN; | |
| 529 }else if( op==TK_ISNULL ){ | |
| 530 c = WO_ISNULL; | |
| 531 }else{ | |
| 532 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); | |
| 533 c = (u16)(WO_EQ<<(op-TK_EQ)); | |
| 534 } | |
| 535 assert( op!=TK_ISNULL || c==WO_ISNULL ); | |
| 536 assert( op!=TK_IN || c==WO_IN ); | |
| 537 assert( op!=TK_EQ || c==WO_EQ ); | |
| 538 assert( op!=TK_LT || c==WO_LT ); | |
| 539 assert( op!=TK_LE || c==WO_LE ); | |
| 540 assert( op!=TK_GT || c==WO_GT ); | |
| 541 assert( op!=TK_GE || c==WO_GE ); | |
| 542 return c; | |
| 543 } | |
| 544 | |
| 545 /* | |
| 546 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" | |
| 547 ** where X is a reference to the iColumn of table iCur and <op> is one of | |
| 548 ** the WO_xx operator codes specified by the op parameter. | |
| 549 ** Return a pointer to the term. Return 0 if not found. | |
| 550 */ | |
| 551 static WhereTerm *findTerm( | |
| 552 WhereClause *pWC, /* The WHERE clause to be searched */ | |
| 553 int iCur, /* Cursor number of LHS */ | |
| 554 int iColumn, /* Column number of LHS */ | |
| 555 Bitmask notReady, /* RHS must not overlap with this mask */ | |
| 556 u32 op, /* Mask of WO_xx values describing operator */ | |
| 557 Index *pIdx /* Must be compatible with this index, if not NULL */ | |
| 558 ){ | |
| 559 WhereTerm *pTerm; | |
| 560 int k; | |
| 561 assert( iCur>=0 ); | |
| 562 op &= WO_ALL; | |
| 563 for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){ | |
| 564 if( pTerm->leftCursor==iCur | |
| 565 && (pTerm->prereqRight & notReady)==0 | |
| 566 && pTerm->u.leftColumn==iColumn | |
| 567 && (pTerm->eOperator & op)!=0 | |
| 568 ){ | |
| 569 if( pIdx && pTerm->eOperator!=WO_ISNULL ){ | |
| 570 Expr *pX = pTerm->pExpr; | |
| 571 CollSeq *pColl; | |
| 572 char idxaff; | |
| 573 int j; | |
| 574 Parse *pParse = pWC->pParse; | |
| 575 | |
| 576 idxaff = pIdx->pTable->aCol[iColumn].affinity; | |
| 577 if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue; | |
| 578 | |
| 579 /* Figure out the collation sequence required from an index for | |
| 580 ** it to be useful for optimising expression pX. Store this | |
| 581 ** value in variable pColl. | |
| 582 */ | |
| 583 assert(pX->pLeft); | |
| 584 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); | |
| 585 assert(pColl || pParse->nErr); | |
| 586 | |
| 587 for(j=0; pIdx->aiColumn[j]!=iColumn; j++){ | |
| 588 if( NEVER(j>=pIdx->nColumn) ) return 0; | |
| 589 } | |
| 590 if( pColl && sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue; | |
| 591 } | |
| 592 return pTerm; | |
| 593 } | |
| 594 } | |
| 595 return 0; | |
| 596 } | |
| 597 | |
| 598 /* Forward reference */ | |
| 599 static void exprAnalyze(SrcList*, WhereClause*, int); | |
| 600 | |
| 601 /* | |
| 602 ** Call exprAnalyze on all terms in a WHERE clause. | |
| 603 ** | |
| 604 ** | |
| 605 */ | |
| 606 static void exprAnalyzeAll( | |
| 607 SrcList *pTabList, /* the FROM clause */ | |
| 608 WhereClause *pWC /* the WHERE clause to be analyzed */ | |
| 609 ){ | |
| 610 int i; | |
| 611 for(i=pWC->nTerm-1; i>=0; i--){ | |
| 612 exprAnalyze(pTabList, pWC, i); | |
| 613 } | |
| 614 } | |
| 615 | |
| 616 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION | |
| 617 /* | |
| 618 ** Check to see if the given expression is a LIKE or GLOB operator that | |
| 619 ** can be optimized using inequality constraints. Return TRUE if it is | |
| 620 ** so and false if not. | |
| 621 ** | |
| 622 ** In order for the operator to be optimizible, the RHS must be a string | |
| 623 ** literal that does not begin with a wildcard. | |
| 624 */ | |
| 625 static int isLikeOrGlob( | |
| 626 Parse *pParse, /* Parsing and code generating context */ | |
| 627 Expr *pExpr, /* Test this expression */ | |
| 628 int *pnPattern, /* Number of non-wildcard prefix characters */ | |
| 629 int *pisComplete, /* True if the only wildcard is % in the last character */ | |
| 630 int *pnoCase /* True if uppercase is equivalent to lowercase */ | |
| 631 ){ | |
| 632 const char *z; /* String on RHS of LIKE operator */ | |
| 633 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ | |
| 634 ExprList *pList; /* List of operands to the LIKE operator */ | |
| 635 int c; /* One character in z[] */ | |
| 636 int cnt; /* Number of non-wildcard prefix characters */ | |
| 637 char wc[3]; /* Wildcard characters */ | |
| 638 CollSeq *pColl; /* Collating sequence for LHS */ | |
| 639 sqlite3 *db = pParse->db; /* Database connection */ | |
| 640 | |
| 641 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ | |
| 642 return 0; | |
| 643 } | |
| 644 #ifdef SQLITE_EBCDIC | |
| 645 if( *pnoCase ) return 0; | |
| 646 #endif | |
| 647 pList = pExpr->x.pList; | |
| 648 pRight = pList->a[0].pExpr; | |
| 649 if( pRight->op!=TK_STRING ){ | |
| 650 return 0; | |
| 651 } | |
| 652 pLeft = pList->a[1].pExpr; | |
| 653 if( pLeft->op!=TK_COLUMN ){ | |
| 654 return 0; | |
| 655 } | |
| 656 pColl = sqlite3ExprCollSeq(pParse, pLeft); | |
| 657 assert( pColl!=0 || pLeft->iColumn==-1 ); | |
| 658 if( pColl==0 ) return 0; | |
| 659 if( (pColl->type!=SQLITE_COLL_BINARY || *pnoCase) && | |
| 660 (pColl->type!=SQLITE_COLL_NOCASE || !*pnoCase) ){ | |
| 661 return 0; | |
| 662 } | |
| 663 if( sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT ) return 0; | |
| 664 z = pRight->u.zToken; | |
| 665 if( ALWAYS(z) ){ | |
| 666 cnt = 0; | |
| 667 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ | |
| 668 cnt++; | |
| 669 } | |
| 670 if( cnt!=0 && c!=0 && 255!=(u8)z[cnt-1] ){ | |
| 671 *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0; | |
| 672 *pnPattern = cnt; | |
| 673 return 1; | |
| 674 } | |
| 675 } | |
| 676 return 0; | |
| 677 } | |
| 678 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ | |
| 679 | |
| 680 | |
| 681 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
| 682 /* | |
| 683 ** Check to see if the given expression is of the form | |
| 684 ** | |
| 685 ** column MATCH expr | |
| 686 ** | |
| 687 ** If it is then return TRUE. If not, return FALSE. | |
| 688 */ | |
| 689 static int isMatchOfColumn( | |
| 690 Expr *pExpr /* Test this expression */ | |
| 691 ){ | |
| 692 ExprList *pList; | |
| 693 | |
| 694 if( pExpr->op!=TK_FUNCTION ){ | |
| 695 return 0; | |
| 696 } | |
| 697 if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){ | |
| 698 return 0; | |
| 699 } | |
| 700 pList = pExpr->x.pList; | |
| 701 if( pList->nExpr!=2 ){ | |
| 702 return 0; | |
| 703 } | |
| 704 if( pList->a[1].pExpr->op != TK_COLUMN ){ | |
| 705 return 0; | |
| 706 } | |
| 707 return 1; | |
| 708 } | |
| 709 #endif /* SQLITE_OMIT_VIRTUALTABLE */ | |
| 710 | |
| 711 /* | |
| 712 ** If the pBase expression originated in the ON or USING clause of | |
| 713 ** a join, then transfer the appropriate markings over to derived. | |
| 714 */ | |
| 715 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ | |
| 716 pDerived->flags |= pBase->flags & EP_FromJoin; | |
| 717 pDerived->iRightJoinTable = pBase->iRightJoinTable; | |
| 718 } | |
| 719 | |
| 720 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) | |
| 721 /* | |
| 722 ** Analyze a term that consists of two or more OR-connected | |
| 723 ** subterms. So in: | |
| 724 ** | |
| 725 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) | |
| 726 ** ^^^^^^^^^^^^^^^^^^^^ | |
| 727 ** | |
| 728 ** This routine analyzes terms such as the middle term in the above example. | |
| 729 ** A WhereOrTerm object is computed and attached to the term under | |
| 730 ** analysis, regardless of the outcome of the analysis. Hence: | |
| 731 ** | |
| 732 ** WhereTerm.wtFlags |= TERM_ORINFO | |
| 733 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object | |
| 734 ** | |
| 735 ** The term being analyzed must have two or more of OR-connected subterms. | |
| 736 ** A single subterm might be a set of AND-connected sub-subterms. | |
| 737 ** Examples of terms under analysis: | |
| 738 ** | |
| 739 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 | |
| 740 ** (B) x=expr1 OR expr2=x OR x=expr3 | |
| 741 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) | |
| 742 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') | |
| 743 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) | |
| 744 ** | |
| 745 ** CASE 1: | |
| 746 ** | |
| 747 ** If all subterms are of the form T.C=expr for some single column of C | |
| 748 ** a single table T (as shown in example B above) then create a new virtual | |
| 749 ** term that is an equivalent IN expression. In other words, if the term | |
| 750 ** being analyzed is: | |
| 751 ** | |
| 752 ** x = expr1 OR expr2 = x OR x = expr3 | |
| 753 ** | |
| 754 ** then create a new virtual term like this: | |
| 755 ** | |
| 756 ** x IN (expr1,expr2,expr3) | |
| 757 ** | |
| 758 ** CASE 2: | |
| 759 ** | |
| 760 ** If all subterms are indexable by a single table T, then set | |
| 761 ** | |
| 762 ** WhereTerm.eOperator = WO_OR | |
| 763 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T | |
| 764 ** | |
| 765 ** A subterm is "indexable" if it is of the form | |
| 766 ** "T.C <op> <expr>" where C is any column of table T and | |
| 767 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". | |
| 768 ** A subterm is also indexable if it is an AND of two or more | |
| 769 ** subsubterms at least one of which is indexable. Indexable AND | |
| 770 ** subterms have their eOperator set to WO_AND and they have | |
| 771 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object. | |
| 772 ** | |
| 773 ** From another point of view, "indexable" means that the subterm could | |
| 774 ** potentially be used with an index if an appropriate index exists. | |
| 775 ** This analysis does not consider whether or not the index exists; that | |
| 776 ** is something the bestIndex() routine will determine. This analysis | |
| 777 ** only looks at whether subterms appropriate for indexing exist. | |
| 778 ** | |
| 779 ** All examples A through E above all satisfy case 2. But if a term | |
| 780 ** also statisfies case 1 (such as B) we know that the optimizer will | |
| 781 ** always prefer case 1, so in that case we pretend that case 2 is not | |
| 782 ** satisfied. | |
| 783 ** | |
| 784 ** It might be the case that multiple tables are indexable. For example, | |
| 785 ** (E) above is indexable on tables P, Q, and R. | |
| 786 ** | |
| 787 ** Terms that satisfy case 2 are candidates for lookup by using | |
| 788 ** separate indices to find rowids for each subterm and composing | |
| 789 ** the union of all rowids using a RowSet object. This is similar | |
| 790 ** to "bitmap indices" in other database engines. | |
| 791 ** | |
| 792 ** OTHERWISE: | |
| 793 ** | |
| 794 ** If neither case 1 nor case 2 apply, then leave the eOperator set to | |
| 795 ** zero. This term is not useful for search. | |
| 796 */ | |
| 797 static void exprAnalyzeOrTerm( | |
| 798 SrcList *pSrc, /* the FROM clause */ | |
| 799 WhereClause *pWC, /* the complete WHERE clause */ | |
| 800 int idxTerm /* Index of the OR-term to be analyzed */ | |
| 801 ){ | |
| 802 Parse *pParse = pWC->pParse; /* Parser context */ | |
| 803 sqlite3 *db = pParse->db; /* Database connection */ | |
| 804 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ | |
| 805 Expr *pExpr = pTerm->pExpr; /* The expression of the term */ | |
| 806 WhereMaskSet *pMaskSet = pWC->pMaskSet; /* Table use masks */ | |
| 807 int i; /* Loop counters */ | |
| 808 WhereClause *pOrWc; /* Breakup of pTerm into subterms */ | |
| 809 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ | |
| 810 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ | |
| 811 Bitmask chngToIN; /* Tables that might satisfy case 1 */ | |
| 812 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ | |
| 813 | |
| 814 /* | |
| 815 ** Break the OR clause into its separate subterms. The subterms are | |
| 816 ** stored in a WhereClause structure containing within the WhereOrInfo | |
| 817 ** object that is attached to the original OR clause term. | |
| 818 */ | |
| 819 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); | |
| 820 assert( pExpr->op==TK_OR ); | |
| 821 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); | |
| 822 if( pOrInfo==0 ) return; | |
| 823 pTerm->wtFlags |= TERM_ORINFO; | |
| 824 pOrWc = &pOrInfo->wc; | |
| 825 whereClauseInit(pOrWc, pWC->pParse, pMaskSet); | |
| 826 whereSplit(pOrWc, pExpr, TK_OR); | |
| 827 exprAnalyzeAll(pSrc, pOrWc); | |
| 828 if( db->mallocFailed ) return; | |
| 829 assert( pOrWc->nTerm>=2 ); | |
| 830 | |
| 831 /* | |
| 832 ** Compute the set of tables that might satisfy cases 1 or 2. | |
| 833 */ | |
| 834 indexable = ~(Bitmask)0; | |
| 835 chngToIN = ~(pWC->vmask); | |
| 836 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ | |
| 837 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ | |
| 838 WhereAndInfo *pAndInfo; | |
| 839 assert( pOrTerm->eOperator==0 ); | |
| 840 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); | |
| 841 chngToIN = 0; | |
| 842 pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo)); | |
| 843 if( pAndInfo ){ | |
| 844 WhereClause *pAndWC; | |
| 845 WhereTerm *pAndTerm; | |
| 846 int j; | |
| 847 Bitmask b = 0; | |
| 848 pOrTerm->u.pAndInfo = pAndInfo; | |
| 849 pOrTerm->wtFlags |= TERM_ANDINFO; | |
| 850 pOrTerm->eOperator = WO_AND; | |
| 851 pAndWC = &pAndInfo->wc; | |
| 852 whereClauseInit(pAndWC, pWC->pParse, pMaskSet); | |
| 853 whereSplit(pAndWC, pOrTerm->pExpr, TK_AND); | |
| 854 exprAnalyzeAll(pSrc, pAndWC); | |
| 855 testcase( db->mallocFailed ); | |
| 856 if( !db->mallocFailed ){ | |
| 857 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ | |
| 858 assert( pAndTerm->pExpr ); | |
| 859 if( allowedOp(pAndTerm->pExpr->op) ){ | |
| 860 b |= getMask(pMaskSet, pAndTerm->leftCursor); | |
| 861 } | |
| 862 } | |
| 863 } | |
| 864 indexable &= b; | |
| 865 } | |
| 866 }else if( pOrTerm->wtFlags & TERM_COPIED ){ | |
| 867 /* Skip this term for now. We revisit it when we process the | |
| 868 ** corresponding TERM_VIRTUAL term */ | |
| 869 }else{ | |
| 870 Bitmask b; | |
| 871 b = getMask(pMaskSet, pOrTerm->leftCursor); | |
| 872 if( pOrTerm->wtFlags & TERM_VIRTUAL ){ | |
| 873 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; | |
| 874 b |= getMask(pMaskSet, pOther->leftCursor); | |
| 875 } | |
| 876 indexable &= b; | |
| 877 if( pOrTerm->eOperator!=WO_EQ ){ | |
| 878 chngToIN = 0; | |
| 879 }else{ | |
| 880 chngToIN &= b; | |
| 881 } | |
| 882 } | |
| 883 } | |
| 884 | |
| 885 /* | |
| 886 ** Record the set of tables that satisfy case 2. The set might be | |
| 887 ** empty. | |
| 888 */ | |
| 889 pOrInfo->indexable = indexable; | |
| 890 pTerm->eOperator = indexable==0 ? 0 : WO_OR; | |
| 891 | |
| 892 /* | |
| 893 ** chngToIN holds a set of tables that *might* satisfy case 1. But | |
| 894 ** we have to do some additional checking to see if case 1 really | |
| 895 ** is satisfied. | |
| 896 ** | |
| 897 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means | |
| 898 ** that there is no possibility of transforming the OR clause into an | |
| 899 ** IN operator because one or more terms in the OR clause contain | |
| 900 ** something other than == on a column in the single table. The 1-bit | |
| 901 ** case means that every term of the OR clause is of the form | |
| 902 ** "table.column=expr" for some single table. The one bit that is set | |
| 903 ** will correspond to the common table. We still need to check to make | |
| 904 ** sure the same column is used on all terms. The 2-bit case is when | |
| 905 ** the all terms are of the form "table1.column=table2.column". It | |
| 906 ** might be possible to form an IN operator with either table1.column | |
| 907 ** or table2.column as the LHS if either is common to every term of | |
| 908 ** the OR clause. | |
| 909 ** | |
| 910 ** Note that terms of the form "table.column1=table.column2" (the | |
| 911 ** same table on both sizes of the ==) cannot be optimized. | |
| 912 */ | |
| 913 if( chngToIN ){ | |
| 914 int okToChngToIN = 0; /* True if the conversion to IN is valid */ | |
| 915 int iColumn = -1; /* Column index on lhs of IN operator */ | |
| 916 int iCursor = -1; /* Table cursor common to all terms */ | |
| 917 int j = 0; /* Loop counter */ | |
| 918 | |
| 919 /* Search for a table and column that appears on one side or the | |
| 920 ** other of the == operator in every subterm. That table and column | |
| 921 ** will be recorded in iCursor and iColumn. There might not be any | |
| 922 ** such table and column. Set okToChngToIN if an appropriate table | |
| 923 ** and column is found but leave okToChngToIN false if not found. | |
| 924 */ | |
| 925 for(j=0; j<2 && !okToChngToIN; j++){ | |
| 926 pOrTerm = pOrWc->a; | |
| 927 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ | |
| 928 assert( pOrTerm->eOperator==WO_EQ ); | |
| 929 pOrTerm->wtFlags &= ~TERM_OR_OK; | |
| 930 if( pOrTerm->leftCursor==iCursor ){ | |
| 931 /* This is the 2-bit case and we are on the second iteration and | |
| 932 ** current term is from the first iteration. So skip this term. */ | |
| 933 assert( j==1 ); | |
| 934 continue; | |
| 935 } | |
| 936 if( (chngToIN & getMask(pMaskSet, pOrTerm->leftCursor))==0 ){ | |
| 937 /* This term must be of the form t1.a==t2.b where t2 is in the | |
| 938 ** chngToIN set but t1 is not. This term will be either preceeded | |
| 939 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term | |
| 940 ** and use its inversion. */ | |
| 941 testcase( pOrTerm->wtFlags & TERM_COPIED ); | |
| 942 testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); | |
| 943 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); | |
| 944 continue; | |
| 945 } | |
| 946 iColumn = pOrTerm->u.leftColumn; | |
| 947 iCursor = pOrTerm->leftCursor; | |
| 948 break; | |
| 949 } | |
| 950 if( i<0 ){ | |
| 951 /* No candidate table+column was found. This can only occur | |
| 952 ** on the second iteration */ | |
| 953 assert( j==1 ); | |
| 954 assert( (chngToIN&(chngToIN-1))==0 ); | |
| 955 assert( chngToIN==getMask(pMaskSet, iCursor) ); | |
| 956 break; | |
| 957 } | |
| 958 testcase( j==1 ); | |
| 959 | |
| 960 /* We have found a candidate table and column. Check to see if that | |
| 961 ** table and column is common to every term in the OR clause */ | |
| 962 okToChngToIN = 1; | |
| 963 for(; i>=0 && okToChngToIN; i--, pOrTerm++){ | |
| 964 assert( pOrTerm->eOperator==WO_EQ ); | |
| 965 if( pOrTerm->leftCursor!=iCursor ){ | |
| 966 pOrTerm->wtFlags &= ~TERM_OR_OK; | |
| 967 }else if( pOrTerm->u.leftColumn!=iColumn ){ | |
| 968 okToChngToIN = 0; | |
| 969 }else{ | |
| 970 int affLeft, affRight; | |
| 971 /* If the right-hand side is also a column, then the affinities | |
| 972 ** of both right and left sides must be such that no type | |
| 973 ** conversions are required on the right. (Ticket #2249) | |
| 974 */ | |
| 975 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); | |
| 976 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); | |
| 977 if( affRight!=0 && affRight!=affLeft ){ | |
| 978 okToChngToIN = 0; | |
| 979 }else{ | |
| 980 pOrTerm->wtFlags |= TERM_OR_OK; | |
| 981 } | |
| 982 } | |
| 983 } | |
| 984 } | |
| 985 | |
| 986 /* At this point, okToChngToIN is true if original pTerm satisfies | |
| 987 ** case 1. In that case, construct a new virtual term that is | |
| 988 ** pTerm converted into an IN operator. | |
| 989 */ | |
| 990 if( okToChngToIN ){ | |
| 991 Expr *pDup; /* A transient duplicate expression */ | |
| 992 ExprList *pList = 0; /* The RHS of the IN operator */ | |
| 993 Expr *pLeft = 0; /* The LHS of the IN operator */ | |
| 994 Expr *pNew; /* The complete IN operator */ | |
| 995 | |
| 996 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ | |
| 997 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; | |
| 998 assert( pOrTerm->eOperator==WO_EQ ); | |
| 999 assert( pOrTerm->leftCursor==iCursor ); | |
| 1000 assert( pOrTerm->u.leftColumn==iColumn ); | |
| 1001 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); | |
| 1002 pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup); | |
| 1003 pLeft = pOrTerm->pExpr->pLeft; | |
| 1004 } | |
| 1005 assert( pLeft!=0 ); | |
| 1006 pDup = sqlite3ExprDup(db, pLeft, 0); | |
| 1007 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0); | |
| 1008 if( pNew ){ | |
| 1009 int idxNew; | |
| 1010 transferJoinMarkings(pNew, pExpr); | |
| 1011 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); | |
| 1012 pNew->x.pList = pList; | |
| 1013 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); | |
| 1014 testcase( idxNew==0 ); | |
| 1015 exprAnalyze(pSrc, pWC, idxNew); | |
| 1016 pTerm = &pWC->a[idxTerm]; | |
| 1017 pWC->a[idxNew].iParent = idxTerm; | |
| 1018 pTerm->nChild = 1; | |
| 1019 }else{ | |
| 1020 sqlite3ExprListDelete(db, pList); | |
| 1021 } | |
| 1022 pTerm->eOperator = 0; /* case 1 trumps case 2 */ | |
| 1023 } | |
| 1024 } | |
| 1025 } | |
| 1026 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ | |
| 1027 | |
| 1028 | |
| 1029 /* | |
| 1030 ** The input to this routine is an WhereTerm structure with only the | |
| 1031 ** "pExpr" field filled in. The job of this routine is to analyze the | |
| 1032 ** subexpression and populate all the other fields of the WhereTerm | |
| 1033 ** structure. | |
| 1034 ** | |
| 1035 ** If the expression is of the form "<expr> <op> X" it gets commuted | |
| 1036 ** to the standard form of "X <op> <expr>". | |
| 1037 ** | |
| 1038 ** If the expression is of the form "X <op> Y" where both X and Y are | |
| 1039 ** columns, then the original expression is unchanged and a new virtual | |
| 1040 ** term of the form "Y <op> X" is added to the WHERE clause and | |
| 1041 ** analyzed separately. The original term is marked with TERM_COPIED | |
| 1042 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr | |
| 1043 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it | |
| 1044 ** is a commuted copy of a prior term.) The original term has nChild=1 | |
| 1045 ** and the copy has idxParent set to the index of the original term. | |
| 1046 */ | |
| 1047 static void exprAnalyze( | |
| 1048 SrcList *pSrc, /* the FROM clause */ | |
| 1049 WhereClause *pWC, /* the WHERE clause */ | |
| 1050 int idxTerm /* Index of the term to be analyzed */ | |
| 1051 ){ | |
| 1052 WhereTerm *pTerm; /* The term to be analyzed */ | |
| 1053 WhereMaskSet *pMaskSet; /* Set of table index masks */ | |
| 1054 Expr *pExpr; /* The expression to be analyzed */ | |
| 1055 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ | |
| 1056 Bitmask prereqAll; /* Prerequesites of pExpr */ | |
| 1057 Bitmask extraRight = 0; | |
| 1058 int nPattern; | |
| 1059 int isComplete; | |
| 1060 int noCase; | |
| 1061 int op; /* Top-level operator. pExpr->op */ | |
| 1062 Parse *pParse = pWC->pParse; /* Parsing context */ | |
| 1063 sqlite3 *db = pParse->db; /* Database connection */ | |
| 1064 | |
| 1065 if( db->mallocFailed ){ | |
| 1066 return; | |
| 1067 } | |
| 1068 pTerm = &pWC->a[idxTerm]; | |
| 1069 pMaskSet = pWC->pMaskSet; | |
| 1070 pExpr = pTerm->pExpr; | |
| 1071 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); | |
| 1072 op = pExpr->op; | |
| 1073 if( op==TK_IN ){ | |
| 1074 assert( pExpr->pRight==0 ); | |
| 1075 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ | |
| 1076 pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect); | |
| 1077 }else{ | |
| 1078 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList); | |
| 1079 } | |
| 1080 }else if( op==TK_ISNULL ){ | |
| 1081 pTerm->prereqRight = 0; | |
| 1082 }else{ | |
| 1083 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); | |
| 1084 } | |
| 1085 prereqAll = exprTableUsage(pMaskSet, pExpr); | |
| 1086 if( ExprHasProperty(pExpr, EP_FromJoin) ){ | |
| 1087 Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable); | |
| 1088 prereqAll |= x; | |
| 1089 extraRight = x-1; /* ON clause terms may not be used with an index | |
| 1090 ** on left table of a LEFT JOIN. Ticket #3015 */ | |
| 1091 } | |
| 1092 pTerm->prereqAll = prereqAll; | |
| 1093 pTerm->leftCursor = -1; | |
| 1094 pTerm->iParent = -1; | |
| 1095 pTerm->eOperator = 0; | |
| 1096 if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){ | |
| 1097 Expr *pLeft = pExpr->pLeft; | |
| 1098 Expr *pRight = pExpr->pRight; | |
| 1099 if( pLeft->op==TK_COLUMN ){ | |
| 1100 pTerm->leftCursor = pLeft->iTable; | |
| 1101 pTerm->u.leftColumn = pLeft->iColumn; | |
| 1102 pTerm->eOperator = operatorMask(op); | |
| 1103 } | |
| 1104 if( pRight && pRight->op==TK_COLUMN ){ | |
| 1105 WhereTerm *pNew; | |
| 1106 Expr *pDup; | |
| 1107 if( pTerm->leftCursor>=0 ){ | |
| 1108 int idxNew; | |
| 1109 pDup = sqlite3ExprDup(db, pExpr, 0); | |
| 1110 if( db->mallocFailed ){ | |
| 1111 sqlite3ExprDelete(db, pDup); | |
| 1112 return; | |
| 1113 } | |
| 1114 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); | |
| 1115 if( idxNew==0 ) return; | |
| 1116 pNew = &pWC->a[idxNew]; | |
| 1117 pNew->iParent = idxTerm; | |
| 1118 pTerm = &pWC->a[idxTerm]; | |
| 1119 pTerm->nChild = 1; | |
| 1120 pTerm->wtFlags |= TERM_COPIED; | |
| 1121 }else{ | |
| 1122 pDup = pExpr; | |
| 1123 pNew = pTerm; | |
| 1124 } | |
| 1125 exprCommute(pParse, pDup); | |
| 1126 pLeft = pDup->pLeft; | |
| 1127 pNew->leftCursor = pLeft->iTable; | |
| 1128 pNew->u.leftColumn = pLeft->iColumn; | |
| 1129 pNew->prereqRight = prereqLeft; | |
| 1130 pNew->prereqAll = prereqAll; | |
| 1131 pNew->eOperator = operatorMask(pDup->op); | |
| 1132 } | |
| 1133 } | |
| 1134 | |
| 1135 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION | |
| 1136 /* If a term is the BETWEEN operator, create two new virtual terms | |
| 1137 ** that define the range that the BETWEEN implements. For example: | |
| 1138 ** | |
| 1139 ** a BETWEEN b AND c | |
| 1140 ** | |
| 1141 ** is converted into: | |
| 1142 ** | |
| 1143 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) | |
| 1144 ** | |
| 1145 ** The two new terms are added onto the end of the WhereClause object. | |
| 1146 ** The new terms are "dynamic" and are children of the original BETWEEN | |
| 1147 ** term. That means that if the BETWEEN term is coded, the children are | |
| 1148 ** skipped. Or, if the children are satisfied by an index, the original | |
| 1149 ** BETWEEN term is skipped. | |
| 1150 */ | |
| 1151 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ | |
| 1152 ExprList *pList = pExpr->x.pList; | |
| 1153 int i; | |
| 1154 static const u8 ops[] = {TK_GE, TK_LE}; | |
| 1155 assert( pList!=0 ); | |
| 1156 assert( pList->nExpr==2 ); | |
| 1157 for(i=0; i<2; i++){ | |
| 1158 Expr *pNewExpr; | |
| 1159 int idxNew; | |
| 1160 pNewExpr = sqlite3PExpr(pParse, ops[i], | |
| 1161 sqlite3ExprDup(db, pExpr->pLeft, 0), | |
| 1162 sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0); | |
| 1163 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); | |
| 1164 testcase( idxNew==0 ); | |
| 1165 exprAnalyze(pSrc, pWC, idxNew); | |
| 1166 pTerm = &pWC->a[idxTerm]; | |
| 1167 pWC->a[idxNew].iParent = idxTerm; | |
| 1168 } | |
| 1169 pTerm->nChild = 2; | |
| 1170 } | |
| 1171 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ | |
| 1172 | |
| 1173 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) | |
| 1174 /* Analyze a term that is composed of two or more subterms connected by | |
| 1175 ** an OR operator. | |
| 1176 */ | |
| 1177 else if( pExpr->op==TK_OR ){ | |
| 1178 assert( pWC->op==TK_AND ); | |
| 1179 exprAnalyzeOrTerm(pSrc, pWC, idxTerm); | |
| 1180 pTerm = &pWC->a[idxTerm]; | |
| 1181 } | |
| 1182 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ | |
| 1183 | |
| 1184 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION | |
| 1185 /* Add constraints to reduce the search space on a LIKE or GLOB | |
| 1186 ** operator. | |
| 1187 ** | |
| 1188 ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints | |
| 1189 ** | |
| 1190 ** x>='abc' AND x<'abd' AND x LIKE 'abc%' | |
| 1191 ** | |
| 1192 ** The last character of the prefix "abc" is incremented to form the | |
| 1193 ** termination condition "abd". | |
| 1194 */ | |
| 1195 if( isLikeOrGlob(pParse, pExpr, &nPattern, &isComplete, &noCase) | |
| 1196 && pWC->op==TK_AND ){ | |
| 1197 Expr *pLeft, *pRight; | |
| 1198 Expr *pStr1, *pStr2; | |
| 1199 Expr *pNewExpr1, *pNewExpr2; | |
| 1200 int idxNew1, idxNew2; | |
| 1201 | |
| 1202 pLeft = pExpr->x.pList->a[1].pExpr; | |
| 1203 pRight = pExpr->x.pList->a[0].pExpr; | |
| 1204 pStr1 = sqlite3Expr(db, TK_STRING, pRight->u.zToken); | |
| 1205 if( pStr1 ) pStr1->u.zToken[nPattern] = 0; | |
| 1206 pStr2 = sqlite3ExprDup(db, pStr1, 0); | |
| 1207 if( !db->mallocFailed ){ | |
| 1208 u8 c, *pC; /* Last character before the first wildcard */ | |
| 1209 pC = (u8*)&pStr2->u.zToken[nPattern-1]; | |
| 1210 c = *pC; | |
| 1211 if( noCase ){ | |
| 1212 /* The point is to increment the last character before the first | |
| 1213 ** wildcard. But if we increment '@', that will push it into the | |
| 1214 ** alphabetic range where case conversions will mess up the | |
| 1215 ** inequality. To avoid this, make sure to also run the full | |
| 1216 ** LIKE on all candidate expressions by clearing the isComplete flag | |
| 1217 */ | |
| 1218 if( c=='A'-1 ) isComplete = 0; | |
| 1219 | |
| 1220 c = sqlite3UpperToLower[c]; | |
| 1221 } | |
| 1222 *pC = c + 1; | |
| 1223 } | |
| 1224 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft,0),pStr1,0); | |
| 1225 idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); | |
| 1226 testcase( idxNew1==0 ); | |
| 1227 exprAnalyze(pSrc, pWC, idxNew1); | |
| 1228 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft,0),pStr2,0); | |
| 1229 idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); | |
| 1230 testcase( idxNew2==0 ); | |
| 1231 exprAnalyze(pSrc, pWC, idxNew2); | |
| 1232 pTerm = &pWC->a[idxTerm]; | |
| 1233 if( isComplete ){ | |
| 1234 pWC->a[idxNew1].iParent = idxTerm; | |
| 1235 pWC->a[idxNew2].iParent = idxTerm; | |
| 1236 pTerm->nChild = 2; | |
| 1237 } | |
| 1238 } | |
| 1239 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ | |
| 1240 | |
| 1241 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
| 1242 /* Add a WO_MATCH auxiliary term to the constraint set if the | |
| 1243 ** current expression is of the form: column MATCH expr. | |
| 1244 ** This information is used by the xBestIndex methods of | |
| 1245 ** virtual tables. The native query optimizer does not attempt | |
| 1246 ** to do anything with MATCH functions. | |
| 1247 */ | |
| 1248 if( isMatchOfColumn(pExpr) ){ | |
| 1249 int idxNew; | |
| 1250 Expr *pRight, *pLeft; | |
| 1251 WhereTerm *pNewTerm; | |
| 1252 Bitmask prereqColumn, prereqExpr; | |
| 1253 | |
| 1254 pRight = pExpr->x.pList->a[0].pExpr; | |
| 1255 pLeft = pExpr->x.pList->a[1].pExpr; | |
| 1256 prereqExpr = exprTableUsage(pMaskSet, pRight); | |
| 1257 prereqColumn = exprTableUsage(pMaskSet, pLeft); | |
| 1258 if( (prereqExpr & prereqColumn)==0 ){ | |
| 1259 Expr *pNewExpr; | |
| 1260 pNewExpr = sqlite3PExpr(pParse, TK_MATCH, | |
| 1261 0, sqlite3ExprDup(db, pRight, 0), 0); | |
| 1262 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); | |
| 1263 testcase( idxNew==0 ); | |
| 1264 pNewTerm = &pWC->a[idxNew]; | |
| 1265 pNewTerm->prereqRight = prereqExpr; | |
| 1266 pNewTerm->leftCursor = pLeft->iTable; | |
| 1267 pNewTerm->u.leftColumn = pLeft->iColumn; | |
| 1268 pNewTerm->eOperator = WO_MATCH; | |
| 1269 pNewTerm->iParent = idxTerm; | |
| 1270 pTerm = &pWC->a[idxTerm]; | |
| 1271 pTerm->nChild = 1; | |
| 1272 pTerm->wtFlags |= TERM_COPIED; | |
| 1273 pNewTerm->prereqAll = pTerm->prereqAll; | |
| 1274 } | |
| 1275 } | |
| 1276 #endif /* SQLITE_OMIT_VIRTUALTABLE */ | |
| 1277 | |
| 1278 /* Prevent ON clause terms of a LEFT JOIN from being used to drive | |
| 1279 ** an index for tables to the left of the join. | |
| 1280 */ | |
| 1281 pTerm->prereqRight |= extraRight; | |
| 1282 } | |
| 1283 | |
| 1284 /* | |
| 1285 ** Return TRUE if any of the expressions in pList->a[iFirst...] contain | |
| 1286 ** a reference to any table other than the iBase table. | |
| 1287 */ | |
| 1288 static int referencesOtherTables( | |
| 1289 ExprList *pList, /* Search expressions in ths list */ | |
| 1290 WhereMaskSet *pMaskSet, /* Mapping from tables to bitmaps */ | |
| 1291 int iFirst, /* Be searching with the iFirst-th expression */ | |
| 1292 int iBase /* Ignore references to this table */ | |
| 1293 ){ | |
| 1294 Bitmask allowed = ~getMask(pMaskSet, iBase); | |
| 1295 while( iFirst<pList->nExpr ){ | |
| 1296 if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){ | |
| 1297 return 1; | |
| 1298 } | |
| 1299 } | |
| 1300 return 0; | |
| 1301 } | |
| 1302 | |
| 1303 | |
| 1304 /* | |
| 1305 ** This routine decides if pIdx can be used to satisfy the ORDER BY | |
| 1306 ** clause. If it can, it returns 1. If pIdx cannot satisfy the | |
| 1307 ** ORDER BY clause, this routine returns 0. | |
| 1308 ** | |
| 1309 ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the | |
| 1310 ** left-most table in the FROM clause of that same SELECT statement and | |
| 1311 ** the table has a cursor number of "base". pIdx is an index on pTab. | |
| 1312 ** | |
| 1313 ** nEqCol is the number of columns of pIdx that are used as equality | |
| 1314 ** constraints. Any of these columns may be missing from the ORDER BY | |
| 1315 ** clause and the match can still be a success. | |
| 1316 ** | |
| 1317 ** All terms of the ORDER BY that match against the index must be either | |
| 1318 ** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE | |
| 1319 ** index do not need to satisfy this constraint.) The *pbRev value is | |
| 1320 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if | |
| 1321 ** the ORDER BY clause is all ASC. | |
| 1322 */ | |
| 1323 static int isSortingIndex( | |
| 1324 Parse *pParse, /* Parsing context */ | |
| 1325 WhereMaskSet *pMaskSet, /* Mapping from table cursor numbers to bitmaps */ | |
| 1326 Index *pIdx, /* The index we are testing */ | |
| 1327 int base, /* Cursor number for the table to be sorted */ | |
| 1328 ExprList *pOrderBy, /* The ORDER BY clause */ | |
| 1329 int nEqCol, /* Number of index columns with == constraints */ | |
| 1330 int *pbRev /* Set to 1 if ORDER BY is DESC */ | |
| 1331 ){ | |
| 1332 int i, j; /* Loop counters */ | |
| 1333 int sortOrder = 0; /* XOR of index and ORDER BY sort direction */ | |
| 1334 int nTerm; /* Number of ORDER BY terms */ | |
| 1335 struct ExprList_item *pTerm; /* A term of the ORDER BY clause */ | |
| 1336 sqlite3 *db = pParse->db; | |
| 1337 | |
| 1338 assert( pOrderBy!=0 ); | |
| 1339 nTerm = pOrderBy->nExpr; | |
| 1340 assert( nTerm>0 ); | |
| 1341 | |
| 1342 /* Argument pIdx must either point to a 'real' named index structure, | |
| 1343 ** or an index structure allocated on the stack by bestBtreeIndex() to | |
| 1344 ** represent the rowid index that is part of every table. */ | |
| 1345 assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) ); | |
| 1346 | |
| 1347 /* Match terms of the ORDER BY clause against columns of | |
| 1348 ** the index. | |
| 1349 ** | |
| 1350 ** Note that indices have pIdx->nColumn regular columns plus | |
| 1351 ** one additional column containing the rowid. The rowid column | |
| 1352 ** of the index is also allowed to match against the ORDER BY | |
| 1353 ** clause. | |
| 1354 */ | |
| 1355 for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){ | |
| 1356 Expr *pExpr; /* The expression of the ORDER BY pTerm */ | |
| 1357 CollSeq *pColl; /* The collating sequence of pExpr */ | |
| 1358 int termSortOrder; /* Sort order for this term */ | |
| 1359 int iColumn; /* The i-th column of the index. -1 for rowid */ | |
| 1360 int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */ | |
| 1361 const char *zColl; /* Name of the collating sequence for i-th index term */ | |
| 1362 | |
| 1363 pExpr = pTerm->pExpr; | |
| 1364 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){ | |
| 1365 /* Can not use an index sort on anything that is not a column in the | |
| 1366 ** left-most table of the FROM clause */ | |
| 1367 break; | |
| 1368 } | |
| 1369 pColl = sqlite3ExprCollSeq(pParse, pExpr); | |
| 1370 if( !pColl ){ | |
| 1371 pColl = db->pDfltColl; | |
| 1372 } | |
| 1373 if( pIdx->zName && i<pIdx->nColumn ){ | |
| 1374 iColumn = pIdx->aiColumn[i]; | |
| 1375 if( iColumn==pIdx->pTable->iPKey ){ | |
| 1376 iColumn = -1; | |
| 1377 } | |
| 1378 iSortOrder = pIdx->aSortOrder[i]; | |
| 1379 zColl = pIdx->azColl[i]; | |
| 1380 }else{ | |
| 1381 iColumn = -1; | |
| 1382 iSortOrder = 0; | |
| 1383 zColl = pColl->zName; | |
| 1384 } | |
| 1385 if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){ | |
| 1386 /* Term j of the ORDER BY clause does not match column i of the index */ | |
| 1387 if( i<nEqCol ){ | |
| 1388 /* If an index column that is constrained by == fails to match an | |
| 1389 ** ORDER BY term, that is OK. Just ignore that column of the index | |
| 1390 */ | |
| 1391 continue; | |
| 1392 }else if( i==pIdx->nColumn ){ | |
| 1393 /* Index column i is the rowid. All other terms match. */ | |
| 1394 break; | |
| 1395 }else{ | |
| 1396 /* If an index column fails to match and is not constrained by == | |
| 1397 ** then the index cannot satisfy the ORDER BY constraint. | |
| 1398 */ | |
| 1399 return 0; | |
| 1400 } | |
| 1401 } | |
| 1402 assert( pIdx->aSortOrder!=0 || iColumn==-1 ); | |
| 1403 assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 ); | |
| 1404 assert( iSortOrder==0 || iSortOrder==1 ); | |
| 1405 termSortOrder = iSortOrder ^ pTerm->sortOrder; | |
| 1406 if( i>nEqCol ){ | |
| 1407 if( termSortOrder!=sortOrder ){ | |
| 1408 /* Indices can only be used if all ORDER BY terms past the | |
| 1409 ** equality constraints are all either DESC or ASC. */ | |
| 1410 return 0; | |
| 1411 } | |
| 1412 }else{ | |
| 1413 sortOrder = termSortOrder; | |
| 1414 } | |
| 1415 j++; | |
| 1416 pTerm++; | |
| 1417 if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ | |
| 1418 /* If the indexed column is the primary key and everything matches | |
| 1419 ** so far and none of the ORDER BY terms to the right reference other | |
| 1420 ** tables in the join, then we are assured that the index can be used | |
| 1421 ** to sort because the primary key is unique and so none of the other | |
| 1422 ** columns will make any difference | |
| 1423 */ | |
| 1424 j = nTerm; | |
| 1425 } | |
| 1426 } | |
| 1427 | |
| 1428 *pbRev = sortOrder!=0; | |
| 1429 if( j>=nTerm ){ | |
| 1430 /* All terms of the ORDER BY clause are covered by this index so | |
| 1431 ** this index can be used for sorting. */ | |
| 1432 return 1; | |
| 1433 } | |
| 1434 if( pIdx->onError!=OE_None && i==pIdx->nColumn | |
| 1435 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ | |
| 1436 /* All terms of this index match some prefix of the ORDER BY clause | |
| 1437 ** and the index is UNIQUE and no terms on the tail of the ORDER BY | |
| 1438 ** clause reference other tables in a join. If this is all true then | |
| 1439 ** the order by clause is superfluous. */ | |
| 1440 return 1; | |
| 1441 } | |
| 1442 return 0; | |
| 1443 } | |
| 1444 | |
| 1445 /* | |
| 1446 ** Prepare a crude estimate of the logarithm of the input value. | |
| 1447 ** The results need not be exact. This is only used for estimating | |
| 1448 ** the total cost of performing operations with O(logN) or O(NlogN) | |
| 1449 ** complexity. Because N is just a guess, it is no great tragedy if | |
| 1450 ** logN is a little off. | |
| 1451 */ | |
| 1452 static double estLog(double N){ | |
| 1453 double logN = 1; | |
| 1454 double x = 10; | |
| 1455 while( N>x ){ | |
| 1456 logN += 1; | |
| 1457 x *= 10; | |
| 1458 } | |
| 1459 return logN; | |
| 1460 } | |
| 1461 | |
| 1462 /* | |
| 1463 ** Two routines for printing the content of an sqlite3_index_info | |
| 1464 ** structure. Used for testing and debugging only. If neither | |
| 1465 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines | |
| 1466 ** are no-ops. | |
| 1467 */ | |
| 1468 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG) | |
| 1469 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ | |
| 1470 int i; | |
| 1471 if( !sqlite3WhereTrace ) return; | |
| 1472 for(i=0; i<p->nConstraint; i++){ | |
| 1473 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", | |
| 1474 i, | |
| 1475 p->aConstraint[i].iColumn, | |
| 1476 p->aConstraint[i].iTermOffset, | |
| 1477 p->aConstraint[i].op, | |
| 1478 p->aConstraint[i].usable); | |
| 1479 } | |
| 1480 for(i=0; i<p->nOrderBy; i++){ | |
| 1481 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", | |
| 1482 i, | |
| 1483 p->aOrderBy[i].iColumn, | |
| 1484 p->aOrderBy[i].desc); | |
| 1485 } | |
| 1486 } | |
| 1487 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ | |
| 1488 int i; | |
| 1489 if( !sqlite3WhereTrace ) return; | |
| 1490 for(i=0; i<p->nConstraint; i++){ | |
| 1491 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", | |
| 1492 i, | |
| 1493 p->aConstraintUsage[i].argvIndex, | |
| 1494 p->aConstraintUsage[i].omit); | |
| 1495 } | |
| 1496 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); | |
| 1497 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); | |
| 1498 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); | |
| 1499 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); | |
| 1500 } | |
| 1501 #else | |
| 1502 #define TRACE_IDX_INPUTS(A) | |
| 1503 #define TRACE_IDX_OUTPUTS(A) | |
| 1504 #endif | |
| 1505 | |
| 1506 /* | |
| 1507 ** Required because bestIndex() is called by bestOrClauseIndex() | |
| 1508 */ | |
| 1509 static void bestIndex( | |
| 1510 Parse*, WhereClause*, struct SrcList_item*, Bitmask, ExprList*, WhereCost*); | |
| 1511 | |
| 1512 /* | |
| 1513 ** This routine attempts to find an scanning strategy that can be used | |
| 1514 ** to optimize an 'OR' expression that is part of a WHERE clause. | |
| 1515 ** | |
| 1516 ** The table associated with FROM clause term pSrc may be either a | |
| 1517 ** regular B-Tree table or a virtual table. | |
| 1518 */ | |
| 1519 static void bestOrClauseIndex( | |
| 1520 Parse *pParse, /* The parsing context */ | |
| 1521 WhereClause *pWC, /* The WHERE clause */ | |
| 1522 struct SrcList_item *pSrc, /* The FROM clause term to search */ | |
| 1523 Bitmask notReady, /* Mask of cursors that are not available */ | |
| 1524 ExprList *pOrderBy, /* The ORDER BY clause */ | |
| 1525 WhereCost *pCost /* Lowest cost query plan */ | |
| 1526 ){ | |
| 1527 #ifndef SQLITE_OMIT_OR_OPTIMIZATION | |
| 1528 const int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ | |
| 1529 const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur); /* Bitmask for pSrc */ | |
| 1530 WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm]; /* End of pWC->a[] */ | |
| 1531 WhereTerm *pTerm; /* A single term of the WHERE clause */ | |
| 1532 | |
| 1533 /* Search the WHERE clause terms for a usable WO_OR term. */ | |
| 1534 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ | |
| 1535 if( pTerm->eOperator==WO_OR | |
| 1536 && ((pTerm->prereqAll & ~maskSrc) & notReady)==0 | |
| 1537 && (pTerm->u.pOrInfo->indexable & maskSrc)!=0 | |
| 1538 ){ | |
| 1539 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; | |
| 1540 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; | |
| 1541 WhereTerm *pOrTerm; | |
| 1542 int flags = WHERE_MULTI_OR; | |
| 1543 double rTotal = 0; | |
| 1544 double nRow = 0; | |
| 1545 Bitmask used = 0; | |
| 1546 | |
| 1547 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ | |
| 1548 WhereCost sTermCost; | |
| 1549 WHERETRACE(("... Multi-index OR testing for term %d of %d....\n", | |
| 1550 (pOrTerm - pOrWC->a), (pTerm - pWC->a) | |
| 1551 )); | |
| 1552 if( pOrTerm->eOperator==WO_AND ){ | |
| 1553 WhereClause *pAndWC = &pOrTerm->u.pAndInfo->wc; | |
| 1554 bestIndex(pParse, pAndWC, pSrc, notReady, 0, &sTermCost); | |
| 1555 }else if( pOrTerm->leftCursor==iCur ){ | |
| 1556 WhereClause tempWC; | |
| 1557 tempWC.pParse = pWC->pParse; | |
| 1558 tempWC.pMaskSet = pWC->pMaskSet; | |
| 1559 tempWC.op = TK_AND; | |
| 1560 tempWC.a = pOrTerm; | |
| 1561 tempWC.nTerm = 1; | |
| 1562 bestIndex(pParse, &tempWC, pSrc, notReady, 0, &sTermCost); | |
| 1563 }else{ | |
| 1564 continue; | |
| 1565 } | |
| 1566 rTotal += sTermCost.rCost; | |
| 1567 nRow += sTermCost.nRow; | |
| 1568 used |= sTermCost.used; | |
| 1569 if( rTotal>=pCost->rCost ) break; | |
| 1570 } | |
| 1571 | |
| 1572 /* If there is an ORDER BY clause, increase the scan cost to account | |
| 1573 ** for the cost of the sort. */ | |
| 1574 if( pOrderBy!=0 ){ | |
| 1575 rTotal += nRow*estLog(nRow); | |
| 1576 WHERETRACE(("... sorting increases OR cost to %.9g\n", rTotal)); | |
| 1577 } | |
| 1578 | |
| 1579 /* If the cost of scanning using this OR term for optimization is | |
| 1580 ** less than the current cost stored in pCost, replace the contents | |
| 1581 ** of pCost. */ | |
| 1582 WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow)); | |
| 1583 if( rTotal<pCost->rCost ){ | |
| 1584 pCost->rCost = rTotal; | |
| 1585 pCost->nRow = nRow; | |
| 1586 pCost->used = used; | |
| 1587 pCost->plan.wsFlags = flags; | |
| 1588 pCost->plan.u.pTerm = pTerm; | |
| 1589 } | |
| 1590 } | |
| 1591 } | |
| 1592 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ | |
| 1593 } | |
| 1594 | |
| 1595 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
| 1596 /* | |
| 1597 ** Allocate and populate an sqlite3_index_info structure. It is the | |
| 1598 ** responsibility of the caller to eventually release the structure | |
| 1599 ** by passing the pointer returned by this function to sqlite3_free(). | |
| 1600 */ | |
| 1601 static sqlite3_index_info *allocateIndexInfo( | |
| 1602 Parse *pParse, | |
| 1603 WhereClause *pWC, | |
| 1604 struct SrcList_item *pSrc, | |
| 1605 ExprList *pOrderBy | |
| 1606 ){ | |
| 1607 int i, j; | |
| 1608 int nTerm; | |
| 1609 struct sqlite3_index_constraint *pIdxCons; | |
| 1610 struct sqlite3_index_orderby *pIdxOrderBy; | |
| 1611 struct sqlite3_index_constraint_usage *pUsage; | |
| 1612 WhereTerm *pTerm; | |
| 1613 int nOrderBy; | |
| 1614 sqlite3_index_info *pIdxInfo; | |
| 1615 | |
| 1616 WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName)); | |
| 1617 | |
| 1618 /* Count the number of possible WHERE clause constraints referring | |
| 1619 ** to this virtual table */ | |
| 1620 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ | |
| 1621 if( pTerm->leftCursor != pSrc->iCursor ) continue; | |
| 1622 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); | |
| 1623 testcase( pTerm->eOperator==WO_IN ); | |
| 1624 testcase( pTerm->eOperator==WO_ISNULL ); | |
| 1625 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; | |
| 1626 nTerm++; | |
| 1627 } | |
| 1628 | |
| 1629 /* If the ORDER BY clause contains only columns in the current | |
| 1630 ** virtual table then allocate space for the aOrderBy part of | |
| 1631 ** the sqlite3_index_info structure. | |
| 1632 */ | |
| 1633 nOrderBy = 0; | |
| 1634 if( pOrderBy ){ | |
| 1635 for(i=0; i<pOrderBy->nExpr; i++){ | |
| 1636 Expr *pExpr = pOrderBy->a[i].pExpr; | |
| 1637 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; | |
| 1638 } | |
| 1639 if( i==pOrderBy->nExpr ){ | |
| 1640 nOrderBy = pOrderBy->nExpr; | |
| 1641 } | |
| 1642 } | |
| 1643 | |
| 1644 /* Allocate the sqlite3_index_info structure | |
| 1645 */ | |
| 1646 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) | |
| 1647 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm | |
| 1648 + sizeof(*pIdxOrderBy)*nOrderBy ); | |
| 1649 if( pIdxInfo==0 ){ | |
| 1650 sqlite3ErrorMsg(pParse, "out of memory"); | |
| 1651 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ | |
| 1652 return 0; | |
| 1653 } | |
| 1654 | |
| 1655 /* Initialize the structure. The sqlite3_index_info structure contains | |
| 1656 ** many fields that are declared "const" to prevent xBestIndex from | |
| 1657 ** changing them. We have to do some funky casting in order to | |
| 1658 ** initialize those fields. | |
| 1659 */ | |
| 1660 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; | |
| 1661 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; | |
| 1662 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; | |
| 1663 *(int*)&pIdxInfo->nConstraint = nTerm; | |
| 1664 *(int*)&pIdxInfo->nOrderBy = nOrderBy; | |
| 1665 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; | |
| 1666 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; | |
| 1667 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = | |
| 1668 pUsage; | |
| 1669 | |
| 1670 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ | |
| 1671 if( pTerm->leftCursor != pSrc->iCursor ) continue; | |
| 1672 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); | |
| 1673 testcase( pTerm->eOperator==WO_IN ); | |
| 1674 testcase( pTerm->eOperator==WO_ISNULL ); | |
| 1675 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; | |
| 1676 pIdxCons[j].iColumn = pTerm->u.leftColumn; | |
| 1677 pIdxCons[j].iTermOffset = i; | |
| 1678 pIdxCons[j].op = (u8)pTerm->eOperator; | |
| 1679 /* The direct assignment in the previous line is possible only because | |
| 1680 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The | |
| 1681 ** following asserts verify this fact. */ | |
| 1682 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); | |
| 1683 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); | |
| 1684 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); | |
| 1685 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); | |
| 1686 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); | |
| 1687 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); | |
| 1688 assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); | |
| 1689 j++; | |
| 1690 } | |
| 1691 for(i=0; i<nOrderBy; i++){ | |
| 1692 Expr *pExpr = pOrderBy->a[i].pExpr; | |
| 1693 pIdxOrderBy[i].iColumn = pExpr->iColumn; | |
| 1694 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; | |
| 1695 } | |
| 1696 | |
| 1697 return pIdxInfo; | |
| 1698 } | |
| 1699 | |
| 1700 /* | |
| 1701 ** The table object reference passed as the second argument to this function | |
| 1702 ** must represent a virtual table. This function invokes the xBestIndex() | |
| 1703 ** method of the virtual table with the sqlite3_index_info pointer passed | |
| 1704 ** as the argument. | |
| 1705 ** | |
| 1706 ** If an error occurs, pParse is populated with an error message and a | |
| 1707 ** non-zero value is returned. Otherwise, 0 is returned and the output | |
| 1708 ** part of the sqlite3_index_info structure is left populated. | |
| 1709 ** | |
| 1710 ** Whether or not an error is returned, it is the responsibility of the | |
| 1711 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates | |
| 1712 ** that this is required. | |
| 1713 */ | |
| 1714 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ | |
| 1715 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; | |
| 1716 int i; | |
| 1717 int rc; | |
| 1718 | |
| 1719 (void)sqlite3SafetyOff(pParse->db); | |
| 1720 WHERETRACE(("xBestIndex for %s\n", pTab->zName)); | |
| 1721 TRACE_IDX_INPUTS(p); | |
| 1722 rc = pVtab->pModule->xBestIndex(pVtab, p); | |
| 1723 TRACE_IDX_OUTPUTS(p); | |
| 1724 (void)sqlite3SafetyOn(pParse->db); | |
| 1725 | |
| 1726 if( rc!=SQLITE_OK ){ | |
| 1727 if( rc==SQLITE_NOMEM ){ | |
| 1728 pParse->db->mallocFailed = 1; | |
| 1729 }else if( !pVtab->zErrMsg ){ | |
| 1730 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); | |
| 1731 }else{ | |
| 1732 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); | |
| 1733 } | |
| 1734 } | |
| 1735 sqlite3DbFree(pParse->db, pVtab->zErrMsg); | |
| 1736 pVtab->zErrMsg = 0; | |
| 1737 | |
| 1738 for(i=0; i<p->nConstraint; i++){ | |
| 1739 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){ | |
| 1740 sqlite3ErrorMsg(pParse, | |
| 1741 "table %s: xBestIndex returned an invalid plan", pTab->zName); | |
| 1742 } | |
| 1743 } | |
| 1744 | |
| 1745 return pParse->nErr; | |
| 1746 } | |
| 1747 | |
| 1748 | |
| 1749 /* | |
| 1750 ** Compute the best index for a virtual table. | |
| 1751 ** | |
| 1752 ** The best index is computed by the xBestIndex method of the virtual | |
| 1753 ** table module. This routine is really just a wrapper that sets up | |
| 1754 ** the sqlite3_index_info structure that is used to communicate with | |
| 1755 ** xBestIndex. | |
| 1756 ** | |
| 1757 ** In a join, this routine might be called multiple times for the | |
| 1758 ** same virtual table. The sqlite3_index_info structure is created | |
| 1759 ** and initialized on the first invocation and reused on all subsequent | |
| 1760 ** invocations. The sqlite3_index_info structure is also used when | |
| 1761 ** code is generated to access the virtual table. The whereInfoDelete() | |
| 1762 ** routine takes care of freeing the sqlite3_index_info structure after | |
| 1763 ** everybody has finished with it. | |
| 1764 */ | |
| 1765 static void bestVirtualIndex( | |
| 1766 Parse *pParse, /* The parsing context */ | |
| 1767 WhereClause *pWC, /* The WHERE clause */ | |
| 1768 struct SrcList_item *pSrc, /* The FROM clause term to search */ | |
| 1769 Bitmask notReady, /* Mask of cursors that are not available */ | |
| 1770 ExprList *pOrderBy, /* The order by clause */ | |
| 1771 WhereCost *pCost, /* Lowest cost query plan */ | |
| 1772 sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */ | |
| 1773 ){ | |
| 1774 Table *pTab = pSrc->pTab; | |
| 1775 sqlite3_index_info *pIdxInfo; | |
| 1776 struct sqlite3_index_constraint *pIdxCons; | |
| 1777 struct sqlite3_index_constraint_usage *pUsage; | |
| 1778 WhereTerm *pTerm; | |
| 1779 int i, j; | |
| 1780 int nOrderBy; | |
| 1781 | |
| 1782 /* Make sure wsFlags is initialized to some sane value. Otherwise, if the | |
| 1783 ** malloc in allocateIndexInfo() fails and this function returns leaving | |
| 1784 ** wsFlags in an uninitialized state, the caller may behave unpredictably. | |
| 1785 */ | |
| 1786 memset(pCost, 0, sizeof(*pCost)); | |
| 1787 pCost->plan.wsFlags = WHERE_VIRTUALTABLE; | |
| 1788 | |
| 1789 /* If the sqlite3_index_info structure has not been previously | |
| 1790 ** allocated and initialized, then allocate and initialize it now. | |
| 1791 */ | |
| 1792 pIdxInfo = *ppIdxInfo; | |
| 1793 if( pIdxInfo==0 ){ | |
| 1794 *ppIdxInfo = pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pOrderBy); | |
| 1795 } | |
| 1796 if( pIdxInfo==0 ){ | |
| 1797 return; | |
| 1798 } | |
| 1799 | |
| 1800 /* At this point, the sqlite3_index_info structure that pIdxInfo points | |
| 1801 ** to will have been initialized, either during the current invocation or | |
| 1802 ** during some prior invocation. Now we just have to customize the | |
| 1803 ** details of pIdxInfo for the current invocation and pass it to | |
| 1804 ** xBestIndex. | |
| 1805 */ | |
| 1806 | |
| 1807 /* The module name must be defined. Also, by this point there must | |
| 1808 ** be a pointer to an sqlite3_vtab structure. Otherwise | |
| 1809 ** sqlite3ViewGetColumnNames() would have picked up the error. | |
| 1810 */ | |
| 1811 assert( pTab->azModuleArg && pTab->azModuleArg[0] ); | |
| 1812 assert( sqlite3GetVTable(pParse->db, pTab) ); | |
| 1813 | |
| 1814 /* Set the aConstraint[].usable fields and initialize all | |
| 1815 ** output variables to zero. | |
| 1816 ** | |
| 1817 ** aConstraint[].usable is true for constraints where the right-hand | |
| 1818 ** side contains only references to tables to the left of the current | |
| 1819 ** table. In other words, if the constraint is of the form: | |
| 1820 ** | |
| 1821 ** column = expr | |
| 1822 ** | |
| 1823 ** and we are evaluating a join, then the constraint on column is | |
| 1824 ** only valid if all tables referenced in expr occur to the left | |
| 1825 ** of the table containing column. | |
| 1826 ** | |
| 1827 ** The aConstraints[] array contains entries for all constraints | |
| 1828 ** on the current table. That way we only have to compute it once | |
| 1829 ** even though we might try to pick the best index multiple times. | |
| 1830 ** For each attempt at picking an index, the order of tables in the | |
| 1831 ** join might be different so we have to recompute the usable flag | |
| 1832 ** each time. | |
| 1833 */ | |
| 1834 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; | |
| 1835 pUsage = pIdxInfo->aConstraintUsage; | |
| 1836 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ | |
| 1837 j = pIdxCons->iTermOffset; | |
| 1838 pTerm = &pWC->a[j]; | |
| 1839 pIdxCons->usable = (pTerm->prereqRight¬Ready) ? 0 : 1; | |
| 1840 } | |
| 1841 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); | |
| 1842 if( pIdxInfo->needToFreeIdxStr ){ | |
| 1843 sqlite3_free(pIdxInfo->idxStr); | |
| 1844 } | |
| 1845 pIdxInfo->idxStr = 0; | |
| 1846 pIdxInfo->idxNum = 0; | |
| 1847 pIdxInfo->needToFreeIdxStr = 0; | |
| 1848 pIdxInfo->orderByConsumed = 0; | |
| 1849 /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */ | |
| 1850 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2); | |
| 1851 nOrderBy = pIdxInfo->nOrderBy; | |
| 1852 if( !pOrderBy ){ | |
| 1853 pIdxInfo->nOrderBy = 0; | |
| 1854 } | |
| 1855 | |
| 1856 if( vtabBestIndex(pParse, pTab, pIdxInfo) ){ | |
| 1857 return; | |
| 1858 } | |
| 1859 | |
| 1860 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; | |
| 1861 for(i=0; i<pIdxInfo->nConstraint; i++){ | |
| 1862 if( pUsage[i].argvIndex>0 ){ | |
| 1863 pCost->used |= pWC->a[pIdxCons[i].iTermOffset].prereqRight; | |
| 1864 } | |
| 1865 } | |
| 1866 | |
| 1867 /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the | |
| 1868 ** inital value of lowestCost in this loop. If it is, then the | |
| 1869 ** (cost<lowestCost) test below will never be true. | |
| 1870 ** | |
| 1871 ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT | |
| 1872 ** is defined. | |
| 1873 */ | |
| 1874 if( (SQLITE_BIG_DBL/((double)2))<pIdxInfo->estimatedCost ){ | |
| 1875 pCost->rCost = (SQLITE_BIG_DBL/((double)2)); | |
| 1876 }else{ | |
| 1877 pCost->rCost = pIdxInfo->estimatedCost; | |
| 1878 } | |
| 1879 pCost->plan.u.pVtabIdx = pIdxInfo; | |
| 1880 if( pIdxInfo->orderByConsumed ){ | |
| 1881 pCost->plan.wsFlags |= WHERE_ORDERBY; | |
| 1882 } | |
| 1883 pCost->plan.nEq = 0; | |
| 1884 pIdxInfo->nOrderBy = nOrderBy; | |
| 1885 | |
| 1886 /* Try to find a more efficient access pattern by using multiple indexes | |
| 1887 ** to optimize an OR expression within the WHERE clause. | |
| 1888 */ | |
| 1889 bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost); | |
| 1890 } | |
| 1891 #endif /* SQLITE_OMIT_VIRTUALTABLE */ | |
| 1892 | |
| 1893 /* | |
| 1894 ** Argument pIdx is a pointer to an index structure that has an array of | |
| 1895 ** SQLITE_INDEX_SAMPLES evenly spaced samples of the first indexed column | |
| 1896 ** stored in Index.aSample. The domain of values stored in said column | |
| 1897 ** may be thought of as divided into (SQLITE_INDEX_SAMPLES+1) regions. | |
| 1898 ** Region 0 contains all values smaller than the first sample value. Region | |
| 1899 ** 1 contains values larger than or equal to the value of the first sample, | |
| 1900 ** but smaller than the value of the second. And so on. | |
| 1901 ** | |
| 1902 ** If successful, this function determines which of the regions value | |
| 1903 ** pVal lies in, sets *piRegion to the region index (a value between 0 | |
| 1904 ** and SQLITE_INDEX_SAMPLES+1, inclusive) and returns SQLITE_OK. | |
| 1905 ** Or, if an OOM occurs while converting text values between encodings, | |
| 1906 ** SQLITE_NOMEM is returned and *piRegion is undefined. | |
| 1907 */ | |
| 1908 #ifdef SQLITE_ENABLE_STAT2 | |
| 1909 static int whereRangeRegion( | |
| 1910 Parse *pParse, /* Database connection */ | |
| 1911 Index *pIdx, /* Index to consider domain of */ | |
| 1912 sqlite3_value *pVal, /* Value to consider */ | |
| 1913 int *piRegion /* OUT: Region of domain in which value lies */ | |
| 1914 ){ | |
| 1915 if( ALWAYS(pVal) ){ | |
| 1916 IndexSample *aSample = pIdx->aSample; | |
| 1917 int i = 0; | |
| 1918 int eType = sqlite3_value_type(pVal); | |
| 1919 | |
| 1920 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ | |
| 1921 double r = sqlite3_value_double(pVal); | |
| 1922 for(i=0; i<SQLITE_INDEX_SAMPLES; i++){ | |
| 1923 if( aSample[i].eType==SQLITE_NULL ) continue; | |
| 1924 if( aSample[i].eType>=SQLITE_TEXT || aSample[i].u.r>r ) break; | |
| 1925 } | |
| 1926 }else{ | |
| 1927 sqlite3 *db = pParse->db; | |
| 1928 CollSeq *pColl; | |
| 1929 const u8 *z; | |
| 1930 int n; | |
| 1931 | |
| 1932 /* pVal comes from sqlite3ValueFromExpr() so the type cannot be NULL */ | |
| 1933 assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB ); | |
| 1934 | |
| 1935 if( eType==SQLITE_BLOB ){ | |
| 1936 z = (const u8 *)sqlite3_value_blob(pVal); | |
| 1937 pColl = db->pDfltColl; | |
| 1938 assert( pColl->enc==SQLITE_UTF8 ); | |
| 1939 }else{ | |
| 1940 pColl = sqlite3GetCollSeq(db, SQLITE_UTF8, 0, *pIdx->azColl); | |
| 1941 if( pColl==0 ){ | |
| 1942 sqlite3ErrorMsg(pParse, "no such collation sequence: %s", | |
| 1943 *pIdx->azColl); | |
| 1944 return SQLITE_ERROR; | |
| 1945 } | |
| 1946 z = (const u8 *)sqlite3ValueText(pVal, pColl->enc); | |
| 1947 if( !z ){ | |
| 1948 return SQLITE_NOMEM; | |
| 1949 } | |
| 1950 assert( z && pColl && pColl->xCmp ); | |
| 1951 } | |
| 1952 n = sqlite3ValueBytes(pVal, pColl->enc); | |
| 1953 | |
| 1954 for(i=0; i<SQLITE_INDEX_SAMPLES; i++){ | |
| 1955 int r; | |
| 1956 int eSampletype = aSample[i].eType; | |
| 1957 if( eSampletype==SQLITE_NULL || eSampletype<eType ) continue; | |
| 1958 if( (eSampletype!=eType) ) break; | |
| 1959 if( pColl->enc==SQLITE_UTF8 ){ | |
| 1960 r = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z); | |
| 1961 }else{ | |
| 1962 int nSample; | |
| 1963 char *zSample = sqlite3Utf8to16( | |
| 1964 db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample | |
| 1965 ); | |
| 1966 if( !zSample ){ | |
| 1967 assert( db->mallocFailed ); | |
| 1968 return SQLITE_NOMEM; | |
| 1969 } | |
| 1970 r = pColl->xCmp(pColl->pUser, nSample, zSample, n, z); | |
| 1971 sqlite3DbFree(db, zSample); | |
| 1972 } | |
| 1973 if( r>0 ) break; | |
| 1974 } | |
| 1975 } | |
| 1976 | |
| 1977 assert( i>=0 && i<=SQLITE_INDEX_SAMPLES ); | |
| 1978 *piRegion = i; | |
| 1979 } | |
| 1980 return SQLITE_OK; | |
| 1981 } | |
| 1982 #endif /* #ifdef SQLITE_ENABLE_STAT2 */ | |
| 1983 | |
| 1984 /* | |
| 1985 ** This function is used to estimate the number of rows that will be visited | |
| 1986 ** by scanning an index for a range of values. The range may have an upper | |
| 1987 ** bound, a lower bound, or both. The WHERE clause terms that set the upper | |
| 1988 ** and lower bounds are represented by pLower and pUpper respectively. For | |
| 1989 ** example, assuming that index p is on t1(a): | |
| 1990 ** | |
| 1991 ** ... FROM t1 WHERE a > ? AND a < ? ... | |
| 1992 ** |_____| |_____| | |
| 1993 ** | | | |
| 1994 ** pLower pUpper | |
| 1995 ** | |
| 1996 ** If either of the upper or lower bound is not present, then NULL is passed in | |
| 1997 ** place of the corresponding WhereTerm. | |
| 1998 ** | |
| 1999 ** The nEq parameter is passed the index of the index column subject to the | |
| 2000 ** range constraint. Or, equivalently, the number of equality constraints | |
| 2001 ** optimized by the proposed index scan. For example, assuming index p is | |
| 2002 ** on t1(a, b), and the SQL query is: | |
| 2003 ** | |
| 2004 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... | |
| 2005 ** | |
| 2006 ** then nEq should be passed the value 1 (as the range restricted column, | |
| 2007 ** b, is the second left-most column of the index). Or, if the query is: | |
| 2008 ** | |
| 2009 ** ... FROM t1 WHERE a > ? AND a < ? ... | |
| 2010 ** | |
| 2011 ** then nEq should be passed 0. | |
| 2012 ** | |
| 2013 ** The returned value is an integer between 1 and 100, inclusive. A return | |
| 2014 ** value of 1 indicates that the proposed range scan is expected to visit | |
| 2015 ** approximately 1/100th (1%) of the rows selected by the nEq equality | |
| 2016 ** constraints (if any). A return value of 100 indicates that it is expected | |
| 2017 ** that the range scan will visit every row (100%) selected by the equality | |
| 2018 ** constraints. | |
| 2019 ** | |
| 2020 ** In the absence of sqlite_stat2 ANALYZE data, each range inequality | |
| 2021 ** reduces the search space by 2/3rds. Hence a single constraint (x>?) | |
| 2022 ** results in a return of 33 and a range constraint (x>? AND x<?) results | |
| 2023 ** in a return of 11. | |
| 2024 */ | |
| 2025 static int whereRangeScanEst( | |
| 2026 Parse *pParse, /* Parsing & code generating context */ | |
| 2027 Index *p, /* The index containing the range-compared column; "x" */ | |
| 2028 int nEq, /* index into p->aCol[] of the range-compared column */ | |
| 2029 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ | |
| 2030 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ | |
| 2031 int *piEst /* OUT: Return value */ | |
| 2032 ){ | |
| 2033 int rc = SQLITE_OK; | |
| 2034 | |
| 2035 #ifdef SQLITE_ENABLE_STAT2 | |
| 2036 sqlite3 *db = pParse->db; | |
| 2037 sqlite3_value *pLowerVal = 0; | |
| 2038 sqlite3_value *pUpperVal = 0; | |
| 2039 | |
| 2040 if( nEq==0 && p->aSample ){ | |
| 2041 int iEst; | |
| 2042 int iLower = 0; | |
| 2043 int iUpper = SQLITE_INDEX_SAMPLES; | |
| 2044 u8 aff = p->pTable->aCol[0].affinity; | |
| 2045 | |
| 2046 if( pLower ){ | |
| 2047 Expr *pExpr = pLower->pExpr->pRight; | |
| 2048 rc = sqlite3ValueFromExpr(db, pExpr, SQLITE_UTF8, aff, &pLowerVal); | |
| 2049 } | |
| 2050 if( rc==SQLITE_OK && pUpper ){ | |
| 2051 Expr *pExpr = pUpper->pExpr->pRight; | |
| 2052 rc = sqlite3ValueFromExpr(db, pExpr, SQLITE_UTF8, aff, &pUpperVal); | |
| 2053 } | |
| 2054 | |
| 2055 if( rc!=SQLITE_OK || (pLowerVal==0 && pUpperVal==0) ){ | |
| 2056 sqlite3ValueFree(pLowerVal); | |
| 2057 sqlite3ValueFree(pUpperVal); | |
| 2058 goto range_est_fallback; | |
| 2059 }else if( pLowerVal==0 ){ | |
| 2060 rc = whereRangeRegion(pParse, p, pUpperVal, &iUpper); | |
| 2061 if( pLower ) iLower = iUpper/2; | |
| 2062 }else if( pUpperVal==0 ){ | |
| 2063 rc = whereRangeRegion(pParse, p, pLowerVal, &iLower); | |
| 2064 if( pUpper ) iUpper = (iLower + SQLITE_INDEX_SAMPLES + 1)/2; | |
| 2065 }else{ | |
| 2066 rc = whereRangeRegion(pParse, p, pUpperVal, &iUpper); | |
| 2067 if( rc==SQLITE_OK ){ | |
| 2068 rc = whereRangeRegion(pParse, p, pLowerVal, &iLower); | |
| 2069 } | |
| 2070 } | |
| 2071 | |
| 2072 iEst = iUpper - iLower; | |
| 2073 testcase( iEst==SQLITE_INDEX_SAMPLES ); | |
| 2074 assert( iEst<=SQLITE_INDEX_SAMPLES ); | |
| 2075 if( iEst<1 ){ | |
| 2076 iEst = 1; | |
| 2077 } | |
| 2078 | |
| 2079 sqlite3ValueFree(pLowerVal); | |
| 2080 sqlite3ValueFree(pUpperVal); | |
| 2081 *piEst = (iEst * 100)/SQLITE_INDEX_SAMPLES; | |
| 2082 return rc; | |
| 2083 } | |
| 2084 range_est_fallback: | |
| 2085 #else | |
| 2086 UNUSED_PARAMETER(pParse); | |
| 2087 UNUSED_PARAMETER(p); | |
| 2088 UNUSED_PARAMETER(nEq); | |
| 2089 #endif | |
| 2090 assert( pLower || pUpper ); | |
| 2091 if( pLower && pUpper ){ | |
| 2092 *piEst = 11; | |
| 2093 }else{ | |
| 2094 *piEst = 33; | |
| 2095 } | |
| 2096 return rc; | |
| 2097 } | |
| 2098 | |
| 2099 | |
| 2100 /* | |
| 2101 ** Find the query plan for accessing a particular table. Write the | |
| 2102 ** best query plan and its cost into the WhereCost object supplied as the | |
| 2103 ** last parameter. | |
| 2104 ** | |
| 2105 ** The lowest cost plan wins. The cost is an estimate of the amount of | |
| 2106 ** CPU and disk I/O need to process the request using the selected plan. | |
| 2107 ** Factors that influence cost include: | |
| 2108 ** | |
| 2109 ** * The estimated number of rows that will be retrieved. (The | |
| 2110 ** fewer the better.) | |
| 2111 ** | |
| 2112 ** * Whether or not sorting must occur. | |
| 2113 ** | |
| 2114 ** * Whether or not there must be separate lookups in the | |
| 2115 ** index and in the main table. | |
| 2116 ** | |
| 2117 ** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in | |
| 2118 ** the SQL statement, then this function only considers plans using the | |
| 2119 ** named index. If no such plan is found, then the returned cost is | |
| 2120 ** SQLITE_BIG_DBL. If a plan is found that uses the named index, | |
| 2121 ** then the cost is calculated in the usual way. | |
| 2122 ** | |
| 2123 ** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table | |
| 2124 ** in the SELECT statement, then no indexes are considered. However, the | |
| 2125 ** selected plan may still take advantage of the tables built-in rowid | |
| 2126 ** index. | |
| 2127 */ | |
| 2128 static void bestBtreeIndex( | |
| 2129 Parse *pParse, /* The parsing context */ | |
| 2130 WhereClause *pWC, /* The WHERE clause */ | |
| 2131 struct SrcList_item *pSrc, /* The FROM clause term to search */ | |
| 2132 Bitmask notReady, /* Mask of cursors that are not available */ | |
| 2133 ExprList *pOrderBy, /* The ORDER BY clause */ | |
| 2134 WhereCost *pCost /* Lowest cost query plan */ | |
| 2135 ){ | |
| 2136 int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ | |
| 2137 Index *pProbe; /* An index we are evaluating */ | |
| 2138 Index *pIdx; /* Copy of pProbe, or zero for IPK index */ | |
| 2139 int eqTermMask; /* Current mask of valid equality operators */ | |
| 2140 int idxEqTermMask; /* Index mask of valid equality operators */ | |
| 2141 Index sPk; /* A fake index object for the primary key */ | |
| 2142 unsigned int aiRowEstPk[2]; /* The aiRowEst[] value for the sPk index */ | |
| 2143 int aiColumnPk = -1; /* The aColumn[] value for the sPk index */ | |
| 2144 int wsFlagMask; /* Allowed flags in pCost->plan.wsFlag */ | |
| 2145 | |
| 2146 /* Initialize the cost to a worst-case value */ | |
| 2147 memset(pCost, 0, sizeof(*pCost)); | |
| 2148 pCost->rCost = SQLITE_BIG_DBL; | |
| 2149 | |
| 2150 /* If the pSrc table is the right table of a LEFT JOIN then we may not | |
| 2151 ** use an index to satisfy IS NULL constraints on that table. This is | |
| 2152 ** because columns might end up being NULL if the table does not match - | |
| 2153 ** a circumstance which the index cannot help us discover. Ticket #2177. | |
| 2154 */ | |
| 2155 if( pSrc->jointype & JT_LEFT ){ | |
| 2156 idxEqTermMask = WO_EQ|WO_IN; | |
| 2157 }else{ | |
| 2158 idxEqTermMask = WO_EQ|WO_IN|WO_ISNULL; | |
| 2159 } | |
| 2160 | |
| 2161 if( pSrc->pIndex ){ | |
| 2162 /* An INDEXED BY clause specifies a particular index to use */ | |
| 2163 pIdx = pProbe = pSrc->pIndex; | |
| 2164 wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE); | |
| 2165 eqTermMask = idxEqTermMask; | |
| 2166 }else{ | |
| 2167 /* There is no INDEXED BY clause. Create a fake Index object to | |
| 2168 ** represent the primary key */ | |
| 2169 Index *pFirst; /* Any other index on the table */ | |
| 2170 memset(&sPk, 0, sizeof(Index)); | |
| 2171 sPk.nColumn = 1; | |
| 2172 sPk.aiColumn = &aiColumnPk; | |
| 2173 sPk.aiRowEst = aiRowEstPk; | |
| 2174 aiRowEstPk[1] = 1; | |
| 2175 sPk.onError = OE_Replace; | |
| 2176 sPk.pTable = pSrc->pTab; | |
| 2177 pFirst = pSrc->pTab->pIndex; | |
| 2178 if( pSrc->notIndexed==0 ){ | |
| 2179 sPk.pNext = pFirst; | |
| 2180 } | |
| 2181 /* The aiRowEstPk[0] is an estimate of the total number of rows in the | |
| 2182 ** table. Get this information from the ANALYZE information if it is | |
| 2183 ** available. If not available, assume the table 1 million rows in size. | |
| 2184 */ | |
| 2185 if( pFirst ){ | |
| 2186 assert( pFirst->aiRowEst!=0 ); /* Allocated together with pFirst */ | |
| 2187 aiRowEstPk[0] = pFirst->aiRowEst[0]; | |
| 2188 }else{ | |
| 2189 aiRowEstPk[0] = 1000000; | |
| 2190 } | |
| 2191 pProbe = &sPk; | |
| 2192 wsFlagMask = ~( | |
| 2193 WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE | |
| 2194 ); | |
| 2195 eqTermMask = WO_EQ|WO_IN; | |
| 2196 pIdx = 0; | |
| 2197 } | |
| 2198 | |
| 2199 /* Loop over all indices looking for the best one to use | |
| 2200 */ | |
| 2201 for(; pProbe; pIdx=pProbe=pProbe->pNext){ | |
| 2202 const unsigned int * const aiRowEst = pProbe->aiRowEst; | |
| 2203 double cost; /* Cost of using pProbe */ | |
| 2204 double nRow; /* Estimated number of rows in result set */ | |
| 2205 int rev; /* True to scan in reverse order */ | |
| 2206 int wsFlags = 0; | |
| 2207 Bitmask used = 0; | |
| 2208 | |
| 2209 /* The following variables are populated based on the properties of | |
| 2210 ** scan being evaluated. They are then used to determine the expected | |
| 2211 ** cost and number of rows returned. | |
| 2212 ** | |
| 2213 ** nEq: | |
| 2214 ** Number of equality terms that can be implemented using the index. | |
| 2215 ** | |
| 2216 ** nInMul: | |
| 2217 ** The "in-multiplier". This is an estimate of how many seek operations | |
| 2218 ** SQLite must perform on the index in question. For example, if the | |
| 2219 ** WHERE clause is: | |
| 2220 ** | |
| 2221 ** WHERE a IN (1, 2, 3) AND b IN (4, 5, 6) | |
| 2222 ** | |
| 2223 ** SQLite must perform 9 lookups on an index on (a, b), so nInMul is | |
| 2224 ** set to 9. Given the same schema and either of the following WHERE | |
| 2225 ** clauses: | |
| 2226 ** | |
| 2227 ** WHERE a = 1 | |
| 2228 ** WHERE a >= 2 | |
| 2229 ** | |
| 2230 ** nInMul is set to 1. | |
| 2231 ** | |
| 2232 ** If there exists a WHERE term of the form "x IN (SELECT ...)", then | |
| 2233 ** the sub-select is assumed to return 25 rows for the purposes of | |
| 2234 ** determining nInMul. | |
| 2235 ** | |
| 2236 ** bInEst: | |
| 2237 ** Set to true if there was at least one "x IN (SELECT ...)" term used | |
| 2238 ** in determining the value of nInMul. | |
| 2239 ** | |
| 2240 ** nBound: | |
| 2241 ** An estimate on the amount of the table that must be searched. A | |
| 2242 ** value of 100 means the entire table is searched. Range constraints | |
| 2243 ** might reduce this to a value less than 100 to indicate that only | |
| 2244 ** a fraction of the table needs searching. In the absence of | |
| 2245 ** sqlite_stat2 ANALYZE data, a single inequality reduces the search | |
| 2246 ** space to 1/3rd its original size. So an x>? constraint reduces | |
| 2247 ** nBound to 33. Two constraints (x>? AND x<?) reduce nBound to 11. | |
| 2248 ** | |
| 2249 ** bSort: | |
| 2250 ** Boolean. True if there is an ORDER BY clause that will require an | |
| 2251 ** external sort (i.e. scanning the index being evaluated will not | |
| 2252 ** correctly order records). | |
| 2253 ** | |
| 2254 ** bLookup: | |
| 2255 ** Boolean. True if for each index entry visited a lookup on the | |
| 2256 ** corresponding table b-tree is required. This is always false | |
| 2257 ** for the rowid index. For other indexes, it is true unless all the | |
| 2258 ** columns of the table used by the SELECT statement are present in | |
| 2259 ** the index (such an index is sometimes described as a covering index). | |
| 2260 ** For example, given the index on (a, b), the second of the following | |
| 2261 ** two queries requires table b-tree lookups, but the first does not. | |
| 2262 ** | |
| 2263 ** SELECT a, b FROM tbl WHERE a = 1; | |
| 2264 ** SELECT a, b, c FROM tbl WHERE a = 1; | |
| 2265 */ | |
| 2266 int nEq; | |
| 2267 int bInEst = 0; | |
| 2268 int nInMul = 1; | |
| 2269 int nBound = 100; | |
| 2270 int bSort = 0; | |
| 2271 int bLookup = 0; | |
| 2272 | |
| 2273 /* Determine the values of nEq and nInMul */ | |
| 2274 for(nEq=0; nEq<pProbe->nColumn; nEq++){ | |
| 2275 WhereTerm *pTerm; /* A single term of the WHERE clause */ | |
| 2276 int j = pProbe->aiColumn[nEq]; | |
| 2277 pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pIdx); | |
| 2278 if( pTerm==0 ) break; | |
| 2279 wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ); | |
| 2280 if( pTerm->eOperator & WO_IN ){ | |
| 2281 Expr *pExpr = pTerm->pExpr; | |
| 2282 wsFlags |= WHERE_COLUMN_IN; | |
| 2283 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ | |
| 2284 nInMul *= 25; | |
| 2285 bInEst = 1; | |
| 2286 }else if( pExpr->x.pList ){ | |
| 2287 nInMul *= pExpr->x.pList->nExpr + 1; | |
| 2288 } | |
| 2289 }else if( pTerm->eOperator & WO_ISNULL ){ | |
| 2290 wsFlags |= WHERE_COLUMN_NULL; | |
| 2291 } | |
| 2292 used |= pTerm->prereqRight; | |
| 2293 } | |
| 2294 | |
| 2295 /* Determine the value of nBound. */ | |
| 2296 if( nEq<pProbe->nColumn ){ | |
| 2297 int j = pProbe->aiColumn[nEq]; | |
| 2298 if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){ | |
| 2299 WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx); | |
| 2300 WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx); | |
| 2301 whereRangeScanEst(pParse, pProbe, nEq, pBtm, pTop, &nBound); | |
| 2302 if( pTop ){ | |
| 2303 wsFlags |= WHERE_TOP_LIMIT; | |
| 2304 used |= pTop->prereqRight; | |
| 2305 } | |
| 2306 if( pBtm ){ | |
| 2307 wsFlags |= WHERE_BTM_LIMIT; | |
| 2308 used |= pBtm->prereqRight; | |
| 2309 } | |
| 2310 wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE); | |
| 2311 } | |
| 2312 }else if( pProbe->onError!=OE_None ){ | |
| 2313 testcase( wsFlags & WHERE_COLUMN_IN ); | |
| 2314 testcase( wsFlags & WHERE_COLUMN_NULL ); | |
| 2315 if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){ | |
| 2316 wsFlags |= WHERE_UNIQUE; | |
| 2317 } | |
| 2318 } | |
| 2319 | |
| 2320 /* If there is an ORDER BY clause and the index being considered will | |
| 2321 ** naturally scan rows in the required order, set the appropriate flags | |
| 2322 ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index | |
| 2323 ** will scan rows in a different order, set the bSort variable. */ | |
| 2324 if( pOrderBy ){ | |
| 2325 if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 | |
| 2326 && isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) | |
| 2327 ){ | |
| 2328 wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_ORDERBY; | |
| 2329 wsFlags |= (rev ? WHERE_REVERSE : 0); | |
| 2330 }else{ | |
| 2331 bSort = 1; | |
| 2332 } | |
| 2333 } | |
| 2334 | |
| 2335 /* If currently calculating the cost of using an index (not the IPK | |
| 2336 ** index), determine if all required column data may be obtained without | |
| 2337 ** seeking to entries in the main table (i.e. if the index is a covering | |
| 2338 ** index for this query). If it is, set the WHERE_IDX_ONLY flag in | |
| 2339 ** wsFlags. Otherwise, set the bLookup variable to true. */ | |
| 2340 if( pIdx && wsFlags ){ | |
| 2341 Bitmask m = pSrc->colUsed; | |
| 2342 int j; | |
| 2343 for(j=0; j<pIdx->nColumn; j++){ | |
| 2344 int x = pIdx->aiColumn[j]; | |
| 2345 if( x<BMS-1 ){ | |
| 2346 m &= ~(((Bitmask)1)<<x); | |
| 2347 } | |
| 2348 } | |
| 2349 if( m==0 ){ | |
| 2350 wsFlags |= WHERE_IDX_ONLY; | |
| 2351 }else{ | |
| 2352 bLookup = 1; | |
| 2353 } | |
| 2354 } | |
| 2355 | |
| 2356 /**** Begin adding up the cost of using this index (Needs improvements) | |
| 2357 ** | |
| 2358 ** Estimate the number of rows of output. For an IN operator, | |
| 2359 ** do not let the estimate exceed half the rows in the table. | |
| 2360 */ | |
| 2361 nRow = (double)(aiRowEst[nEq] * nInMul); | |
| 2362 if( bInEst && nRow*2>aiRowEst[0] ){ | |
| 2363 nRow = aiRowEst[0]/2; | |
| 2364 nInMul = (int)(nRow / aiRowEst[nEq]); | |
| 2365 } | |
| 2366 | |
| 2367 /* Assume constant cost to access a row and logarithmic cost to | |
| 2368 ** do a binary search. Hence, the initial cost is the number of output | |
| 2369 ** rows plus log2(table-size) times the number of binary searches. | |
| 2370 */ | |
| 2371 cost = nRow + nInMul*estLog(aiRowEst[0]); | |
| 2372 | |
| 2373 /* Adjust the number of rows and the cost downward to reflect rows | |
| 2374 ** that are excluded by range constraints. | |
| 2375 */ | |
| 2376 nRow = (nRow * (double)nBound) / (double)100; | |
| 2377 cost = (cost * (double)nBound) / (double)100; | |
| 2378 | |
| 2379 /* Add in the estimated cost of sorting the result | |
| 2380 */ | |
| 2381 if( bSort ){ | |
| 2382 cost += cost*estLog(cost); | |
| 2383 } | |
| 2384 | |
| 2385 /* If all information can be taken directly from the index, we avoid | |
| 2386 ** doing table lookups. This reduces the cost by half. (Not really - | |
| 2387 ** this needs to be fixed.) | |
| 2388 */ | |
| 2389 if( pIdx && bLookup==0 ){ | |
| 2390 cost /= (double)2; | |
| 2391 } | |
| 2392 /**** Cost of using this index has now been computed ****/ | |
| 2393 | |
| 2394 WHERETRACE(( | |
| 2395 "tbl=%s idx=%s nEq=%d nInMul=%d nBound=%d bSort=%d bLookup=%d" | |
| 2396 " wsFlags=%d (nRow=%.2f cost=%.2f)\n", | |
| 2397 pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk"), | |
| 2398 nEq, nInMul, nBound, bSort, bLookup, wsFlags, nRow, cost | |
| 2399 )); | |
| 2400 | |
| 2401 /* If this index is the best we have seen so far, then record this | |
| 2402 ** index and its cost in the pCost structure. | |
| 2403 */ | |
| 2404 if( (!pIdx || wsFlags) && cost<pCost->rCost ){ | |
| 2405 pCost->rCost = cost; | |
| 2406 pCost->nRow = nRow; | |
| 2407 pCost->used = used; | |
| 2408 pCost->plan.wsFlags = (wsFlags&wsFlagMask); | |
| 2409 pCost->plan.nEq = nEq; | |
| 2410 pCost->plan.u.pIdx = pIdx; | |
| 2411 } | |
| 2412 | |
| 2413 /* If there was an INDEXED BY clause, then only that one index is | |
| 2414 ** considered. */ | |
| 2415 if( pSrc->pIndex ) break; | |
| 2416 | |
| 2417 /* Reset masks for the next index in the loop */ | |
| 2418 wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE); | |
| 2419 eqTermMask = idxEqTermMask; | |
| 2420 } | |
| 2421 | |
| 2422 /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag | |
| 2423 ** is set, then reverse the order that the index will be scanned | |
| 2424 ** in. This is used for application testing, to help find cases | |
| 2425 ** where application behaviour depends on the (undefined) order that | |
| 2426 ** SQLite outputs rows in in the absence of an ORDER BY clause. */ | |
| 2427 if( !pOrderBy && pParse->db->flags & SQLITE_ReverseOrder ){ | |
| 2428 pCost->plan.wsFlags |= WHERE_REVERSE; | |
| 2429 } | |
| 2430 | |
| 2431 assert( pOrderBy || (pCost->plan.wsFlags&WHERE_ORDERBY)==0 ); | |
| 2432 assert( pCost->plan.u.pIdx==0 || (pCost->plan.wsFlags&WHERE_ROWID_EQ)==0 ); | |
| 2433 assert( pSrc->pIndex==0 | |
| 2434 || pCost->plan.u.pIdx==0 | |
| 2435 || pCost->plan.u.pIdx==pSrc->pIndex | |
| 2436 ); | |
| 2437 | |
| 2438 WHERETRACE(("best index is: %s\n", | |
| 2439 (pCost->plan.u.pIdx ? pCost->plan.u.pIdx->zName : "ipk") | |
| 2440 )); | |
| 2441 | |
| 2442 bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost); | |
| 2443 pCost->plan.wsFlags |= eqTermMask; | |
| 2444 } | |
| 2445 | |
| 2446 /* | |
| 2447 ** Find the query plan for accessing table pSrc->pTab. Write the | |
| 2448 ** best query plan and its cost into the WhereCost object supplied | |
| 2449 ** as the last parameter. This function may calculate the cost of | |
| 2450 ** both real and virtual table scans. | |
| 2451 */ | |
| 2452 static void bestIndex( | |
| 2453 Parse *pParse, /* The parsing context */ | |
| 2454 WhereClause *pWC, /* The WHERE clause */ | |
| 2455 struct SrcList_item *pSrc, /* The FROM clause term to search */ | |
| 2456 Bitmask notReady, /* Mask of cursors that are not available */ | |
| 2457 ExprList *pOrderBy, /* The ORDER BY clause */ | |
| 2458 WhereCost *pCost /* Lowest cost query plan */ | |
| 2459 ){ | |
| 2460 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
| 2461 if( IsVirtual(pSrc->pTab) ){ | |
| 2462 sqlite3_index_info *p = 0; | |
| 2463 bestVirtualIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost, &p); | |
| 2464 if( p->needToFreeIdxStr ){ | |
| 2465 sqlite3_free(p->idxStr); | |
| 2466 } | |
| 2467 sqlite3DbFree(pParse->db, p); | |
| 2468 }else | |
| 2469 #endif | |
| 2470 { | |
| 2471 bestBtreeIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost); | |
| 2472 } | |
| 2473 } | |
| 2474 | |
| 2475 /* | |
| 2476 ** Disable a term in the WHERE clause. Except, do not disable the term | |
| 2477 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON | |
| 2478 ** or USING clause of that join. | |
| 2479 ** | |
| 2480 ** Consider the term t2.z='ok' in the following queries: | |
| 2481 ** | |
| 2482 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' | |
| 2483 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' | |
| 2484 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' | |
| 2485 ** | |
| 2486 ** The t2.z='ok' is disabled in the in (2) because it originates | |
| 2487 ** in the ON clause. The term is disabled in (3) because it is not part | |
| 2488 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. | |
| 2489 ** | |
| 2490 ** Disabling a term causes that term to not be tested in the inner loop | |
| 2491 ** of the join. Disabling is an optimization. When terms are satisfied | |
| 2492 ** by indices, we disable them to prevent redundant tests in the inner | |
| 2493 ** loop. We would get the correct results if nothing were ever disabled, | |
| 2494 ** but joins might run a little slower. The trick is to disable as much | |
| 2495 ** as we can without disabling too much. If we disabled in (1), we'd get | |
| 2496 ** the wrong answer. See ticket #813. | |
| 2497 */ | |
| 2498 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ | |
| 2499 if( pTerm | |
| 2500 && ALWAYS((pTerm->wtFlags & TERM_CODED)==0) | |
| 2501 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) | |
| 2502 ){ | |
| 2503 pTerm->wtFlags |= TERM_CODED; | |
| 2504 if( pTerm->iParent>=0 ){ | |
| 2505 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; | |
| 2506 if( (--pOther->nChild)==0 ){ | |
| 2507 disableTerm(pLevel, pOther); | |
| 2508 } | |
| 2509 } | |
| 2510 } | |
| 2511 } | |
| 2512 | |
| 2513 /* | |
| 2514 ** Code an OP_Affinity opcode to apply the column affinity string zAff | |
| 2515 ** to the n registers starting at base. | |
| 2516 ** | |
| 2517 ** Buffer zAff was allocated using sqlite3DbMalloc(). It is the | |
| 2518 ** responsibility of this function to arrange for it to be eventually | |
| 2519 ** freed using sqlite3DbFree(). | |
| 2520 */ | |
| 2521 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ | |
| 2522 Vdbe *v = pParse->pVdbe; | |
| 2523 assert( v!=0 ); | |
| 2524 sqlite3VdbeAddOp2(v, OP_Affinity, base, n); | |
| 2525 sqlite3VdbeChangeP4(v, -1, zAff, P4_DYNAMIC); | |
| 2526 sqlite3ExprCacheAffinityChange(pParse, base, n); | |
| 2527 } | |
| 2528 | |
| 2529 | |
| 2530 /* | |
| 2531 ** Generate code for a single equality term of the WHERE clause. An equality | |
| 2532 ** term can be either X=expr or X IN (...). pTerm is the term to be | |
| 2533 ** coded. | |
| 2534 ** | |
| 2535 ** The current value for the constraint is left in register iReg. | |
| 2536 ** | |
| 2537 ** For a constraint of the form X=expr, the expression is evaluated and its | |
| 2538 ** result is left on the stack. For constraints of the form X IN (...) | |
| 2539 ** this routine sets up a loop that will iterate over all values of X. | |
| 2540 */ | |
| 2541 static int codeEqualityTerm( | |
| 2542 Parse *pParse, /* The parsing context */ | |
| 2543 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ | |
| 2544 WhereLevel *pLevel, /* When level of the FROM clause we are working on */ | |
| 2545 int iTarget /* Attempt to leave results in this register */ | |
| 2546 ){ | |
| 2547 Expr *pX = pTerm->pExpr; | |
| 2548 Vdbe *v = pParse->pVdbe; | |
| 2549 int iReg; /* Register holding results */ | |
| 2550 | |
| 2551 assert( iTarget>0 ); | |
| 2552 if( pX->op==TK_EQ ){ | |
| 2553 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); | |
| 2554 }else if( pX->op==TK_ISNULL ){ | |
| 2555 iReg = iTarget; | |
| 2556 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); | |
| 2557 #ifndef SQLITE_OMIT_SUBQUERY | |
| 2558 }else{ | |
| 2559 int eType; | |
| 2560 int iTab; | |
| 2561 struct InLoop *pIn; | |
| 2562 | |
| 2563 assert( pX->op==TK_IN ); | |
| 2564 iReg = iTarget; | |
| 2565 eType = sqlite3FindInIndex(pParse, pX, 0); | |
| 2566 iTab = pX->iTable; | |
| 2567 sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); | |
| 2568 assert( pLevel->plan.wsFlags & WHERE_IN_ABLE ); | |
| 2569 if( pLevel->u.in.nIn==0 ){ | |
| 2570 pLevel->addrNxt = sqlite3VdbeMakeLabel(v); | |
| 2571 } | |
| 2572 pLevel->u.in.nIn++; | |
| 2573 pLevel->u.in.aInLoop = | |
| 2574 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, | |
| 2575 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); | |
| 2576 pIn = pLevel->u.in.aInLoop; | |
| 2577 if( pIn ){ | |
| 2578 pIn += pLevel->u.in.nIn - 1; | |
| 2579 pIn->iCur = iTab; | |
| 2580 if( eType==IN_INDEX_ROWID ){ | |
| 2581 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); | |
| 2582 }else{ | |
| 2583 pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); | |
| 2584 } | |
| 2585 sqlite3VdbeAddOp1(v, OP_IsNull, iReg); | |
| 2586 }else{ | |
| 2587 pLevel->u.in.nIn = 0; | |
| 2588 } | |
| 2589 #endif | |
| 2590 } | |
| 2591 disableTerm(pLevel, pTerm); | |
| 2592 return iReg; | |
| 2593 } | |
| 2594 | |
| 2595 /* | |
| 2596 ** Generate code that will evaluate all == and IN constraints for an | |
| 2597 ** index. The values for all constraints are left on the stack. | |
| 2598 ** | |
| 2599 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). | |
| 2600 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 | |
| 2601 ** The index has as many as three equality constraints, but in this | |
| 2602 ** example, the third "c" value is an inequality. So only two | |
| 2603 ** constraints are coded. This routine will generate code to evaluate | |
| 2604 ** a==5 and b IN (1,2,3). The current values for a and b will be stored | |
| 2605 ** in consecutive registers and the index of the first register is returned. | |
| 2606 ** | |
| 2607 ** In the example above nEq==2. But this subroutine works for any value | |
| 2608 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. | |
| 2609 ** The only thing it does is allocate the pLevel->iMem memory cell. | |
| 2610 ** | |
| 2611 ** This routine always allocates at least one memory cell and returns | |
| 2612 ** the index of that memory cell. The code that | |
| 2613 ** calls this routine will use that memory cell to store the termination | |
| 2614 ** key value of the loop. If one or more IN operators appear, then | |
| 2615 ** this routine allocates an additional nEq memory cells for internal | |
| 2616 ** use. | |
| 2617 ** | |
| 2618 ** Before returning, *pzAff is set to point to a buffer containing a | |
| 2619 ** copy of the column affinity string of the index allocated using | |
| 2620 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated | |
| 2621 ** with equality constraints that use NONE affinity are set to | |
| 2622 ** SQLITE_AFF_NONE. This is to deal with SQL such as the following: | |
| 2623 ** | |
| 2624 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); | |
| 2625 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; | |
| 2626 ** | |
| 2627 ** In the example above, the index on t1(a) has TEXT affinity. But since | |
| 2628 ** the right hand side of the equality constraint (t2.b) has NONE affinity, | |
| 2629 ** no conversion should be attempted before using a t2.b value as part of | |
| 2630 ** a key to search the index. Hence the first byte in the returned affinity | |
| 2631 ** string in this example would be set to SQLITE_AFF_NONE. | |
| 2632 */ | |
| 2633 static int codeAllEqualityTerms( | |
| 2634 Parse *pParse, /* Parsing context */ | |
| 2635 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ | |
| 2636 WhereClause *pWC, /* The WHERE clause */ | |
| 2637 Bitmask notReady, /* Which parts of FROM have not yet been coded */ | |
| 2638 int nExtraReg, /* Number of extra registers to allocate */ | |
| 2639 char **pzAff /* OUT: Set to point to affinity string */ | |
| 2640 ){ | |
| 2641 int nEq = pLevel->plan.nEq; /* The number of == or IN constraints to code */ | |
| 2642 Vdbe *v = pParse->pVdbe; /* The vm under construction */ | |
| 2643 Index *pIdx; /* The index being used for this loop */ | |
| 2644 int iCur = pLevel->iTabCur; /* The cursor of the table */ | |
| 2645 WhereTerm *pTerm; /* A single constraint term */ | |
| 2646 int j; /* Loop counter */ | |
| 2647 int regBase; /* Base register */ | |
| 2648 int nReg; /* Number of registers to allocate */ | |
| 2649 char *zAff; /* Affinity string to return */ | |
| 2650 | |
| 2651 /* This module is only called on query plans that use an index. */ | |
| 2652 assert( pLevel->plan.wsFlags & WHERE_INDEXED ); | |
| 2653 pIdx = pLevel->plan.u.pIdx; | |
| 2654 | |
| 2655 /* Figure out how many memory cells we will need then allocate them. | |
| 2656 */ | |
| 2657 regBase = pParse->nMem + 1; | |
| 2658 nReg = pLevel->plan.nEq + nExtraReg; | |
| 2659 pParse->nMem += nReg; | |
| 2660 | |
| 2661 zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx)); | |
| 2662 if( !zAff ){ | |
| 2663 pParse->db->mallocFailed = 1; | |
| 2664 } | |
| 2665 | |
| 2666 /* Evaluate the equality constraints | |
| 2667 */ | |
| 2668 assert( pIdx->nColumn>=nEq ); | |
| 2669 for(j=0; j<nEq; j++){ | |
| 2670 int r1; | |
| 2671 int k = pIdx->aiColumn[j]; | |
| 2672 pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx); | |
| 2673 if( NEVER(pTerm==0) ) break; | |
| 2674 assert( (pTerm->wtFlags & TERM_CODED)==0 ); | |
| 2675 r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j); | |
| 2676 if( r1!=regBase+j ){ | |
| 2677 if( nReg==1 ){ | |
| 2678 sqlite3ReleaseTempReg(pParse, regBase); | |
| 2679 regBase = r1; | |
| 2680 }else{ | |
| 2681 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); | |
| 2682 } | |
| 2683 } | |
| 2684 testcase( pTerm->eOperator & WO_ISNULL ); | |
| 2685 testcase( pTerm->eOperator & WO_IN ); | |
| 2686 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ | |
| 2687 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); | |
| 2688 if( zAff | |
| 2689 && sqlite3CompareAffinity(pTerm->pExpr->pRight, zAff[j])==SQLITE_AFF_NONE | |
| 2690 ){ | |
| 2691 zAff[j] = SQLITE_AFF_NONE; | |
| 2692 } | |
| 2693 } | |
| 2694 } | |
| 2695 *pzAff = zAff; | |
| 2696 return regBase; | |
| 2697 } | |
| 2698 | |
| 2699 /* | |
| 2700 ** Generate code for the start of the iLevel-th loop in the WHERE clause | |
| 2701 ** implementation described by pWInfo. | |
| 2702 */ | |
| 2703 static Bitmask codeOneLoopStart( | |
| 2704 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ | |
| 2705 int iLevel, /* Which level of pWInfo->a[] should be coded */ | |
| 2706 u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */ | |
| 2707 Bitmask notReady /* Which tables are currently available */ | |
| 2708 ){ | |
| 2709 int j, k; /* Loop counters */ | |
| 2710 int iCur; /* The VDBE cursor for the table */ | |
| 2711 int addrNxt; /* Where to jump to continue with the next IN case */ | |
| 2712 int omitTable; /* True if we use the index only */ | |
| 2713 int bRev; /* True if we need to scan in reverse order */ | |
| 2714 WhereLevel *pLevel; /* The where level to be coded */ | |
| 2715 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ | |
| 2716 WhereTerm *pTerm; /* A WHERE clause term */ | |
| 2717 Parse *pParse; /* Parsing context */ | |
| 2718 Vdbe *v; /* The prepared stmt under constructions */ | |
| 2719 struct SrcList_item *pTabItem; /* FROM clause term being coded */ | |
| 2720 int addrBrk; /* Jump here to break out of the loop */ | |
| 2721 int addrCont; /* Jump here to continue with next cycle */ | |
| 2722 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ | |
| 2723 int iReleaseReg = 0; /* Temp register to free before returning */ | |
| 2724 | |
| 2725 pParse = pWInfo->pParse; | |
| 2726 v = pParse->pVdbe; | |
| 2727 pWC = pWInfo->pWC; | |
| 2728 pLevel = &pWInfo->a[iLevel]; | |
| 2729 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; | |
| 2730 iCur = pTabItem->iCursor; | |
| 2731 bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0; | |
| 2732 omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0 | |
| 2733 && (wctrlFlags & WHERE_FORCE_TABLE)==0; | |
| 2734 | |
| 2735 /* Create labels for the "break" and "continue" instructions | |
| 2736 ** for the current loop. Jump to addrBrk to break out of a loop. | |
| 2737 ** Jump to cont to go immediately to the next iteration of the | |
| 2738 ** loop. | |
| 2739 ** | |
| 2740 ** When there is an IN operator, we also have a "addrNxt" label that | |
| 2741 ** means to continue with the next IN value combination. When | |
| 2742 ** there are no IN operators in the constraints, the "addrNxt" label | |
| 2743 ** is the same as "addrBrk". | |
| 2744 */ | |
| 2745 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); | |
| 2746 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); | |
| 2747 | |
| 2748 /* If this is the right table of a LEFT OUTER JOIN, allocate and | |
| 2749 ** initialize a memory cell that records if this table matches any | |
| 2750 ** row of the left table of the join. | |
| 2751 */ | |
| 2752 if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){ | |
| 2753 pLevel->iLeftJoin = ++pParse->nMem; | |
| 2754 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); | |
| 2755 VdbeComment((v, "init LEFT JOIN no-match flag")); | |
| 2756 } | |
| 2757 | |
| 2758 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
| 2759 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ | |
| 2760 /* Case 0: The table is a virtual-table. Use the VFilter and VNext | |
| 2761 ** to access the data. | |
| 2762 */ | |
| 2763 int iReg; /* P3 Value for OP_VFilter */ | |
| 2764 sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx; | |
| 2765 int nConstraint = pVtabIdx->nConstraint; | |
| 2766 struct sqlite3_index_constraint_usage *aUsage = | |
| 2767 pVtabIdx->aConstraintUsage; | |
| 2768 const struct sqlite3_index_constraint *aConstraint = | |
| 2769 pVtabIdx->aConstraint; | |
| 2770 | |
| 2771 iReg = sqlite3GetTempRange(pParse, nConstraint+2); | |
| 2772 for(j=1; j<=nConstraint; j++){ | |
| 2773 for(k=0; k<nConstraint; k++){ | |
| 2774 if( aUsage[k].argvIndex==j ){ | |
| 2775 int iTerm = aConstraint[k].iTermOffset; | |
| 2776 sqlite3ExprCode(pParse, pWC->a[iTerm].pExpr->pRight, iReg+j+1); | |
| 2777 break; | |
| 2778 } | |
| 2779 } | |
| 2780 if( k==nConstraint ) break; | |
| 2781 } | |
| 2782 sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg); | |
| 2783 sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1); | |
| 2784 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrBrk, iReg, pVtabIdx->idxStr, | |
| 2785 pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC); | |
| 2786 pVtabIdx->needToFreeIdxStr = 0; | |
| 2787 for(j=0; j<nConstraint; j++){ | |
| 2788 if( aUsage[j].omit ){ | |
| 2789 int iTerm = aConstraint[j].iTermOffset; | |
| 2790 disableTerm(pLevel, &pWC->a[iTerm]); | |
| 2791 } | |
| 2792 } | |
| 2793 pLevel->op = OP_VNext; | |
| 2794 pLevel->p1 = iCur; | |
| 2795 pLevel->p2 = sqlite3VdbeCurrentAddr(v); | |
| 2796 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); | |
| 2797 }else | |
| 2798 #endif /* SQLITE_OMIT_VIRTUALTABLE */ | |
| 2799 | |
| 2800 if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){ | |
| 2801 /* Case 1: We can directly reference a single row using an | |
| 2802 ** equality comparison against the ROWID field. Or | |
| 2803 ** we reference multiple rows using a "rowid IN (...)" | |
| 2804 ** construct. | |
| 2805 */ | |
| 2806 iReleaseReg = sqlite3GetTempReg(pParse); | |
| 2807 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); | |
| 2808 assert( pTerm!=0 ); | |
| 2809 assert( pTerm->pExpr!=0 ); | |
| 2810 assert( pTerm->leftCursor==iCur ); | |
| 2811 assert( omitTable==0 ); | |
| 2812 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg); | |
| 2813 addrNxt = pLevel->addrNxt; | |
| 2814 sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); | |
| 2815 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg); | |
| 2816 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); | |
| 2817 VdbeComment((v, "pk")); | |
| 2818 pLevel->op = OP_Noop; | |
| 2819 }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){ | |
| 2820 /* Case 2: We have an inequality comparison against the ROWID field. | |
| 2821 */ | |
| 2822 int testOp = OP_Noop; | |
| 2823 int start; | |
| 2824 int memEndValue = 0; | |
| 2825 WhereTerm *pStart, *pEnd; | |
| 2826 | |
| 2827 assert( omitTable==0 ); | |
| 2828 pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0); | |
| 2829 pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0); | |
| 2830 if( bRev ){ | |
| 2831 pTerm = pStart; | |
| 2832 pStart = pEnd; | |
| 2833 pEnd = pTerm; | |
| 2834 } | |
| 2835 if( pStart ){ | |
| 2836 Expr *pX; /* The expression that defines the start bound */ | |
| 2837 int r1, rTemp; /* Registers for holding the start boundary */ | |
| 2838 | |
| 2839 /* The following constant maps TK_xx codes into corresponding | |
| 2840 ** seek opcodes. It depends on a particular ordering of TK_xx | |
| 2841 */ | |
| 2842 const u8 aMoveOp[] = { | |
| 2843 /* TK_GT */ OP_SeekGt, | |
| 2844 /* TK_LE */ OP_SeekLe, | |
| 2845 /* TK_LT */ OP_SeekLt, | |
| 2846 /* TK_GE */ OP_SeekGe | |
| 2847 }; | |
| 2848 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ | |
| 2849 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ | |
| 2850 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ | |
| 2851 | |
| 2852 pX = pStart->pExpr; | |
| 2853 assert( pX!=0 ); | |
| 2854 assert( pStart->leftCursor==iCur ); | |
| 2855 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); | |
| 2856 sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1); | |
| 2857 VdbeComment((v, "pk")); | |
| 2858 sqlite3ExprCacheAffinityChange(pParse, r1, 1); | |
| 2859 sqlite3ReleaseTempReg(pParse, rTemp); | |
| 2860 disableTerm(pLevel, pStart); | |
| 2861 }else{ | |
| 2862 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); | |
| 2863 } | |
| 2864 if( pEnd ){ | |
| 2865 Expr *pX; | |
| 2866 pX = pEnd->pExpr; | |
| 2867 assert( pX!=0 ); | |
| 2868 assert( pEnd->leftCursor==iCur ); | |
| 2869 memEndValue = ++pParse->nMem; | |
| 2870 sqlite3ExprCode(pParse, pX->pRight, memEndValue); | |
| 2871 if( pX->op==TK_LT || pX->op==TK_GT ){ | |
| 2872 testOp = bRev ? OP_Le : OP_Ge; | |
| 2873 }else{ | |
| 2874 testOp = bRev ? OP_Lt : OP_Gt; | |
| 2875 } | |
| 2876 disableTerm(pLevel, pEnd); | |
| 2877 } | |
| 2878 start = sqlite3VdbeCurrentAddr(v); | |
| 2879 pLevel->op = bRev ? OP_Prev : OP_Next; | |
| 2880 pLevel->p1 = iCur; | |
| 2881 pLevel->p2 = start; | |
| 2882 pLevel->p5 = (pStart==0 && pEnd==0) ?1:0; | |
| 2883 if( testOp!=OP_Noop ){ | |
| 2884 iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse); | |
| 2885 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); | |
| 2886 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); | |
| 2887 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); | |
| 2888 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); | |
| 2889 } | |
| 2890 }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){ | |
| 2891 /* Case 3: A scan using an index. | |
| 2892 ** | |
| 2893 ** The WHERE clause may contain zero or more equality | |
| 2894 ** terms ("==" or "IN" operators) that refer to the N | |
| 2895 ** left-most columns of the index. It may also contain | |
| 2896 ** inequality constraints (>, <, >= or <=) on the indexed | |
| 2897 ** column that immediately follows the N equalities. Only | |
| 2898 ** the right-most column can be an inequality - the rest must | |
| 2899 ** use the "==" and "IN" operators. For example, if the | |
| 2900 ** index is on (x,y,z), then the following clauses are all | |
| 2901 ** optimized: | |
| 2902 ** | |
| 2903 ** x=5 | |
| 2904 ** x=5 AND y=10 | |
| 2905 ** x=5 AND y<10 | |
| 2906 ** x=5 AND y>5 AND y<10 | |
| 2907 ** x=5 AND y=5 AND z<=10 | |
| 2908 ** | |
| 2909 ** The z<10 term of the following cannot be used, only | |
| 2910 ** the x=5 term: | |
| 2911 ** | |
| 2912 ** x=5 AND z<10 | |
| 2913 ** | |
| 2914 ** N may be zero if there are inequality constraints. | |
| 2915 ** If there are no inequality constraints, then N is at | |
| 2916 ** least one. | |
| 2917 ** | |
| 2918 ** This case is also used when there are no WHERE clause | |
| 2919 ** constraints but an index is selected anyway, in order | |
| 2920 ** to force the output order to conform to an ORDER BY. | |
| 2921 */ | |
| 2922 int aStartOp[] = { | |
| 2923 0, | |
| 2924 0, | |
| 2925 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ | |
| 2926 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ | |
| 2927 OP_SeekGt, /* 4: (start_constraints && !startEq && !bRev) */ | |
| 2928 OP_SeekLt, /* 5: (start_constraints && !startEq && bRev) */ | |
| 2929 OP_SeekGe, /* 6: (start_constraints && startEq && !bRev) */ | |
| 2930 OP_SeekLe /* 7: (start_constraints && startEq && bRev) */ | |
| 2931 }; | |
| 2932 int aEndOp[] = { | |
| 2933 OP_Noop, /* 0: (!end_constraints) */ | |
| 2934 OP_IdxGE, /* 1: (end_constraints && !bRev) */ | |
| 2935 OP_IdxLT /* 2: (end_constraints && bRev) */ | |
| 2936 }; | |
| 2937 int nEq = pLevel->plan.nEq; | |
| 2938 int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */ | |
| 2939 int regBase; /* Base register holding constraint values */ | |
| 2940 int r1; /* Temp register */ | |
| 2941 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ | |
| 2942 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ | |
| 2943 int startEq; /* True if range start uses ==, >= or <= */ | |
| 2944 int endEq; /* True if range end uses ==, >= or <= */ | |
| 2945 int start_constraints; /* Start of range is constrained */ | |
| 2946 int nConstraint; /* Number of constraint terms */ | |
| 2947 Index *pIdx; /* The index we will be using */ | |
| 2948 int iIdxCur; /* The VDBE cursor for the index */ | |
| 2949 int nExtraReg = 0; /* Number of extra registers needed */ | |
| 2950 int op; /* Instruction opcode */ | |
| 2951 char *zAff; | |
| 2952 | |
| 2953 pIdx = pLevel->plan.u.pIdx; | |
| 2954 iIdxCur = pLevel->iIdxCur; | |
| 2955 k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */ | |
| 2956 | |
| 2957 /* If this loop satisfies a sort order (pOrderBy) request that | |
| 2958 ** was passed to this function to implement a "SELECT min(x) ..." | |
| 2959 ** query, then the caller will only allow the loop to run for | |
| 2960 ** a single iteration. This means that the first row returned | |
| 2961 ** should not have a NULL value stored in 'x'. If column 'x' is | |
| 2962 ** the first one after the nEq equality constraints in the index, | |
| 2963 ** this requires some special handling. | |
| 2964 */ | |
| 2965 if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0 | |
| 2966 && (pLevel->plan.wsFlags&WHERE_ORDERBY) | |
| 2967 && (pIdx->nColumn>nEq) | |
| 2968 ){ | |
| 2969 /* assert( pOrderBy->nExpr==1 ); */ | |
| 2970 /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */ | |
| 2971 isMinQuery = 1; | |
| 2972 nExtraReg = 1; | |
| 2973 } | |
| 2974 | |
| 2975 /* Find any inequality constraint terms for the start and end | |
| 2976 ** of the range. | |
| 2977 */ | |
| 2978 if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){ | |
| 2979 pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx); | |
| 2980 nExtraReg = 1; | |
| 2981 } | |
| 2982 if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){ | |
| 2983 pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx); | |
| 2984 nExtraReg = 1; | |
| 2985 } | |
| 2986 | |
| 2987 /* Generate code to evaluate all constraint terms using == or IN | |
| 2988 ** and store the values of those terms in an array of registers | |
| 2989 ** starting at regBase. | |
| 2990 */ | |
| 2991 regBase = codeAllEqualityTerms( | |
| 2992 pParse, pLevel, pWC, notReady, nExtraReg, &zAff | |
| 2993 ); | |
| 2994 addrNxt = pLevel->addrNxt; | |
| 2995 | |
| 2996 /* If we are doing a reverse order scan on an ascending index, or | |
| 2997 ** a forward order scan on a descending index, interchange the | |
| 2998 ** start and end terms (pRangeStart and pRangeEnd). | |
| 2999 */ | |
| 3000 if( bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){ | |
| 3001 SWAP(WhereTerm *, pRangeEnd, pRangeStart); | |
| 3002 } | |
| 3003 | |
| 3004 testcase( pRangeStart && pRangeStart->eOperator & WO_LE ); | |
| 3005 testcase( pRangeStart && pRangeStart->eOperator & WO_GE ); | |
| 3006 testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE ); | |
| 3007 testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE ); | |
| 3008 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); | |
| 3009 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); | |
| 3010 start_constraints = pRangeStart || nEq>0; | |
| 3011 | |
| 3012 /* Seek the index cursor to the start of the range. */ | |
| 3013 nConstraint = nEq; | |
| 3014 if( pRangeStart ){ | |
| 3015 Expr *pRight = pRangeStart->pExpr->pRight; | |
| 3016 sqlite3ExprCode(pParse, pRight, regBase+nEq); | |
| 3017 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); | |
| 3018 if( zAff | |
| 3019 && sqlite3CompareAffinity(pRight, zAff[nConstraint])==SQLITE_AFF_NONE | |
| 3020 ){ | |
| 3021 /* Since the comparison is to be performed with no conversions applied | |
| 3022 ** to the operands, set the affinity to apply to pRight to | |
| 3023 ** SQLITE_AFF_NONE. */ | |
| 3024 zAff[nConstraint] = SQLITE_AFF_NONE; | |
| 3025 } | |
| 3026 nConstraint++; | |
| 3027 }else if( isMinQuery ){ | |
| 3028 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); | |
| 3029 nConstraint++; | |
| 3030 startEq = 0; | |
| 3031 start_constraints = 1; | |
| 3032 } | |
| 3033 codeApplyAffinity(pParse, regBase, nConstraint, zAff); | |
| 3034 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; | |
| 3035 assert( op!=0 ); | |
| 3036 testcase( op==OP_Rewind ); | |
| 3037 testcase( op==OP_Last ); | |
| 3038 testcase( op==OP_SeekGt ); | |
| 3039 testcase( op==OP_SeekGe ); | |
| 3040 testcase( op==OP_SeekLe ); | |
| 3041 testcase( op==OP_SeekLt ); | |
| 3042 sqlite3VdbeAddOp4(v, op, iIdxCur, addrNxt, regBase, | |
| 3043 SQLITE_INT_TO_PTR(nConstraint), P4_INT32); | |
| 3044 | |
| 3045 /* Load the value for the inequality constraint at the end of the | |
| 3046 ** range (if any). | |
| 3047 */ | |
| 3048 nConstraint = nEq; | |
| 3049 if( pRangeEnd ){ | |
| 3050 Expr *pRight = pRangeEnd->pExpr->pRight; | |
| 3051 sqlite3ExprCacheRemove(pParse, regBase+nEq); | |
| 3052 sqlite3ExprCode(pParse, pRight, regBase+nEq); | |
| 3053 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); | |
| 3054 zAff = sqlite3DbStrDup(pParse->db, zAff); | |
| 3055 if( zAff | |
| 3056 && sqlite3CompareAffinity(pRight, zAff[nConstraint])==SQLITE_AFF_NONE | |
| 3057 ){ | |
| 3058 /* Since the comparison is to be performed with no conversions applied | |
| 3059 ** to the operands, set the affinity to apply to pRight to | |
| 3060 ** SQLITE_AFF_NONE. */ | |
| 3061 zAff[nConstraint] = SQLITE_AFF_NONE; | |
| 3062 } | |
| 3063 codeApplyAffinity(pParse, regBase, nEq+1, zAff); | |
| 3064 nConstraint++; | |
| 3065 } | |
| 3066 | |
| 3067 /* Top of the loop body */ | |
| 3068 pLevel->p2 = sqlite3VdbeCurrentAddr(v); | |
| 3069 | |
| 3070 /* Check if the index cursor is past the end of the range. */ | |
| 3071 op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)]; | |
| 3072 testcase( op==OP_Noop ); | |
| 3073 testcase( op==OP_IdxGE ); | |
| 3074 testcase( op==OP_IdxLT ); | |
| 3075 if( op!=OP_Noop ){ | |
| 3076 sqlite3VdbeAddOp4(v, op, iIdxCur, addrNxt, regBase, | |
| 3077 SQLITE_INT_TO_PTR(nConstraint), P4_INT32); | |
| 3078 sqlite3VdbeChangeP5(v, endEq!=bRev ?1:0); | |
| 3079 } | |
| 3080 | |
| 3081 /* If there are inequality constraints, check that the value | |
| 3082 ** of the table column that the inequality contrains is not NULL. | |
| 3083 ** If it is, jump to the next iteration of the loop. | |
| 3084 */ | |
| 3085 r1 = sqlite3GetTempReg(pParse); | |
| 3086 testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ); | |
| 3087 testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ); | |
| 3088 if( pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT) ){ | |
| 3089 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1); | |
| 3090 sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont); | |
| 3091 } | |
| 3092 sqlite3ReleaseTempReg(pParse, r1); | |
| 3093 | |
| 3094 /* Seek the table cursor, if required */ | |
| 3095 disableTerm(pLevel, pRangeStart); | |
| 3096 disableTerm(pLevel, pRangeEnd); | |
| 3097 if( !omitTable ){ | |
| 3098 iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse); | |
| 3099 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); | |
| 3100 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); | |
| 3101 sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */ | |
| 3102 } | |
| 3103 | |
| 3104 /* Record the instruction used to terminate the loop. Disable | |
| 3105 ** WHERE clause terms made redundant by the index range scan. | |
| 3106 */ | |
| 3107 pLevel->op = bRev ? OP_Prev : OP_Next; | |
| 3108 pLevel->p1 = iIdxCur; | |
| 3109 }else | |
| 3110 | |
| 3111 #ifndef SQLITE_OMIT_OR_OPTIMIZATION | |
| 3112 if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){ | |
| 3113 /* Case 4: Two or more separately indexed terms connected by OR | |
| 3114 ** | |
| 3115 ** Example: | |
| 3116 ** | |
| 3117 ** CREATE TABLE t1(a,b,c,d); | |
| 3118 ** CREATE INDEX i1 ON t1(a); | |
| 3119 ** CREATE INDEX i2 ON t1(b); | |
| 3120 ** CREATE INDEX i3 ON t1(c); | |
| 3121 ** | |
| 3122 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) | |
| 3123 ** | |
| 3124 ** In the example, there are three indexed terms connected by OR. | |
| 3125 ** The top of the loop looks like this: | |
| 3126 ** | |
| 3127 ** Null 1 # Zero the rowset in reg 1 | |
| 3128 ** | |
| 3129 ** Then, for each indexed term, the following. The arguments to | |
| 3130 ** RowSetTest are such that the rowid of the current row is inserted | |
| 3131 ** into the RowSet. If it is already present, control skips the | |
| 3132 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). | |
| 3133 ** | |
| 3134 ** sqlite3WhereBegin(<term>) | |
| 3135 ** RowSetTest # Insert rowid into rowset | |
| 3136 ** Gosub 2 A | |
| 3137 ** sqlite3WhereEnd() | |
| 3138 ** | |
| 3139 ** Following the above, code to terminate the loop. Label A, the target | |
| 3140 ** of the Gosub above, jumps to the instruction right after the Goto. | |
| 3141 ** | |
| 3142 ** Null 1 # Zero the rowset in reg 1 | |
| 3143 ** Goto B # The loop is finished. | |
| 3144 ** | |
| 3145 ** A: <loop body> # Return data, whatever. | |
| 3146 ** | |
| 3147 ** Return 2 # Jump back to the Gosub | |
| 3148 ** | |
| 3149 ** B: <after the loop> | |
| 3150 ** | |
| 3151 */ | |
| 3152 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ | |
| 3153 WhereTerm *pFinal; /* Final subterm within the OR-clause. */ | |
| 3154 SrcList oneTab; /* Shortened table list */ | |
| 3155 | |
| 3156 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ | |
| 3157 int regRowset = 0; /* Register for RowSet object */ | |
| 3158 int regRowid = 0; /* Register holding rowid */ | |
| 3159 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ | |
| 3160 int iRetInit; /* Address of regReturn init */ | |
| 3161 int ii; | |
| 3162 | |
| 3163 pTerm = pLevel->plan.u.pTerm; | |
| 3164 assert( pTerm!=0 ); | |
| 3165 assert( pTerm->eOperator==WO_OR ); | |
| 3166 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); | |
| 3167 pOrWc = &pTerm->u.pOrInfo->wc; | |
| 3168 pFinal = &pOrWc->a[pOrWc->nTerm-1]; | |
| 3169 | |
| 3170 /* Set up a SrcList containing just the table being scanned by this loop. */ | |
| 3171 oneTab.nSrc = 1; | |
| 3172 oneTab.nAlloc = 1; | |
| 3173 oneTab.a[0] = *pTabItem; | |
| 3174 | |
| 3175 /* Initialize the rowset register to contain NULL. An SQL NULL is | |
| 3176 ** equivalent to an empty rowset. | |
| 3177 ** | |
| 3178 ** Also initialize regReturn to contain the address of the instruction | |
| 3179 ** immediately following the OP_Return at the bottom of the loop. This | |
| 3180 ** is required in a few obscure LEFT JOIN cases where control jumps | |
| 3181 ** over the top of the loop into the body of it. In this case the | |
| 3182 ** correct response for the end-of-loop code (the OP_Return) is to | |
| 3183 ** fall through to the next instruction, just as an OP_Next does if | |
| 3184 ** called on an uninitialized cursor. | |
| 3185 */ | |
| 3186 if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ | |
| 3187 regRowset = ++pParse->nMem; | |
| 3188 regRowid = ++pParse->nMem; | |
| 3189 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); | |
| 3190 } | |
| 3191 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); | |
| 3192 | |
| 3193 for(ii=0; ii<pOrWc->nTerm; ii++){ | |
| 3194 WhereTerm *pOrTerm = &pOrWc->a[ii]; | |
| 3195 if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){ | |
| 3196 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ | |
| 3197 /* Loop through table entries that match term pOrTerm. */ | |
| 3198 pSubWInfo = sqlite3WhereBegin(pParse, &oneTab, pOrTerm->pExpr, 0, | |
| 3199 WHERE_OMIT_OPEN | WHERE_OMIT_CLOSE | WHERE_FORCE_TABLE); | |
| 3200 if( pSubWInfo ){ | |
| 3201 if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ | |
| 3202 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); | |
| 3203 int r; | |
| 3204 r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur, | |
| 3205 regRowid, 0); | |
| 3206 sqlite3VdbeAddOp4(v, OP_RowSetTest, regRowset, | |
| 3207 sqlite3VdbeCurrentAddr(v)+2, | |
| 3208 r, SQLITE_INT_TO_PTR(iSet), P4_INT32); | |
| 3209 } | |
| 3210 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); | |
| 3211 | |
| 3212 /* Finish the loop through table entries that match term pOrTerm. */ | |
| 3213 sqlite3WhereEnd(pSubWInfo); | |
| 3214 } | |
| 3215 } | |
| 3216 } | |
| 3217 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); | |
| 3218 /* sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); */ | |
| 3219 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk); | |
| 3220 sqlite3VdbeResolveLabel(v, iLoopBody); | |
| 3221 | |
| 3222 pLevel->op = OP_Return; | |
| 3223 pLevel->p1 = regReturn; | |
| 3224 disableTerm(pLevel, pTerm); | |
| 3225 }else | |
| 3226 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ | |
| 3227 | |
| 3228 { | |
| 3229 /* Case 5: There is no usable index. We must do a complete | |
| 3230 ** scan of the entire table. | |
| 3231 */ | |
| 3232 static const u8 aStep[] = { OP_Next, OP_Prev }; | |
| 3233 static const u8 aStart[] = { OP_Rewind, OP_Last }; | |
| 3234 assert( bRev==0 || bRev==1 ); | |
| 3235 assert( omitTable==0 ); | |
| 3236 pLevel->op = aStep[bRev]; | |
| 3237 pLevel->p1 = iCur; | |
| 3238 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); | |
| 3239 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; | |
| 3240 } | |
| 3241 notReady &= ~getMask(pWC->pMaskSet, iCur); | |
| 3242 | |
| 3243 /* Insert code to test every subexpression that can be completely | |
| 3244 ** computed using the current set of tables. | |
| 3245 */ | |
| 3246 k = 0; | |
| 3247 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ | |
| 3248 Expr *pE; | |
| 3249 testcase( pTerm->wtFlags & TERM_VIRTUAL ); | |
| 3250 testcase( pTerm->wtFlags & TERM_CODED ); | |
| 3251 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; | |
| 3252 if( (pTerm->prereqAll & notReady)!=0 ) continue; | |
| 3253 pE = pTerm->pExpr; | |
| 3254 assert( pE!=0 ); | |
| 3255 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ | |
| 3256 continue; | |
| 3257 } | |
| 3258 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); | |
| 3259 k = 1; | |
| 3260 pTerm->wtFlags |= TERM_CODED; | |
| 3261 } | |
| 3262 | |
| 3263 /* For a LEFT OUTER JOIN, generate code that will record the fact that | |
| 3264 ** at least one row of the right table has matched the left table. | |
| 3265 */ | |
| 3266 if( pLevel->iLeftJoin ){ | |
| 3267 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); | |
| 3268 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); | |
| 3269 VdbeComment((v, "record LEFT JOIN hit")); | |
| 3270 sqlite3ExprCacheClear(pParse); | |
| 3271 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ | |
| 3272 testcase( pTerm->wtFlags & TERM_VIRTUAL ); | |
| 3273 testcase( pTerm->wtFlags & TERM_CODED ); | |
| 3274 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; | |
| 3275 if( (pTerm->prereqAll & notReady)!=0 ) continue; | |
| 3276 assert( pTerm->pExpr ); | |
| 3277 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); | |
| 3278 pTerm->wtFlags |= TERM_CODED; | |
| 3279 } | |
| 3280 } | |
| 3281 sqlite3ReleaseTempReg(pParse, iReleaseReg); | |
| 3282 | |
| 3283 return notReady; | |
| 3284 } | |
| 3285 | |
| 3286 #if defined(SQLITE_TEST) | |
| 3287 /* | |
| 3288 ** The following variable holds a text description of query plan generated | |
| 3289 ** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin | |
| 3290 ** overwrites the previous. This information is used for testing and | |
| 3291 ** analysis only. | |
| 3292 */ | |
| 3293 char sqlite3_query_plan[BMS*2*40]; /* Text of the join */ | |
| 3294 static int nQPlan = 0; /* Next free slow in _query_plan[] */ | |
| 3295 | |
| 3296 #endif /* SQLITE_TEST */ | |
| 3297 | |
| 3298 | |
| 3299 /* | |
| 3300 ** Free a WhereInfo structure | |
| 3301 */ | |
| 3302 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ | |
| 3303 if( pWInfo ){ | |
| 3304 int i; | |
| 3305 for(i=0; i<pWInfo->nLevel; i++){ | |
| 3306 sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo; | |
| 3307 if( pInfo ){ | |
| 3308 /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */ | |
| 3309 if( pInfo->needToFreeIdxStr ){ | |
| 3310 sqlite3_free(pInfo->idxStr); | |
| 3311 } | |
| 3312 sqlite3DbFree(db, pInfo); | |
| 3313 } | |
| 3314 } | |
| 3315 whereClauseClear(pWInfo->pWC); | |
| 3316 sqlite3DbFree(db, pWInfo); | |
| 3317 } | |
| 3318 } | |
| 3319 | |
| 3320 | |
| 3321 /* | |
| 3322 ** Generate the beginning of the loop used for WHERE clause processing. | |
| 3323 ** The return value is a pointer to an opaque structure that contains | |
| 3324 ** information needed to terminate the loop. Later, the calling routine | |
| 3325 ** should invoke sqlite3WhereEnd() with the return value of this function | |
| 3326 ** in order to complete the WHERE clause processing. | |
| 3327 ** | |
| 3328 ** If an error occurs, this routine returns NULL. | |
| 3329 ** | |
| 3330 ** The basic idea is to do a nested loop, one loop for each table in | |
| 3331 ** the FROM clause of a select. (INSERT and UPDATE statements are the | |
| 3332 ** same as a SELECT with only a single table in the FROM clause.) For | |
| 3333 ** example, if the SQL is this: | |
| 3334 ** | |
| 3335 ** SELECT * FROM t1, t2, t3 WHERE ...; | |
| 3336 ** | |
| 3337 ** Then the code generated is conceptually like the following: | |
| 3338 ** | |
| 3339 ** foreach row1 in t1 do \ Code generated | |
| 3340 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() | |
| 3341 ** foreach row3 in t3 do / | |
| 3342 ** ... | |
| 3343 ** end \ Code generated | |
| 3344 ** end |-- by sqlite3WhereEnd() | |
| 3345 ** end / | |
| 3346 ** | |
| 3347 ** Note that the loops might not be nested in the order in which they | |
| 3348 ** appear in the FROM clause if a different order is better able to make | |
| 3349 ** use of indices. Note also that when the IN operator appears in | |
| 3350 ** the WHERE clause, it might result in additional nested loops for | |
| 3351 ** scanning through all values on the right-hand side of the IN. | |
| 3352 ** | |
| 3353 ** There are Btree cursors associated with each table. t1 uses cursor | |
| 3354 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. | |
| 3355 ** And so forth. This routine generates code to open those VDBE cursors | |
| 3356 ** and sqlite3WhereEnd() generates the code to close them. | |
| 3357 ** | |
| 3358 ** The code that sqlite3WhereBegin() generates leaves the cursors named | |
| 3359 ** in pTabList pointing at their appropriate entries. The [...] code | |
| 3360 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract | |
| 3361 ** data from the various tables of the loop. | |
| 3362 ** | |
| 3363 ** If the WHERE clause is empty, the foreach loops must each scan their | |
| 3364 ** entire tables. Thus a three-way join is an O(N^3) operation. But if | |
| 3365 ** the tables have indices and there are terms in the WHERE clause that | |
| 3366 ** refer to those indices, a complete table scan can be avoided and the | |
| 3367 ** code will run much faster. Most of the work of this routine is checking | |
| 3368 ** to see if there are indices that can be used to speed up the loop. | |
| 3369 ** | |
| 3370 ** Terms of the WHERE clause are also used to limit which rows actually | |
| 3371 ** make it to the "..." in the middle of the loop. After each "foreach", | |
| 3372 ** terms of the WHERE clause that use only terms in that loop and outer | |
| 3373 ** loops are evaluated and if false a jump is made around all subsequent | |
| 3374 ** inner loops (or around the "..." if the test occurs within the inner- | |
| 3375 ** most loop) | |
| 3376 ** | |
| 3377 ** OUTER JOINS | |
| 3378 ** | |
| 3379 ** An outer join of tables t1 and t2 is conceptally coded as follows: | |
| 3380 ** | |
| 3381 ** foreach row1 in t1 do | |
| 3382 ** flag = 0 | |
| 3383 ** foreach row2 in t2 do | |
| 3384 ** start: | |
| 3385 ** ... | |
| 3386 ** flag = 1 | |
| 3387 ** end | |
| 3388 ** if flag==0 then | |
| 3389 ** move the row2 cursor to a null row | |
| 3390 ** goto start | |
| 3391 ** fi | |
| 3392 ** end | |
| 3393 ** | |
| 3394 ** ORDER BY CLAUSE PROCESSING | |
| 3395 ** | |
| 3396 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, | |
| 3397 ** if there is one. If there is no ORDER BY clause or if this routine | |
| 3398 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. | |
| 3399 ** | |
| 3400 ** If an index can be used so that the natural output order of the table | |
| 3401 ** scan is correct for the ORDER BY clause, then that index is used and | |
| 3402 ** *ppOrderBy is set to NULL. This is an optimization that prevents an | |
| 3403 ** unnecessary sort of the result set if an index appropriate for the | |
| 3404 ** ORDER BY clause already exists. | |
| 3405 ** | |
| 3406 ** If the where clause loops cannot be arranged to provide the correct | |
| 3407 ** output order, then the *ppOrderBy is unchanged. | |
| 3408 */ | |
| 3409 WhereInfo *sqlite3WhereBegin( | |
| 3410 Parse *pParse, /* The parser context */ | |
| 3411 SrcList *pTabList, /* A list of all tables to be scanned */ | |
| 3412 Expr *pWhere, /* The WHERE clause */ | |
| 3413 ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */ | |
| 3414 u16 wctrlFlags /* One of the WHERE_* flags defined in sqliteInt.h */ | |
| 3415 ){ | |
| 3416 int i; /* Loop counter */ | |
| 3417 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ | |
| 3418 WhereInfo *pWInfo; /* Will become the return value of this function */ | |
| 3419 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ | |
| 3420 Bitmask notReady; /* Cursors that are not yet positioned */ | |
| 3421 WhereMaskSet *pMaskSet; /* The expression mask set */ | |
| 3422 WhereClause *pWC; /* Decomposition of the WHERE clause */ | |
| 3423 struct SrcList_item *pTabItem; /* A single entry from pTabList */ | |
| 3424 WhereLevel *pLevel; /* A single level in the pWInfo list */ | |
| 3425 int iFrom; /* First unused FROM clause element */ | |
| 3426 int andFlags; /* AND-ed combination of all pWC->a[].wtFlags */ | |
| 3427 sqlite3 *db; /* Database connection */ | |
| 3428 | |
| 3429 /* The number of tables in the FROM clause is limited by the number of | |
| 3430 ** bits in a Bitmask | |
| 3431 */ | |
| 3432 if( pTabList->nSrc>BMS ){ | |
| 3433 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); | |
| 3434 return 0; | |
| 3435 } | |
| 3436 | |
| 3437 /* Allocate and initialize the WhereInfo structure that will become the | |
| 3438 ** return value. A single allocation is used to store the WhereInfo | |
| 3439 ** struct, the contents of WhereInfo.a[], the WhereClause structure | |
| 3440 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte | |
| 3441 ** field (type Bitmask) it must be aligned on an 8-byte boundary on | |
| 3442 ** some architectures. Hence the ROUND8() below. | |
| 3443 */ | |
| 3444 db = pParse->db; | |
| 3445 nByteWInfo = ROUND8(sizeof(WhereInfo)+(pTabList->nSrc-1)*sizeof(WhereLevel)); | |
| 3446 pWInfo = sqlite3DbMallocZero(db, | |
| 3447 nByteWInfo + | |
| 3448 sizeof(WhereClause) + | |
| 3449 sizeof(WhereMaskSet) | |
| 3450 ); | |
| 3451 if( db->mallocFailed ){ | |
| 3452 goto whereBeginError; | |
| 3453 } | |
| 3454 pWInfo->nLevel = pTabList->nSrc; | |
| 3455 pWInfo->pParse = pParse; | |
| 3456 pWInfo->pTabList = pTabList; | |
| 3457 pWInfo->iBreak = sqlite3VdbeMakeLabel(v); | |
| 3458 pWInfo->pWC = pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo]; | |
| 3459 pWInfo->wctrlFlags = wctrlFlags; | |
| 3460 pMaskSet = (WhereMaskSet*)&pWC[1]; | |
| 3461 | |
| 3462 /* Split the WHERE clause into separate subexpressions where each | |
| 3463 ** subexpression is separated by an AND operator. | |
| 3464 */ | |
| 3465 initMaskSet(pMaskSet); | |
| 3466 whereClauseInit(pWC, pParse, pMaskSet); | |
| 3467 sqlite3ExprCodeConstants(pParse, pWhere); | |
| 3468 whereSplit(pWC, pWhere, TK_AND); | |
| 3469 | |
| 3470 /* Special case: a WHERE clause that is constant. Evaluate the | |
| 3471 ** expression and either jump over all of the code or fall thru. | |
| 3472 */ | |
| 3473 if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){ | |
| 3474 sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL); | |
| 3475 pWhere = 0; | |
| 3476 } | |
| 3477 | |
| 3478 /* Assign a bit from the bitmask to every term in the FROM clause. | |
| 3479 ** | |
| 3480 ** When assigning bitmask values to FROM clause cursors, it must be | |
| 3481 ** the case that if X is the bitmask for the N-th FROM clause term then | |
| 3482 ** the bitmask for all FROM clause terms to the left of the N-th term | |
| 3483 ** is (X-1). An expression from the ON clause of a LEFT JOIN can use | |
| 3484 ** its Expr.iRightJoinTable value to find the bitmask of the right table | |
| 3485 ** of the join. Subtracting one from the right table bitmask gives a | |
| 3486 ** bitmask for all tables to the left of the join. Knowing the bitmask | |
| 3487 ** for all tables to the left of a left join is important. Ticket #3015. | |
| 3488 ** | |
| 3489 ** Configure the WhereClause.vmask variable so that bits that correspond | |
| 3490 ** to virtual table cursors are set. This is used to selectively disable | |
| 3491 ** the OR-to-IN transformation in exprAnalyzeOrTerm(). It is not helpful | |
| 3492 ** with virtual tables. | |
| 3493 */ | |
| 3494 assert( pWC->vmask==0 && pMaskSet->n==0 ); | |
| 3495 for(i=0; i<pTabList->nSrc; i++){ | |
| 3496 createMask(pMaskSet, pTabList->a[i].iCursor); | |
| 3497 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
| 3498 if( ALWAYS(pTabList->a[i].pTab) && IsVirtual(pTabList->a[i].pTab) ){ | |
| 3499 pWC->vmask |= ((Bitmask)1 << i); | |
| 3500 } | |
| 3501 #endif | |
| 3502 } | |
| 3503 #ifndef NDEBUG | |
| 3504 { | |
| 3505 Bitmask toTheLeft = 0; | |
| 3506 for(i=0; i<pTabList->nSrc; i++){ | |
| 3507 Bitmask m = getMask(pMaskSet, pTabList->a[i].iCursor); | |
| 3508 assert( (m-1)==toTheLeft ); | |
| 3509 toTheLeft |= m; | |
| 3510 } | |
| 3511 } | |
| 3512 #endif | |
| 3513 | |
| 3514 /* Analyze all of the subexpressions. Note that exprAnalyze() might | |
| 3515 ** add new virtual terms onto the end of the WHERE clause. We do not | |
| 3516 ** want to analyze these virtual terms, so start analyzing at the end | |
| 3517 ** and work forward so that the added virtual terms are never processed. | |
| 3518 */ | |
| 3519 exprAnalyzeAll(pTabList, pWC); | |
| 3520 if( db->mallocFailed ){ | |
| 3521 goto whereBeginError; | |
| 3522 } | |
| 3523 | |
| 3524 /* Chose the best index to use for each table in the FROM clause. | |
| 3525 ** | |
| 3526 ** This loop fills in the following fields: | |
| 3527 ** | |
| 3528 ** pWInfo->a[].pIdx The index to use for this level of the loop. | |
| 3529 ** pWInfo->a[].wsFlags WHERE_xxx flags associated with pIdx | |
| 3530 ** pWInfo->a[].nEq The number of == and IN constraints | |
| 3531 ** pWInfo->a[].iFrom Which term of the FROM clause is being coded | |
| 3532 ** pWInfo->a[].iTabCur The VDBE cursor for the database table | |
| 3533 ** pWInfo->a[].iIdxCur The VDBE cursor for the index | |
| 3534 ** pWInfo->a[].pTerm When wsFlags==WO_OR, the OR-clause term | |
| 3535 ** | |
| 3536 ** This loop also figures out the nesting order of tables in the FROM | |
| 3537 ** clause. | |
| 3538 */ | |
| 3539 notReady = ~(Bitmask)0; | |
| 3540 pTabItem = pTabList->a; | |
| 3541 pLevel = pWInfo->a; | |
| 3542 andFlags = ~0; | |
| 3543 WHERETRACE(("*** Optimizer Start ***\n")); | |
| 3544 for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ | |
| 3545 WhereCost bestPlan; /* Most efficient plan seen so far */ | |
| 3546 Index *pIdx; /* Index for FROM table at pTabItem */ | |
| 3547 int j; /* For looping over FROM tables */ | |
| 3548 int bestJ = -1; /* The value of j */ | |
| 3549 Bitmask m; /* Bitmask value for j or bestJ */ | |
| 3550 int isOptimal; /* Iterator for optimal/non-optimal search */ | |
| 3551 | |
| 3552 memset(&bestPlan, 0, sizeof(bestPlan)); | |
| 3553 bestPlan.rCost = SQLITE_BIG_DBL; | |
| 3554 | |
| 3555 /* Loop through the remaining entries in the FROM clause to find the | |
| 3556 ** next nested loop. The FROM clause entries may be iterated through | |
| 3557 ** either once or twice. | |
| 3558 ** | |
| 3559 ** The first iteration, which is always performed, searches for the | |
| 3560 ** FROM clause entry that permits the lowest-cost, "optimal" scan. In | |
| 3561 ** this context an optimal scan is one that uses the same strategy | |
| 3562 ** for the given FROM clause entry as would be selected if the entry | |
| 3563 ** were used as the innermost nested loop. In other words, a table | |
| 3564 ** is chosen such that the cost of running that table cannot be reduced | |
| 3565 ** by waiting for other tables to run first. | |
| 3566 ** | |
| 3567 ** The second iteration is only performed if no optimal scan strategies | |
| 3568 ** were found by the first. This iteration is used to search for the | |
| 3569 ** lowest cost scan overall. | |
| 3570 ** | |
| 3571 ** Previous versions of SQLite performed only the second iteration - | |
| 3572 ** the next outermost loop was always that with the lowest overall | |
| 3573 ** cost. However, this meant that SQLite could select the wrong plan | |
| 3574 ** for scripts such as the following: | |
| 3575 ** | |
| 3576 ** CREATE TABLE t1(a, b); | |
| 3577 ** CREATE TABLE t2(c, d); | |
| 3578 ** SELECT * FROM t2, t1 WHERE t2.rowid = t1.a; | |
| 3579 ** | |
| 3580 ** The best strategy is to iterate through table t1 first. However it | |
| 3581 ** is not possible to determine this with a simple greedy algorithm. | |
| 3582 ** However, since the cost of a linear scan through table t2 is the same | |
| 3583 ** as the cost of a linear scan through table t1, a simple greedy | |
| 3584 ** algorithm may choose to use t2 for the outer loop, which is a much | |
| 3585 ** costlier approach. | |
| 3586 */ | |
| 3587 for(isOptimal=1; isOptimal>=0 && bestJ<0; isOptimal--){ | |
| 3588 Bitmask mask = (isOptimal ? 0 : notReady); | |
| 3589 assert( (pTabList->nSrc-iFrom)>1 || isOptimal ); | |
| 3590 for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){ | |
| 3591 int doNotReorder; /* True if this table should not be reordered */ | |
| 3592 WhereCost sCost; /* Cost information from best[Virtual]Index() */ | |
| 3593 ExprList *pOrderBy; /* ORDER BY clause for index to optimize */ | |
| 3594 | |
| 3595 doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0; | |
| 3596 if( j!=iFrom && doNotReorder ) break; | |
| 3597 m = getMask(pMaskSet, pTabItem->iCursor); | |
| 3598 if( (m & notReady)==0 ){ | |
| 3599 if( j==iFrom ) iFrom++; | |
| 3600 continue; | |
| 3601 } | |
| 3602 pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0); | |
| 3603 | |
| 3604 assert( pTabItem->pTab ); | |
| 3605 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
| 3606 if( IsVirtual(pTabItem->pTab) ){ | |
| 3607 sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo; | |
| 3608 bestVirtualIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost, pp); | |
| 3609 }else | |
| 3610 #endif | |
| 3611 { | |
| 3612 bestBtreeIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost); | |
| 3613 } | |
| 3614 assert( isOptimal || (sCost.used¬Ready)==0 ); | |
| 3615 | |
| 3616 if( (sCost.used¬Ready)==0 | |
| 3617 && (j==iFrom || sCost.rCost<bestPlan.rCost) | |
| 3618 ){ | |
| 3619 bestPlan = sCost; | |
| 3620 bestJ = j; | |
| 3621 } | |
| 3622 if( doNotReorder ) break; | |
| 3623 } | |
| 3624 } | |
| 3625 assert( bestJ>=0 ); | |
| 3626 assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) ); | |
| 3627 WHERETRACE(("*** Optimizer selects table %d for loop %d\n", bestJ, | |
| 3628 pLevel-pWInfo->a)); | |
| 3629 if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 ){ | |
| 3630 *ppOrderBy = 0; | |
| 3631 } | |
| 3632 andFlags &= bestPlan.plan.wsFlags; | |
| 3633 pLevel->plan = bestPlan.plan; | |
| 3634 if( bestPlan.plan.wsFlags & WHERE_INDEXED ){ | |
| 3635 pLevel->iIdxCur = pParse->nTab++; | |
| 3636 }else{ | |
| 3637 pLevel->iIdxCur = -1; | |
| 3638 } | |
| 3639 notReady &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor); | |
| 3640 pLevel->iFrom = (u8)bestJ; | |
| 3641 | |
| 3642 /* Check that if the table scanned by this loop iteration had an | |
| 3643 ** INDEXED BY clause attached to it, that the named index is being | |
| 3644 ** used for the scan. If not, then query compilation has failed. | |
| 3645 ** Return an error. | |
| 3646 */ | |
| 3647 pIdx = pTabList->a[bestJ].pIndex; | |
| 3648 if( pIdx ){ | |
| 3649 if( (bestPlan.plan.wsFlags & WHERE_INDEXED)==0 ){ | |
| 3650 sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName); | |
| 3651 goto whereBeginError; | |
| 3652 }else{ | |
| 3653 /* If an INDEXED BY clause is used, the bestIndex() function is | |
| 3654 ** guaranteed to find the index specified in the INDEXED BY clause | |
| 3655 ** if it find an index at all. */ | |
| 3656 assert( bestPlan.plan.u.pIdx==pIdx ); | |
| 3657 } | |
| 3658 } | |
| 3659 } | |
| 3660 WHERETRACE(("*** Optimizer Finished ***\n")); | |
| 3661 if( pParse->nErr || db->mallocFailed ){ | |
| 3662 goto whereBeginError; | |
| 3663 } | |
| 3664 | |
| 3665 /* If the total query only selects a single row, then the ORDER BY | |
| 3666 ** clause is irrelevant. | |
| 3667 */ | |
| 3668 if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){ | |
| 3669 *ppOrderBy = 0; | |
| 3670 } | |
| 3671 | |
| 3672 /* If the caller is an UPDATE or DELETE statement that is requesting | |
| 3673 ** to use a one-pass algorithm, determine if this is appropriate. | |
| 3674 ** The one-pass algorithm only works if the WHERE clause constraints | |
| 3675 ** the statement to update a single row. | |
| 3676 */ | |
| 3677 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); | |
| 3678 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){ | |
| 3679 pWInfo->okOnePass = 1; | |
| 3680 pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY; | |
| 3681 } | |
| 3682 | |
| 3683 /* Open all tables in the pTabList and any indices selected for | |
| 3684 ** searching those tables. | |
| 3685 */ | |
| 3686 sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ | |
| 3687 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ | |
| 3688 Table *pTab; /* Table to open */ | |
| 3689 int iDb; /* Index of database containing table/index */ | |
| 3690 | |
| 3691 #ifndef SQLITE_OMIT_EXPLAIN | |
| 3692 if( pParse->explain==2 ){ | |
| 3693 char *zMsg; | |
| 3694 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; | |
| 3695 zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName); | |
| 3696 if( pItem->zAlias ){ | |
| 3697 zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias); | |
| 3698 } | |
| 3699 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ | |
| 3700 zMsg = sqlite3MAppendf(db, zMsg, "%s WITH INDEX %s", | |
| 3701 zMsg, pLevel->plan.u.pIdx->zName); | |
| 3702 }else if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){ | |
| 3703 zMsg = sqlite3MAppendf(db, zMsg, "%s VIA MULTI-INDEX UNION", zMsg); | |
| 3704 }else if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ | |
| 3705 zMsg = sqlite3MAppendf(db, zMsg, "%s USING PRIMARY KEY", zMsg); | |
| 3706 } | |
| 3707 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
| 3708 else if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ | |
| 3709 sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx; | |
| 3710 zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg, | |
| 3711 pVtabIdx->idxNum, pVtabIdx->idxStr); | |
| 3712 } | |
| 3713 #endif | |
| 3714 if( pLevel->plan.wsFlags & WHERE_ORDERBY ){ | |
| 3715 zMsg = sqlite3MAppendf(db, zMsg, "%s ORDER BY", zMsg); | |
| 3716 } | |
| 3717 sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC); | |
| 3718 } | |
| 3719 #endif /* SQLITE_OMIT_EXPLAIN */ | |
| 3720 pTabItem = &pTabList->a[pLevel->iFrom]; | |
| 3721 pTab = pTabItem->pTab; | |
| 3722 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); | |
| 3723 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ) continue; | |
| 3724 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
| 3725 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ | |
| 3726 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); | |
| 3727 int iCur = pTabItem->iCursor; | |
| 3728 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); | |
| 3729 }else | |
| 3730 #endif | |
| 3731 if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 | |
| 3732 && (wctrlFlags & WHERE_OMIT_OPEN)==0 ){ | |
| 3733 int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead; | |
| 3734 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); | |
| 3735 if( !pWInfo->okOnePass && pTab->nCol<BMS ){ | |
| 3736 Bitmask b = pTabItem->colUsed; | |
| 3737 int n = 0; | |
| 3738 for(; b; b=b>>1, n++){} | |
| 3739 sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, SQLITE_INT_TO_PTR(n)
, P4_INT32); | |
| 3740 assert( n<=pTab->nCol ); | |
| 3741 } | |
| 3742 }else{ | |
| 3743 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); | |
| 3744 } | |
| 3745 pLevel->iTabCur = pTabItem->iCursor; | |
| 3746 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ | |
| 3747 Index *pIx = pLevel->plan.u.pIdx; | |
| 3748 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx); | |
| 3749 int iIdxCur = pLevel->iIdxCur; | |
| 3750 assert( pIx->pSchema==pTab->pSchema ); | |
| 3751 assert( iIdxCur>=0 ); | |
| 3752 sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb, | |
| 3753 (char*)pKey, P4_KEYINFO_HANDOFF); | |
| 3754 VdbeComment((v, "%s", pIx->zName)); | |
| 3755 } | |
| 3756 sqlite3CodeVerifySchema(pParse, iDb); | |
| 3757 } | |
| 3758 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); | |
| 3759 | |
| 3760 /* Generate the code to do the search. Each iteration of the for | |
| 3761 ** loop below generates code for a single nested loop of the VM | |
| 3762 ** program. | |
| 3763 */ | |
| 3764 notReady = ~(Bitmask)0; | |
| 3765 for(i=0; i<pTabList->nSrc; i++){ | |
| 3766 notReady = codeOneLoopStart(pWInfo, i, wctrlFlags, notReady); | |
| 3767 pWInfo->iContinue = pWInfo->a[i].addrCont; | |
| 3768 } | |
| 3769 | |
| 3770 #ifdef SQLITE_TEST /* For testing and debugging use only */ | |
| 3771 /* Record in the query plan information about the current table | |
| 3772 ** and the index used to access it (if any). If the table itself | |
| 3773 ** is not used, its name is just '{}'. If no index is used | |
| 3774 ** the index is listed as "{}". If the primary key is used the | |
| 3775 ** index name is '*'. | |
| 3776 */ | |
| 3777 for(i=0; i<pTabList->nSrc; i++){ | |
| 3778 char *z; | |
| 3779 int n; | |
| 3780 pLevel = &pWInfo->a[i]; | |
| 3781 pTabItem = &pTabList->a[pLevel->iFrom]; | |
| 3782 z = pTabItem->zAlias; | |
| 3783 if( z==0 ) z = pTabItem->pTab->zName; | |
| 3784 n = sqlite3Strlen30(z); | |
| 3785 if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){ | |
| 3786 if( pLevel->plan.wsFlags & WHERE_IDX_ONLY ){ | |
| 3787 memcpy(&sqlite3_query_plan[nQPlan], "{}", 2); | |
| 3788 nQPlan += 2; | |
| 3789 }else{ | |
| 3790 memcpy(&sqlite3_query_plan[nQPlan], z, n); | |
| 3791 nQPlan += n; | |
| 3792 } | |
| 3793 sqlite3_query_plan[nQPlan++] = ' '; | |
| 3794 } | |
| 3795 testcase( pLevel->plan.wsFlags & WHERE_ROWID_EQ ); | |
| 3796 testcase( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ); | |
| 3797 if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ | |
| 3798 memcpy(&sqlite3_query_plan[nQPlan], "* ", 2); | |
| 3799 nQPlan += 2; | |
| 3800 }else if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ | |
| 3801 n = sqlite3Strlen30(pLevel->plan.u.pIdx->zName); | |
| 3802 if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){ | |
| 3803 memcpy(&sqlite3_query_plan[nQPlan], pLevel->plan.u.pIdx->zName, n); | |
| 3804 nQPlan += n; | |
| 3805 sqlite3_query_plan[nQPlan++] = ' '; | |
| 3806 } | |
| 3807 }else{ | |
| 3808 memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3); | |
| 3809 nQPlan += 3; | |
| 3810 } | |
| 3811 } | |
| 3812 while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){ | |
| 3813 sqlite3_query_plan[--nQPlan] = 0; | |
| 3814 } | |
| 3815 sqlite3_query_plan[nQPlan] = 0; | |
| 3816 nQPlan = 0; | |
| 3817 #endif /* SQLITE_TEST // Testing and debugging use only */ | |
| 3818 | |
| 3819 /* Record the continuation address in the WhereInfo structure. Then | |
| 3820 ** clean up and return. | |
| 3821 */ | |
| 3822 return pWInfo; | |
| 3823 | |
| 3824 /* Jump here if malloc fails */ | |
| 3825 whereBeginError: | |
| 3826 whereInfoFree(db, pWInfo); | |
| 3827 return 0; | |
| 3828 } | |
| 3829 | |
| 3830 /* | |
| 3831 ** Generate the end of the WHERE loop. See comments on | |
| 3832 ** sqlite3WhereBegin() for additional information. | |
| 3833 */ | |
| 3834 void sqlite3WhereEnd(WhereInfo *pWInfo){ | |
| 3835 Parse *pParse = pWInfo->pParse; | |
| 3836 Vdbe *v = pParse->pVdbe; | |
| 3837 int i; | |
| 3838 WhereLevel *pLevel; | |
| 3839 SrcList *pTabList = pWInfo->pTabList; | |
| 3840 sqlite3 *db = pParse->db; | |
| 3841 | |
| 3842 /* Generate loop termination code. | |
| 3843 */ | |
| 3844 sqlite3ExprCacheClear(pParse); | |
| 3845 for(i=pTabList->nSrc-1; i>=0; i--){ | |
| 3846 pLevel = &pWInfo->a[i]; | |
| 3847 sqlite3VdbeResolveLabel(v, pLevel->addrCont); | |
| 3848 if( pLevel->op!=OP_Noop ){ | |
| 3849 sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2); | |
| 3850 sqlite3VdbeChangeP5(v, pLevel->p5); | |
| 3851 } | |
| 3852 if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ | |
| 3853 struct InLoop *pIn; | |
| 3854 int j; | |
| 3855 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); | |
| 3856 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ | |
| 3857 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); | |
| 3858 sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->addrInTop); | |
| 3859 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); | |
| 3860 } | |
| 3861 sqlite3DbFree(db, pLevel->u.in.aInLoop); | |
| 3862 } | |
| 3863 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); | |
| 3864 if( pLevel->iLeftJoin ){ | |
| 3865 int addr; | |
| 3866 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); | |
| 3867 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); | |
| 3868 if( pLevel->iIdxCur>=0 ){ | |
| 3869 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); | |
| 3870 } | |
| 3871 if( pLevel->op==OP_Return ){ | |
| 3872 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); | |
| 3873 }else{ | |
| 3874 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst); | |
| 3875 } | |
| 3876 sqlite3VdbeJumpHere(v, addr); | |
| 3877 } | |
| 3878 } | |
| 3879 | |
| 3880 /* The "break" point is here, just past the end of the outer loop. | |
| 3881 ** Set it. | |
| 3882 */ | |
| 3883 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); | |
| 3884 | |
| 3885 /* Close all of the cursors that were opened by sqlite3WhereBegin. | |
| 3886 */ | |
| 3887 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ | |
| 3888 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; | |
| 3889 Table *pTab = pTabItem->pTab; | |
| 3890 assert( pTab!=0 ); | |
| 3891 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ) continue; | |
| 3892 if( (pWInfo->wctrlFlags & WHERE_OMIT_CLOSE)==0 ){ | |
| 3893 if( !pWInfo->okOnePass && (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){ | |
| 3894 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); | |
| 3895 } | |
| 3896 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ | |
| 3897 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); | |
| 3898 } | |
| 3899 } | |
| 3900 | |
| 3901 /* If this scan uses an index, make code substitutions to read data | |
| 3902 ** from the index in preference to the table. Sometimes, this means | |
| 3903 ** the table need never be read from. This is a performance boost, | |
| 3904 ** as the vdbe level waits until the table is read before actually | |
| 3905 ** seeking the table cursor to the record corresponding to the current | |
| 3906 ** position in the index. | |
| 3907 ** | |
| 3908 ** Calls to the code generator in between sqlite3WhereBegin and | |
| 3909 ** sqlite3WhereEnd will have created code that references the table | |
| 3910 ** directly. This loop scans all that code looking for opcodes | |
| 3911 ** that reference the table and converts them into opcodes that | |
| 3912 ** reference the index. | |
| 3913 */ | |
| 3914 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 && !db->mallocFailed){ | |
| 3915 int k, j, last; | |
| 3916 VdbeOp *pOp; | |
| 3917 Index *pIdx = pLevel->plan.u.pIdx; | |
| 3918 int useIndexOnly = pLevel->plan.wsFlags & WHERE_IDX_ONLY; | |
| 3919 | |
| 3920 assert( pIdx!=0 ); | |
| 3921 pOp = sqlite3VdbeGetOp(v, pWInfo->iTop); | |
| 3922 last = sqlite3VdbeCurrentAddr(v); | |
| 3923 for(k=pWInfo->iTop; k<last; k++, pOp++){ | |
| 3924 if( pOp->p1!=pLevel->iTabCur ) continue; | |
| 3925 if( pOp->opcode==OP_Column ){ | |
| 3926 for(j=0; j<pIdx->nColumn; j++){ | |
| 3927 if( pOp->p2==pIdx->aiColumn[j] ){ | |
| 3928 pOp->p2 = j; | |
| 3929 pOp->p1 = pLevel->iIdxCur; | |
| 3930 break; | |
| 3931 } | |
| 3932 } | |
| 3933 assert(!useIndexOnly || j<pIdx->nColumn); | |
| 3934 }else if( pOp->opcode==OP_Rowid ){ | |
| 3935 pOp->p1 = pLevel->iIdxCur; | |
| 3936 pOp->opcode = OP_IdxRowid; | |
| 3937 }else if( pOp->opcode==OP_NullRow && useIndexOnly ){ | |
| 3938 pOp->opcode = OP_Noop; | |
| 3939 } | |
| 3940 } | |
| 3941 } | |
| 3942 } | |
| 3943 | |
| 3944 /* Final cleanup | |
| 3945 */ | |
| 3946 whereInfoFree(db, pWInfo); | |
| 3947 return; | |
| 3948 } | |
| OLD | NEW |