Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(9)

Side by Side Diff: third_party/sqlite/src/vdbeaux.c

Issue 3108030: Move bundled copy of sqlite one level deeper to better separate it... (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src/
Patch Set: Created 10 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « third_party/sqlite/src/vdbeapi.c ('k') | third_party/sqlite/src/vdbeblob.c » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior
14 ** to version 2.8.7, all this code was combined into the vdbe.c source file.
15 ** But that file was getting too big so this subroutines were split out.
16 **
17 ** $Id: vdbeaux.c,v 1.480 2009/08/08 18:01:08 drh Exp $
18 */
19 #include "sqliteInt.h"
20 #include "vdbeInt.h"
21
22
23
24 /*
25 ** When debugging the code generator in a symbolic debugger, one can
26 ** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed
27 ** as they are added to the instruction stream.
28 */
29 #ifdef SQLITE_DEBUG
30 int sqlite3VdbeAddopTrace = 0;
31 #endif
32
33
34 /*
35 ** Create a new virtual database engine.
36 */
37 Vdbe *sqlite3VdbeCreate(sqlite3 *db){
38 Vdbe *p;
39 p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
40 if( p==0 ) return 0;
41 p->db = db;
42 if( db->pVdbe ){
43 db->pVdbe->pPrev = p;
44 }
45 p->pNext = db->pVdbe;
46 p->pPrev = 0;
47 db->pVdbe = p;
48 p->magic = VDBE_MAGIC_INIT;
49 return p;
50 }
51
52 /*
53 ** Remember the SQL string for a prepared statement.
54 */
55 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
56 if( p==0 ) return;
57 #ifdef SQLITE_OMIT_TRACE
58 if( !isPrepareV2 ) return;
59 #endif
60 assert( p->zSql==0 );
61 p->zSql = sqlite3DbStrNDup(p->db, z, n);
62 p->isPrepareV2 = isPrepareV2 ? 1 : 0;
63 }
64
65 /*
66 ** Return the SQL associated with a prepared statement
67 */
68 const char *sqlite3_sql(sqlite3_stmt *pStmt){
69 Vdbe *p = (Vdbe *)pStmt;
70 return (p->isPrepareV2 ? p->zSql : 0);
71 }
72
73 /*
74 ** Swap all content between two VDBE structures.
75 */
76 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
77 Vdbe tmp, *pTmp;
78 char *zTmp;
79 tmp = *pA;
80 *pA = *pB;
81 *pB = tmp;
82 pTmp = pA->pNext;
83 pA->pNext = pB->pNext;
84 pB->pNext = pTmp;
85 pTmp = pA->pPrev;
86 pA->pPrev = pB->pPrev;
87 pB->pPrev = pTmp;
88 zTmp = pA->zSql;
89 pA->zSql = pB->zSql;
90 pB->zSql = zTmp;
91 pB->isPrepareV2 = pA->isPrepareV2;
92 }
93
94 #ifdef SQLITE_DEBUG
95 /*
96 ** Turn tracing on or off
97 */
98 void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
99 p->trace = trace;
100 }
101 #endif
102
103 /*
104 ** Resize the Vdbe.aOp array so that it is at least one op larger than
105 ** it was.
106 **
107 ** If an out-of-memory error occurs while resizing the array, return
108 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
109 ** unchanged (this is so that any opcodes already allocated can be
110 ** correctly deallocated along with the rest of the Vdbe).
111 */
112 static int growOpArray(Vdbe *p){
113 VdbeOp *pNew;
114 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
115 pNew = sqlite3DbRealloc(p->db, p->aOp, nNew*sizeof(Op));
116 if( pNew ){
117 p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op);
118 p->aOp = pNew;
119 }
120 return (pNew ? SQLITE_OK : SQLITE_NOMEM);
121 }
122
123 /*
124 ** Add a new instruction to the list of instructions current in the
125 ** VDBE. Return the address of the new instruction.
126 **
127 ** Parameters:
128 **
129 ** p Pointer to the VDBE
130 **
131 ** op The opcode for this instruction
132 **
133 ** p1, p2, p3 Operands
134 **
135 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
136 ** the sqlite3VdbeChangeP4() function to change the value of the P4
137 ** operand.
138 */
139 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
140 int i;
141 VdbeOp *pOp;
142
143 i = p->nOp;
144 assert( p->magic==VDBE_MAGIC_INIT );
145 assert( op>0 && op<0xff );
146 if( p->nOpAlloc<=i ){
147 if( growOpArray(p) ){
148 return 1;
149 }
150 }
151 p->nOp++;
152 pOp = &p->aOp[i];
153 pOp->opcode = (u8)op;
154 pOp->p5 = 0;
155 pOp->p1 = p1;
156 pOp->p2 = p2;
157 pOp->p3 = p3;
158 pOp->p4.p = 0;
159 pOp->p4type = P4_NOTUSED;
160 p->expired = 0;
161 #ifdef SQLITE_DEBUG
162 pOp->zComment = 0;
163 if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
164 #endif
165 #ifdef VDBE_PROFILE
166 pOp->cycles = 0;
167 pOp->cnt = 0;
168 #endif
169 return i;
170 }
171 int sqlite3VdbeAddOp0(Vdbe *p, int op){
172 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
173 }
174 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
175 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
176 }
177 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
178 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
179 }
180
181
182 /*
183 ** Add an opcode that includes the p4 value as a pointer.
184 */
185 int sqlite3VdbeAddOp4(
186 Vdbe *p, /* Add the opcode to this VM */
187 int op, /* The new opcode */
188 int p1, /* The P1 operand */
189 int p2, /* The P2 operand */
190 int p3, /* The P3 operand */
191 const char *zP4, /* The P4 operand */
192 int p4type /* P4 operand type */
193 ){
194 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
195 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
196 return addr;
197 }
198
199 /*
200 ** Create a new symbolic label for an instruction that has yet to be
201 ** coded. The symbolic label is really just a negative number. The
202 ** label can be used as the P2 value of an operation. Later, when
203 ** the label is resolved to a specific address, the VDBE will scan
204 ** through its operation list and change all values of P2 which match
205 ** the label into the resolved address.
206 **
207 ** The VDBE knows that a P2 value is a label because labels are
208 ** always negative and P2 values are suppose to be non-negative.
209 ** Hence, a negative P2 value is a label that has yet to be resolved.
210 **
211 ** Zero is returned if a malloc() fails.
212 */
213 int sqlite3VdbeMakeLabel(Vdbe *p){
214 int i;
215 i = p->nLabel++;
216 assert( p->magic==VDBE_MAGIC_INIT );
217 if( i>=p->nLabelAlloc ){
218 int n = p->nLabelAlloc*2 + 5;
219 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
220 n*sizeof(p->aLabel[0]));
221 p->nLabelAlloc = sqlite3DbMallocSize(p->db, p->aLabel)/sizeof(p->aLabel[0]);
222 }
223 if( p->aLabel ){
224 p->aLabel[i] = -1;
225 }
226 return -1-i;
227 }
228
229 /*
230 ** Resolve label "x" to be the address of the next instruction to
231 ** be inserted. The parameter "x" must have been obtained from
232 ** a prior call to sqlite3VdbeMakeLabel().
233 */
234 void sqlite3VdbeResolveLabel(Vdbe *p, int x){
235 int j = -1-x;
236 assert( p->magic==VDBE_MAGIC_INIT );
237 assert( j>=0 && j<p->nLabel );
238 if( p->aLabel ){
239 p->aLabel[j] = p->nOp;
240 }
241 }
242
243 #ifdef SQLITE_DEBUG
244
245 /*
246 ** The following type and function are used to iterate through all opcodes
247 ** in a Vdbe main program and each of the sub-programs (triggers) it may
248 ** invoke directly or indirectly. It should be used as follows:
249 **
250 ** Op *pOp;
251 ** VdbeOpIter sIter;
252 **
253 ** memset(&sIter, 0, sizeof(sIter));
254 ** sIter.v = v; // v is of type Vdbe*
255 ** while( (pOp = opIterNext(&sIter)) ){
256 ** // Do something with pOp
257 ** }
258 ** sqlite3DbFree(v->db, sIter.apSub);
259 **
260 */
261 typedef struct VdbeOpIter VdbeOpIter;
262 struct VdbeOpIter {
263 Vdbe *v; /* Vdbe to iterate through the opcodes of */
264 SubProgram **apSub; /* Array of subprograms */
265 int nSub; /* Number of entries in apSub */
266 int iAddr; /* Address of next instruction to return */
267 int iSub; /* 0 = main program, 1 = first sub-program etc. */
268 };
269 static Op *opIterNext(VdbeOpIter *p){
270 Vdbe *v = p->v;
271 Op *pRet = 0;
272 Op *aOp;
273 int nOp;
274
275 if( p->iSub<=p->nSub ){
276
277 if( p->iSub==0 ){
278 aOp = v->aOp;
279 nOp = v->nOp;
280 }else{
281 aOp = p->apSub[p->iSub-1]->aOp;
282 nOp = p->apSub[p->iSub-1]->nOp;
283 }
284 assert( p->iAddr<nOp );
285
286 pRet = &aOp[p->iAddr];
287 p->iAddr++;
288 if( p->iAddr==nOp ){
289 p->iSub++;
290 p->iAddr = 0;
291 }
292
293 if( pRet->p4type==P4_SUBPROGRAM ){
294 int nByte = (p->nSub+1)*sizeof(SubProgram*);
295 int j;
296 for(j=0; j<p->nSub; j++){
297 if( p->apSub[j]==pRet->p4.pProgram ) break;
298 }
299 if( j==p->nSub ){
300 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
301 if( !p->apSub ){
302 pRet = 0;
303 }else{
304 p->apSub[p->nSub++] = pRet->p4.pProgram;
305 }
306 }
307 }
308 }
309
310 return pRet;
311 }
312
313 /*
314 ** Check if the program stored in the VM associated with pParse may
315 ** throw an ABORT exception (causing the statement, but not transaction
316 ** to be rolled back). This condition is true if the main program or any
317 ** sub-programs contains any of the following:
318 **
319 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
320 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
321 ** * OP_Destroy
322 ** * OP_VUpdate
323 ** * OP_VRename
324 **
325 ** Then check that the value of Parse.mayAbort is true if an
326 ** ABORT may be thrown, or false otherwise. Return true if it does
327 ** match, or false otherwise. This function is intended to be used as
328 ** part of an assert statement in the compiler. Similar to:
329 **
330 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
331 */
332 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
333 int hasAbort = 0;
334 Op *pOp;
335 VdbeOpIter sIter;
336 memset(&sIter, 0, sizeof(sIter));
337 sIter.v = v;
338
339 while( (pOp = opIterNext(&sIter))!=0 ){
340 int opcode = pOp->opcode;
341 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
342 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
343 && (pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
344 ){
345 hasAbort = 1;
346 break;
347 }
348 }
349 sqlite3DbFree(v->db, sIter.apSub);
350
351 /* Return true if hasAbort==mayAbort. Or if a malloc failure occured.
352 ** If malloc failed, then the while() loop above may not have iterated
353 ** through all opcodes and hasAbort may be set incorrectly. Return
354 ** true for this case to prevent the assert() in the callers frame
355 ** from failing. */
356 return ( v->db->mallocFailed || hasAbort==mayAbort );
357 }
358 #endif
359
360 /*
361 ** Loop through the program looking for P2 values that are negative
362 ** on jump instructions. Each such value is a label. Resolve the
363 ** label by setting the P2 value to its correct non-zero value.
364 **
365 ** This routine is called once after all opcodes have been inserted.
366 **
367 ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument
368 ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by
369 ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
370 */
371 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
372 int i;
373 int nMaxArgs = *pMaxFuncArgs;
374 Op *pOp;
375 int *aLabel = p->aLabel;
376 p->readOnly = 1;
377 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
378 u8 opcode = pOp->opcode;
379
380 if( opcode==OP_Function || opcode==OP_AggStep ){
381 if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
382 #ifndef SQLITE_OMIT_VIRTUALTABLE
383 }else if( opcode==OP_VUpdate ){
384 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
385 #endif
386 }else if( opcode==OP_Transaction && pOp->p2!=0 ){
387 p->readOnly = 0;
388 #ifndef SQLITE_OMIT_VIRTUALTABLE
389 }else if( opcode==OP_VFilter ){
390 int n;
391 assert( p->nOp - i >= 3 );
392 assert( pOp[-1].opcode==OP_Integer );
393 n = pOp[-1].p1;
394 if( n>nMaxArgs ) nMaxArgs = n;
395 #endif
396 }
397
398 if( sqlite3VdbeOpcodeHasProperty(opcode, OPFLG_JUMP) && pOp->p2<0 ){
399 assert( -1-pOp->p2<p->nLabel );
400 pOp->p2 = aLabel[-1-pOp->p2];
401 }
402 }
403 sqlite3DbFree(p->db, p->aLabel);
404 p->aLabel = 0;
405
406 *pMaxFuncArgs = nMaxArgs;
407 }
408
409 /*
410 ** Return the address of the next instruction to be inserted.
411 */
412 int sqlite3VdbeCurrentAddr(Vdbe *p){
413 assert( p->magic==VDBE_MAGIC_INIT );
414 return p->nOp;
415 }
416
417 /*
418 ** This function returns a pointer to the array of opcodes associated with
419 ** the Vdbe passed as the first argument. It is the callers responsibility
420 ** to arrange for the returned array to be eventually freed using the
421 ** vdbeFreeOpArray() function.
422 **
423 ** Before returning, *pnOp is set to the number of entries in the returned
424 ** array. Also, *pnMaxArg is set to the larger of its current value and
425 ** the number of entries in the Vdbe.apArg[] array required to execute the
426 ** returned program.
427 */
428 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
429 VdbeOp *aOp = p->aOp;
430 assert( aOp && !p->db->mallocFailed );
431
432 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
433 assert( p->aMutex.nMutex==0 );
434
435 resolveP2Values(p, pnMaxArg);
436 *pnOp = p->nOp;
437 p->aOp = 0;
438 return aOp;
439 }
440
441 /*
442 ** Add a whole list of operations to the operation stack. Return the
443 ** address of the first operation added.
444 */
445 int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
446 int addr;
447 assert( p->magic==VDBE_MAGIC_INIT );
448 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p) ){
449 return 0;
450 }
451 addr = p->nOp;
452 if( ALWAYS(nOp>0) ){
453 int i;
454 VdbeOpList const *pIn = aOp;
455 for(i=0; i<nOp; i++, pIn++){
456 int p2 = pIn->p2;
457 VdbeOp *pOut = &p->aOp[i+addr];
458 pOut->opcode = pIn->opcode;
459 pOut->p1 = pIn->p1;
460 if( p2<0 && sqlite3VdbeOpcodeHasProperty(pOut->opcode, OPFLG_JUMP) ){
461 pOut->p2 = addr + ADDR(p2);
462 }else{
463 pOut->p2 = p2;
464 }
465 pOut->p3 = pIn->p3;
466 pOut->p4type = P4_NOTUSED;
467 pOut->p4.p = 0;
468 pOut->p5 = 0;
469 #ifdef SQLITE_DEBUG
470 pOut->zComment = 0;
471 if( sqlite3VdbeAddopTrace ){
472 sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
473 }
474 #endif
475 }
476 p->nOp += nOp;
477 }
478 return addr;
479 }
480
481 /*
482 ** Change the value of the P1 operand for a specific instruction.
483 ** This routine is useful when a large program is loaded from a
484 ** static array using sqlite3VdbeAddOpList but we want to make a
485 ** few minor changes to the program.
486 */
487 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
488 assert( p!=0 );
489 assert( addr>=0 );
490 if( p->nOp>addr ){
491 p->aOp[addr].p1 = val;
492 }
493 }
494
495 /*
496 ** Change the value of the P2 operand for a specific instruction.
497 ** This routine is useful for setting a jump destination.
498 */
499 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
500 assert( p!=0 );
501 assert( addr>=0 );
502 if( p->nOp>addr ){
503 p->aOp[addr].p2 = val;
504 }
505 }
506
507 /*
508 ** Change the value of the P3 operand for a specific instruction.
509 */
510 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
511 assert( p!=0 );
512 assert( addr>=0 );
513 if( p->nOp>addr ){
514 p->aOp[addr].p3 = val;
515 }
516 }
517
518 /*
519 ** Change the value of the P5 operand for the most recently
520 ** added operation.
521 */
522 void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
523 assert( p!=0 );
524 if( p->aOp ){
525 assert( p->nOp>0 );
526 p->aOp[p->nOp-1].p5 = val;
527 }
528 }
529
530 /*
531 ** Change the P2 operand of instruction addr so that it points to
532 ** the address of the next instruction to be coded.
533 */
534 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
535 sqlite3VdbeChangeP2(p, addr, p->nOp);
536 }
537
538
539 /*
540 ** If the input FuncDef structure is ephemeral, then free it. If
541 ** the FuncDef is not ephermal, then do nothing.
542 */
543 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
544 if( ALWAYS(pDef) && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
545 sqlite3DbFree(db, pDef);
546 }
547 }
548
549 /*
550 ** Delete a P4 value if necessary.
551 */
552 static void freeP4(sqlite3 *db, int p4type, void *p4){
553 if( p4 ){
554 switch( p4type ){
555 case P4_REAL:
556 case P4_INT64:
557 case P4_MPRINTF:
558 case P4_DYNAMIC:
559 case P4_KEYINFO:
560 case P4_INTARRAY:
561 case P4_KEYINFO_HANDOFF: {
562 sqlite3DbFree(db, p4);
563 break;
564 }
565 case P4_VDBEFUNC: {
566 VdbeFunc *pVdbeFunc = (VdbeFunc *)p4;
567 freeEphemeralFunction(db, pVdbeFunc->pFunc);
568 sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
569 sqlite3DbFree(db, pVdbeFunc);
570 break;
571 }
572 case P4_FUNCDEF: {
573 freeEphemeralFunction(db, (FuncDef*)p4);
574 break;
575 }
576 case P4_MEM: {
577 sqlite3ValueFree((sqlite3_value*)p4);
578 break;
579 }
580 case P4_VTAB : {
581 sqlite3VtabUnlock((VTable *)p4);
582 break;
583 }
584 case P4_SUBPROGRAM : {
585 sqlite3VdbeProgramDelete(db, (SubProgram *)p4, 1);
586 break;
587 }
588 }
589 }
590 }
591
592 /*
593 ** Free the space allocated for aOp and any p4 values allocated for the
594 ** opcodes contained within. If aOp is not NULL it is assumed to contain
595 ** nOp entries.
596 */
597 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
598 if( aOp ){
599 Op *pOp;
600 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
601 freeP4(db, pOp->p4type, pOp->p4.p);
602 #ifdef SQLITE_DEBUG
603 sqlite3DbFree(db, pOp->zComment);
604 #endif
605 }
606 }
607 sqlite3DbFree(db, aOp);
608 }
609
610 /*
611 ** Decrement the ref-count on the SubProgram structure passed as the
612 ** second argument. If the ref-count reaches zero, free the structure.
613 **
614 ** The array of VDBE opcodes stored as SubProgram.aOp is freed if
615 ** either the ref-count reaches zero or parameter freeop is non-zero.
616 **
617 ** Since the array of opcodes pointed to by SubProgram.aOp may directly
618 ** or indirectly contain a reference to the SubProgram structure itself.
619 ** By passing a non-zero freeop parameter, the caller may ensure that all
620 ** SubProgram structures and their aOp arrays are freed, even when there
621 ** are such circular references.
622 */
623 void sqlite3VdbeProgramDelete(sqlite3 *db, SubProgram *p, int freeop){
624 if( p ){
625 assert( p->nRef>0 );
626 if( freeop || p->nRef==1 ){
627 Op *aOp = p->aOp;
628 p->aOp = 0;
629 vdbeFreeOpArray(db, aOp, p->nOp);
630 p->nOp = 0;
631 }
632 p->nRef--;
633 if( p->nRef==0 ){
634 sqlite3DbFree(db, p);
635 }
636 }
637 }
638
639
640 /*
641 ** Change N opcodes starting at addr to No-ops.
642 */
643 void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
644 if( p->aOp ){
645 VdbeOp *pOp = &p->aOp[addr];
646 sqlite3 *db = p->db;
647 while( N-- ){
648 freeP4(db, pOp->p4type, pOp->p4.p);
649 memset(pOp, 0, sizeof(pOp[0]));
650 pOp->opcode = OP_Noop;
651 pOp++;
652 }
653 }
654 }
655
656 /*
657 ** Change the value of the P4 operand for a specific instruction.
658 ** This routine is useful when a large program is loaded from a
659 ** static array using sqlite3VdbeAddOpList but we want to make a
660 ** few minor changes to the program.
661 **
662 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
663 ** the string is made into memory obtained from sqlite3_malloc().
664 ** A value of n==0 means copy bytes of zP4 up to and including the
665 ** first null byte. If n>0 then copy n+1 bytes of zP4.
666 **
667 ** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure.
668 ** A copy is made of the KeyInfo structure into memory obtained from
669 ** sqlite3_malloc, to be freed when the Vdbe is finalized.
670 ** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure
671 ** stored in memory that the caller has obtained from sqlite3_malloc. The
672 ** caller should not free the allocation, it will be freed when the Vdbe is
673 ** finalized.
674 **
675 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
676 ** to a string or structure that is guaranteed to exist for the lifetime of
677 ** the Vdbe. In these cases we can just copy the pointer.
678 **
679 ** If addr<0 then change P4 on the most recently inserted instruction.
680 */
681 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
682 Op *pOp;
683 sqlite3 *db;
684 assert( p!=0 );
685 db = p->db;
686 assert( p->magic==VDBE_MAGIC_INIT );
687 if( p->aOp==0 || db->mallocFailed ){
688 if ( n!=P4_KEYINFO && n!=P4_VTAB ) {
689 freeP4(db, n, (void*)*(char**)&zP4);
690 }
691 return;
692 }
693 assert( p->nOp>0 );
694 assert( addr<p->nOp );
695 if( addr<0 ){
696 addr = p->nOp - 1;
697 }
698 pOp = &p->aOp[addr];
699 freeP4(db, pOp->p4type, pOp->p4.p);
700 pOp->p4.p = 0;
701 if( n==P4_INT32 ){
702 /* Note: this cast is safe, because the origin data point was an int
703 ** that was cast to a (const char *). */
704 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
705 pOp->p4type = P4_INT32;
706 }else if( zP4==0 ){
707 pOp->p4.p = 0;
708 pOp->p4type = P4_NOTUSED;
709 }else if( n==P4_KEYINFO ){
710 KeyInfo *pKeyInfo;
711 int nField, nByte;
712
713 nField = ((KeyInfo*)zP4)->nField;
714 nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
715 pKeyInfo = sqlite3Malloc( nByte );
716 pOp->p4.pKeyInfo = pKeyInfo;
717 if( pKeyInfo ){
718 u8 *aSortOrder;
719 memcpy(pKeyInfo, zP4, nByte);
720 aSortOrder = pKeyInfo->aSortOrder;
721 if( aSortOrder ){
722 pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
723 memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
724 }
725 pOp->p4type = P4_KEYINFO;
726 }else{
727 p->db->mallocFailed = 1;
728 pOp->p4type = P4_NOTUSED;
729 }
730 }else if( n==P4_KEYINFO_HANDOFF ){
731 pOp->p4.p = (void*)zP4;
732 pOp->p4type = P4_KEYINFO;
733 }else if( n==P4_VTAB ){
734 pOp->p4.p = (void*)zP4;
735 pOp->p4type = P4_VTAB;
736 sqlite3VtabLock((VTable *)zP4);
737 assert( ((VTable *)zP4)->db==p->db );
738 }else if( n<0 ){
739 pOp->p4.p = (void*)zP4;
740 pOp->p4type = (signed char)n;
741 }else{
742 if( n==0 ) n = sqlite3Strlen30(zP4);
743 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
744 pOp->p4type = P4_DYNAMIC;
745 }
746 }
747
748 #ifndef NDEBUG
749 /*
750 ** Change the comment on the the most recently coded instruction. Or
751 ** insert a No-op and add the comment to that new instruction. This
752 ** makes the code easier to read during debugging. None of this happens
753 ** in a production build.
754 */
755 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
756 va_list ap;
757 if( !p ) return;
758 assert( p->nOp>0 || p->aOp==0 );
759 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
760 if( p->nOp ){
761 char **pz = &p->aOp[p->nOp-1].zComment;
762 va_start(ap, zFormat);
763 sqlite3DbFree(p->db, *pz);
764 *pz = sqlite3VMPrintf(p->db, zFormat, ap);
765 va_end(ap);
766 }
767 }
768 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
769 va_list ap;
770 if( !p ) return;
771 sqlite3VdbeAddOp0(p, OP_Noop);
772 assert( p->nOp>0 || p->aOp==0 );
773 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
774 if( p->nOp ){
775 char **pz = &p->aOp[p->nOp-1].zComment;
776 va_start(ap, zFormat);
777 sqlite3DbFree(p->db, *pz);
778 *pz = sqlite3VMPrintf(p->db, zFormat, ap);
779 va_end(ap);
780 }
781 }
782 #endif /* NDEBUG */
783
784 /*
785 ** Return the opcode for a given address. If the address is -1, then
786 ** return the most recently inserted opcode.
787 **
788 ** If a memory allocation error has occurred prior to the calling of this
789 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
790 ** is readable and writable, but it has no effect. The return of a dummy
791 ** opcode allows the call to continue functioning after a OOM fault without
792 ** having to check to see if the return from this routine is a valid pointer.
793 **
794 ** About the #ifdef SQLITE_OMIT_TRACE: Normally, this routine is never called
795 ** unless p->nOp>0. This is because in the absense of SQLITE_OMIT_TRACE,
796 ** an OP_Trace instruction is always inserted by sqlite3VdbeGet() as soon as
797 ** a new VDBE is created. So we are free to set addr to p->nOp-1 without
798 ** having to double-check to make sure that the result is non-negative. But
799 ** if SQLITE_OMIT_TRACE is defined, the OP_Trace is omitted and we do need to
800 ** check the value of p->nOp-1 before continuing.
801 */
802 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
803 static VdbeOp dummy;
804 assert( p->magic==VDBE_MAGIC_INIT );
805 if( addr<0 ){
806 #ifdef SQLITE_OMIT_TRACE
807 if( p->nOp==0 ) return &dummy;
808 #endif
809 addr = p->nOp - 1;
810 }
811 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
812 if( p->db->mallocFailed ){
813 return &dummy;
814 }else{
815 return &p->aOp[addr];
816 }
817 }
818
819 #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
820 || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
821 /*
822 ** Compute a string that describes the P4 parameter for an opcode.
823 ** Use zTemp for any required temporary buffer space.
824 */
825 static char *displayP4(Op *pOp, char *zTemp, int nTemp){
826 char *zP4 = zTemp;
827 assert( nTemp>=20 );
828 switch( pOp->p4type ){
829 case P4_KEYINFO_STATIC:
830 case P4_KEYINFO: {
831 int i, j;
832 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
833 sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
834 i = sqlite3Strlen30(zTemp);
835 for(j=0; j<pKeyInfo->nField; j++){
836 CollSeq *pColl = pKeyInfo->aColl[j];
837 if( pColl ){
838 int n = sqlite3Strlen30(pColl->zName);
839 if( i+n>nTemp-6 ){
840 memcpy(&zTemp[i],",...",4);
841 break;
842 }
843 zTemp[i++] = ',';
844 if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
845 zTemp[i++] = '-';
846 }
847 memcpy(&zTemp[i], pColl->zName,n+1);
848 i += n;
849 }else if( i+4<nTemp-6 ){
850 memcpy(&zTemp[i],",nil",4);
851 i += 4;
852 }
853 }
854 zTemp[i++] = ')';
855 zTemp[i] = 0;
856 assert( i<nTemp );
857 break;
858 }
859 case P4_COLLSEQ: {
860 CollSeq *pColl = pOp->p4.pColl;
861 sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
862 break;
863 }
864 case P4_FUNCDEF: {
865 FuncDef *pDef = pOp->p4.pFunc;
866 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
867 break;
868 }
869 case P4_INT64: {
870 sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
871 break;
872 }
873 case P4_INT32: {
874 sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
875 break;
876 }
877 case P4_REAL: {
878 sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
879 break;
880 }
881 case P4_MEM: {
882 Mem *pMem = pOp->p4.pMem;
883 assert( (pMem->flags & MEM_Null)==0 );
884 if( pMem->flags & MEM_Str ){
885 zP4 = pMem->z;
886 }else if( pMem->flags & MEM_Int ){
887 sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
888 }else if( pMem->flags & MEM_Real ){
889 sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
890 }else{
891 assert( pMem->flags & MEM_Blob );
892 zP4 = "(blob)";
893 }
894 break;
895 }
896 #ifndef SQLITE_OMIT_VIRTUALTABLE
897 case P4_VTAB: {
898 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
899 sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
900 break;
901 }
902 #endif
903 case P4_INTARRAY: {
904 sqlite3_snprintf(nTemp, zTemp, "intarray");
905 break;
906 }
907 case P4_SUBPROGRAM: {
908 sqlite3_snprintf(nTemp, zTemp, "program");
909 break;
910 }
911 default: {
912 zP4 = pOp->p4.z;
913 if( zP4==0 ){
914 zP4 = zTemp;
915 zTemp[0] = 0;
916 }
917 }
918 }
919 assert( zP4!=0 );
920 return zP4;
921 }
922 #endif
923
924 /*
925 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
926 */
927 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
928 int mask;
929 assert( i>=0 && i<p->db->nDb && i<sizeof(u32)*8 );
930 assert( i<(int)sizeof(p->btreeMask)*8 );
931 mask = ((u32)1)<<i;
932 if( (p->btreeMask & mask)==0 ){
933 p->btreeMask |= mask;
934 sqlite3BtreeMutexArrayInsert(&p->aMutex, p->db->aDb[i].pBt);
935 }
936 }
937
938
939 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
940 /*
941 ** Print a single opcode. This routine is used for debugging only.
942 */
943 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
944 char *zP4;
945 char zPtr[50];
946 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n";
947 if( pOut==0 ) pOut = stdout;
948 zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
949 fprintf(pOut, zFormat1, pc,
950 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
951 #ifdef SQLITE_DEBUG
952 pOp->zComment ? pOp->zComment : ""
953 #else
954 ""
955 #endif
956 );
957 fflush(pOut);
958 }
959 #endif
960
961 /*
962 ** Release an array of N Mem elements
963 */
964 static void releaseMemArray(Mem *p, int N){
965 if( p && N ){
966 Mem *pEnd;
967 sqlite3 *db = p->db;
968 u8 malloc_failed = db->mallocFailed;
969 for(pEnd=&p[N]; p<pEnd; p++){
970 assert( (&p[1])==pEnd || p[0].db==p[1].db );
971
972 /* This block is really an inlined version of sqlite3VdbeMemRelease()
973 ** that takes advantage of the fact that the memory cell value is
974 ** being set to NULL after releasing any dynamic resources.
975 **
976 ** The justification for duplicating code is that according to
977 ** callgrind, this causes a certain test case to hit the CPU 4.7
978 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
979 ** sqlite3MemRelease() were called from here. With -O2, this jumps
980 ** to 6.6 percent. The test case is inserting 1000 rows into a table
981 ** with no indexes using a single prepared INSERT statement, bind()
982 ** and reset(). Inserts are grouped into a transaction.
983 */
984 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
985 sqlite3VdbeMemRelease(p);
986 }else if( p->zMalloc ){
987 sqlite3DbFree(db, p->zMalloc);
988 p->zMalloc = 0;
989 }
990
991 p->flags = MEM_Null;
992 }
993 db->mallocFailed = malloc_failed;
994 }
995 }
996
997 /*
998 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
999 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
1000 */
1001 void sqlite3VdbeFrameDelete(VdbeFrame *p){
1002 int i;
1003 Mem *aMem = VdbeFrameMem(p);
1004 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1005 for(i=0; i<p->nChildCsr; i++){
1006 sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1007 }
1008 releaseMemArray(aMem, p->nChildMem);
1009 sqlite3DbFree(p->v->db, p);
1010 }
1011
1012
1013 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
1014 int sqlite3VdbeReleaseBuffers(Vdbe *p){
1015 int ii;
1016 int nFree = 0;
1017 assert( sqlite3_mutex_held(p->db->mutex) );
1018 for(ii=1; ii<=p->nMem; ii++){
1019 Mem *pMem = &p->aMem[ii];
1020 if( pMem->flags & MEM_RowSet ){
1021 sqlite3RowSetClear(pMem->u.pRowSet);
1022 }
1023 if( pMem->z && pMem->flags&MEM_Dyn ){
1024 assert( !pMem->xDel );
1025 nFree += sqlite3DbMallocSize(pMem->db, pMem->z);
1026 sqlite3VdbeMemRelease(pMem);
1027 }
1028 }
1029 return nFree;
1030 }
1031 #endif
1032
1033 #ifndef SQLITE_OMIT_EXPLAIN
1034 /*
1035 ** Give a listing of the program in the virtual machine.
1036 **
1037 ** The interface is the same as sqlite3VdbeExec(). But instead of
1038 ** running the code, it invokes the callback once for each instruction.
1039 ** This feature is used to implement "EXPLAIN".
1040 **
1041 ** When p->explain==1, each instruction is listed. When
1042 ** p->explain==2, only OP_Explain instructions are listed and these
1043 ** are shown in a different format. p->explain==2 is used to implement
1044 ** EXPLAIN QUERY PLAN.
1045 */
1046 int sqlite3VdbeList(
1047 Vdbe *p /* The VDBE */
1048 ){
1049 int nRow; /* Total number of rows to return */
1050 int nSub = 0; /* Number of sub-vdbes seen so far */
1051 SubProgram **apSub = 0; /* Array of sub-vdbes */
1052 Mem *pSub = 0;
1053 sqlite3 *db = p->db;
1054 int i;
1055 int rc = SQLITE_OK;
1056 Mem *pMem = p->pResultSet = &p->aMem[1];
1057
1058 assert( p->explain );
1059 assert( p->magic==VDBE_MAGIC_RUN );
1060 assert( db->magic==SQLITE_MAGIC_BUSY );
1061 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
1062
1063 /* Even though this opcode does not use dynamic strings for
1064 ** the result, result columns may become dynamic if the user calls
1065 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
1066 */
1067 releaseMemArray(pMem, 8);
1068
1069 if( p->rc==SQLITE_NOMEM ){
1070 /* This happens if a malloc() inside a call to sqlite3_column_text() or
1071 ** sqlite3_column_text16() failed. */
1072 db->mallocFailed = 1;
1073 return SQLITE_ERROR;
1074 }
1075
1076 /* Figure out total number of rows that will be returned by this
1077 ** EXPLAIN program. */
1078 nRow = p->nOp;
1079 if( p->explain==1 ){
1080 pSub = &p->aMem[9];
1081 if( pSub->flags&MEM_Blob ){
1082 nSub = pSub->n/sizeof(Vdbe*);
1083 apSub = (SubProgram **)pSub->z;
1084 }
1085 for(i=0; i<nSub; i++){
1086 nRow += apSub[i]->nOp;
1087 }
1088 }
1089
1090 do{
1091 i = p->pc++;
1092 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
1093 if( i>=nRow ){
1094 p->rc = SQLITE_OK;
1095 rc = SQLITE_DONE;
1096 }else if( db->u1.isInterrupted ){
1097 p->rc = SQLITE_INTERRUPT;
1098 rc = SQLITE_ERROR;
1099 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
1100 }else{
1101 char *z;
1102 Op *pOp;
1103 if( i<p->nOp ){
1104 pOp = &p->aOp[i];
1105 }else{
1106 int j;
1107 i -= p->nOp;
1108 for(j=0; i>=apSub[j]->nOp; j++){
1109 i -= apSub[j]->nOp;
1110 }
1111 pOp = &apSub[j]->aOp[i];
1112 }
1113 if( p->explain==1 ){
1114 pMem->flags = MEM_Int;
1115 pMem->type = SQLITE_INTEGER;
1116 pMem->u.i = i; /* Program counter */
1117 pMem++;
1118
1119 pMem->flags = MEM_Static|MEM_Str|MEM_Term;
1120 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
1121 assert( pMem->z!=0 );
1122 pMem->n = sqlite3Strlen30(pMem->z);
1123 pMem->type = SQLITE_TEXT;
1124 pMem->enc = SQLITE_UTF8;
1125 pMem++;
1126
1127 if( pOp->p4type==P4_SUBPROGRAM ){
1128 int nByte = (nSub+1)*sizeof(SubProgram*);
1129 int j;
1130 for(j=0; j<nSub; j++){
1131 if( apSub[j]==pOp->p4.pProgram ) break;
1132 }
1133 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, 1) ){
1134 apSub = (SubProgram **)pSub->z;
1135 apSub[nSub++] = pOp->p4.pProgram;
1136 pSub->flags |= MEM_Blob;
1137 pSub->n = nSub*sizeof(SubProgram*);
1138 }
1139 }
1140 }
1141
1142 pMem->flags = MEM_Int;
1143 pMem->u.i = pOp->p1; /* P1 */
1144 pMem->type = SQLITE_INTEGER;
1145 pMem++;
1146
1147 pMem->flags = MEM_Int;
1148 pMem->u.i = pOp->p2; /* P2 */
1149 pMem->type = SQLITE_INTEGER;
1150 pMem++;
1151
1152 if( p->explain==1 ){
1153 pMem->flags = MEM_Int;
1154 pMem->u.i = pOp->p3; /* P3 */
1155 pMem->type = SQLITE_INTEGER;
1156 pMem++;
1157 }
1158
1159 if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */
1160 assert( p->db->mallocFailed );
1161 return SQLITE_ERROR;
1162 }
1163 pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
1164 z = displayP4(pOp, pMem->z, 32);
1165 if( z!=pMem->z ){
1166 sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0);
1167 }else{
1168 assert( pMem->z!=0 );
1169 pMem->n = sqlite3Strlen30(pMem->z);
1170 pMem->enc = SQLITE_UTF8;
1171 }
1172 pMem->type = SQLITE_TEXT;
1173 pMem++;
1174
1175 if( p->explain==1 ){
1176 if( sqlite3VdbeMemGrow(pMem, 4, 0) ){
1177 assert( p->db->mallocFailed );
1178 return SQLITE_ERROR;
1179 }
1180 pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
1181 pMem->n = 2;
1182 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
1183 pMem->type = SQLITE_TEXT;
1184 pMem->enc = SQLITE_UTF8;
1185 pMem++;
1186
1187 #ifdef SQLITE_DEBUG
1188 if( pOp->zComment ){
1189 pMem->flags = MEM_Str|MEM_Term;
1190 pMem->z = pOp->zComment;
1191 pMem->n = sqlite3Strlen30(pMem->z);
1192 pMem->enc = SQLITE_UTF8;
1193 pMem->type = SQLITE_TEXT;
1194 }else
1195 #endif
1196 {
1197 pMem->flags = MEM_Null; /* Comment */
1198 pMem->type = SQLITE_NULL;
1199 }
1200 }
1201
1202 p->nResColumn = 8 - 5*(p->explain-1);
1203 p->rc = SQLITE_OK;
1204 rc = SQLITE_ROW;
1205 }
1206 return rc;
1207 }
1208 #endif /* SQLITE_OMIT_EXPLAIN */
1209
1210 #ifdef SQLITE_DEBUG
1211 /*
1212 ** Print the SQL that was used to generate a VDBE program.
1213 */
1214 void sqlite3VdbePrintSql(Vdbe *p){
1215 int nOp = p->nOp;
1216 VdbeOp *pOp;
1217 if( nOp<1 ) return;
1218 pOp = &p->aOp[0];
1219 if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
1220 const char *z = pOp->p4.z;
1221 while( sqlite3Isspace(*z) ) z++;
1222 printf("SQL: [%s]\n", z);
1223 }
1224 }
1225 #endif
1226
1227 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
1228 /*
1229 ** Print an IOTRACE message showing SQL content.
1230 */
1231 void sqlite3VdbeIOTraceSql(Vdbe *p){
1232 int nOp = p->nOp;
1233 VdbeOp *pOp;
1234 if( sqlite3IoTrace==0 ) return;
1235 if( nOp<1 ) return;
1236 pOp = &p->aOp[0];
1237 if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
1238 int i, j;
1239 char z[1000];
1240 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
1241 for(i=0; sqlite3Isspace(z[i]); i++){}
1242 for(j=0; z[i]; i++){
1243 if( sqlite3Isspace(z[i]) ){
1244 if( z[i-1]!=' ' ){
1245 z[j++] = ' ';
1246 }
1247 }else{
1248 z[j++] = z[i];
1249 }
1250 }
1251 z[j] = 0;
1252 sqlite3IoTrace("SQL %s\n", z);
1253 }
1254 }
1255 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
1256
1257 /*
1258 ** Allocate space from a fixed size buffer. Make *pp point to the
1259 ** allocated space. (Note: pp is a char* rather than a void** to
1260 ** work around the pointer aliasing rules of C.) *pp should initially
1261 ** be zero. If *pp is not zero, that means that the space has already
1262 ** been allocated and this routine is a noop.
1263 **
1264 ** nByte is the number of bytes of space needed.
1265 **
1266 ** *ppFrom point to available space and pEnd points to the end of the
1267 ** available space.
1268 **
1269 ** *pnByte is a counter of the number of bytes of space that have failed
1270 ** to allocate. If there is insufficient space in *ppFrom to satisfy the
1271 ** request, then increment *pnByte by the amount of the request.
1272 */
1273 static void allocSpace(
1274 char *pp, /* IN/OUT: Set *pp to point to allocated buffer */
1275 int nByte, /* Number of bytes to allocate */
1276 u8 **ppFrom, /* IN/OUT: Allocate from *ppFrom */
1277 u8 *pEnd, /* Pointer to 1 byte past the end of *ppFrom buffer */
1278 int *pnByte /* If allocation cannot be made, increment *pnByte */
1279 ){
1280 assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) );
1281 if( (*(void**)pp)==0 ){
1282 nByte = ROUND8(nByte);
1283 if( &(*ppFrom)[nByte] <= pEnd ){
1284 *(void**)pp = (void *)*ppFrom;
1285 *ppFrom += nByte;
1286 }else{
1287 *pnByte += nByte;
1288 }
1289 }
1290 }
1291
1292 /*
1293 ** Prepare a virtual machine for execution. This involves things such
1294 ** as allocating stack space and initializing the program counter.
1295 ** After the VDBE has be prepped, it can be executed by one or more
1296 ** calls to sqlite3VdbeExec().
1297 **
1298 ** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
1299 ** VDBE_MAGIC_RUN.
1300 **
1301 ** This function may be called more than once on a single virtual machine.
1302 ** The first call is made while compiling the SQL statement. Subsequent
1303 ** calls are made as part of the process of resetting a statement to be
1304 ** re-executed (from a call to sqlite3_reset()). The nVar, nMem, nCursor
1305 ** and isExplain parameters are only passed correct values the first time
1306 ** the function is called. On subsequent calls, from sqlite3_reset(), nVar
1307 ** is passed -1 and nMem, nCursor and isExplain are all passed zero.
1308 */
1309 void sqlite3VdbeMakeReady(
1310 Vdbe *p, /* The VDBE */
1311 int nVar, /* Number of '?' see in the SQL statement */
1312 int nMem, /* Number of memory cells to allocate */
1313 int nCursor, /* Number of cursors to allocate */
1314 int nArg, /* Maximum number of args in SubPrograms */
1315 int isExplain, /* True if the EXPLAIN keywords is present */
1316 int usesStmtJournal /* True to set Vdbe.usesStmtJournal */
1317 ){
1318 int n;
1319 sqlite3 *db = p->db;
1320
1321 assert( p!=0 );
1322 assert( p->magic==VDBE_MAGIC_INIT );
1323
1324 /* There should be at least one opcode.
1325 */
1326 assert( p->nOp>0 );
1327
1328 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
1329 p->magic = VDBE_MAGIC_RUN;
1330
1331 /* For each cursor required, also allocate a memory cell. Memory
1332 ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
1333 ** the vdbe program. Instead they are used to allocate space for
1334 ** VdbeCursor/BtCursor structures. The blob of memory associated with
1335 ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
1336 ** stores the blob of memory associated with cursor 1, etc.
1337 **
1338 ** See also: allocateCursor().
1339 */
1340 nMem += nCursor;
1341
1342 /* Allocate space for memory registers, SQL variables, VDBE cursors and
1343 ** an array to marshal SQL function arguments in. This is only done the
1344 ** first time this function is called for a given VDBE, not when it is
1345 ** being called from sqlite3_reset() to reset the virtual machine.
1346 */
1347 if( nVar>=0 && ALWAYS(db->mallocFailed==0) ){
1348 u8 *zCsr = (u8 *)&p->aOp[p->nOp];
1349 u8 *zEnd = (u8 *)&p->aOp[p->nOpAlloc];
1350 int nByte;
1351 resolveP2Values(p, &nArg);
1352 p->usesStmtJournal = (u8)usesStmtJournal;
1353 if( isExplain && nMem<10 ){
1354 nMem = 10;
1355 }
1356 memset(zCsr, 0, zEnd-zCsr);
1357 zCsr += (zCsr - (u8*)0)&7;
1358 assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
1359
1360 do {
1361 nByte = 0;
1362 allocSpace((char*)&p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
1363 allocSpace((char*)&p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
1364 allocSpace((char*)&p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
1365 allocSpace((char*)&p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
1366 allocSpace((char*)&p->apCsr,
1367 nCursor*sizeof(VdbeCursor*), &zCsr, zEnd, &nByte
1368 );
1369 if( nByte ){
1370 p->pFree = sqlite3DbMallocZero(db, nByte);
1371 }
1372 zCsr = p->pFree;
1373 zEnd = &zCsr[nByte];
1374 }while( nByte && !db->mallocFailed );
1375
1376 p->nCursor = (u16)nCursor;
1377 if( p->aVar ){
1378 p->nVar = (u16)nVar;
1379 for(n=0; n<nVar; n++){
1380 p->aVar[n].flags = MEM_Null;
1381 p->aVar[n].db = db;
1382 }
1383 }
1384 if( p->aMem ){
1385 p->aMem--; /* aMem[] goes from 1..nMem */
1386 p->nMem = nMem; /* not from 0..nMem-1 */
1387 for(n=1; n<=nMem; n++){
1388 p->aMem[n].flags = MEM_Null;
1389 p->aMem[n].db = db;
1390 }
1391 }
1392 }
1393 #ifdef SQLITE_DEBUG
1394 for(n=1; n<p->nMem; n++){
1395 assert( p->aMem[n].db==db );
1396 }
1397 #endif
1398
1399 p->pc = -1;
1400 p->rc = SQLITE_OK;
1401 p->errorAction = OE_Abort;
1402 p->explain |= isExplain;
1403 p->magic = VDBE_MAGIC_RUN;
1404 p->nChange = 0;
1405 p->cacheCtr = 1;
1406 p->minWriteFileFormat = 255;
1407 p->iStatement = 0;
1408 #ifdef VDBE_PROFILE
1409 {
1410 int i;
1411 for(i=0; i<p->nOp; i++){
1412 p->aOp[i].cnt = 0;
1413 p->aOp[i].cycles = 0;
1414 }
1415 }
1416 #endif
1417 }
1418
1419 /*
1420 ** Close a VDBE cursor and release all the resources that cursor
1421 ** happens to hold.
1422 */
1423 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
1424 if( pCx==0 ){
1425 return;
1426 }
1427 if( pCx->pBt ){
1428 sqlite3BtreeClose(pCx->pBt);
1429 /* The pCx->pCursor will be close automatically, if it exists, by
1430 ** the call above. */
1431 }else if( pCx->pCursor ){
1432 sqlite3BtreeCloseCursor(pCx->pCursor);
1433 }
1434 #ifndef SQLITE_OMIT_VIRTUALTABLE
1435 if( pCx->pVtabCursor ){
1436 sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
1437 const sqlite3_module *pModule = pCx->pModule;
1438 p->inVtabMethod = 1;
1439 (void)sqlite3SafetyOff(p->db);
1440 pModule->xClose(pVtabCursor);
1441 (void)sqlite3SafetyOn(p->db);
1442 p->inVtabMethod = 0;
1443 }
1444 #endif
1445 }
1446
1447 /*
1448 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
1449 ** is used, for example, when a trigger sub-program is halted to restore
1450 ** control to the main program.
1451 */
1452 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
1453 Vdbe *v = pFrame->v;
1454 v->aOp = pFrame->aOp;
1455 v->nOp = pFrame->nOp;
1456 v->aMem = pFrame->aMem;
1457 v->nMem = pFrame->nMem;
1458 v->apCsr = pFrame->apCsr;
1459 v->nCursor = pFrame->nCursor;
1460 v->db->lastRowid = pFrame->lastRowid;
1461 v->nChange = pFrame->nChange;
1462 return pFrame->pc;
1463 }
1464
1465 /*
1466 ** Close all cursors.
1467 **
1468 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
1469 ** cell array. This is necessary as the memory cell array may contain
1470 ** pointers to VdbeFrame objects, which may in turn contain pointers to
1471 ** open cursors.
1472 */
1473 static void closeAllCursors(Vdbe *p){
1474 if( p->pFrame ){
1475 VdbeFrame *pFrame = p->pFrame;
1476 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
1477 sqlite3VdbeFrameRestore(pFrame);
1478 }
1479 p->pFrame = 0;
1480 p->nFrame = 0;
1481
1482 if( p->apCsr ){
1483 int i;
1484 for(i=0; i<p->nCursor; i++){
1485 VdbeCursor *pC = p->apCsr[i];
1486 if( pC ){
1487 sqlite3VdbeFreeCursor(p, pC);
1488 p->apCsr[i] = 0;
1489 }
1490 }
1491 }
1492 if( p->aMem ){
1493 releaseMemArray(&p->aMem[1], p->nMem);
1494 }
1495 }
1496
1497 /*
1498 ** Clean up the VM after execution.
1499 **
1500 ** This routine will automatically close any cursors, lists, and/or
1501 ** sorters that were left open. It also deletes the values of
1502 ** variables in the aVar[] array.
1503 */
1504 static void Cleanup(Vdbe *p){
1505 sqlite3 *db = p->db;
1506
1507 #ifdef SQLITE_DEBUG
1508 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
1509 ** Vdbe.aMem[] arrays have already been cleaned up. */
1510 int i;
1511 for(i=0; i<p->nCursor; i++) assert( p->apCsr==0 || p->apCsr[i]==0 );
1512 for(i=1; i<=p->nMem; i++) assert( p->aMem==0 || p->aMem[i].flags==MEM_Null );
1513 #endif
1514
1515 sqlite3DbFree(db, p->zErrMsg);
1516 p->zErrMsg = 0;
1517 p->pResultSet = 0;
1518 }
1519
1520 /*
1521 ** Set the number of result columns that will be returned by this SQL
1522 ** statement. This is now set at compile time, rather than during
1523 ** execution of the vdbe program so that sqlite3_column_count() can
1524 ** be called on an SQL statement before sqlite3_step().
1525 */
1526 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
1527 Mem *pColName;
1528 int n;
1529 sqlite3 *db = p->db;
1530
1531 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
1532 sqlite3DbFree(db, p->aColName);
1533 n = nResColumn*COLNAME_N;
1534 p->nResColumn = (u16)nResColumn;
1535 p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
1536 if( p->aColName==0 ) return;
1537 while( n-- > 0 ){
1538 pColName->flags = MEM_Null;
1539 pColName->db = p->db;
1540 pColName++;
1541 }
1542 }
1543
1544 /*
1545 ** Set the name of the idx'th column to be returned by the SQL statement.
1546 ** zName must be a pointer to a nul terminated string.
1547 **
1548 ** This call must be made after a call to sqlite3VdbeSetNumCols().
1549 **
1550 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
1551 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
1552 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
1553 */
1554 int sqlite3VdbeSetColName(
1555 Vdbe *p, /* Vdbe being configured */
1556 int idx, /* Index of column zName applies to */
1557 int var, /* One of the COLNAME_* constants */
1558 const char *zName, /* Pointer to buffer containing name */
1559 void (*xDel)(void*) /* Memory management strategy for zName */
1560 ){
1561 int rc;
1562 Mem *pColName;
1563 assert( idx<p->nResColumn );
1564 assert( var<COLNAME_N );
1565 if( p->db->mallocFailed ){
1566 assert( !zName || xDel!=SQLITE_DYNAMIC );
1567 return SQLITE_NOMEM;
1568 }
1569 assert( p->aColName!=0 );
1570 pColName = &(p->aColName[idx+var*p->nResColumn]);
1571 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
1572 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
1573 return rc;
1574 }
1575
1576 /*
1577 ** A read or write transaction may or may not be active on database handle
1578 ** db. If a transaction is active, commit it. If there is a
1579 ** write-transaction spanning more than one database file, this routine
1580 ** takes care of the master journal trickery.
1581 */
1582 static int vdbeCommit(sqlite3 *db, Vdbe *p){
1583 int i;
1584 int nTrans = 0; /* Number of databases with an active write-transaction */
1585 int rc = SQLITE_OK;
1586 int needXcommit = 0;
1587
1588 #ifdef SQLITE_OMIT_VIRTUALTABLE
1589 /* With this option, sqlite3VtabSync() is defined to be simply
1590 ** SQLITE_OK so p is not used.
1591 */
1592 UNUSED_PARAMETER(p);
1593 #endif
1594
1595 /* Before doing anything else, call the xSync() callback for any
1596 ** virtual module tables written in this transaction. This has to
1597 ** be done before determining whether a master journal file is
1598 ** required, as an xSync() callback may add an attached database
1599 ** to the transaction.
1600 */
1601 rc = sqlite3VtabSync(db, &p->zErrMsg);
1602 if( rc!=SQLITE_OK ){
1603 return rc;
1604 }
1605
1606 /* This loop determines (a) if the commit hook should be invoked and
1607 ** (b) how many database files have open write transactions, not
1608 ** including the temp database. (b) is important because if more than
1609 ** one database file has an open write transaction, a master journal
1610 ** file is required for an atomic commit.
1611 */
1612 for(i=0; i<db->nDb; i++){
1613 Btree *pBt = db->aDb[i].pBt;
1614 if( sqlite3BtreeIsInTrans(pBt) ){
1615 needXcommit = 1;
1616 if( i!=1 ) nTrans++;
1617 }
1618 }
1619
1620 /* If there are any write-transactions at all, invoke the commit hook */
1621 if( needXcommit && db->xCommitCallback ){
1622 (void)sqlite3SafetyOff(db);
1623 rc = db->xCommitCallback(db->pCommitArg);
1624 (void)sqlite3SafetyOn(db);
1625 if( rc ){
1626 return SQLITE_CONSTRAINT;
1627 }
1628 }
1629
1630 /* The simple case - no more than one database file (not counting the
1631 ** TEMP database) has a transaction active. There is no need for the
1632 ** master-journal.
1633 **
1634 ** If the return value of sqlite3BtreeGetFilename() is a zero length
1635 ** string, it means the main database is :memory: or a temp file. In
1636 ** that case we do not support atomic multi-file commits, so use the
1637 ** simple case then too.
1638 */
1639 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
1640 || nTrans<=1
1641 ){
1642 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
1643 Btree *pBt = db->aDb[i].pBt;
1644 if( pBt ){
1645 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
1646 }
1647 }
1648
1649 /* Do the commit only if all databases successfully complete phase 1.
1650 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
1651 ** IO error while deleting or truncating a journal file. It is unlikely,
1652 ** but could happen. In this case abandon processing and return the error.
1653 */
1654 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
1655 Btree *pBt = db->aDb[i].pBt;
1656 if( pBt ){
1657 rc = sqlite3BtreeCommitPhaseTwo(pBt);
1658 }
1659 }
1660 if( rc==SQLITE_OK ){
1661 sqlite3VtabCommit(db);
1662 }
1663 }
1664
1665 /* The complex case - There is a multi-file write-transaction active.
1666 ** This requires a master journal file to ensure the transaction is
1667 ** committed atomicly.
1668 */
1669 #ifndef SQLITE_OMIT_DISKIO
1670 else{
1671 sqlite3_vfs *pVfs = db->pVfs;
1672 int needSync = 0;
1673 char *zMaster = 0; /* File-name for the master journal */
1674 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
1675 sqlite3_file *pMaster = 0;
1676 i64 offset = 0;
1677 int res;
1678
1679 /* Select a master journal file name */
1680 do {
1681 u32 iRandom;
1682 sqlite3DbFree(db, zMaster);
1683 sqlite3_randomness(sizeof(iRandom), &iRandom);
1684 zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, iRandom&0x7fffffff);
1685 if( !zMaster ){
1686 return SQLITE_NOMEM;
1687 }
1688 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
1689 }while( rc==SQLITE_OK && res );
1690 if( rc==SQLITE_OK ){
1691 /* Open the master journal. */
1692 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
1693 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
1694 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
1695 );
1696 }
1697 if( rc!=SQLITE_OK ){
1698 sqlite3DbFree(db, zMaster);
1699 return rc;
1700 }
1701
1702 /* Write the name of each database file in the transaction into the new
1703 ** master journal file. If an error occurs at this point close
1704 ** and delete the master journal file. All the individual journal files
1705 ** still have 'null' as the master journal pointer, so they will roll
1706 ** back independently if a failure occurs.
1707 */
1708 for(i=0; i<db->nDb; i++){
1709 Btree *pBt = db->aDb[i].pBt;
1710 if( i==1 ) continue; /* Ignore the TEMP database */
1711 if( sqlite3BtreeIsInTrans(pBt) ){
1712 char const *zFile = sqlite3BtreeGetJournalname(pBt);
1713 if( zFile[0]==0 ) continue; /* Ignore :memory: databases */
1714 if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
1715 needSync = 1;
1716 }
1717 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
1718 offset += sqlite3Strlen30(zFile)+1;
1719 if( rc!=SQLITE_OK ){
1720 sqlite3OsCloseFree(pMaster);
1721 sqlite3OsDelete(pVfs, zMaster, 0);
1722 sqlite3DbFree(db, zMaster);
1723 return rc;
1724 }
1725 }
1726 }
1727
1728 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
1729 ** flag is set this is not required.
1730 */
1731 if( needSync
1732 && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
1733 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
1734 ){
1735 sqlite3OsCloseFree(pMaster);
1736 sqlite3OsDelete(pVfs, zMaster, 0);
1737 sqlite3DbFree(db, zMaster);
1738 return rc;
1739 }
1740
1741 /* Sync all the db files involved in the transaction. The same call
1742 ** sets the master journal pointer in each individual journal. If
1743 ** an error occurs here, do not delete the master journal file.
1744 **
1745 ** If the error occurs during the first call to
1746 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
1747 ** master journal file will be orphaned. But we cannot delete it,
1748 ** in case the master journal file name was written into the journal
1749 ** file before the failure occurred.
1750 */
1751 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
1752 Btree *pBt = db->aDb[i].pBt;
1753 if( pBt ){
1754 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
1755 }
1756 }
1757 sqlite3OsCloseFree(pMaster);
1758 if( rc!=SQLITE_OK ){
1759 sqlite3DbFree(db, zMaster);
1760 return rc;
1761 }
1762
1763 /* Delete the master journal file. This commits the transaction. After
1764 ** doing this the directory is synced again before any individual
1765 ** transaction files are deleted.
1766 */
1767 rc = sqlite3OsDelete(pVfs, zMaster, 1);
1768 sqlite3DbFree(db, zMaster);
1769 zMaster = 0;
1770 if( rc ){
1771 return rc;
1772 }
1773
1774 /* All files and directories have already been synced, so the following
1775 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
1776 ** deleting or truncating journals. If something goes wrong while
1777 ** this is happening we don't really care. The integrity of the
1778 ** transaction is already guaranteed, but some stray 'cold' journals
1779 ** may be lying around. Returning an error code won't help matters.
1780 */
1781 disable_simulated_io_errors();
1782 sqlite3BeginBenignMalloc();
1783 for(i=0; i<db->nDb; i++){
1784 Btree *pBt = db->aDb[i].pBt;
1785 if( pBt ){
1786 sqlite3BtreeCommitPhaseTwo(pBt);
1787 }
1788 }
1789 sqlite3EndBenignMalloc();
1790 enable_simulated_io_errors();
1791
1792 sqlite3VtabCommit(db);
1793 }
1794 #endif
1795
1796 return rc;
1797 }
1798
1799 /*
1800 ** This routine checks that the sqlite3.activeVdbeCnt count variable
1801 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
1802 ** currently active. An assertion fails if the two counts do not match.
1803 ** This is an internal self-check only - it is not an essential processing
1804 ** step.
1805 **
1806 ** This is a no-op if NDEBUG is defined.
1807 */
1808 #ifndef NDEBUG
1809 static void checkActiveVdbeCnt(sqlite3 *db){
1810 Vdbe *p;
1811 int cnt = 0;
1812 int nWrite = 0;
1813 p = db->pVdbe;
1814 while( p ){
1815 if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
1816 cnt++;
1817 if( p->readOnly==0 ) nWrite++;
1818 }
1819 p = p->pNext;
1820 }
1821 assert( cnt==db->activeVdbeCnt );
1822 assert( nWrite==db->writeVdbeCnt );
1823 }
1824 #else
1825 #define checkActiveVdbeCnt(x)
1826 #endif
1827
1828 /*
1829 ** For every Btree that in database connection db which
1830 ** has been modified, "trip" or invalidate each cursor in
1831 ** that Btree might have been modified so that the cursor
1832 ** can never be used again. This happens when a rollback
1833 *** occurs. We have to trip all the other cursors, even
1834 ** cursor from other VMs in different database connections,
1835 ** so that none of them try to use the data at which they
1836 ** were pointing and which now may have been changed due
1837 ** to the rollback.
1838 **
1839 ** Remember that a rollback can delete tables complete and
1840 ** reorder rootpages. So it is not sufficient just to save
1841 ** the state of the cursor. We have to invalidate the cursor
1842 ** so that it is never used again.
1843 */
1844 static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){
1845 int i;
1846 for(i=0; i<db->nDb; i++){
1847 Btree *p = db->aDb[i].pBt;
1848 if( p && sqlite3BtreeIsInTrans(p) ){
1849 sqlite3BtreeTripAllCursors(p, SQLITE_ABORT);
1850 }
1851 }
1852 }
1853
1854 /*
1855 ** If the Vdbe passed as the first argument opened a statement-transaction,
1856 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
1857 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
1858 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
1859 ** statement transaction is commtted.
1860 **
1861 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
1862 ** Otherwise SQLITE_OK.
1863 */
1864 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
1865 sqlite3 *const db = p->db;
1866 int rc = SQLITE_OK;
1867
1868 /* If p->iStatement is greater than zero, then this Vdbe opened a
1869 ** statement transaction that should be closed here. The only exception
1870 ** is that an IO error may have occured, causing an emergency rollback.
1871 ** In this case (db->nStatement==0), and there is nothing to do.
1872 */
1873 if( db->nStatement && p->iStatement ){
1874 int i;
1875 const int iSavepoint = p->iStatement-1;
1876
1877 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
1878 assert( db->nStatement>0 );
1879 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
1880
1881 for(i=0; i<db->nDb; i++){
1882 int rc2 = SQLITE_OK;
1883 Btree *pBt = db->aDb[i].pBt;
1884 if( pBt ){
1885 if( eOp==SAVEPOINT_ROLLBACK ){
1886 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
1887 }
1888 if( rc2==SQLITE_OK ){
1889 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
1890 }
1891 if( rc==SQLITE_OK ){
1892 rc = rc2;
1893 }
1894 }
1895 }
1896 db->nStatement--;
1897 p->iStatement = 0;
1898 }
1899 return rc;
1900 }
1901
1902 /*
1903 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1904 ** this routine obtains the mutex associated with each BtShared structure
1905 ** that may be accessed by the VM passed as an argument. In doing so it
1906 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1907 ** that the correct busy-handler callback is invoked if required.
1908 **
1909 ** If SQLite is not threadsafe but does support shared-cache mode, then
1910 ** sqlite3BtreeEnterAll() is invoked to set the BtShared.db variables
1911 ** of all of BtShared structures accessible via the database handle
1912 ** associated with the VM. Of course only a subset of these structures
1913 ** will be accessed by the VM, and we could use Vdbe.btreeMask to figure
1914 ** that subset out, but there is no advantage to doing so.
1915 **
1916 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1917 ** function is a no-op.
1918 */
1919 #ifndef SQLITE_OMIT_SHARED_CACHE
1920 void sqlite3VdbeMutexArrayEnter(Vdbe *p){
1921 #if SQLITE_THREADSAFE
1922 sqlite3BtreeMutexArrayEnter(&p->aMutex);
1923 #else
1924 sqlite3BtreeEnterAll(p->db);
1925 #endif
1926 }
1927 #endif
1928
1929 /*
1930 ** This routine is called the when a VDBE tries to halt. If the VDBE
1931 ** has made changes and is in autocommit mode, then commit those
1932 ** changes. If a rollback is needed, then do the rollback.
1933 **
1934 ** This routine is the only way to move the state of a VM from
1935 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
1936 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
1937 **
1938 ** Return an error code. If the commit could not complete because of
1939 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
1940 ** means the close did not happen and needs to be repeated.
1941 */
1942 int sqlite3VdbeHalt(Vdbe *p){
1943 int rc; /* Used to store transient return codes */
1944 sqlite3 *db = p->db;
1945
1946 /* This function contains the logic that determines if a statement or
1947 ** transaction will be committed or rolled back as a result of the
1948 ** execution of this virtual machine.
1949 **
1950 ** If any of the following errors occur:
1951 **
1952 ** SQLITE_NOMEM
1953 ** SQLITE_IOERR
1954 ** SQLITE_FULL
1955 ** SQLITE_INTERRUPT
1956 **
1957 ** Then the internal cache might have been left in an inconsistent
1958 ** state. We need to rollback the statement transaction, if there is
1959 ** one, or the complete transaction if there is no statement transaction.
1960 */
1961
1962 if( p->db->mallocFailed ){
1963 p->rc = SQLITE_NOMEM;
1964 }
1965 closeAllCursors(p);
1966 if( p->magic!=VDBE_MAGIC_RUN ){
1967 return SQLITE_OK;
1968 }
1969 checkActiveVdbeCnt(db);
1970
1971 /* No commit or rollback needed if the program never started */
1972 if( p->pc>=0 ){
1973 int mrc; /* Primary error code from p->rc */
1974 int eStatementOp = 0;
1975 int isSpecialError; /* Set to true if a 'special' error */
1976
1977 /* Lock all btrees used by the statement */
1978 sqlite3VdbeMutexArrayEnter(p);
1979
1980 /* Check for one of the special errors */
1981 mrc = p->rc & 0xff;
1982 assert( p->rc!=SQLITE_IOERR_BLOCKED ); /* This error no longer exists */
1983 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
1984 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
1985 if( isSpecialError ){
1986 /* If the query was read-only, we need do no rollback at all. Otherwise,
1987 ** proceed with the special handling.
1988 */
1989 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
1990 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
1991 eStatementOp = SAVEPOINT_ROLLBACK;
1992 }else{
1993 /* We are forced to roll back the active transaction. Before doing
1994 ** so, abort any other statements this handle currently has active.
1995 */
1996 invalidateCursorsOnModifiedBtrees(db);
1997 sqlite3RollbackAll(db);
1998 sqlite3CloseSavepoints(db);
1999 db->autoCommit = 1;
2000 }
2001 }
2002 }
2003
2004 /* If the auto-commit flag is set and this is the only active writer
2005 ** VM, then we do either a commit or rollback of the current transaction.
2006 **
2007 ** Note: This block also runs if one of the special errors handled
2008 ** above has occurred.
2009 */
2010 if( !sqlite3VtabInSync(db)
2011 && db->autoCommit
2012 && db->writeVdbeCnt==(p->readOnly==0)
2013 ){
2014 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
2015 /* The auto-commit flag is true, and the vdbe program was
2016 ** successful or hit an 'OR FAIL' constraint. This means a commit
2017 ** is required.
2018 */
2019 rc = vdbeCommit(db, p);
2020 if( rc==SQLITE_BUSY ){
2021 sqlite3BtreeMutexArrayLeave(&p->aMutex);
2022 return SQLITE_BUSY;
2023 }else if( rc!=SQLITE_OK ){
2024 p->rc = rc;
2025 sqlite3RollbackAll(db);
2026 }else{
2027 sqlite3CommitInternalChanges(db);
2028 }
2029 }else{
2030 sqlite3RollbackAll(db);
2031 }
2032 db->nStatement = 0;
2033 }else if( eStatementOp==0 ){
2034 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
2035 eStatementOp = SAVEPOINT_RELEASE;
2036 }else if( p->errorAction==OE_Abort ){
2037 eStatementOp = SAVEPOINT_ROLLBACK;
2038 }else{
2039 invalidateCursorsOnModifiedBtrees(db);
2040 sqlite3RollbackAll(db);
2041 sqlite3CloseSavepoints(db);
2042 db->autoCommit = 1;
2043 }
2044 }
2045
2046 /* If eStatementOp is non-zero, then a statement transaction needs to
2047 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
2048 ** do so. If this operation returns an error, and the current statement
2049 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then set the error
2050 ** code to the new value.
2051 */
2052 if( eStatementOp ){
2053 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
2054 if( rc && (p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT) ){
2055 p->rc = rc;
2056 sqlite3DbFree(db, p->zErrMsg);
2057 p->zErrMsg = 0;
2058 }
2059 }
2060
2061 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
2062 ** has been rolled back, update the database connection change-counter.
2063 */
2064 if( p->changeCntOn ){
2065 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
2066 sqlite3VdbeSetChanges(db, p->nChange);
2067 }else{
2068 sqlite3VdbeSetChanges(db, 0);
2069 }
2070 p->nChange = 0;
2071 }
2072
2073 /* Rollback or commit any schema changes that occurred. */
2074 if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){
2075 sqlite3ResetInternalSchema(db, 0);
2076 db->flags = (db->flags | SQLITE_InternChanges);
2077 }
2078
2079 /* Release the locks */
2080 sqlite3BtreeMutexArrayLeave(&p->aMutex);
2081 }
2082
2083 /* We have successfully halted and closed the VM. Record this fact. */
2084 if( p->pc>=0 ){
2085 db->activeVdbeCnt--;
2086 if( !p->readOnly ){
2087 db->writeVdbeCnt--;
2088 }
2089 assert( db->activeVdbeCnt>=db->writeVdbeCnt );
2090 }
2091 p->magic = VDBE_MAGIC_HALT;
2092 checkActiveVdbeCnt(db);
2093 if( p->db->mallocFailed ){
2094 p->rc = SQLITE_NOMEM;
2095 }
2096
2097 /* If the auto-commit flag is set to true, then any locks that were held
2098 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
2099 ** to invoke any required unlock-notify callbacks.
2100 */
2101 if( db->autoCommit ){
2102 sqlite3ConnectionUnlocked(db);
2103 }
2104
2105 assert( db->activeVdbeCnt>0 || db->autoCommit==0 || db->nStatement==0 );
2106 return SQLITE_OK;
2107 }
2108
2109
2110 /*
2111 ** Each VDBE holds the result of the most recent sqlite3_step() call
2112 ** in p->rc. This routine sets that result back to SQLITE_OK.
2113 */
2114 void sqlite3VdbeResetStepResult(Vdbe *p){
2115 p->rc = SQLITE_OK;
2116 }
2117
2118 /*
2119 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
2120 ** Write any error messages into *pzErrMsg. Return the result code.
2121 **
2122 ** After this routine is run, the VDBE should be ready to be executed
2123 ** again.
2124 **
2125 ** To look at it another way, this routine resets the state of the
2126 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
2127 ** VDBE_MAGIC_INIT.
2128 */
2129 int sqlite3VdbeReset(Vdbe *p){
2130 sqlite3 *db;
2131 db = p->db;
2132
2133 /* If the VM did not run to completion or if it encountered an
2134 ** error, then it might not have been halted properly. So halt
2135 ** it now.
2136 */
2137 (void)sqlite3SafetyOn(db);
2138 sqlite3VdbeHalt(p);
2139 (void)sqlite3SafetyOff(db);
2140
2141 /* If the VDBE has be run even partially, then transfer the error code
2142 ** and error message from the VDBE into the main database structure. But
2143 ** if the VDBE has just been set to run but has not actually executed any
2144 ** instructions yet, leave the main database error information unchanged.
2145 */
2146 if( p->pc>=0 ){
2147 if( p->zErrMsg ){
2148 sqlite3BeginBenignMalloc();
2149 sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,SQLITE_TRANSIENT);
2150 sqlite3EndBenignMalloc();
2151 db->errCode = p->rc;
2152 sqlite3DbFree(db, p->zErrMsg);
2153 p->zErrMsg = 0;
2154 }else if( p->rc ){
2155 sqlite3Error(db, p->rc, 0);
2156 }else{
2157 sqlite3Error(db, SQLITE_OK, 0);
2158 }
2159 }else if( p->rc && p->expired ){
2160 /* The expired flag was set on the VDBE before the first call
2161 ** to sqlite3_step(). For consistency (since sqlite3_step() was
2162 ** called), set the database error in this case as well.
2163 */
2164 sqlite3Error(db, p->rc, 0);
2165 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2166 sqlite3DbFree(db, p->zErrMsg);
2167 p->zErrMsg = 0;
2168 }
2169
2170 /* Reclaim all memory used by the VDBE
2171 */
2172 Cleanup(p);
2173
2174 /* Save profiling information from this VDBE run.
2175 */
2176 #ifdef VDBE_PROFILE
2177 {
2178 FILE *out = fopen("vdbe_profile.out", "a");
2179 if( out ){
2180 int i;
2181 fprintf(out, "---- ");
2182 for(i=0; i<p->nOp; i++){
2183 fprintf(out, "%02x", p->aOp[i].opcode);
2184 }
2185 fprintf(out, "\n");
2186 for(i=0; i<p->nOp; i++){
2187 fprintf(out, "%6d %10lld %8lld ",
2188 p->aOp[i].cnt,
2189 p->aOp[i].cycles,
2190 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
2191 );
2192 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
2193 }
2194 fclose(out);
2195 }
2196 }
2197 #endif
2198 p->magic = VDBE_MAGIC_INIT;
2199 return p->rc & db->errMask;
2200 }
2201
2202 /*
2203 ** Clean up and delete a VDBE after execution. Return an integer which is
2204 ** the result code. Write any error message text into *pzErrMsg.
2205 */
2206 int sqlite3VdbeFinalize(Vdbe *p){
2207 int rc = SQLITE_OK;
2208 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
2209 rc = sqlite3VdbeReset(p);
2210 assert( (rc & p->db->errMask)==rc );
2211 }
2212 sqlite3VdbeDelete(p);
2213 return rc;
2214 }
2215
2216 /*
2217 ** Call the destructor for each auxdata entry in pVdbeFunc for which
2218 ** the corresponding bit in mask is clear. Auxdata entries beyond 31
2219 ** are always destroyed. To destroy all auxdata entries, call this
2220 ** routine with mask==0.
2221 */
2222 void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
2223 int i;
2224 for(i=0; i<pVdbeFunc->nAux; i++){
2225 struct AuxData *pAux = &pVdbeFunc->apAux[i];
2226 if( (i>31 || !(mask&(((u32)1)<<i))) && pAux->pAux ){
2227 if( pAux->xDelete ){
2228 pAux->xDelete(pAux->pAux);
2229 }
2230 pAux->pAux = 0;
2231 }
2232 }
2233 }
2234
2235 /*
2236 ** Delete an entire VDBE.
2237 */
2238 void sqlite3VdbeDelete(Vdbe *p){
2239 sqlite3 *db;
2240
2241 if( NEVER(p==0) ) return;
2242 db = p->db;
2243 if( p->pPrev ){
2244 p->pPrev->pNext = p->pNext;
2245 }else{
2246 assert( db->pVdbe==p );
2247 db->pVdbe = p->pNext;
2248 }
2249 if( p->pNext ){
2250 p->pNext->pPrev = p->pPrev;
2251 }
2252 releaseMemArray(p->aVar, p->nVar);
2253 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2254 vdbeFreeOpArray(db, p->aOp, p->nOp);
2255 sqlite3DbFree(db, p->aLabel);
2256 sqlite3DbFree(db, p->aColName);
2257 sqlite3DbFree(db, p->zSql);
2258 p->magic = VDBE_MAGIC_DEAD;
2259 sqlite3DbFree(db, p->pFree);
2260 sqlite3DbFree(db, p);
2261 }
2262
2263 /*
2264 ** Make sure the cursor p is ready to read or write the row to which it
2265 ** was last positioned. Return an error code if an OOM fault or I/O error
2266 ** prevents us from positioning the cursor to its correct position.
2267 **
2268 ** If a MoveTo operation is pending on the given cursor, then do that
2269 ** MoveTo now. If no move is pending, check to see if the row has been
2270 ** deleted out from under the cursor and if it has, mark the row as
2271 ** a NULL row.
2272 **
2273 ** If the cursor is already pointing to the correct row and that row has
2274 ** not been deleted out from under the cursor, then this routine is a no-op.
2275 */
2276 int sqlite3VdbeCursorMoveto(VdbeCursor *p){
2277 if( p->deferredMoveto ){
2278 int res, rc;
2279 #ifdef SQLITE_TEST
2280 extern int sqlite3_search_count;
2281 #endif
2282 assert( p->isTable );
2283 rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
2284 if( rc ) return rc;
2285 p->lastRowid = p->movetoTarget;
2286 p->rowidIsValid = ALWAYS(res==0) ?1:0;
2287 if( NEVER(res<0) ){
2288 rc = sqlite3BtreeNext(p->pCursor, &res);
2289 if( rc ) return rc;
2290 }
2291 #ifdef SQLITE_TEST
2292 sqlite3_search_count++;
2293 #endif
2294 p->deferredMoveto = 0;
2295 p->cacheStatus = CACHE_STALE;
2296 }else if( ALWAYS(p->pCursor) ){
2297 int hasMoved;
2298 int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved);
2299 if( rc ) return rc;
2300 if( hasMoved ){
2301 p->cacheStatus = CACHE_STALE;
2302 p->nullRow = 1;
2303 }
2304 }
2305 return SQLITE_OK;
2306 }
2307
2308 /*
2309 ** The following functions:
2310 **
2311 ** sqlite3VdbeSerialType()
2312 ** sqlite3VdbeSerialTypeLen()
2313 ** sqlite3VdbeSerialLen()
2314 ** sqlite3VdbeSerialPut()
2315 ** sqlite3VdbeSerialGet()
2316 **
2317 ** encapsulate the code that serializes values for storage in SQLite
2318 ** data and index records. Each serialized value consists of a
2319 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
2320 ** integer, stored as a varint.
2321 **
2322 ** In an SQLite index record, the serial type is stored directly before
2323 ** the blob of data that it corresponds to. In a table record, all serial
2324 ** types are stored at the start of the record, and the blobs of data at
2325 ** the end. Hence these functions allow the caller to handle the
2326 ** serial-type and data blob seperately.
2327 **
2328 ** The following table describes the various storage classes for data:
2329 **
2330 ** serial type bytes of data type
2331 ** -------------- --------------- ---------------
2332 ** 0 0 NULL
2333 ** 1 1 signed integer
2334 ** 2 2 signed integer
2335 ** 3 3 signed integer
2336 ** 4 4 signed integer
2337 ** 5 6 signed integer
2338 ** 6 8 signed integer
2339 ** 7 8 IEEE float
2340 ** 8 0 Integer constant 0
2341 ** 9 0 Integer constant 1
2342 ** 10,11 reserved for expansion
2343 ** N>=12 and even (N-12)/2 BLOB
2344 ** N>=13 and odd (N-13)/2 text
2345 **
2346 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
2347 ** of SQLite will not understand those serial types.
2348 */
2349
2350 /*
2351 ** Return the serial-type for the value stored in pMem.
2352 */
2353 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
2354 int flags = pMem->flags;
2355 int n;
2356
2357 if( flags&MEM_Null ){
2358 return 0;
2359 }
2360 if( flags&MEM_Int ){
2361 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
2362 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
2363 i64 i = pMem->u.i;
2364 u64 u;
2365 if( file_format>=4 && (i&1)==i ){
2366 return 8+(u32)i;
2367 }
2368 u = i<0 ? -i : i;
2369 if( u<=127 ) return 1;
2370 if( u<=32767 ) return 2;
2371 if( u<=8388607 ) return 3;
2372 if( u<=2147483647 ) return 4;
2373 if( u<=MAX_6BYTE ) return 5;
2374 return 6;
2375 }
2376 if( flags&MEM_Real ){
2377 return 7;
2378 }
2379 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
2380 n = pMem->n;
2381 if( flags & MEM_Zero ){
2382 n += pMem->u.nZero;
2383 }
2384 assert( n>=0 );
2385 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
2386 }
2387
2388 /*
2389 ** Return the length of the data corresponding to the supplied serial-type.
2390 */
2391 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
2392 if( serial_type>=12 ){
2393 return (serial_type-12)/2;
2394 }else{
2395 static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
2396 return aSize[serial_type];
2397 }
2398 }
2399
2400 /*
2401 ** If we are on an architecture with mixed-endian floating
2402 ** points (ex: ARM7) then swap the lower 4 bytes with the
2403 ** upper 4 bytes. Return the result.
2404 **
2405 ** For most architectures, this is a no-op.
2406 **
2407 ** (later): It is reported to me that the mixed-endian problem
2408 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
2409 ** that early versions of GCC stored the two words of a 64-bit
2410 ** float in the wrong order. And that error has been propagated
2411 ** ever since. The blame is not necessarily with GCC, though.
2412 ** GCC might have just copying the problem from a prior compiler.
2413 ** I am also told that newer versions of GCC that follow a different
2414 ** ABI get the byte order right.
2415 **
2416 ** Developers using SQLite on an ARM7 should compile and run their
2417 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
2418 ** enabled, some asserts below will ensure that the byte order of
2419 ** floating point values is correct.
2420 **
2421 ** (2007-08-30) Frank van Vugt has studied this problem closely
2422 ** and has send his findings to the SQLite developers. Frank
2423 ** writes that some Linux kernels offer floating point hardware
2424 ** emulation that uses only 32-bit mantissas instead of a full
2425 ** 48-bits as required by the IEEE standard. (This is the
2426 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
2427 ** byte swapping becomes very complicated. To avoid problems,
2428 ** the necessary byte swapping is carried out using a 64-bit integer
2429 ** rather than a 64-bit float. Frank assures us that the code here
2430 ** works for him. We, the developers, have no way to independently
2431 ** verify this, but Frank seems to know what he is talking about
2432 ** so we trust him.
2433 */
2434 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
2435 static u64 floatSwap(u64 in){
2436 union {
2437 u64 r;
2438 u32 i[2];
2439 } u;
2440 u32 t;
2441
2442 u.r = in;
2443 t = u.i[0];
2444 u.i[0] = u.i[1];
2445 u.i[1] = t;
2446 return u.r;
2447 }
2448 # define swapMixedEndianFloat(X) X = floatSwap(X)
2449 #else
2450 # define swapMixedEndianFloat(X)
2451 #endif
2452
2453 /*
2454 ** Write the serialized data blob for the value stored in pMem into
2455 ** buf. It is assumed that the caller has allocated sufficient space.
2456 ** Return the number of bytes written.
2457 **
2458 ** nBuf is the amount of space left in buf[]. nBuf must always be
2459 ** large enough to hold the entire field. Except, if the field is
2460 ** a blob with a zero-filled tail, then buf[] might be just the right
2461 ** size to hold everything except for the zero-filled tail. If buf[]
2462 ** is only big enough to hold the non-zero prefix, then only write that
2463 ** prefix into buf[]. But if buf[] is large enough to hold both the
2464 ** prefix and the tail then write the prefix and set the tail to all
2465 ** zeros.
2466 **
2467 ** Return the number of bytes actually written into buf[]. The number
2468 ** of bytes in the zero-filled tail is included in the return value only
2469 ** if those bytes were zeroed in buf[].
2470 */
2471 u32 sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
2472 u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
2473 u32 len;
2474
2475 /* Integer and Real */
2476 if( serial_type<=7 && serial_type>0 ){
2477 u64 v;
2478 u32 i;
2479 if( serial_type==7 ){
2480 assert( sizeof(v)==sizeof(pMem->r) );
2481 memcpy(&v, &pMem->r, sizeof(v));
2482 swapMixedEndianFloat(v);
2483 }else{
2484 v = pMem->u.i;
2485 }
2486 len = i = sqlite3VdbeSerialTypeLen(serial_type);
2487 assert( len<=(u32)nBuf );
2488 while( i-- ){
2489 buf[i] = (u8)(v&0xFF);
2490 v >>= 8;
2491 }
2492 return len;
2493 }
2494
2495 /* String or blob */
2496 if( serial_type>=12 ){
2497 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
2498 == (int)sqlite3VdbeSerialTypeLen(serial_type) );
2499 assert( pMem->n<=nBuf );
2500 len = pMem->n;
2501 memcpy(buf, pMem->z, len);
2502 if( pMem->flags & MEM_Zero ){
2503 len += pMem->u.nZero;
2504 assert( nBuf>=0 );
2505 if( len > (u32)nBuf ){
2506 len = (u32)nBuf;
2507 }
2508 memset(&buf[pMem->n], 0, len-pMem->n);
2509 }
2510 return len;
2511 }
2512
2513 /* NULL or constants 0 or 1 */
2514 return 0;
2515 }
2516
2517 /*
2518 ** Deserialize the data blob pointed to by buf as serial type serial_type
2519 ** and store the result in pMem. Return the number of bytes read.
2520 */
2521 u32 sqlite3VdbeSerialGet(
2522 const unsigned char *buf, /* Buffer to deserialize from */
2523 u32 serial_type, /* Serial type to deserialize */
2524 Mem *pMem /* Memory cell to write value into */
2525 ){
2526 switch( serial_type ){
2527 case 10: /* Reserved for future use */
2528 case 11: /* Reserved for future use */
2529 case 0: { /* NULL */
2530 pMem->flags = MEM_Null;
2531 break;
2532 }
2533 case 1: { /* 1-byte signed integer */
2534 pMem->u.i = (signed char)buf[0];
2535 pMem->flags = MEM_Int;
2536 return 1;
2537 }
2538 case 2: { /* 2-byte signed integer */
2539 pMem->u.i = (((signed char)buf[0])<<8) | buf[1];
2540 pMem->flags = MEM_Int;
2541 return 2;
2542 }
2543 case 3: { /* 3-byte signed integer */
2544 pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
2545 pMem->flags = MEM_Int;
2546 return 3;
2547 }
2548 case 4: { /* 4-byte signed integer */
2549 pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
2550 pMem->flags = MEM_Int;
2551 return 4;
2552 }
2553 case 5: { /* 6-byte signed integer */
2554 u64 x = (((signed char)buf[0])<<8) | buf[1];
2555 u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
2556 x = (x<<32) | y;
2557 pMem->u.i = *(i64*)&x;
2558 pMem->flags = MEM_Int;
2559 return 6;
2560 }
2561 case 6: /* 8-byte signed integer */
2562 case 7: { /* IEEE floating point */
2563 u64 x;
2564 u32 y;
2565 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
2566 /* Verify that integers and floating point values use the same
2567 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
2568 ** defined that 64-bit floating point values really are mixed
2569 ** endian.
2570 */
2571 static const u64 t1 = ((u64)0x3ff00000)<<32;
2572 static const double r1 = 1.0;
2573 u64 t2 = t1;
2574 swapMixedEndianFloat(t2);
2575 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
2576 #endif
2577
2578 x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
2579 y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
2580 x = (x<<32) | y;
2581 if( serial_type==6 ){
2582 pMem->u.i = *(i64*)&x;
2583 pMem->flags = MEM_Int;
2584 }else{
2585 assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
2586 swapMixedEndianFloat(x);
2587 memcpy(&pMem->r, &x, sizeof(x));
2588 pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real;
2589 }
2590 return 8;
2591 }
2592 case 8: /* Integer 0 */
2593 case 9: { /* Integer 1 */
2594 pMem->u.i = serial_type-8;
2595 pMem->flags = MEM_Int;
2596 return 0;
2597 }
2598 default: {
2599 u32 len = (serial_type-12)/2;
2600 pMem->z = (char *)buf;
2601 pMem->n = len;
2602 pMem->xDel = 0;
2603 if( serial_type&0x01 ){
2604 pMem->flags = MEM_Str | MEM_Ephem;
2605 }else{
2606 pMem->flags = MEM_Blob | MEM_Ephem;
2607 }
2608 return len;
2609 }
2610 }
2611 return 0;
2612 }
2613
2614
2615 /*
2616 ** Given the nKey-byte encoding of a record in pKey[], parse the
2617 ** record into a UnpackedRecord structure. Return a pointer to
2618 ** that structure.
2619 **
2620 ** The calling function might provide szSpace bytes of memory
2621 ** space at pSpace. This space can be used to hold the returned
2622 ** VDbeParsedRecord structure if it is large enough. If it is
2623 ** not big enough, space is obtained from sqlite3_malloc().
2624 **
2625 ** The returned structure should be closed by a call to
2626 ** sqlite3VdbeDeleteUnpackedRecord().
2627 */
2628 UnpackedRecord *sqlite3VdbeRecordUnpack(
2629 KeyInfo *pKeyInfo, /* Information about the record format */
2630 int nKey, /* Size of the binary record */
2631 const void *pKey, /* The binary record */
2632 char *pSpace, /* Unaligned space available to hold the object */
2633 int szSpace /* Size of pSpace[] in bytes */
2634 ){
2635 const unsigned char *aKey = (const unsigned char *)pKey;
2636 UnpackedRecord *p; /* The unpacked record that we will return */
2637 int nByte; /* Memory space needed to hold p, in bytes */
2638 int d;
2639 u32 idx;
2640 u16 u; /* Unsigned loop counter */
2641 u32 szHdr;
2642 Mem *pMem;
2643 int nOff; /* Increase pSpace by this much to 8-byte align it */
2644
2645 /*
2646 ** We want to shift the pointer pSpace up such that it is 8-byte aligned.
2647 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift
2648 ** it by. If pSpace is already 8-byte aligned, nOff should be zero.
2649 */
2650 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
2651 pSpace += nOff;
2652 szSpace -= nOff;
2653 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
2654 if( nByte>szSpace ){
2655 p = sqlite3DbMallocRaw(pKeyInfo->db, nByte);
2656 if( p==0 ) return 0;
2657 p->flags = UNPACKED_NEED_FREE | UNPACKED_NEED_DESTROY;
2658 }else{
2659 p = (UnpackedRecord*)pSpace;
2660 p->flags = UNPACKED_NEED_DESTROY;
2661 }
2662 p->pKeyInfo = pKeyInfo;
2663 p->nField = pKeyInfo->nField + 1;
2664 p->aMem = pMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
2665 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
2666 idx = getVarint32(aKey, szHdr);
2667 d = szHdr;
2668 u = 0;
2669 while( idx<szHdr && u<p->nField && d<=nKey ){
2670 u32 serial_type;
2671
2672 idx += getVarint32(&aKey[idx], serial_type);
2673 pMem->enc = pKeyInfo->enc;
2674 pMem->db = pKeyInfo->db;
2675 pMem->flags = 0;
2676 pMem->zMalloc = 0;
2677 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
2678 pMem++;
2679 u++;
2680 }
2681 assert( u<=pKeyInfo->nField + 1 );
2682 p->nField = u;
2683 return (void*)p;
2684 }
2685
2686 /*
2687 ** This routine destroys a UnpackedRecord object.
2688 */
2689 void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){
2690 int i;
2691 Mem *pMem;
2692
2693 assert( p!=0 );
2694 assert( p->flags & UNPACKED_NEED_DESTROY );
2695 for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){
2696 /* The unpacked record is always constructed by the
2697 ** sqlite3VdbeUnpackRecord() function above, which makes all
2698 ** strings and blobs static. And none of the elements are
2699 ** ever transformed, so there is never anything to delete.
2700 */
2701 if( NEVER(pMem->zMalloc) ) sqlite3VdbeMemRelease(pMem);
2702 }
2703 if( p->flags & UNPACKED_NEED_FREE ){
2704 sqlite3DbFree(p->pKeyInfo->db, p);
2705 }
2706 }
2707
2708 /*
2709 ** This function compares the two table rows or index records
2710 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
2711 ** or positive integer if key1 is less than, equal to or
2712 ** greater than key2. The {nKey1, pKey1} key must be a blob
2713 ** created by th OP_MakeRecord opcode of the VDBE. The pPKey2
2714 ** key must be a parsed key such as obtained from
2715 ** sqlite3VdbeParseRecord.
2716 **
2717 ** Key1 and Key2 do not have to contain the same number of fields.
2718 ** The key with fewer fields is usually compares less than the
2719 ** longer key. However if the UNPACKED_INCRKEY flags in pPKey2 is set
2720 ** and the common prefixes are equal, then key1 is less than key2.
2721 ** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are
2722 ** equal, then the keys are considered to be equal and
2723 ** the parts beyond the common prefix are ignored.
2724 **
2725 ** If the UNPACKED_IGNORE_ROWID flag is set, then the last byte of
2726 ** the header of pKey1 is ignored. It is assumed that pKey1 is
2727 ** an index key, and thus ends with a rowid value. The last byte
2728 ** of the header will therefore be the serial type of the rowid:
2729 ** one of 1, 2, 3, 4, 5, 6, 8, or 9 - the integer serial types.
2730 ** The serial type of the final rowid will always be a single byte.
2731 ** By ignoring this last byte of the header, we force the comparison
2732 ** to ignore the rowid at the end of key1.
2733 */
2734 int sqlite3VdbeRecordCompare(
2735 int nKey1, const void *pKey1, /* Left key */
2736 UnpackedRecord *pPKey2 /* Right key */
2737 ){
2738 int d1; /* Offset into aKey[] of next data element */
2739 u32 idx1; /* Offset into aKey[] of next header element */
2740 u32 szHdr1; /* Number of bytes in header */
2741 int i = 0;
2742 int nField;
2743 int rc = 0;
2744 const unsigned char *aKey1 = (const unsigned char *)pKey1;
2745 KeyInfo *pKeyInfo;
2746 Mem mem1;
2747
2748 pKeyInfo = pPKey2->pKeyInfo;
2749 mem1.enc = pKeyInfo->enc;
2750 mem1.db = pKeyInfo->db;
2751 mem1.flags = 0;
2752 mem1.u.i = 0; /* not needed, here to silence compiler warning */
2753 mem1.zMalloc = 0;
2754
2755 idx1 = getVarint32(aKey1, szHdr1);
2756 d1 = szHdr1;
2757 if( pPKey2->flags & UNPACKED_IGNORE_ROWID ){
2758 szHdr1--;
2759 }
2760 nField = pKeyInfo->nField;
2761 while( idx1<szHdr1 && i<pPKey2->nField ){
2762 u32 serial_type1;
2763
2764 /* Read the serial types for the next element in each key. */
2765 idx1 += getVarint32( aKey1+idx1, serial_type1 );
2766 if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
2767
2768 /* Extract the values to be compared.
2769 */
2770 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
2771
2772 /* Do the comparison
2773 */
2774 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
2775 i<nField ? pKeyInfo->aColl[i] : 0);
2776 if( rc!=0 ){
2777 break;
2778 }
2779 i++;
2780 }
2781
2782 /* No memory allocation is ever used on mem1. */
2783 if( NEVER(mem1.zMalloc) ) sqlite3VdbeMemRelease(&mem1);
2784
2785 /* If the PREFIX_SEARCH flag is set and all fields except the final
2786 ** rowid field were equal, then clear the PREFIX_SEARCH flag and set
2787 ** pPKey2->rowid to the value of the rowid field in (pKey1, nKey1).
2788 ** This is used by the OP_IsUnique opcode.
2789 */
2790 if( (pPKey2->flags & UNPACKED_PREFIX_SEARCH) && i==(pPKey2->nField-1) ){
2791 assert( idx1==szHdr1 && rc );
2792 assert( mem1.flags & MEM_Int );
2793 pPKey2->flags &= ~UNPACKED_PREFIX_SEARCH;
2794 pPKey2->rowid = mem1.u.i;
2795 }
2796
2797 if( rc==0 ){
2798 /* rc==0 here means that one of the keys ran out of fields and
2799 ** all the fields up to that point were equal. If the UNPACKED_INCRKEY
2800 ** flag is set, then break the tie by treating key2 as larger.
2801 ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes
2802 ** are considered to be equal. Otherwise, the longer key is the
2803 ** larger. As it happens, the pPKey2 will always be the longer
2804 ** if there is a difference.
2805 */
2806 if( pPKey2->flags & UNPACKED_INCRKEY ){
2807 rc = -1;
2808 }else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){
2809 /* Leave rc==0 */
2810 }else if( idx1<szHdr1 ){
2811 rc = 1;
2812 }
2813 }else if( pKeyInfo->aSortOrder && i<pKeyInfo->nField
2814 && pKeyInfo->aSortOrder[i] ){
2815 rc = -rc;
2816 }
2817
2818 return rc;
2819 }
2820
2821
2822 /*
2823 ** pCur points at an index entry created using the OP_MakeRecord opcode.
2824 ** Read the rowid (the last field in the record) and store it in *rowid.
2825 ** Return SQLITE_OK if everything works, or an error code otherwise.
2826 **
2827 ** pCur might be pointing to text obtained from a corrupt database file.
2828 ** So the content cannot be trusted. Do appropriate checks on the content.
2829 */
2830 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
2831 i64 nCellKey = 0;
2832 int rc;
2833 u32 szHdr; /* Size of the header */
2834 u32 typeRowid; /* Serial type of the rowid */
2835 u32 lenRowid; /* Size of the rowid */
2836 Mem m, v;
2837
2838 UNUSED_PARAMETER(db);
2839
2840 /* Get the size of the index entry. Only indices entries of less
2841 ** than 2GiB are support - anything large must be database corruption.
2842 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
2843 ** this code can safely assume that nCellKey is 32-bits
2844 */
2845 assert( sqlite3BtreeCursorIsValid(pCur) );
2846 rc = sqlite3BtreeKeySize(pCur, &nCellKey);
2847 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
2848 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
2849
2850 /* Read in the complete content of the index entry */
2851 memset(&m, 0, sizeof(m));
2852 rc = sqlite3VdbeMemFromBtree(pCur, 0, (int)nCellKey, 1, &m);
2853 if( rc ){
2854 return rc;
2855 }
2856
2857 /* The index entry must begin with a header size */
2858 (void)getVarint32((u8*)m.z, szHdr);
2859 testcase( szHdr==3 );
2860 testcase( szHdr==m.n );
2861 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
2862 goto idx_rowid_corruption;
2863 }
2864
2865 /* The last field of the index should be an integer - the ROWID.
2866 ** Verify that the last entry really is an integer. */
2867 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
2868 testcase( typeRowid==1 );
2869 testcase( typeRowid==2 );
2870 testcase( typeRowid==3 );
2871 testcase( typeRowid==4 );
2872 testcase( typeRowid==5 );
2873 testcase( typeRowid==6 );
2874 testcase( typeRowid==8 );
2875 testcase( typeRowid==9 );
2876 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
2877 goto idx_rowid_corruption;
2878 }
2879 lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
2880 testcase( (u32)m.n==szHdr+lenRowid );
2881 if( unlikely((u32)m.n<szHdr+lenRowid) ){
2882 goto idx_rowid_corruption;
2883 }
2884
2885 /* Fetch the integer off the end of the index record */
2886 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
2887 *rowid = v.u.i;
2888 sqlite3VdbeMemRelease(&m);
2889 return SQLITE_OK;
2890
2891 /* Jump here if database corruption is detected after m has been
2892 ** allocated. Free the m object and return SQLITE_CORRUPT. */
2893 idx_rowid_corruption:
2894 testcase( m.zMalloc!=0 );
2895 sqlite3VdbeMemRelease(&m);
2896 return SQLITE_CORRUPT_BKPT;
2897 }
2898
2899 /*
2900 ** Compare the key of the index entry that cursor pC is pointing to against
2901 ** the key string in pUnpacked. Write into *pRes a number
2902 ** that is negative, zero, or positive if pC is less than, equal to,
2903 ** or greater than pUnpacked. Return SQLITE_OK on success.
2904 **
2905 ** pUnpacked is either created without a rowid or is truncated so that it
2906 ** omits the rowid at the end. The rowid at the end of the index entry
2907 ** is ignored as well. Hence, this routine only compares the prefixes
2908 ** of the keys prior to the final rowid, not the entire key.
2909 */
2910 int sqlite3VdbeIdxKeyCompare(
2911 VdbeCursor *pC, /* The cursor to compare against */
2912 UnpackedRecord *pUnpacked, /* Unpacked version of key to compare against */
2913 int *res /* Write the comparison result here */
2914 ){
2915 i64 nCellKey = 0;
2916 int rc;
2917 BtCursor *pCur = pC->pCursor;
2918 Mem m;
2919
2920 assert( sqlite3BtreeCursorIsValid(pCur) );
2921 rc = sqlite3BtreeKeySize(pCur, &nCellKey);
2922 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
2923 /* nCellKey will always be between 0 and 0xffffffff because of the say
2924 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
2925 if( nCellKey<=0 || nCellKey>0x7fffffff ){
2926 *res = 0;
2927 return SQLITE_CORRUPT;
2928 }
2929 memset(&m, 0, sizeof(m));
2930 rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (int)nCellKey, 1, &m);
2931 if( rc ){
2932 return rc;
2933 }
2934 assert( pUnpacked->flags & UNPACKED_IGNORE_ROWID );
2935 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
2936 sqlite3VdbeMemRelease(&m);
2937 return SQLITE_OK;
2938 }
2939
2940 /*
2941 ** This routine sets the value to be returned by subsequent calls to
2942 ** sqlite3_changes() on the database handle 'db'.
2943 */
2944 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
2945 assert( sqlite3_mutex_held(db->mutex) );
2946 db->nChange = nChange;
2947 db->nTotalChange += nChange;
2948 }
2949
2950 /*
2951 ** Set a flag in the vdbe to update the change counter when it is finalised
2952 ** or reset.
2953 */
2954 void sqlite3VdbeCountChanges(Vdbe *v){
2955 v->changeCntOn = 1;
2956 }
2957
2958 /*
2959 ** Mark every prepared statement associated with a database connection
2960 ** as expired.
2961 **
2962 ** An expired statement means that recompilation of the statement is
2963 ** recommend. Statements expire when things happen that make their
2964 ** programs obsolete. Removing user-defined functions or collating
2965 ** sequences, or changing an authorization function are the types of
2966 ** things that make prepared statements obsolete.
2967 */
2968 void sqlite3ExpirePreparedStatements(sqlite3 *db){
2969 Vdbe *p;
2970 for(p = db->pVdbe; p; p=p->pNext){
2971 p->expired = 1;
2972 }
2973 }
2974
2975 /*
2976 ** Return the database associated with the Vdbe.
2977 */
2978 sqlite3 *sqlite3VdbeDb(Vdbe *v){
2979 return v->db;
2980 }
OLDNEW
« no previous file with comments | « third_party/sqlite/src/vdbeapi.c ('k') | third_party/sqlite/src/vdbeblob.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698