Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1)

Side by Side Diff: third_party/sqlite/src/vdbeapi.c

Issue 3108030: Move bundled copy of sqlite one level deeper to better separate it... (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src/
Patch Set: Created 10 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « third_party/sqlite/src/vdbeInt.h ('k') | third_party/sqlite/src/vdbeaux.c » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
15 **
16 ** $Id: vdbeapi.c,v 1.167 2009/06/25 01:47:12 drh Exp $
17 */
18 #include "sqliteInt.h"
19 #include "vdbeInt.h"
20
21 #ifndef SQLITE_OMIT_DEPRECATED
22 /*
23 ** Return TRUE (non-zero) of the statement supplied as an argument needs
24 ** to be recompiled. A statement needs to be recompiled whenever the
25 ** execution environment changes in a way that would alter the program
26 ** that sqlite3_prepare() generates. For example, if new functions or
27 ** collating sequences are registered or if an authorizer function is
28 ** added or changed.
29 */
30 int sqlite3_expired(sqlite3_stmt *pStmt){
31 Vdbe *p = (Vdbe*)pStmt;
32 return p==0 || p->expired;
33 }
34 #endif
35
36 /*
37 ** The following routine destroys a virtual machine that is created by
38 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
39 ** success/failure code that describes the result of executing the virtual
40 ** machine.
41 **
42 ** This routine sets the error code and string returned by
43 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
44 */
45 int sqlite3_finalize(sqlite3_stmt *pStmt){
46 int rc;
47 if( pStmt==0 ){
48 rc = SQLITE_OK;
49 }else{
50 Vdbe *v = (Vdbe*)pStmt;
51 sqlite3 *db = v->db;
52 #if SQLITE_THREADSAFE
53 sqlite3_mutex *mutex = v->db->mutex;
54 #endif
55 sqlite3_mutex_enter(mutex);
56 rc = sqlite3VdbeFinalize(v);
57 rc = sqlite3ApiExit(db, rc);
58 sqlite3_mutex_leave(mutex);
59 }
60 return rc;
61 }
62
63 /*
64 ** Terminate the current execution of an SQL statement and reset it
65 ** back to its starting state so that it can be reused. A success code from
66 ** the prior execution is returned.
67 **
68 ** This routine sets the error code and string returned by
69 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
70 */
71 int sqlite3_reset(sqlite3_stmt *pStmt){
72 int rc;
73 if( pStmt==0 ){
74 rc = SQLITE_OK;
75 }else{
76 Vdbe *v = (Vdbe*)pStmt;
77 sqlite3_mutex_enter(v->db->mutex);
78 rc = sqlite3VdbeReset(v);
79 sqlite3VdbeMakeReady(v, -1, 0, 0, 0, 0, 0);
80 assert( (rc & (v->db->errMask))==rc );
81 rc = sqlite3ApiExit(v->db, rc);
82 sqlite3_mutex_leave(v->db->mutex);
83 }
84 return rc;
85 }
86
87 /*
88 ** Set all the parameters in the compiled SQL statement to NULL.
89 */
90 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
91 int i;
92 int rc = SQLITE_OK;
93 Vdbe *p = (Vdbe*)pStmt;
94 #if SQLITE_THREADSAFE
95 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
96 #endif
97 sqlite3_mutex_enter(mutex);
98 for(i=0; i<p->nVar; i++){
99 sqlite3VdbeMemRelease(&p->aVar[i]);
100 p->aVar[i].flags = MEM_Null;
101 }
102 sqlite3_mutex_leave(mutex);
103 return rc;
104 }
105
106
107 /**************************** sqlite3_value_ *******************************
108 ** The following routines extract information from a Mem or sqlite3_value
109 ** structure.
110 */
111 const void *sqlite3_value_blob(sqlite3_value *pVal){
112 Mem *p = (Mem*)pVal;
113 if( p->flags & (MEM_Blob|MEM_Str) ){
114 sqlite3VdbeMemExpandBlob(p);
115 p->flags &= ~MEM_Str;
116 p->flags |= MEM_Blob;
117 return p->z;
118 }else{
119 return sqlite3_value_text(pVal);
120 }
121 }
122 int sqlite3_value_bytes(sqlite3_value *pVal){
123 return sqlite3ValueBytes(pVal, SQLITE_UTF8);
124 }
125 int sqlite3_value_bytes16(sqlite3_value *pVal){
126 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
127 }
128 double sqlite3_value_double(sqlite3_value *pVal){
129 return sqlite3VdbeRealValue((Mem*)pVal);
130 }
131 int sqlite3_value_int(sqlite3_value *pVal){
132 return (int)sqlite3VdbeIntValue((Mem*)pVal);
133 }
134 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
135 return sqlite3VdbeIntValue((Mem*)pVal);
136 }
137 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
138 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
139 }
140 #ifndef SQLITE_OMIT_UTF16
141 const void *sqlite3_value_text16(sqlite3_value* pVal){
142 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
143 }
144 const void *sqlite3_value_text16be(sqlite3_value *pVal){
145 return sqlite3ValueText(pVal, SQLITE_UTF16BE);
146 }
147 const void *sqlite3_value_text16le(sqlite3_value *pVal){
148 return sqlite3ValueText(pVal, SQLITE_UTF16LE);
149 }
150 #endif /* SQLITE_OMIT_UTF16 */
151 int sqlite3_value_type(sqlite3_value* pVal){
152 return pVal->type;
153 }
154
155 /**************************** sqlite3_result_ *******************************
156 ** The following routines are used by user-defined functions to specify
157 ** the function result.
158 **
159 ** The setStrOrError() funtion calls sqlite3VdbeMemSetStr() to store the
160 ** result as a string or blob but if the string or blob is too large, it
161 ** then sets the error code to SQLITE_TOOBIG
162 */
163 static void setResultStrOrError(
164 sqlite3_context *pCtx, /* Function context */
165 const char *z, /* String pointer */
166 int n, /* Bytes in string, or negative */
167 u8 enc, /* Encoding of z. 0 for BLOBs */
168 void (*xDel)(void*) /* Destructor function */
169 ){
170 if( sqlite3VdbeMemSetStr(&pCtx->s, z, n, enc, xDel)==SQLITE_TOOBIG ){
171 sqlite3_result_error_toobig(pCtx);
172 }
173 }
174 void sqlite3_result_blob(
175 sqlite3_context *pCtx,
176 const void *z,
177 int n,
178 void (*xDel)(void *)
179 ){
180 assert( n>=0 );
181 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
182 setResultStrOrError(pCtx, z, n, 0, xDel);
183 }
184 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
185 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
186 sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
187 }
188 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
189 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
190 pCtx->isError = SQLITE_ERROR;
191 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
192 }
193 #ifndef SQLITE_OMIT_UTF16
194 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
195 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
196 pCtx->isError = SQLITE_ERROR;
197 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
198 }
199 #endif
200 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
201 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
202 sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
203 }
204 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
205 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
206 sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
207 }
208 void sqlite3_result_null(sqlite3_context *pCtx){
209 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
210 sqlite3VdbeMemSetNull(&pCtx->s);
211 }
212 void sqlite3_result_text(
213 sqlite3_context *pCtx,
214 const char *z,
215 int n,
216 void (*xDel)(void *)
217 ){
218 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
219 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
220 }
221 #ifndef SQLITE_OMIT_UTF16
222 void sqlite3_result_text16(
223 sqlite3_context *pCtx,
224 const void *z,
225 int n,
226 void (*xDel)(void *)
227 ){
228 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
229 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
230 }
231 void sqlite3_result_text16be(
232 sqlite3_context *pCtx,
233 const void *z,
234 int n,
235 void (*xDel)(void *)
236 ){
237 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
238 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
239 }
240 void sqlite3_result_text16le(
241 sqlite3_context *pCtx,
242 const void *z,
243 int n,
244 void (*xDel)(void *)
245 ){
246 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
247 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
248 }
249 #endif /* SQLITE_OMIT_UTF16 */
250 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
251 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
252 sqlite3VdbeMemCopy(&pCtx->s, pValue);
253 }
254 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
255 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
256 sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
257 }
258 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
259 pCtx->isError = errCode;
260 if( pCtx->s.flags & MEM_Null ){
261 sqlite3VdbeMemSetStr(&pCtx->s, sqlite3ErrStr(errCode), -1,
262 SQLITE_UTF8, SQLITE_STATIC);
263 }
264 }
265
266 /* Force an SQLITE_TOOBIG error. */
267 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
268 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
269 pCtx->isError = SQLITE_TOOBIG;
270 sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1,
271 SQLITE_UTF8, SQLITE_STATIC);
272 }
273
274 /* An SQLITE_NOMEM error. */
275 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
276 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
277 sqlite3VdbeMemSetNull(&pCtx->s);
278 pCtx->isError = SQLITE_NOMEM;
279 pCtx->s.db->mallocFailed = 1;
280 }
281
282 /*
283 ** Execute the statement pStmt, either until a row of data is ready, the
284 ** statement is completely executed or an error occurs.
285 **
286 ** This routine implements the bulk of the logic behind the sqlite_step()
287 ** API. The only thing omitted is the automatic recompile if a
288 ** schema change has occurred. That detail is handled by the
289 ** outer sqlite3_step() wrapper procedure.
290 */
291 static int sqlite3Step(Vdbe *p){
292 sqlite3 *db;
293 int rc;
294
295 assert(p);
296 if( p->magic!=VDBE_MAGIC_RUN ){
297 return SQLITE_MISUSE;
298 }
299
300 /* Assert that malloc() has not failed */
301 db = p->db;
302 if( db->mallocFailed ){
303 return SQLITE_NOMEM;
304 }
305
306 if( p->pc<=0 && p->expired ){
307 if( ALWAYS(p->rc==SQLITE_OK) ){
308 p->rc = SQLITE_SCHEMA;
309 }
310 rc = SQLITE_ERROR;
311 goto end_of_step;
312 }
313 if( sqlite3SafetyOn(db) ){
314 p->rc = SQLITE_MISUSE;
315 return SQLITE_MISUSE;
316 }
317 if( p->pc<0 ){
318 /* If there are no other statements currently running, then
319 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt
320 ** from interrupting a statement that has not yet started.
321 */
322 if( db->activeVdbeCnt==0 ){
323 db->u1.isInterrupted = 0;
324 }
325
326 #ifndef SQLITE_OMIT_TRACE
327 if( db->xProfile && !db->init.busy ){
328 double rNow;
329 sqlite3OsCurrentTime(db->pVfs, &rNow);
330 p->startTime = (u64)((rNow - (int)rNow)*3600.0*24.0*1000000000.0);
331 }
332 #endif
333
334 db->activeVdbeCnt++;
335 if( p->readOnly==0 ) db->writeVdbeCnt++;
336 p->pc = 0;
337 }
338 #ifndef SQLITE_OMIT_EXPLAIN
339 if( p->explain ){
340 rc = sqlite3VdbeList(p);
341 }else
342 #endif /* SQLITE_OMIT_EXPLAIN */
343 {
344 rc = sqlite3VdbeExec(p);
345 }
346
347 if( sqlite3SafetyOff(db) ){
348 rc = SQLITE_MISUSE;
349 }
350
351 #ifndef SQLITE_OMIT_TRACE
352 /* Invoke the profile callback if there is one
353 */
354 if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){
355 double rNow;
356 u64 elapseTime;
357
358 sqlite3OsCurrentTime(db->pVfs, &rNow);
359 elapseTime = (u64)((rNow - (int)rNow)*3600.0*24.0*1000000000.0);
360 elapseTime -= p->startTime;
361 db->xProfile(db->pProfileArg, p->zSql, elapseTime);
362 }
363 #endif
364
365 db->errCode = rc;
366 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
367 p->rc = SQLITE_NOMEM;
368 }
369 end_of_step:
370 /* At this point local variable rc holds the value that should be
371 ** returned if this statement was compiled using the legacy
372 ** sqlite3_prepare() interface. According to the docs, this can only
373 ** be one of the values in the first assert() below. Variable p->rc
374 ** contains the value that would be returned if sqlite3_finalize()
375 ** were called on statement p.
376 */
377 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR
378 || rc==SQLITE_BUSY || rc==SQLITE_MISUSE
379 );
380 assert( p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE );
381 if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){
382 /* If this statement was prepared using sqlite3_prepare_v2(), and an
383 ** error has occured, then return the error code in p->rc to the
384 ** caller. Set the error code in the database handle to the same value.
385 */
386 rc = db->errCode = p->rc;
387 }
388 return (rc&db->errMask);
389 }
390
391 /*
392 ** This is the top-level implementation of sqlite3_step(). Call
393 ** sqlite3Step() to do most of the work. If a schema error occurs,
394 ** call sqlite3Reprepare() and try again.
395 */
396 int sqlite3_step(sqlite3_stmt *pStmt){
397 int rc = SQLITE_MISUSE;
398 if( pStmt ){
399 int cnt = 0;
400 Vdbe *v = (Vdbe*)pStmt;
401 sqlite3 *db = v->db;
402 sqlite3_mutex_enter(db->mutex);
403 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
404 && cnt++ < 5
405 && (rc = sqlite3Reprepare(v))==SQLITE_OK ){
406 sqlite3_reset(pStmt);
407 v->expired = 0;
408 }
409 if( rc==SQLITE_SCHEMA && ALWAYS(v->isPrepareV2) && ALWAYS(db->pErr) ){
410 /* This case occurs after failing to recompile an sql statement.
411 ** The error message from the SQL compiler has already been loaded
412 ** into the database handle. This block copies the error message
413 ** from the database handle into the statement and sets the statement
414 ** program counter to 0 to ensure that when the statement is
415 ** finalized or reset the parser error message is available via
416 ** sqlite3_errmsg() and sqlite3_errcode().
417 */
418 const char *zErr = (const char *)sqlite3_value_text(db->pErr);
419 sqlite3DbFree(db, v->zErrMsg);
420 if( !db->mallocFailed ){
421 v->zErrMsg = sqlite3DbStrDup(db, zErr);
422 } else {
423 v->zErrMsg = 0;
424 v->rc = SQLITE_NOMEM;
425 }
426 }
427 rc = sqlite3ApiExit(db, rc);
428 sqlite3_mutex_leave(db->mutex);
429 }
430 return rc;
431 }
432
433 /*
434 ** Extract the user data from a sqlite3_context structure and return a
435 ** pointer to it.
436 */
437 void *sqlite3_user_data(sqlite3_context *p){
438 assert( p && p->pFunc );
439 return p->pFunc->pUserData;
440 }
441
442 /*
443 ** Extract the user data from a sqlite3_context structure and return a
444 ** pointer to it.
445 */
446 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
447 assert( p && p->pFunc );
448 return p->s.db;
449 }
450
451 /*
452 ** The following is the implementation of an SQL function that always
453 ** fails with an error message stating that the function is used in the
454 ** wrong context. The sqlite3_overload_function() API might construct
455 ** SQL function that use this routine so that the functions will exist
456 ** for name resolution but are actually overloaded by the xFindFunction
457 ** method of virtual tables.
458 */
459 void sqlite3InvalidFunction(
460 sqlite3_context *context, /* The function calling context */
461 int NotUsed, /* Number of arguments to the function */
462 sqlite3_value **NotUsed2 /* Value of each argument */
463 ){
464 const char *zName = context->pFunc->zName;
465 char *zErr;
466 UNUSED_PARAMETER2(NotUsed, NotUsed2);
467 zErr = sqlite3_mprintf(
468 "unable to use function %s in the requested context", zName);
469 sqlite3_result_error(context, zErr, -1);
470 sqlite3_free(zErr);
471 }
472
473 /*
474 ** Allocate or return the aggregate context for a user function. A new
475 ** context is allocated on the first call. Subsequent calls return the
476 ** same context that was returned on prior calls.
477 */
478 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
479 Mem *pMem;
480 assert( p && p->pFunc && p->pFunc->xStep );
481 assert( sqlite3_mutex_held(p->s.db->mutex) );
482 pMem = p->pMem;
483 if( (pMem->flags & MEM_Agg)==0 ){
484 if( nByte==0 ){
485 sqlite3VdbeMemReleaseExternal(pMem);
486 pMem->flags = MEM_Null;
487 pMem->z = 0;
488 }else{
489 sqlite3VdbeMemGrow(pMem, nByte, 0);
490 pMem->flags = MEM_Agg;
491 pMem->u.pDef = p->pFunc;
492 if( pMem->z ){
493 memset(pMem->z, 0, nByte);
494 }
495 }
496 }
497 return (void*)pMem->z;
498 }
499
500 /*
501 ** Return the auxilary data pointer, if any, for the iArg'th argument to
502 ** the user-function defined by pCtx.
503 */
504 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
505 VdbeFunc *pVdbeFunc;
506
507 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
508 pVdbeFunc = pCtx->pVdbeFunc;
509 if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){
510 return 0;
511 }
512 return pVdbeFunc->apAux[iArg].pAux;
513 }
514
515 /*
516 ** Set the auxilary data pointer and delete function, for the iArg'th
517 ** argument to the user-function defined by pCtx. Any previous value is
518 ** deleted by calling the delete function specified when it was set.
519 */
520 void sqlite3_set_auxdata(
521 sqlite3_context *pCtx,
522 int iArg,
523 void *pAux,
524 void (*xDelete)(void*)
525 ){
526 struct AuxData *pAuxData;
527 VdbeFunc *pVdbeFunc;
528 if( iArg<0 ) goto failed;
529
530 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
531 pVdbeFunc = pCtx->pVdbeFunc;
532 if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){
533 int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0);
534 int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg;
535 pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc);
536 if( !pVdbeFunc ){
537 goto failed;
538 }
539 pCtx->pVdbeFunc = pVdbeFunc;
540 memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux));
541 pVdbeFunc->nAux = iArg+1;
542 pVdbeFunc->pFunc = pCtx->pFunc;
543 }
544
545 pAuxData = &pVdbeFunc->apAux[iArg];
546 if( pAuxData->pAux && pAuxData->xDelete ){
547 pAuxData->xDelete(pAuxData->pAux);
548 }
549 pAuxData->pAux = pAux;
550 pAuxData->xDelete = xDelete;
551 return;
552
553 failed:
554 if( xDelete ){
555 xDelete(pAux);
556 }
557 }
558
559 #ifndef SQLITE_OMIT_DEPRECATED
560 /*
561 ** Return the number of times the Step function of a aggregate has been
562 ** called.
563 **
564 ** This function is deprecated. Do not use it for new code. It is
565 ** provide only to avoid breaking legacy code. New aggregate function
566 ** implementations should keep their own counts within their aggregate
567 ** context.
568 */
569 int sqlite3_aggregate_count(sqlite3_context *p){
570 assert( p && p->pMem && p->pFunc && p->pFunc->xStep );
571 return p->pMem->n;
572 }
573 #endif
574
575 /*
576 ** Return the number of columns in the result set for the statement pStmt.
577 */
578 int sqlite3_column_count(sqlite3_stmt *pStmt){
579 Vdbe *pVm = (Vdbe *)pStmt;
580 return pVm ? pVm->nResColumn : 0;
581 }
582
583 /*
584 ** Return the number of values available from the current row of the
585 ** currently executing statement pStmt.
586 */
587 int sqlite3_data_count(sqlite3_stmt *pStmt){
588 Vdbe *pVm = (Vdbe *)pStmt;
589 if( pVm==0 || pVm->pResultSet==0 ) return 0;
590 return pVm->nResColumn;
591 }
592
593
594 /*
595 ** Check to see if column iCol of the given statement is valid. If
596 ** it is, return a pointer to the Mem for the value of that column.
597 ** If iCol is not valid, return a pointer to a Mem which has a value
598 ** of NULL.
599 */
600 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
601 Vdbe *pVm;
602 int vals;
603 Mem *pOut;
604
605 pVm = (Vdbe *)pStmt;
606 if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
607 sqlite3_mutex_enter(pVm->db->mutex);
608 vals = sqlite3_data_count(pStmt);
609 pOut = &pVm->pResultSet[i];
610 }else{
611 /* If the value passed as the second argument is out of range, return
612 ** a pointer to the following static Mem object which contains the
613 ** value SQL NULL. Even though the Mem structure contains an element
614 ** of type i64, on certain architecture (x86) with certain compiler
615 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
616 ** instead of an 8-byte one. This all works fine, except that when
617 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
618 ** that a Mem structure is located on an 8-byte boundary. To prevent
619 ** this assert() from failing, when building with SQLITE_DEBUG defined
620 ** using gcc, force nullMem to be 8-byte aligned using the magical
621 ** __attribute__((aligned(8))) macro. */
622 static const Mem nullMem
623 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
624 __attribute__((aligned(8)))
625 #endif
626 = {{0}, (double)0, 0, "", 0, MEM_Null, SQLITE_NULL, 0, 0, 0 };
627
628 if( pVm && ALWAYS(pVm->db) ){
629 sqlite3_mutex_enter(pVm->db->mutex);
630 sqlite3Error(pVm->db, SQLITE_RANGE, 0);
631 }
632 pOut = (Mem*)&nullMem;
633 }
634 return pOut;
635 }
636
637 /*
638 ** This function is called after invoking an sqlite3_value_XXX function on a
639 ** column value (i.e. a value returned by evaluating an SQL expression in the
640 ** select list of a SELECT statement) that may cause a malloc() failure. If
641 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
642 ** code of statement pStmt set to SQLITE_NOMEM.
643 **
644 ** Specifically, this is called from within:
645 **
646 ** sqlite3_column_int()
647 ** sqlite3_column_int64()
648 ** sqlite3_column_text()
649 ** sqlite3_column_text16()
650 ** sqlite3_column_real()
651 ** sqlite3_column_bytes()
652 ** sqlite3_column_bytes16()
653 **
654 ** But not for sqlite3_column_blob(), which never calls malloc().
655 */
656 static void columnMallocFailure(sqlite3_stmt *pStmt)
657 {
658 /* If malloc() failed during an encoding conversion within an
659 ** sqlite3_column_XXX API, then set the return code of the statement to
660 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
661 ** and _finalize() will return NOMEM.
662 */
663 Vdbe *p = (Vdbe *)pStmt;
664 if( p ){
665 p->rc = sqlite3ApiExit(p->db, p->rc);
666 sqlite3_mutex_leave(p->db->mutex);
667 }
668 }
669
670 /**************************** sqlite3_column_ *******************************
671 ** The following routines are used to access elements of the current row
672 ** in the result set.
673 */
674 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
675 const void *val;
676 val = sqlite3_value_blob( columnMem(pStmt,i) );
677 /* Even though there is no encoding conversion, value_blob() might
678 ** need to call malloc() to expand the result of a zeroblob()
679 ** expression.
680 */
681 columnMallocFailure(pStmt);
682 return val;
683 }
684 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
685 int val = sqlite3_value_bytes( columnMem(pStmt,i) );
686 columnMallocFailure(pStmt);
687 return val;
688 }
689 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
690 int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
691 columnMallocFailure(pStmt);
692 return val;
693 }
694 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
695 double val = sqlite3_value_double( columnMem(pStmt,i) );
696 columnMallocFailure(pStmt);
697 return val;
698 }
699 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
700 int val = sqlite3_value_int( columnMem(pStmt,i) );
701 columnMallocFailure(pStmt);
702 return val;
703 }
704 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
705 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
706 columnMallocFailure(pStmt);
707 return val;
708 }
709 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
710 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
711 columnMallocFailure(pStmt);
712 return val;
713 }
714 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
715 Mem *pOut = columnMem(pStmt, i);
716 if( pOut->flags&MEM_Static ){
717 pOut->flags &= ~MEM_Static;
718 pOut->flags |= MEM_Ephem;
719 }
720 columnMallocFailure(pStmt);
721 return (sqlite3_value *)pOut;
722 }
723 #ifndef SQLITE_OMIT_UTF16
724 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
725 const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
726 columnMallocFailure(pStmt);
727 return val;
728 }
729 #endif /* SQLITE_OMIT_UTF16 */
730 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
731 int iType = sqlite3_value_type( columnMem(pStmt,i) );
732 columnMallocFailure(pStmt);
733 return iType;
734 }
735
736 /* The following function is experimental and subject to change or
737 ** removal */
738 /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){
739 ** return sqlite3_value_numeric_type( columnMem(pStmt,i) );
740 **}
741 */
742
743 /*
744 ** Convert the N-th element of pStmt->pColName[] into a string using
745 ** xFunc() then return that string. If N is out of range, return 0.
746 **
747 ** There are up to 5 names for each column. useType determines which
748 ** name is returned. Here are the names:
749 **
750 ** 0 The column name as it should be displayed for output
751 ** 1 The datatype name for the column
752 ** 2 The name of the database that the column derives from
753 ** 3 The name of the table that the column derives from
754 ** 4 The name of the table column that the result column derives from
755 **
756 ** If the result is not a simple column reference (if it is an expression
757 ** or a constant) then useTypes 2, 3, and 4 return NULL.
758 */
759 static const void *columnName(
760 sqlite3_stmt *pStmt,
761 int N,
762 const void *(*xFunc)(Mem*),
763 int useType
764 ){
765 const void *ret = 0;
766 Vdbe *p = (Vdbe *)pStmt;
767 int n;
768 sqlite3 *db = p->db;
769
770 assert( db!=0 );
771 n = sqlite3_column_count(pStmt);
772 if( N<n && N>=0 ){
773 N += useType*n;
774 sqlite3_mutex_enter(db->mutex);
775 assert( db->mallocFailed==0 );
776 ret = xFunc(&p->aColName[N]);
777 /* A malloc may have failed inside of the xFunc() call. If this
778 ** is the case, clear the mallocFailed flag and return NULL.
779 */
780 if( db->mallocFailed ){
781 db->mallocFailed = 0;
782 ret = 0;
783 }
784 sqlite3_mutex_leave(db->mutex);
785 }
786 return ret;
787 }
788
789 /*
790 ** Return the name of the Nth column of the result set returned by SQL
791 ** statement pStmt.
792 */
793 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
794 return columnName(
795 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
796 }
797 #ifndef SQLITE_OMIT_UTF16
798 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
799 return columnName(
800 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
801 }
802 #endif
803
804 /*
805 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must
806 ** not define OMIT_DECLTYPE.
807 */
808 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
809 # error "Must not define both SQLITE_OMIT_DECLTYPE \
810 and SQLITE_ENABLE_COLUMN_METADATA"
811 #endif
812
813 #ifndef SQLITE_OMIT_DECLTYPE
814 /*
815 ** Return the column declaration type (if applicable) of the 'i'th column
816 ** of the result set of SQL statement pStmt.
817 */
818 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
819 return columnName(
820 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
821 }
822 #ifndef SQLITE_OMIT_UTF16
823 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
824 return columnName(
825 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
826 }
827 #endif /* SQLITE_OMIT_UTF16 */
828 #endif /* SQLITE_OMIT_DECLTYPE */
829
830 #ifdef SQLITE_ENABLE_COLUMN_METADATA
831 /*
832 ** Return the name of the database from which a result column derives.
833 ** NULL is returned if the result column is an expression or constant or
834 ** anything else which is not an unabiguous reference to a database column.
835 */
836 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
837 return columnName(
838 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
839 }
840 #ifndef SQLITE_OMIT_UTF16
841 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
842 return columnName(
843 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
844 }
845 #endif /* SQLITE_OMIT_UTF16 */
846
847 /*
848 ** Return the name of the table from which a result column derives.
849 ** NULL is returned if the result column is an expression or constant or
850 ** anything else which is not an unabiguous reference to a database column.
851 */
852 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
853 return columnName(
854 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
855 }
856 #ifndef SQLITE_OMIT_UTF16
857 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
858 return columnName(
859 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
860 }
861 #endif /* SQLITE_OMIT_UTF16 */
862
863 /*
864 ** Return the name of the table column from which a result column derives.
865 ** NULL is returned if the result column is an expression or constant or
866 ** anything else which is not an unabiguous reference to a database column.
867 */
868 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
869 return columnName(
870 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
871 }
872 #ifndef SQLITE_OMIT_UTF16
873 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
874 return columnName(
875 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
876 }
877 #endif /* SQLITE_OMIT_UTF16 */
878 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
879
880
881 /******************************* sqlite3_bind_ ***************************
882 **
883 ** Routines used to attach values to wildcards in a compiled SQL statement.
884 */
885 /*
886 ** Unbind the value bound to variable i in virtual machine p. This is the
887 ** the same as binding a NULL value to the column. If the "i" parameter is
888 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
889 **
890 ** A successful evaluation of this routine acquires the mutex on p.
891 ** the mutex is released if any kind of error occurs.
892 **
893 ** The error code stored in database p->db is overwritten with the return
894 ** value in any case.
895 */
896 static int vdbeUnbind(Vdbe *p, int i){
897 Mem *pVar;
898 if( p==0 ) return SQLITE_MISUSE;
899 sqlite3_mutex_enter(p->db->mutex);
900 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
901 sqlite3Error(p->db, SQLITE_MISUSE, 0);
902 sqlite3_mutex_leave(p->db->mutex);
903 return SQLITE_MISUSE;
904 }
905 if( i<1 || i>p->nVar ){
906 sqlite3Error(p->db, SQLITE_RANGE, 0);
907 sqlite3_mutex_leave(p->db->mutex);
908 return SQLITE_RANGE;
909 }
910 i--;
911 pVar = &p->aVar[i];
912 sqlite3VdbeMemRelease(pVar);
913 pVar->flags = MEM_Null;
914 sqlite3Error(p->db, SQLITE_OK, 0);
915 return SQLITE_OK;
916 }
917
918 /*
919 ** Bind a text or BLOB value.
920 */
921 static int bindText(
922 sqlite3_stmt *pStmt, /* The statement to bind against */
923 int i, /* Index of the parameter to bind */
924 const void *zData, /* Pointer to the data to be bound */
925 int nData, /* Number of bytes of data to be bound */
926 void (*xDel)(void*), /* Destructor for the data */
927 u8 encoding /* Encoding for the data */
928 ){
929 Vdbe *p = (Vdbe *)pStmt;
930 Mem *pVar;
931 int rc;
932
933 rc = vdbeUnbind(p, i);
934 if( rc==SQLITE_OK ){
935 if( zData!=0 ){
936 pVar = &p->aVar[i-1];
937 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
938 if( rc==SQLITE_OK && encoding!=0 ){
939 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
940 }
941 sqlite3Error(p->db, rc, 0);
942 rc = sqlite3ApiExit(p->db, rc);
943 }
944 sqlite3_mutex_leave(p->db->mutex);
945 }
946 return rc;
947 }
948
949
950 /*
951 ** Bind a blob value to an SQL statement variable.
952 */
953 int sqlite3_bind_blob(
954 sqlite3_stmt *pStmt,
955 int i,
956 const void *zData,
957 int nData,
958 void (*xDel)(void*)
959 ){
960 return bindText(pStmt, i, zData, nData, xDel, 0);
961 }
962 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
963 int rc;
964 Vdbe *p = (Vdbe *)pStmt;
965 rc = vdbeUnbind(p, i);
966 if( rc==SQLITE_OK ){
967 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
968 sqlite3_mutex_leave(p->db->mutex);
969 }
970 return rc;
971 }
972 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
973 return sqlite3_bind_int64(p, i, (i64)iValue);
974 }
975 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
976 int rc;
977 Vdbe *p = (Vdbe *)pStmt;
978 rc = vdbeUnbind(p, i);
979 if( rc==SQLITE_OK ){
980 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
981 sqlite3_mutex_leave(p->db->mutex);
982 }
983 return rc;
984 }
985 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
986 int rc;
987 Vdbe *p = (Vdbe*)pStmt;
988 rc = vdbeUnbind(p, i);
989 if( rc==SQLITE_OK ){
990 sqlite3_mutex_leave(p->db->mutex);
991 }
992 return rc;
993 }
994 int sqlite3_bind_text(
995 sqlite3_stmt *pStmt,
996 int i,
997 const char *zData,
998 int nData,
999 void (*xDel)(void*)
1000 ){
1001 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1002 }
1003 #ifndef SQLITE_OMIT_UTF16
1004 int sqlite3_bind_text16(
1005 sqlite3_stmt *pStmt,
1006 int i,
1007 const void *zData,
1008 int nData,
1009 void (*xDel)(void*)
1010 ){
1011 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1012 }
1013 #endif /* SQLITE_OMIT_UTF16 */
1014 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1015 int rc;
1016 switch( pValue->type ){
1017 case SQLITE_INTEGER: {
1018 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
1019 break;
1020 }
1021 case SQLITE_FLOAT: {
1022 rc = sqlite3_bind_double(pStmt, i, pValue->r);
1023 break;
1024 }
1025 case SQLITE_BLOB: {
1026 if( pValue->flags & MEM_Zero ){
1027 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
1028 }else{
1029 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
1030 }
1031 break;
1032 }
1033 case SQLITE_TEXT: {
1034 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT,
1035 pValue->enc);
1036 break;
1037 }
1038 default: {
1039 rc = sqlite3_bind_null(pStmt, i);
1040 break;
1041 }
1042 }
1043 return rc;
1044 }
1045 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1046 int rc;
1047 Vdbe *p = (Vdbe *)pStmt;
1048 rc = vdbeUnbind(p, i);
1049 if( rc==SQLITE_OK ){
1050 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1051 sqlite3_mutex_leave(p->db->mutex);
1052 }
1053 return rc;
1054 }
1055
1056 /*
1057 ** Return the number of wildcards that can be potentially bound to.
1058 ** This routine is added to support DBD::SQLite.
1059 */
1060 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1061 Vdbe *p = (Vdbe*)pStmt;
1062 return p ? p->nVar : 0;
1063 }
1064
1065 /*
1066 ** Create a mapping from variable numbers to variable names
1067 ** in the Vdbe.azVar[] array, if such a mapping does not already
1068 ** exist.
1069 */
1070 static void createVarMap(Vdbe *p){
1071 if( !p->okVar ){
1072 int j;
1073 Op *pOp;
1074 sqlite3_mutex_enter(p->db->mutex);
1075 /* The race condition here is harmless. If two threads call this
1076 ** routine on the same Vdbe at the same time, they both might end
1077 ** up initializing the Vdbe.azVar[] array. That is a little extra
1078 ** work but it results in the same answer.
1079 */
1080 for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){
1081 if( pOp->opcode==OP_Variable ){
1082 assert( pOp->p1>0 && pOp->p1<=p->nVar );
1083 p->azVar[pOp->p1-1] = pOp->p4.z;
1084 }
1085 }
1086 p->okVar = 1;
1087 sqlite3_mutex_leave(p->db->mutex);
1088 }
1089 }
1090
1091 /*
1092 ** Return the name of a wildcard parameter. Return NULL if the index
1093 ** is out of range or if the wildcard is unnamed.
1094 **
1095 ** The result is always UTF-8.
1096 */
1097 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1098 Vdbe *p = (Vdbe*)pStmt;
1099 if( p==0 || i<1 || i>p->nVar ){
1100 return 0;
1101 }
1102 createVarMap(p);
1103 return p->azVar[i-1];
1104 }
1105
1106 /*
1107 ** Given a wildcard parameter name, return the index of the variable
1108 ** with that name. If there is no variable with the given name,
1109 ** return 0.
1110 */
1111 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1112 Vdbe *p = (Vdbe*)pStmt;
1113 int i;
1114 if( p==0 ){
1115 return 0;
1116 }
1117 createVarMap(p);
1118 if( zName ){
1119 for(i=0; i<p->nVar; i++){
1120 const char *z = p->azVar[i];
1121 if( z && strcmp(z,zName)==0 ){
1122 return i+1;
1123 }
1124 }
1125 }
1126 return 0;
1127 }
1128
1129 /*
1130 ** Transfer all bindings from the first statement over to the second.
1131 */
1132 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1133 Vdbe *pFrom = (Vdbe*)pFromStmt;
1134 Vdbe *pTo = (Vdbe*)pToStmt;
1135 int i;
1136 assert( pTo->db==pFrom->db );
1137 assert( pTo->nVar==pFrom->nVar );
1138 sqlite3_mutex_enter(pTo->db->mutex);
1139 for(i=0; i<pFrom->nVar; i++){
1140 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1141 }
1142 sqlite3_mutex_leave(pTo->db->mutex);
1143 return SQLITE_OK;
1144 }
1145
1146 #ifndef SQLITE_OMIT_DEPRECATED
1147 /*
1148 ** Deprecated external interface. Internal/core SQLite code
1149 ** should call sqlite3TransferBindings.
1150 **
1151 ** Is is misuse to call this routine with statements from different
1152 ** database connections. But as this is a deprecated interface, we
1153 ** will not bother to check for that condition.
1154 **
1155 ** If the two statements contain a different number of bindings, then
1156 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise
1157 ** SQLITE_OK is returned.
1158 */
1159 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1160 Vdbe *pFrom = (Vdbe*)pFromStmt;
1161 Vdbe *pTo = (Vdbe*)pToStmt;
1162 if( pFrom->nVar!=pTo->nVar ){
1163 return SQLITE_ERROR;
1164 }
1165 return sqlite3TransferBindings(pFromStmt, pToStmt);
1166 }
1167 #endif
1168
1169 /*
1170 ** Return the sqlite3* database handle to which the prepared statement given
1171 ** in the argument belongs. This is the same database handle that was
1172 ** the first argument to the sqlite3_prepare() that was used to create
1173 ** the statement in the first place.
1174 */
1175 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1176 return pStmt ? ((Vdbe*)pStmt)->db : 0;
1177 }
1178
1179 /*
1180 ** Return a pointer to the next prepared statement after pStmt associated
1181 ** with database connection pDb. If pStmt is NULL, return the first
1182 ** prepared statement for the database connection. Return NULL if there
1183 ** are no more.
1184 */
1185 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1186 sqlite3_stmt *pNext;
1187 sqlite3_mutex_enter(pDb->mutex);
1188 if( pStmt==0 ){
1189 pNext = (sqlite3_stmt*)pDb->pVdbe;
1190 }else{
1191 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1192 }
1193 sqlite3_mutex_leave(pDb->mutex);
1194 return pNext;
1195 }
1196
1197 /*
1198 ** Return the value of a status counter for a prepared statement
1199 */
1200 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
1201 Vdbe *pVdbe = (Vdbe*)pStmt;
1202 int v = pVdbe->aCounter[op-1];
1203 if( resetFlag ) pVdbe->aCounter[op-1] = 0;
1204 return v;
1205 }
OLDNEW
« no previous file with comments | « third_party/sqlite/src/vdbeInt.h ('k') | third_party/sqlite/src/vdbeaux.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698