Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(78)

Side by Side Diff: third_party/sqlite/src/util.c

Issue 3108030: Move bundled copy of sqlite one level deeper to better separate it... (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src/
Patch Set: Created 10 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « third_party/sqlite/src/utf.c ('k') | third_party/sqlite/src/vacuum.c » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
13 **
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
16 **
17 */
18 #include "sqliteInt.h"
19 #include <stdarg.h>
20 #ifdef SQLITE_HAVE_ISNAN
21 # include <math.h>
22 #endif
23
24 /*
25 ** Routine needed to support the testcase() macro.
26 */
27 #ifdef SQLITE_COVERAGE_TEST
28 void sqlite3Coverage(int x){
29 static int dummy = 0;
30 dummy += x;
31 }
32 #endif
33
34 /*
35 ** Return true if the floating point value is Not a Number (NaN).
36 **
37 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
38 ** Otherwise, we have our own implementation that works on most systems.
39 */
40 int sqlite3IsNaN(double x){
41 int rc; /* The value return */
42 #if !defined(SQLITE_HAVE_ISNAN)
43 /*
44 ** Systems that support the isnan() library function should probably
45 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have
46 ** found that many systems do not have a working isnan() function so
47 ** this implementation is provided as an alternative.
48 **
49 ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
50 ** On the other hand, the use of -ffast-math comes with the following
51 ** warning:
52 **
53 ** This option [-ffast-math] should never be turned on by any
54 ** -O option since it can result in incorrect output for programs
55 ** which depend on an exact implementation of IEEE or ISO
56 ** rules/specifications for math functions.
57 **
58 ** Under MSVC, this NaN test may fail if compiled with a floating-
59 ** point precision mode other than /fp:precise. From the MSDN
60 ** documentation:
61 **
62 ** The compiler [with /fp:precise] will properly handle comparisons
63 ** involving NaN. For example, x != x evaluates to true if x is NaN
64 ** ...
65 */
66 #ifdef __FAST_MATH__
67 # error SQLite will not work correctly with the -ffast-math option of GCC.
68 #endif
69 volatile double y = x;
70 volatile double z = y;
71 rc = (y!=z);
72 #else /* if defined(SQLITE_HAVE_ISNAN) */
73 rc = isnan(x);
74 #endif /* SQLITE_HAVE_ISNAN */
75 testcase( rc );
76 return rc;
77 }
78
79 /*
80 ** Compute a string length that is limited to what can be stored in
81 ** lower 30 bits of a 32-bit signed integer.
82 **
83 ** The value returned will never be negative. Nor will it ever be greater
84 ** than the actual length of the string. For very long strings (greater
85 ** than 1GiB) the value returned might be less than the true string length.
86 */
87 int sqlite3Strlen30(const char *z){
88 const char *z2 = z;
89 if( z==0 ) return 0;
90 while( *z2 ){ z2++; }
91 return 0x3fffffff & (int)(z2 - z);
92 }
93
94 /*
95 ** Set the most recent error code and error string for the sqlite
96 ** handle "db". The error code is set to "err_code".
97 **
98 ** If it is not NULL, string zFormat specifies the format of the
99 ** error string in the style of the printf functions: The following
100 ** format characters are allowed:
101 **
102 ** %s Insert a string
103 ** %z A string that should be freed after use
104 ** %d Insert an integer
105 ** %T Insert a token
106 ** %S Insert the first element of a SrcList
107 **
108 ** zFormat and any string tokens that follow it are assumed to be
109 ** encoded in UTF-8.
110 **
111 ** To clear the most recent error for sqlite handle "db", sqlite3Error
112 ** should be called with err_code set to SQLITE_OK and zFormat set
113 ** to NULL.
114 */
115 void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){
116 if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){
117 db->errCode = err_code;
118 if( zFormat ){
119 char *z;
120 va_list ap;
121 va_start(ap, zFormat);
122 z = sqlite3VMPrintf(db, zFormat, ap);
123 va_end(ap);
124 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
125 }else{
126 sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
127 }
128 }
129 }
130
131 /*
132 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
133 ** The following formatting characters are allowed:
134 **
135 ** %s Insert a string
136 ** %z A string that should be freed after use
137 ** %d Insert an integer
138 ** %T Insert a token
139 ** %S Insert the first element of a SrcList
140 **
141 ** This function should be used to report any error that occurs whilst
142 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
143 ** last thing the sqlite3_prepare() function does is copy the error
144 ** stored by this function into the database handle using sqlite3Error().
145 ** Function sqlite3Error() should be used during statement execution
146 ** (sqlite3_step() etc.).
147 */
148 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
149 va_list ap;
150 sqlite3 *db = pParse->db;
151 pParse->nErr++;
152 sqlite3DbFree(db, pParse->zErrMsg);
153 va_start(ap, zFormat);
154 pParse->zErrMsg = sqlite3VMPrintf(db, zFormat, ap);
155 va_end(ap);
156 pParse->rc = SQLITE_ERROR;
157 }
158
159 /*
160 ** Clear the error message in pParse, if any
161 */
162 void sqlite3ErrorClear(Parse *pParse){
163 sqlite3DbFree(pParse->db, pParse->zErrMsg);
164 pParse->zErrMsg = 0;
165 pParse->nErr = 0;
166 }
167
168 /*
169 ** Convert an SQL-style quoted string into a normal string by removing
170 ** the quote characters. The conversion is done in-place. If the
171 ** input does not begin with a quote character, then this routine
172 ** is a no-op.
173 **
174 ** The input string must be zero-terminated. A new zero-terminator
175 ** is added to the dequoted string.
176 **
177 ** The return value is -1 if no dequoting occurs or the length of the
178 ** dequoted string, exclusive of the zero terminator, if dequoting does
179 ** occur.
180 **
181 ** 2002-Feb-14: This routine is extended to remove MS-Access style
182 ** brackets from around identifers. For example: "[a-b-c]" becomes
183 ** "a-b-c".
184 */
185 int sqlite3Dequote(char *z){
186 char quote;
187 int i, j;
188 if( z==0 ) return -1;
189 quote = z[0];
190 switch( quote ){
191 case '\'': break;
192 case '"': break;
193 case '`': break; /* For MySQL compatibility */
194 case '[': quote = ']'; break; /* For MS SqlServer compatibility */
195 default: return -1;
196 }
197 for(i=1, j=0; ALWAYS(z[i]); i++){
198 if( z[i]==quote ){
199 if( z[i+1]==quote ){
200 z[j++] = quote;
201 i++;
202 }else{
203 break;
204 }
205 }else{
206 z[j++] = z[i];
207 }
208 }
209 z[j] = 0;
210 return j;
211 }
212
213 /* Convenient short-hand */
214 #define UpperToLower sqlite3UpperToLower
215
216 /*
217 ** Some systems have stricmp(). Others have strcasecmp(). Because
218 ** there is no consistency, we will define our own.
219 */
220 int sqlite3StrICmp(const char *zLeft, const char *zRight){
221 register unsigned char *a, *b;
222 a = (unsigned char *)zLeft;
223 b = (unsigned char *)zRight;
224 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
225 return UpperToLower[*a] - UpperToLower[*b];
226 }
227 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
228 register unsigned char *a, *b;
229 a = (unsigned char *)zLeft;
230 b = (unsigned char *)zRight;
231 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
232 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
233 }
234
235 /*
236 ** Return TRUE if z is a pure numeric string. Return FALSE and leave
237 ** *realnum unchanged if the string contains any character which is not
238 ** part of a number.
239 **
240 ** If the string is pure numeric, set *realnum to TRUE if the string
241 ** contains the '.' character or an "E+000" style exponentiation suffix.
242 ** Otherwise set *realnum to FALSE. Note that just becaue *realnum is
243 ** false does not mean that the number can be successfully converted into
244 ** an integer - it might be too big.
245 **
246 ** An empty string is considered non-numeric.
247 */
248 int sqlite3IsNumber(const char *z, int *realnum, u8 enc){
249 int incr = (enc==SQLITE_UTF8?1:2);
250 if( enc==SQLITE_UTF16BE ) z++;
251 if( *z=='-' || *z=='+' ) z += incr;
252 if( !sqlite3Isdigit(*z) ){
253 return 0;
254 }
255 z += incr;
256 *realnum = 0;
257 while( sqlite3Isdigit(*z) ){ z += incr; }
258 if( *z=='.' ){
259 z += incr;
260 if( !sqlite3Isdigit(*z) ) return 0;
261 while( sqlite3Isdigit(*z) ){ z += incr; }
262 *realnum = 1;
263 }
264 if( *z=='e' || *z=='E' ){
265 z += incr;
266 if( *z=='+' || *z=='-' ) z += incr;
267 if( !sqlite3Isdigit(*z) ) return 0;
268 while( sqlite3Isdigit(*z) ){ z += incr; }
269 *realnum = 1;
270 }
271 return *z==0;
272 }
273
274 /*
275 ** The string z[] is an ASCII representation of a real number.
276 ** Convert this string to a double.
277 **
278 ** This routine assumes that z[] really is a valid number. If it
279 ** is not, the result is undefined.
280 **
281 ** This routine is used instead of the library atof() function because
282 ** the library atof() might want to use "," as the decimal point instead
283 ** of "." depending on how locale is set. But that would cause problems
284 ** for SQL. So this routine always uses "." regardless of locale.
285 */
286 int sqlite3AtoF(const char *z, double *pResult){
287 #ifndef SQLITE_OMIT_FLOATING_POINT
288 const char *zBegin = z;
289 /* sign * significand * (10 ^ (esign * exponent)) */
290 int sign = 1; /* sign of significand */
291 i64 s = 0; /* significand */
292 int d = 0; /* adjust exponent for shifting decimal point */
293 int esign = 1; /* sign of exponent */
294 int e = 0; /* exponent */
295 double result;
296 int nDigits = 0;
297
298 /* skip leading spaces */
299 while( sqlite3Isspace(*z) ) z++;
300 /* get sign of significand */
301 if( *z=='-' ){
302 sign = -1;
303 z++;
304 }else if( *z=='+' ){
305 z++;
306 }
307 /* skip leading zeroes */
308 while( z[0]=='0' ) z++, nDigits++;
309
310 /* copy max significant digits to significand */
311 while( sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
312 s = s*10 + (*z - '0');
313 z++, nDigits++;
314 }
315 /* skip non-significant significand digits
316 ** (increase exponent by d to shift decimal left) */
317 while( sqlite3Isdigit(*z) ) z++, nDigits++, d++;
318
319 /* if decimal point is present */
320 if( *z=='.' ){
321 z++;
322 /* copy digits from after decimal to significand
323 ** (decrease exponent by d to shift decimal right) */
324 while( sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
325 s = s*10 + (*z - '0');
326 z++, nDigits++, d--;
327 }
328 /* skip non-significant digits */
329 while( sqlite3Isdigit(*z) ) z++, nDigits++;
330 }
331
332 /* if exponent is present */
333 if( *z=='e' || *z=='E' ){
334 z++;
335 /* get sign of exponent */
336 if( *z=='-' ){
337 esign = -1;
338 z++;
339 }else if( *z=='+' ){
340 z++;
341 }
342 /* copy digits to exponent */
343 while( sqlite3Isdigit(*z) ){
344 e = e*10 + (*z - '0');
345 z++;
346 }
347 }
348
349 /* adjust exponent by d, and update sign */
350 e = (e*esign) + d;
351 if( e<0 ) {
352 esign = -1;
353 e *= -1;
354 } else {
355 esign = 1;
356 }
357
358 /* if 0 significand */
359 if( !s ) {
360 /* In the IEEE 754 standard, zero is signed.
361 ** Add the sign if we've seen at least one digit */
362 result = (sign<0 && nDigits) ? -(double)0 : (double)0;
363 } else {
364 /* attempt to reduce exponent */
365 if( esign>0 ){
366 while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10;
367 }else{
368 while( !(s%10) && e>0 ) e--,s/=10;
369 }
370
371 /* adjust the sign of significand */
372 s = sign<0 ? -s : s;
373
374 /* if exponent, scale significand as appropriate
375 ** and store in result. */
376 if( e ){
377 double scale = 1.0;
378 /* attempt to handle extremely small/large numbers better */
379 if( e>307 && e<342 ){
380 while( e%308 ) { scale *= 1.0e+1; e -= 1; }
381 if( esign<0 ){
382 result = s / scale;
383 result /= 1.0e+308;
384 }else{
385 result = s * scale;
386 result *= 1.0e+308;
387 }
388 }else{
389 /* 1.0e+22 is the largest power of 10 than can be
390 ** represented exactly. */
391 while( e%22 ) { scale *= 1.0e+1; e -= 1; }
392 while( e>0 ) { scale *= 1.0e+22; e -= 22; }
393 if( esign<0 ){
394 result = s / scale;
395 }else{
396 result = s * scale;
397 }
398 }
399 } else {
400 result = (double)s;
401 }
402 }
403
404 /* store the result */
405 *pResult = result;
406
407 /* return number of characters used */
408 return (int)(z - zBegin);
409 #else
410 return sqlite3Atoi64(z, pResult);
411 #endif /* SQLITE_OMIT_FLOATING_POINT */
412 }
413
414 /*
415 ** Compare the 19-character string zNum against the text representation
416 ** value 2^63: 9223372036854775808. Return negative, zero, or positive
417 ** if zNum is less than, equal to, or greater than the string.
418 **
419 ** Unlike memcmp() this routine is guaranteed to return the difference
420 ** in the values of the last digit if the only difference is in the
421 ** last digit. So, for example,
422 **
423 ** compare2pow63("9223372036854775800")
424 **
425 ** will return -8.
426 */
427 static int compare2pow63(const char *zNum){
428 int c;
429 c = memcmp(zNum,"922337203685477580",18)*10;
430 if( c==0 ){
431 c = zNum[18] - '8';
432 }
433 return c;
434 }
435
436
437 /*
438 ** Return TRUE if zNum is a 64-bit signed integer and write
439 ** the value of the integer into *pNum. If zNum is not an integer
440 ** or is an integer that is too large to be expressed with 64 bits,
441 ** then return false.
442 **
443 ** When this routine was originally written it dealt with only
444 ** 32-bit numbers. At that time, it was much faster than the
445 ** atoi() library routine in RedHat 7.2.
446 */
447 int sqlite3Atoi64(const char *zNum, i64 *pNum){
448 i64 v = 0;
449 int neg;
450 int i, c;
451 const char *zStart;
452 while( sqlite3Isspace(*zNum) ) zNum++;
453 if( *zNum=='-' ){
454 neg = 1;
455 zNum++;
456 }else if( *zNum=='+' ){
457 neg = 0;
458 zNum++;
459 }else{
460 neg = 0;
461 }
462 zStart = zNum;
463 while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */
464 for(i=0; (c=zNum[i])>='0' && c<='9'; i++){
465 v = v*10 + c - '0';
466 }
467 *pNum = neg ? -v : v;
468 if( c!=0 || (i==0 && zStart==zNum) || i>19 ){
469 /* zNum is empty or contains non-numeric text or is longer
470 ** than 19 digits (thus guaranting that it is too large) */
471 return 0;
472 }else if( i<19 ){
473 /* Less than 19 digits, so we know that it fits in 64 bits */
474 return 1;
475 }else{
476 /* 19-digit numbers must be no larger than 9223372036854775807 if positive
477 ** or 9223372036854775808 if negative. Note that 9223372036854665808
478 ** is 2^63. */
479 return compare2pow63(zNum)<neg;
480 }
481 }
482
483 /*
484 ** The string zNum represents an unsigned integer. The zNum string
485 ** consists of one or more digit characters and is terminated by
486 ** a zero character. Any stray characters in zNum result in undefined
487 ** behavior.
488 **
489 ** If the unsigned integer that zNum represents will fit in a
490 ** 64-bit signed integer, return TRUE. Otherwise return FALSE.
491 **
492 ** If the negFlag parameter is true, that means that zNum really represents
493 ** a negative number. (The leading "-" is omitted from zNum.) This
494 ** parameter is needed to determine a boundary case. A string
495 ** of "9223373036854775808" returns false if negFlag is false or true
496 ** if negFlag is true.
497 **
498 ** Leading zeros are ignored.
499 */
500 int sqlite3FitsIn64Bits(const char *zNum, int negFlag){
501 int i;
502 int neg = 0;
503
504 assert( zNum[0]>='0' && zNum[0]<='9' ); /* zNum is an unsigned number */
505
506 if( negFlag ) neg = 1-neg;
507 while( *zNum=='0' ){
508 zNum++; /* Skip leading zeros. Ticket #2454 */
509 }
510 for(i=0; zNum[i]; i++){ assert( zNum[i]>='0' && zNum[i]<='9' ); }
511 if( i<19 ){
512 /* Guaranteed to fit if less than 19 digits */
513 return 1;
514 }else if( i>19 ){
515 /* Guaranteed to be too big if greater than 19 digits */
516 return 0;
517 }else{
518 /* Compare against 2^63. */
519 return compare2pow63(zNum)<neg;
520 }
521 }
522
523 /*
524 ** If zNum represents an integer that will fit in 32-bits, then set
525 ** *pValue to that integer and return true. Otherwise return false.
526 **
527 ** Any non-numeric characters that following zNum are ignored.
528 ** This is different from sqlite3Atoi64() which requires the
529 ** input number to be zero-terminated.
530 */
531 int sqlite3GetInt32(const char *zNum, int *pValue){
532 sqlite_int64 v = 0;
533 int i, c;
534 int neg = 0;
535 if( zNum[0]=='-' ){
536 neg = 1;
537 zNum++;
538 }else if( zNum[0]=='+' ){
539 zNum++;
540 }
541 while( zNum[0]=='0' ) zNum++;
542 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
543 v = v*10 + c;
544 }
545
546 /* The longest decimal representation of a 32 bit integer is 10 digits:
547 **
548 ** 1234567890
549 ** 2^31 -> 2147483648
550 */
551 if( i>10 ){
552 return 0;
553 }
554 if( v-neg>2147483647 ){
555 return 0;
556 }
557 if( neg ){
558 v = -v;
559 }
560 *pValue = (int)v;
561 return 1;
562 }
563
564 /*
565 ** The variable-length integer encoding is as follows:
566 **
567 ** KEY:
568 ** A = 0xxxxxxx 7 bits of data and one flag bit
569 ** B = 1xxxxxxx 7 bits of data and one flag bit
570 ** C = xxxxxxxx 8 bits of data
571 **
572 ** 7 bits - A
573 ** 14 bits - BA
574 ** 21 bits - BBA
575 ** 28 bits - BBBA
576 ** 35 bits - BBBBA
577 ** 42 bits - BBBBBA
578 ** 49 bits - BBBBBBA
579 ** 56 bits - BBBBBBBA
580 ** 64 bits - BBBBBBBBC
581 */
582
583 /*
584 ** Write a 64-bit variable-length integer to memory starting at p[0].
585 ** The length of data write will be between 1 and 9 bytes. The number
586 ** of bytes written is returned.
587 **
588 ** A variable-length integer consists of the lower 7 bits of each byte
589 ** for all bytes that have the 8th bit set and one byte with the 8th
590 ** bit clear. Except, if we get to the 9th byte, it stores the full
591 ** 8 bits and is the last byte.
592 */
593 int sqlite3PutVarint(unsigned char *p, u64 v){
594 int i, j, n;
595 u8 buf[10];
596 if( v & (((u64)0xff000000)<<32) ){
597 p[8] = (u8)v;
598 v >>= 8;
599 for(i=7; i>=0; i--){
600 p[i] = (u8)((v & 0x7f) | 0x80);
601 v >>= 7;
602 }
603 return 9;
604 }
605 n = 0;
606 do{
607 buf[n++] = (u8)((v & 0x7f) | 0x80);
608 v >>= 7;
609 }while( v!=0 );
610 buf[0] &= 0x7f;
611 assert( n<=9 );
612 for(i=0, j=n-1; j>=0; j--, i++){
613 p[i] = buf[j];
614 }
615 return n;
616 }
617
618 /*
619 ** This routine is a faster version of sqlite3PutVarint() that only
620 ** works for 32-bit positive integers and which is optimized for
621 ** the common case of small integers. A MACRO version, putVarint32,
622 ** is provided which inlines the single-byte case. All code should use
623 ** the MACRO version as this function assumes the single-byte case has
624 ** already been handled.
625 */
626 int sqlite3PutVarint32(unsigned char *p, u32 v){
627 #ifndef putVarint32
628 if( (v & ~0x7f)==0 ){
629 p[0] = v;
630 return 1;
631 }
632 #endif
633 if( (v & ~0x3fff)==0 ){
634 p[0] = (u8)((v>>7) | 0x80);
635 p[1] = (u8)(v & 0x7f);
636 return 2;
637 }
638 return sqlite3PutVarint(p, v);
639 }
640
641 /*
642 ** Read a 64-bit variable-length integer from memory starting at p[0].
643 ** Return the number of bytes read. The value is stored in *v.
644 */
645 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
646 u32 a,b,s;
647
648 a = *p;
649 /* a: p0 (unmasked) */
650 if (!(a&0x80))
651 {
652 *v = a;
653 return 1;
654 }
655
656 p++;
657 b = *p;
658 /* b: p1 (unmasked) */
659 if (!(b&0x80))
660 {
661 a &= 0x7f;
662 a = a<<7;
663 a |= b;
664 *v = a;
665 return 2;
666 }
667
668 p++;
669 a = a<<14;
670 a |= *p;
671 /* a: p0<<14 | p2 (unmasked) */
672 if (!(a&0x80))
673 {
674 a &= (0x7f<<14)|(0x7f);
675 b &= 0x7f;
676 b = b<<7;
677 a |= b;
678 *v = a;
679 return 3;
680 }
681
682 /* CSE1 from below */
683 a &= (0x7f<<14)|(0x7f);
684 p++;
685 b = b<<14;
686 b |= *p;
687 /* b: p1<<14 | p3 (unmasked) */
688 if (!(b&0x80))
689 {
690 b &= (0x7f<<14)|(0x7f);
691 /* moved CSE1 up */
692 /* a &= (0x7f<<14)|(0x7f); */
693 a = a<<7;
694 a |= b;
695 *v = a;
696 return 4;
697 }
698
699 /* a: p0<<14 | p2 (masked) */
700 /* b: p1<<14 | p3 (unmasked) */
701 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
702 /* moved CSE1 up */
703 /* a &= (0x7f<<14)|(0x7f); */
704 b &= (0x7f<<14)|(0x7f);
705 s = a;
706 /* s: p0<<14 | p2 (masked) */
707
708 p++;
709 a = a<<14;
710 a |= *p;
711 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
712 if (!(a&0x80))
713 {
714 /* we can skip these cause they were (effectively) done above in calc'ing s */
715 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
716 /* b &= (0x7f<<14)|(0x7f); */
717 b = b<<7;
718 a |= b;
719 s = s>>18;
720 *v = ((u64)s)<<32 | a;
721 return 5;
722 }
723
724 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
725 s = s<<7;
726 s |= b;
727 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
728
729 p++;
730 b = b<<14;
731 b |= *p;
732 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
733 if (!(b&0x80))
734 {
735 /* we can skip this cause it was (effectively) done above in calc'ing s */
736 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
737 a &= (0x7f<<14)|(0x7f);
738 a = a<<7;
739 a |= b;
740 s = s>>18;
741 *v = ((u64)s)<<32 | a;
742 return 6;
743 }
744
745 p++;
746 a = a<<14;
747 a |= *p;
748 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
749 if (!(a&0x80))
750 {
751 a &= (0x1f<<28)|(0x7f<<14)|(0x7f);
752 b &= (0x7f<<14)|(0x7f);
753 b = b<<7;
754 a |= b;
755 s = s>>11;
756 *v = ((u64)s)<<32 | a;
757 return 7;
758 }
759
760 /* CSE2 from below */
761 a &= (0x7f<<14)|(0x7f);
762 p++;
763 b = b<<14;
764 b |= *p;
765 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
766 if (!(b&0x80))
767 {
768 b &= (0x1f<<28)|(0x7f<<14)|(0x7f);
769 /* moved CSE2 up */
770 /* a &= (0x7f<<14)|(0x7f); */
771 a = a<<7;
772 a |= b;
773 s = s>>4;
774 *v = ((u64)s)<<32 | a;
775 return 8;
776 }
777
778 p++;
779 a = a<<15;
780 a |= *p;
781 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
782
783 /* moved CSE2 up */
784 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
785 b &= (0x7f<<14)|(0x7f);
786 b = b<<8;
787 a |= b;
788
789 s = s<<4;
790 b = p[-4];
791 b &= 0x7f;
792 b = b>>3;
793 s |= b;
794
795 *v = ((u64)s)<<32 | a;
796
797 return 9;
798 }
799
800 /*
801 ** Read a 32-bit variable-length integer from memory starting at p[0].
802 ** Return the number of bytes read. The value is stored in *v.
803 **
804 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
805 ** integer, then set *v to 0xffffffff.
806 **
807 ** A MACRO version, getVarint32, is provided which inlines the
808 ** single-byte case. All code should use the MACRO version as
809 ** this function assumes the single-byte case has already been handled.
810 */
811 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
812 u32 a,b;
813
814 /* The 1-byte case. Overwhelmingly the most common. Handled inline
815 ** by the getVarin32() macro */
816 a = *p;
817 /* a: p0 (unmasked) */
818 #ifndef getVarint32
819 if (!(a&0x80))
820 {
821 /* Values between 0 and 127 */
822 *v = a;
823 return 1;
824 }
825 #endif
826
827 /* The 2-byte case */
828 p++;
829 b = *p;
830 /* b: p1 (unmasked) */
831 if (!(b&0x80))
832 {
833 /* Values between 128 and 16383 */
834 a &= 0x7f;
835 a = a<<7;
836 *v = a | b;
837 return 2;
838 }
839
840 /* The 3-byte case */
841 p++;
842 a = a<<14;
843 a |= *p;
844 /* a: p0<<14 | p2 (unmasked) */
845 if (!(a&0x80))
846 {
847 /* Values between 16384 and 2097151 */
848 a &= (0x7f<<14)|(0x7f);
849 b &= 0x7f;
850 b = b<<7;
851 *v = a | b;
852 return 3;
853 }
854
855 /* A 32-bit varint is used to store size information in btrees.
856 ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
857 ** A 3-byte varint is sufficient, for example, to record the size
858 ** of a 1048569-byte BLOB or string.
859 **
860 ** We only unroll the first 1-, 2-, and 3- byte cases. The very
861 ** rare larger cases can be handled by the slower 64-bit varint
862 ** routine.
863 */
864 #if 1
865 {
866 u64 v64;
867 u8 n;
868
869 p -= 2;
870 n = sqlite3GetVarint(p, &v64);
871 assert( n>3 && n<=9 );
872 if( (v64 & SQLITE_MAX_U32)!=v64 ){
873 *v = 0xffffffff;
874 }else{
875 *v = (u32)v64;
876 }
877 return n;
878 }
879
880 #else
881 /* For following code (kept for historical record only) shows an
882 ** unrolling for the 3- and 4-byte varint cases. This code is
883 ** slightly faster, but it is also larger and much harder to test.
884 */
885 p++;
886 b = b<<14;
887 b |= *p;
888 /* b: p1<<14 | p3 (unmasked) */
889 if (!(b&0x80))
890 {
891 /* Values between 2097152 and 268435455 */
892 b &= (0x7f<<14)|(0x7f);
893 a &= (0x7f<<14)|(0x7f);
894 a = a<<7;
895 *v = a | b;
896 return 4;
897 }
898
899 p++;
900 a = a<<14;
901 a |= *p;
902 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
903 if (!(a&0x80))
904 {
905 /* Walues between 268435456 and 34359738367 */
906 a &= (0x1f<<28)|(0x7f<<14)|(0x7f);
907 b &= (0x1f<<28)|(0x7f<<14)|(0x7f);
908 b = b<<7;
909 *v = a | b;
910 return 5;
911 }
912
913 /* We can only reach this point when reading a corrupt database
914 ** file. In that case we are not in any hurry. Use the (relatively
915 ** slow) general-purpose sqlite3GetVarint() routine to extract the
916 ** value. */
917 {
918 u64 v64;
919 u8 n;
920
921 p -= 4;
922 n = sqlite3GetVarint(p, &v64);
923 assert( n>5 && n<=9 );
924 *v = (u32)v64;
925 return n;
926 }
927 #endif
928 }
929
930 /*
931 ** Return the number of bytes that will be needed to store the given
932 ** 64-bit integer.
933 */
934 int sqlite3VarintLen(u64 v){
935 int i = 0;
936 do{
937 i++;
938 v >>= 7;
939 }while( v!=0 && ALWAYS(i<9) );
940 return i;
941 }
942
943
944 /*
945 ** Read or write a four-byte big-endian integer value.
946 */
947 u32 sqlite3Get4byte(const u8 *p){
948 return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
949 }
950 void sqlite3Put4byte(unsigned char *p, u32 v){
951 p[0] = (u8)(v>>24);
952 p[1] = (u8)(v>>16);
953 p[2] = (u8)(v>>8);
954 p[3] = (u8)v;
955 }
956
957
958
959 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
960 /*
961 ** Translate a single byte of Hex into an integer.
962 ** This routine only works if h really is a valid hexadecimal
963 ** character: 0..9a..fA..F
964 */
965 static u8 hexToInt(int h){
966 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
967 #ifdef SQLITE_ASCII
968 h += 9*(1&(h>>6));
969 #endif
970 #ifdef SQLITE_EBCDIC
971 h += 9*(1&~(h>>4));
972 #endif
973 return (u8)(h & 0xf);
974 }
975 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
976
977 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
978 /*
979 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
980 ** value. Return a pointer to its binary value. Space to hold the
981 ** binary value has been obtained from malloc and must be freed by
982 ** the calling routine.
983 */
984 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
985 char *zBlob;
986 int i;
987
988 zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
989 n--;
990 if( zBlob ){
991 for(i=0; i<n; i+=2){
992 zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]);
993 }
994 zBlob[i/2] = 0;
995 }
996 return zBlob;
997 }
998 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
999
1000
1001 /*
1002 ** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY.
1003 ** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN
1004 ** when this routine is called.
1005 **
1006 ** This routine is called when entering an SQLite API. The SQLITE_MAGIC_OPEN
1007 ** value indicates that the database connection passed into the API is
1008 ** open and is not being used by another thread. By changing the value
1009 ** to SQLITE_MAGIC_BUSY we indicate that the connection is in use.
1010 ** sqlite3SafetyOff() below will change the value back to SQLITE_MAGIC_OPEN
1011 ** when the API exits.
1012 **
1013 ** This routine is a attempt to detect if two threads use the
1014 ** same sqlite* pointer at the same time. There is a race
1015 ** condition so it is possible that the error is not detected.
1016 ** But usually the problem will be seen. The result will be an
1017 ** error which can be used to debug the application that is
1018 ** using SQLite incorrectly.
1019 **
1020 ** Ticket #202: If db->magic is not a valid open value, take care not
1021 ** to modify the db structure at all. It could be that db is a stale
1022 ** pointer. In other words, it could be that there has been a prior
1023 ** call to sqlite3_close(db) and db has been deallocated. And we do
1024 ** not want to write into deallocated memory.
1025 */
1026 #ifdef SQLITE_DEBUG
1027 int sqlite3SafetyOn(sqlite3 *db){
1028 if( db->magic==SQLITE_MAGIC_OPEN ){
1029 db->magic = SQLITE_MAGIC_BUSY;
1030 assert( sqlite3_mutex_held(db->mutex) );
1031 return 0;
1032 }else if( db->magic==SQLITE_MAGIC_BUSY ){
1033 db->magic = SQLITE_MAGIC_ERROR;
1034 db->u1.isInterrupted = 1;
1035 }
1036 return 1;
1037 }
1038 #endif
1039
1040 /*
1041 ** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN.
1042 ** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY
1043 ** when this routine is called.
1044 */
1045 #ifdef SQLITE_DEBUG
1046 int sqlite3SafetyOff(sqlite3 *db){
1047 if( db->magic==SQLITE_MAGIC_BUSY ){
1048 db->magic = SQLITE_MAGIC_OPEN;
1049 assert( sqlite3_mutex_held(db->mutex) );
1050 return 0;
1051 }else{
1052 db->magic = SQLITE_MAGIC_ERROR;
1053 db->u1.isInterrupted = 1;
1054 return 1;
1055 }
1056 }
1057 #endif
1058
1059 /*
1060 ** Check to make sure we have a valid db pointer. This test is not
1061 ** foolproof but it does provide some measure of protection against
1062 ** misuse of the interface such as passing in db pointers that are
1063 ** NULL or which have been previously closed. If this routine returns
1064 ** 1 it means that the db pointer is valid and 0 if it should not be
1065 ** dereferenced for any reason. The calling function should invoke
1066 ** SQLITE_MISUSE immediately.
1067 **
1068 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1069 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1070 ** open properly and is not fit for general use but which can be
1071 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1072 */
1073 int sqlite3SafetyCheckOk(sqlite3 *db){
1074 u32 magic;
1075 if( db==0 ) return 0;
1076 magic = db->magic;
1077 if( magic!=SQLITE_MAGIC_OPEN
1078 #ifdef SQLITE_DEBUG
1079 && magic!=SQLITE_MAGIC_BUSY
1080 #endif
1081 ){
1082 return 0;
1083 }else{
1084 return 1;
1085 }
1086 }
1087 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1088 u32 magic;
1089 magic = db->magic;
1090 if( magic!=SQLITE_MAGIC_SICK &&
1091 magic!=SQLITE_MAGIC_OPEN &&
1092 magic!=SQLITE_MAGIC_BUSY ) return 0;
1093 return 1;
1094 }
OLDNEW
« no previous file with comments | « third_party/sqlite/src/utf.c ('k') | third_party/sqlite/src/vacuum.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698