Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(190)

Side by Side Diff: third_party/sqlite/src/sqliteInt.h

Issue 3108030: Move bundled copy of sqlite one level deeper to better separate it... (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src/
Patch Set: Created 10 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « third_party/sqlite/src/sqlite3ext.h ('k') | third_party/sqlite/src/sqliteLimit.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Internal interface definitions for SQLite.
13 **
14 */
15 #ifndef _SQLITEINT_H_
16 #define _SQLITEINT_H_
17
18 /*
19 ** These #defines should enable >2GB file support on POSIX if the
20 ** underlying operating system supports it. If the OS lacks
21 ** large file support, or if the OS is windows, these should be no-ops.
22 **
23 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any
24 ** system #includes. Hence, this block of code must be the very first
25 ** code in all source files.
26 **
27 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
28 ** on the compiler command line. This is necessary if you are compiling
29 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work
30 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2
31 ** without this option, LFS is enable. But LFS does not exist in the kernel
32 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary
33 ** portability you should omit LFS.
34 **
35 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later.
36 */
37 #ifndef SQLITE_DISABLE_LFS
38 # define _LARGE_FILE 1
39 # ifndef _FILE_OFFSET_BITS
40 # define _FILE_OFFSET_BITS 64
41 # endif
42 # define _LARGEFILE_SOURCE 1
43 #endif
44
45 /*
46 ** Include the configuration header output by 'configure' if we're using the
47 ** autoconf-based build
48 */
49 #ifdef _HAVE_SQLITE_CONFIG_H
50 #include "config.h"
51 #endif
52
53 #include "sqliteLimit.h"
54
55 /* Disable nuisance warnings on Borland compilers */
56 #if defined(__BORLANDC__)
57 #pragma warn -rch /* unreachable code */
58 #pragma warn -ccc /* Condition is always true or false */
59 #pragma warn -aus /* Assigned value is never used */
60 #pragma warn -csu /* Comparing signed and unsigned */
61 #pragma warn -spa /* Suspicious pointer arithmetic */
62 #endif
63
64 /* Needed for various definitions... */
65 #ifndef _GNU_SOURCE
66 # define _GNU_SOURCE
67 #endif
68
69 /*
70 ** Include standard header files as necessary
71 */
72 #ifdef HAVE_STDINT_H
73 #include <stdint.h>
74 #endif
75 #ifdef HAVE_INTTYPES_H
76 #include <inttypes.h>
77 #endif
78
79 #define SQLITE_INDEX_SAMPLES 10
80
81 /*
82 ** This macro is used to "hide" some ugliness in casting an int
83 ** value to a ptr value under the MSVC 64-bit compiler. Casting
84 ** non 64-bit values to ptr types results in a "hard" error with
85 ** the MSVC 64-bit compiler which this attempts to avoid.
86 **
87 ** A simple compiler pragma or casting sequence could not be found
88 ** to correct this in all situations, so this macro was introduced.
89 **
90 ** It could be argued that the intptr_t type could be used in this
91 ** case, but that type is not available on all compilers, or
92 ** requires the #include of specific headers which differs between
93 ** platforms.
94 **
95 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on
96 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)).
97 ** So we have to define the macros in different ways depending on the
98 ** compiler.
99 */
100 #if defined(__GNUC__)
101 # if defined(HAVE_STDINT_H)
102 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X))
103 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X))
104 # else
105 # define SQLITE_INT_TO_PTR(X) ((void*)(X))
106 # define SQLITE_PTR_TO_INT(X) ((int)(X))
107 # endif
108 #else
109 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X])
110 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0))
111 #endif
112
113
114 /*
115 ** The SQLITE_THREADSAFE macro must be defined as either 0 or 1.
116 ** Older versions of SQLite used an optional THREADSAFE macro.
117 ** We support that for legacy
118 */
119 #if !defined(SQLITE_THREADSAFE)
120 #if defined(THREADSAFE)
121 # define SQLITE_THREADSAFE THREADSAFE
122 #else
123 # define SQLITE_THREADSAFE 1
124 #endif
125 #endif
126
127 /*
128 ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1.
129 ** It determines whether or not the features related to
130 ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can
131 ** be overridden at runtime using the sqlite3_config() API.
132 */
133 #if !defined(SQLITE_DEFAULT_MEMSTATUS)
134 # define SQLITE_DEFAULT_MEMSTATUS 1
135 #endif
136
137 /*
138 ** Exactly one of the following macros must be defined in order to
139 ** specify which memory allocation subsystem to use.
140 **
141 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc()
142 ** SQLITE_MEMDEBUG // Debugging version of system malloc()
143 ** SQLITE_MEMORY_SIZE // internal allocator #1
144 ** SQLITE_MMAP_HEAP_SIZE // internal mmap() allocator
145 ** SQLITE_POW2_MEMORY_SIZE // internal power-of-two allocator
146 **
147 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
148 ** the default.
149 */
150 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\
151 defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\
152 defined(SQLITE_POW2_MEMORY_SIZE)>1
153 # error "At most one of the following compile-time configuration options\
154 is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG, SQLITE_MEMORY_SIZE,\
155 SQLITE_MMAP_HEAP_SIZE, SQLITE_POW2_MEMORY_SIZE"
156 #endif
157 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\
158 defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\
159 defined(SQLITE_POW2_MEMORY_SIZE)==0
160 # define SQLITE_SYSTEM_MALLOC 1
161 #endif
162
163 /*
164 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the
165 ** sizes of memory allocations below this value where possible.
166 */
167 #if !defined(SQLITE_MALLOC_SOFT_LIMIT)
168 # define SQLITE_MALLOC_SOFT_LIMIT 1024
169 #endif
170
171 /*
172 ** We need to define _XOPEN_SOURCE as follows in order to enable
173 ** recursive mutexes on most Unix systems. But Mac OS X is different.
174 ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told,
175 ** so it is omitted there. See ticket #2673.
176 **
177 ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly
178 ** implemented on some systems. So we avoid defining it at all
179 ** if it is already defined or if it is unneeded because we are
180 ** not doing a threadsafe build. Ticket #2681.
181 **
182 ** See also ticket #2741.
183 */
184 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQ LITE_THREADSAFE
185 # define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */
186 #endif
187
188 /*
189 ** The TCL headers are only needed when compiling the TCL bindings.
190 */
191 #if defined(SQLITE_TCL) || defined(TCLSH)
192 # include <tcl.h>
193 #endif
194
195 /*
196 ** Many people are failing to set -DNDEBUG=1 when compiling SQLite.
197 ** Setting NDEBUG makes the code smaller and run faster. So the following
198 ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1
199 ** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out
200 ** feature.
201 */
202 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
203 # define NDEBUG 1
204 #endif
205
206 /*
207 ** The testcase() macro is used to aid in coverage testing. When
208 ** doing coverage testing, the condition inside the argument to
209 ** testcase() must be evaluated both true and false in order to
210 ** get full branch coverage. The testcase() macro is inserted
211 ** to help ensure adequate test coverage in places where simple
212 ** condition/decision coverage is inadequate. For example, testcase()
213 ** can be used to make sure boundary values are tested. For
214 ** bitmask tests, testcase() can be used to make sure each bit
215 ** is significant and used at least once. On switch statements
216 ** where multiple cases go to the same block of code, testcase()
217 ** can insure that all cases are evaluated.
218 **
219 */
220 #ifdef SQLITE_COVERAGE_TEST
221 void sqlite3Coverage(int);
222 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); }
223 #else
224 # define testcase(X)
225 #endif
226
227 /*
228 ** The TESTONLY macro is used to enclose variable declarations or
229 ** other bits of code that are needed to support the arguments
230 ** within testcase() and assert() macros.
231 */
232 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST)
233 # define TESTONLY(X) X
234 #else
235 # define TESTONLY(X)
236 #endif
237
238 /*
239 ** Sometimes we need a small amount of code such as a variable initialization
240 ** to setup for a later assert() statement. We do not want this code to
241 ** appear when assert() is disabled. The following macro is therefore
242 ** used to contain that setup code. The "VVA" acronym stands for
243 ** "Verification, Validation, and Accreditation". In other words, the
244 ** code within VVA_ONLY() will only run during verification processes.
245 */
246 #ifndef NDEBUG
247 # define VVA_ONLY(X) X
248 #else
249 # define VVA_ONLY(X)
250 #endif
251
252 /*
253 ** The ALWAYS and NEVER macros surround boolean expressions which
254 ** are intended to always be true or false, respectively. Such
255 ** expressions could be omitted from the code completely. But they
256 ** are included in a few cases in order to enhance the resilience
257 ** of SQLite to unexpected behavior - to make the code "self-healing"
258 ** or "ductile" rather than being "brittle" and crashing at the first
259 ** hint of unplanned behavior.
260 **
261 ** In other words, ALWAYS and NEVER are added for defensive code.
262 **
263 ** When doing coverage testing ALWAYS and NEVER are hard-coded to
264 ** be true and false so that the unreachable code then specify will
265 ** not be counted as untested code.
266 */
267 #if defined(SQLITE_COVERAGE_TEST)
268 # define ALWAYS(X) (1)
269 # define NEVER(X) (0)
270 #elif !defined(NDEBUG)
271 # define ALWAYS(X) ((X)?1:(assert(0),0))
272 # define NEVER(X) ((X)?(assert(0),1):0)
273 #else
274 # define ALWAYS(X) (X)
275 # define NEVER(X) (X)
276 #endif
277
278 /*
279 ** The macro unlikely() is a hint that surrounds a boolean
280 ** expression that is usually false. Macro likely() surrounds
281 ** a boolean expression that is usually true. GCC is able to
282 ** use these hints to generate better code, sometimes.
283 */
284 #if defined(__GNUC__) && 0
285 # define likely(X) __builtin_expect((X),1)
286 # define unlikely(X) __builtin_expect((X),0)
287 #else
288 # define likely(X) !!(X)
289 # define unlikely(X) !!(X)
290 #endif
291
292 #include "sqlite3.h"
293 #include "hash.h"
294 #include "parse.h"
295 #include <stdio.h>
296 #include <stdlib.h>
297 #include <string.h>
298 #include <assert.h>
299 #include <stddef.h>
300
301 /*
302 ** If compiling for a processor that lacks floating point support,
303 ** substitute integer for floating-point
304 */
305 #ifdef SQLITE_OMIT_FLOATING_POINT
306 # define double sqlite_int64
307 # define LONGDOUBLE_TYPE sqlite_int64
308 # ifndef SQLITE_BIG_DBL
309 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50)
310 # endif
311 # define SQLITE_OMIT_DATETIME_FUNCS 1
312 # define SQLITE_OMIT_TRACE 1
313 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
314 # undef SQLITE_HAVE_ISNAN
315 #endif
316 #ifndef SQLITE_BIG_DBL
317 # define SQLITE_BIG_DBL (1e99)
318 #endif
319
320 /*
321 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
322 ** afterward. Having this macro allows us to cause the C compiler
323 ** to omit code used by TEMP tables without messy #ifndef statements.
324 */
325 #ifdef SQLITE_OMIT_TEMPDB
326 #define OMIT_TEMPDB 1
327 #else
328 #define OMIT_TEMPDB 0
329 #endif
330
331 /*
332 ** If the following macro is set to 1, then NULL values are considered
333 ** distinct when determining whether or not two entries are the same
334 ** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL,
335 ** OCELOT, and Firebird all work. The SQL92 spec explicitly says this
336 ** is the way things are suppose to work.
337 **
338 ** If the following macro is set to 0, the NULLs are indistinct for
339 ** a UNIQUE index. In this mode, you can only have a single NULL entry
340 ** for a column declared UNIQUE. This is the way Informix and SQL Server
341 ** work.
342 */
343 #define NULL_DISTINCT_FOR_UNIQUE 1
344
345 /*
346 ** The "file format" number is an integer that is incremented whenever
347 ** the VDBE-level file format changes. The following macros define the
348 ** the default file format for new databases and the maximum file format
349 ** that the library can read.
350 */
351 #define SQLITE_MAX_FILE_FORMAT 4
352 #ifndef SQLITE_DEFAULT_FILE_FORMAT
353 # define SQLITE_DEFAULT_FILE_FORMAT 1
354 #endif
355
356 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS
357 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0
358 #endif
359
360 /*
361 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
362 ** on the command-line
363 */
364 #ifndef SQLITE_TEMP_STORE
365 # define SQLITE_TEMP_STORE 1
366 #endif
367
368 /*
369 ** GCC does not define the offsetof() macro so we'll have to do it
370 ** ourselves.
371 */
372 #ifndef offsetof
373 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
374 #endif
375
376 /*
377 ** Check to see if this machine uses EBCDIC. (Yes, believe it or
378 ** not, there are still machines out there that use EBCDIC.)
379 */
380 #if 'A' == '\301'
381 # define SQLITE_EBCDIC 1
382 #else
383 # define SQLITE_ASCII 1
384 #endif
385
386 /*
387 ** Integers of known sizes. These typedefs might change for architectures
388 ** where the sizes very. Preprocessor macros are available so that the
389 ** types can be conveniently redefined at compile-type. Like this:
390 **
391 ** cc '-DUINTPTR_TYPE=long long int' ...
392 */
393 #ifndef UINT32_TYPE
394 # ifdef HAVE_UINT32_T
395 # define UINT32_TYPE uint32_t
396 # else
397 # define UINT32_TYPE unsigned int
398 # endif
399 #endif
400 #ifndef UINT16_TYPE
401 # ifdef HAVE_UINT16_T
402 # define UINT16_TYPE uint16_t
403 # else
404 # define UINT16_TYPE unsigned short int
405 # endif
406 #endif
407 #ifndef INT16_TYPE
408 # ifdef HAVE_INT16_T
409 # define INT16_TYPE int16_t
410 # else
411 # define INT16_TYPE short int
412 # endif
413 #endif
414 #ifndef UINT8_TYPE
415 # ifdef HAVE_UINT8_T
416 # define UINT8_TYPE uint8_t
417 # else
418 # define UINT8_TYPE unsigned char
419 # endif
420 #endif
421 #ifndef INT8_TYPE
422 # ifdef HAVE_INT8_T
423 # define INT8_TYPE int8_t
424 # else
425 # define INT8_TYPE signed char
426 # endif
427 #endif
428 #ifndef LONGDOUBLE_TYPE
429 # define LONGDOUBLE_TYPE long double
430 #endif
431 typedef sqlite_int64 i64; /* 8-byte signed integer */
432 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */
433 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */
434 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */
435 typedef INT16_TYPE i16; /* 2-byte signed integer */
436 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */
437 typedef INT8_TYPE i8; /* 1-byte signed integer */
438
439 /*
440 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value
441 ** that can be stored in a u32 without loss of data. The value
442 ** is 0x00000000ffffffff. But because of quirks of some compilers, we
443 ** have to specify the value in the less intuitive manner shown:
444 */
445 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1)
446
447 /*
448 ** Macros to determine whether the machine is big or little endian,
449 ** evaluated at runtime.
450 */
451 #ifdef SQLITE_AMALGAMATION
452 const int sqlite3one = 1;
453 #else
454 extern const int sqlite3one;
455 #endif
456 #if defined(i386) || defined(__i386__) || defined(_M_IX86)\
457 || defined(__x86_64) || defined(__x86_64__)
458 # define SQLITE_BIGENDIAN 0
459 # define SQLITE_LITTLEENDIAN 1
460 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE
461 #else
462 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0)
463 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
464 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
465 #endif
466
467 /*
468 ** Constants for the largest and smallest possible 64-bit signed integers.
469 ** These macros are designed to work correctly on both 32-bit and 64-bit
470 ** compilers.
471 */
472 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32))
473 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
474
475 /*
476 ** Round up a number to the next larger multiple of 8. This is used
477 ** to force 8-byte alignment on 64-bit architectures.
478 */
479 #define ROUND8(x) (((x)+7)&~7)
480
481 /*
482 ** Round down to the nearest multiple of 8
483 */
484 #define ROUNDDOWN8(x) ((x)&~7)
485
486 /*
487 ** Assert that the pointer X is aligned to an 8-byte boundary.
488 */
489 #define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0)
490
491
492 /*
493 ** An instance of the following structure is used to store the busy-handler
494 ** callback for a given sqlite handle.
495 **
496 ** The sqlite.busyHandler member of the sqlite struct contains the busy
497 ** callback for the database handle. Each pager opened via the sqlite
498 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler
499 ** callback is currently invoked only from within pager.c.
500 */
501 typedef struct BusyHandler BusyHandler;
502 struct BusyHandler {
503 int (*xFunc)(void *,int); /* The busy callback */
504 void *pArg; /* First arg to busy callback */
505 int nBusy; /* Incremented with each busy call */
506 };
507
508 /*
509 ** Name of the master database table. The master database table
510 ** is a special table that holds the names and attributes of all
511 ** user tables and indices.
512 */
513 #define MASTER_NAME "sqlite_master"
514 #define TEMP_MASTER_NAME "sqlite_temp_master"
515
516 /*
517 ** The root-page of the master database table.
518 */
519 #define MASTER_ROOT 1
520
521 /*
522 ** The name of the schema table.
523 */
524 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
525
526 /*
527 ** A convenience macro that returns the number of elements in
528 ** an array.
529 */
530 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0])))
531
532 /*
533 ** The following value as a destructor means to use sqlite3DbFree().
534 ** This is an internal extension to SQLITE_STATIC and SQLITE_TRANSIENT.
535 */
536 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3DbFree)
537
538 /*
539 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does
540 ** not support Writable Static Data (WSD) such as global and static variables.
541 ** All variables must either be on the stack or dynamically allocated from
542 ** the heap. When WSD is unsupported, the variable declarations scattered
543 ** throughout the SQLite code must become constants instead. The SQLITE_WSD
544 ** macro is used for this purpose. And instead of referencing the variable
545 ** directly, we use its constant as a key to lookup the run-time allocated
546 ** buffer that holds real variable. The constant is also the initializer
547 ** for the run-time allocated buffer.
548 **
549 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL
550 ** macros become no-ops and have zero performance impact.
551 */
552 #ifdef SQLITE_OMIT_WSD
553 #define SQLITE_WSD const
554 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v)))
555 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config)
556 int sqlite3_wsd_init(int N, int J);
557 void *sqlite3_wsd_find(void *K, int L);
558 #else
559 #define SQLITE_WSD
560 #define GLOBAL(t,v) v
561 #define sqlite3GlobalConfig sqlite3Config
562 #endif
563
564 /*
565 ** The following macros are used to suppress compiler warnings and to
566 ** make it clear to human readers when a function parameter is deliberately
567 ** left unused within the body of a function. This usually happens when
568 ** a function is called via a function pointer. For example the
569 ** implementation of an SQL aggregate step callback may not use the
570 ** parameter indicating the number of arguments passed to the aggregate,
571 ** if it knows that this is enforced elsewhere.
572 **
573 ** When a function parameter is not used at all within the body of a function,
574 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer.
575 ** However, these macros may also be used to suppress warnings related to
576 ** parameters that may or may not be used depending on compilation options.
577 ** For example those parameters only used in assert() statements. In these
578 ** cases the parameters are named as per the usual conventions.
579 */
580 #define UNUSED_PARAMETER(x) (void)(x)
581 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y)
582
583 /*
584 ** Forward references to structures
585 */
586 typedef struct AggInfo AggInfo;
587 typedef struct AuthContext AuthContext;
588 typedef struct AutoincInfo AutoincInfo;
589 typedef struct Bitvec Bitvec;
590 typedef struct RowSet RowSet;
591 typedef struct CollSeq CollSeq;
592 typedef struct Column Column;
593 typedef struct Db Db;
594 typedef struct Schema Schema;
595 typedef struct Expr Expr;
596 typedef struct ExprList ExprList;
597 typedef struct ExprSpan ExprSpan;
598 typedef struct FKey FKey;
599 typedef struct FuncDef FuncDef;
600 typedef struct FuncDefHash FuncDefHash;
601 typedef struct IdList IdList;
602 typedef struct Index Index;
603 typedef struct IndexSample IndexSample;
604 typedef struct KeyClass KeyClass;
605 typedef struct KeyInfo KeyInfo;
606 typedef struct Lookaside Lookaside;
607 typedef struct LookasideSlot LookasideSlot;
608 typedef struct Module Module;
609 typedef struct NameContext NameContext;
610 typedef struct Parse Parse;
611 typedef struct Savepoint Savepoint;
612 typedef struct Select Select;
613 typedef struct SrcList SrcList;
614 typedef struct StrAccum StrAccum;
615 typedef struct Table Table;
616 typedef struct TableLock TableLock;
617 typedef struct Token Token;
618 typedef struct TriggerPrg TriggerPrg;
619 typedef struct TriggerStep TriggerStep;
620 typedef struct Trigger Trigger;
621 typedef struct UnpackedRecord UnpackedRecord;
622 typedef struct VTable VTable;
623 typedef struct Walker Walker;
624 typedef struct WherePlan WherePlan;
625 typedef struct WhereInfo WhereInfo;
626 typedef struct WhereLevel WhereLevel;
627
628 /*
629 ** Defer sourcing vdbe.h and btree.h until after the "u8" and
630 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
631 ** pointer types (i.e. FuncDef) defined above.
632 */
633 #include "btree.h"
634 #include "vdbe.h"
635 #include "pager.h"
636 #include "pcache.h"
637
638 #include "os.h"
639 #include "mutex.h"
640
641
642 /*
643 ** Each database file to be accessed by the system is an instance
644 ** of the following structure. There are normally two of these structures
645 ** in the sqlite.aDb[] array. aDb[0] is the main database file and
646 ** aDb[1] is the database file used to hold temporary tables. Additional
647 ** databases may be attached.
648 */
649 struct Db {
650 char *zName; /* Name of this database */
651 Btree *pBt; /* The B*Tree structure for this database file */
652 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */
653 u8 safety_level; /* How aggressive at syncing data to disk */
654 Schema *pSchema; /* Pointer to database schema (possibly shared) */
655 };
656
657 /*
658 ** An instance of the following structure stores a database schema.
659 **
660 ** If there are no virtual tables configured in this schema, the
661 ** Schema.db variable is set to NULL. After the first virtual table
662 ** has been added, it is set to point to the database connection
663 ** used to create the connection. Once a virtual table has been
664 ** added to the Schema structure and the Schema.db variable populated,
665 ** only that database connection may use the Schema to prepare
666 ** statements.
667 */
668 struct Schema {
669 int schema_cookie; /* Database schema version number for this file */
670 Hash tblHash; /* All tables indexed by name */
671 Hash idxHash; /* All (named) indices indexed by name */
672 Hash trigHash; /* All triggers indexed by name */
673 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */
674 u8 file_format; /* Schema format version for this file */
675 u8 enc; /* Text encoding used by this database */
676 u16 flags; /* Flags associated with this schema */
677 int cache_size; /* Number of pages to use in the cache */
678 #ifndef SQLITE_OMIT_VIRTUALTABLE
679 sqlite3 *db; /* "Owner" connection. See comment above */
680 #endif
681 };
682
683 /*
684 ** These macros can be used to test, set, or clear bits in the
685 ** Db.flags field.
686 */
687 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P))
688 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0)
689 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P)
690 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P)
691
692 /*
693 ** Allowed values for the DB.flags field.
694 **
695 ** The DB_SchemaLoaded flag is set after the database schema has been
696 ** read into internal hash tables.
697 **
698 ** DB_UnresetViews means that one or more views have column names that
699 ** have been filled out. If the schema changes, these column names might
700 ** changes and so the view will need to be reset.
701 */
702 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */
703 #define DB_UnresetViews 0x0002 /* Some views have defined column names */
704 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */
705
706 /*
707 ** The number of different kinds of things that can be limited
708 ** using the sqlite3_limit() interface.
709 */
710 #define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1)
711
712 /*
713 ** Lookaside malloc is a set of fixed-size buffers that can be used
714 ** to satisfy small transient memory allocation requests for objects
715 ** associated with a particular database connection. The use of
716 ** lookaside malloc provides a significant performance enhancement
717 ** (approx 10%) by avoiding numerous malloc/free requests while parsing
718 ** SQL statements.
719 **
720 ** The Lookaside structure holds configuration information about the
721 ** lookaside malloc subsystem. Each available memory allocation in
722 ** the lookaside subsystem is stored on a linked list of LookasideSlot
723 ** objects.
724 **
725 ** Lookaside allocations are only allowed for objects that are associated
726 ** with a particular database connection. Hence, schema information cannot
727 ** be stored in lookaside because in shared cache mode the schema information
728 ** is shared by multiple database connections. Therefore, while parsing
729 ** schema information, the Lookaside.bEnabled flag is cleared so that
730 ** lookaside allocations are not used to construct the schema objects.
731 */
732 struct Lookaside {
733 u16 sz; /* Size of each buffer in bytes */
734 u8 bEnabled; /* False to disable new lookaside allocations */
735 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */
736 int nOut; /* Number of buffers currently checked out */
737 int mxOut; /* Highwater mark for nOut */
738 LookasideSlot *pFree; /* List of available buffers */
739 void *pStart; /* First byte of available memory space */
740 void *pEnd; /* First byte past end of available space */
741 };
742 struct LookasideSlot {
743 LookasideSlot *pNext; /* Next buffer in the list of free buffers */
744 };
745
746 /*
747 ** A hash table for function definitions.
748 **
749 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots.
750 ** Collisions are on the FuncDef.pHash chain.
751 */
752 struct FuncDefHash {
753 FuncDef *a[23]; /* Hash table for functions */
754 };
755
756 /*
757 ** Each database is an instance of the following structure.
758 **
759 ** The sqlite.lastRowid records the last insert rowid generated by an
760 ** insert statement. Inserts on views do not affect its value. Each
761 ** trigger has its own context, so that lastRowid can be updated inside
762 ** triggers as usual. The previous value will be restored once the trigger
763 ** exits. Upon entering a before or instead of trigger, lastRowid is no
764 ** longer (since after version 2.8.12) reset to -1.
765 **
766 ** The sqlite.nChange does not count changes within triggers and keeps no
767 ** context. It is reset at start of sqlite3_exec.
768 ** The sqlite.lsChange represents the number of changes made by the last
769 ** insert, update, or delete statement. It remains constant throughout the
770 ** length of a statement and is then updated by OP_SetCounts. It keeps a
771 ** context stack just like lastRowid so that the count of changes
772 ** within a trigger is not seen outside the trigger. Changes to views do not
773 ** affect the value of lsChange.
774 ** The sqlite.csChange keeps track of the number of current changes (since
775 ** the last statement) and is used to update sqlite_lsChange.
776 **
777 ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16
778 ** store the most recent error code and, if applicable, string. The
779 ** internal function sqlite3Error() is used to set these variables
780 ** consistently.
781 */
782 struct sqlite3 {
783 sqlite3_vfs *pVfs; /* OS Interface */
784 int nDb; /* Number of backends currently in use */
785 Db *aDb; /* All backends */
786 int flags; /* Miscellaneous flags. See below */
787 int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */
788 int errCode; /* Most recent error code (SQLITE_*) */
789 int errMask; /* & result codes with this before returning */
790 u8 autoCommit; /* The auto-commit flag. */
791 u8 temp_store; /* 1: file 2: memory 0: default */
792 u8 mallocFailed; /* True if we have seen a malloc failure */
793 u8 dfltLockMode; /* Default locking-mode for attached dbs */
794 u8 dfltJournalMode; /* Default journal mode for attached dbs */
795 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */
796 int nextPagesize; /* Pagesize after VACUUM if >0 */
797 int nTable; /* Number of tables in the database */
798 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */
799 i64 lastRowid; /* ROWID of most recent insert (see above) */
800 u32 magic; /* Magic number for detect library misuse */
801 int nChange; /* Value returned by sqlite3_changes() */
802 int nTotalChange; /* Value returned by sqlite3_total_changes() */
803 sqlite3_mutex *mutex; /* Connection mutex */
804 int aLimit[SQLITE_N_LIMIT]; /* Limits */
805 struct sqlite3InitInfo { /* Information used during initialization */
806 int iDb; /* When back is being initialized */
807 int newTnum; /* Rootpage of table being initialized */
808 u8 busy; /* TRUE if currently initializing */
809 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */
810 } init;
811 int nExtension; /* Number of loaded extensions */
812 void **aExtension; /* Array of shared library handles */
813 struct Vdbe *pVdbe; /* List of active virtual machines */
814 int activeVdbeCnt; /* Number of VDBEs currently executing */
815 int writeVdbeCnt; /* Number of active VDBEs that are writing */
816 void (*xTrace)(void*,const char*); /* Trace function */
817 void *pTraceArg; /* Argument to the trace function */
818 void (*xProfile)(void*,const char*,u64); /* Profiling function */
819 void *pProfileArg; /* Argument to profile function */
820 void *pCommitArg; /* Argument to xCommitCallback() */
821 int (*xCommitCallback)(void*); /* Invoked at every commit. */
822 void *pRollbackArg; /* Argument to xRollbackCallback() */
823 void (*xRollbackCallback)(void*); /* Invoked at every commit. */
824 void *pUpdateArg;
825 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64);
826 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*);
827 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*);
828 void *pCollNeededArg;
829 sqlite3_value *pErr; /* Most recent error message */
830 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */
831 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */
832 union {
833 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */
834 double notUsed1; /* Spacer */
835 } u1;
836 Lookaside lookaside; /* Lookaside malloc configuration */
837 #ifndef SQLITE_OMIT_AUTHORIZATION
838 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
839 /* Access authorization function */
840 void *pAuthArg; /* 1st argument to the access auth function */
841 #endif
842 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
843 int (*xProgress)(void *); /* The progress callback */
844 void *pProgressArg; /* Argument to the progress callback */
845 int nProgressOps; /* Number of opcodes for progress callback */
846 #endif
847 #ifndef SQLITE_OMIT_VIRTUALTABLE
848 Hash aModule; /* populated by sqlite3_create_module() */
849 Table *pVTab; /* vtab with active Connect/Create method */
850 VTable **aVTrans; /* Virtual tables with open transactions */
851 int nVTrans; /* Allocated size of aVTrans */
852 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */
853 #endif
854 FuncDefHash aFunc; /* Hash table of connection functions */
855 Hash aCollSeq; /* All collating sequences */
856 BusyHandler busyHandler; /* Busy callback */
857 int busyTimeout; /* Busy handler timeout, in msec */
858 Db aDbStatic[2]; /* Static space for the 2 default backends */
859 Savepoint *pSavepoint; /* List of active savepoints */
860 int nSavepoint; /* Number of non-transaction savepoints */
861 int nStatement; /* Number of nested statement-transactions */
862 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */
863
864 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
865 /* The following variables are all protected by the STATIC_MASTER
866 ** mutex, not by sqlite3.mutex. They are used by code in notify.c.
867 **
868 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to
869 ** unlock so that it can proceed.
870 **
871 ** When X.pBlockingConnection==Y, that means that something that X tried
872 ** tried to do recently failed with an SQLITE_LOCKED error due to locks
873 ** held by Y.
874 */
875 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */
876 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */
877 void *pUnlockArg; /* Argument to xUnlockNotify */
878 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */
879 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */
880 #endif
881 };
882
883 /*
884 ** A macro to discover the encoding of a database.
885 */
886 #define ENC(db) ((db)->aDb[0].pSchema->enc)
887
888 /*
889 ** Possible values for the sqlite.flags and or Db.flags fields.
890 **
891 ** On sqlite.flags, the SQLITE_InTrans value means that we have
892 ** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement
893 ** transaction is active on that particular database file.
894 */
895 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */
896 #define SQLITE_InTrans 0x00000008 /* True if in a transaction */
897 #define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */
898 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */
899 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */
900 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */
901 /* DELETE, or UPDATE and return */
902 /* the count using a callback. */
903 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */
904 /* result set is empty */
905 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */
906 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */
907 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */
908 #define SQLITE_NoReadlock 0x00001000 /* Readlocks are omitted when
909 ** accessing read-only databases */
910 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */
911 #define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */
912 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */
913 #define SQLITE_FullFSync 0x00010000 /* Use full fsync on the backend */
914 #define SQLITE_LoadExtension 0x00020000 /* Enable load_extension */
915
916 #define SQLITE_RecoveryMode 0x00040000 /* Ignore schema errors */
917 #define SQLITE_ReverseOrder 0x00100000 /* Reverse unordered SELECTs */
918 #define SQLITE_RecTriggers 0x00200000 /* Enable recursive triggers */
919
920 /*
921 ** Possible values for the sqlite.magic field.
922 ** The numbers are obtained at random and have no special meaning, other
923 ** than being distinct from one another.
924 */
925 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */
926 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */
927 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */
928 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */
929 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */
930
931 /*
932 ** Each SQL function is defined by an instance of the following
933 ** structure. A pointer to this structure is stored in the sqlite.aFunc
934 ** hash table. When multiple functions have the same name, the hash table
935 ** points to a linked list of these structures.
936 */
937 struct FuncDef {
938 i16 nArg; /* Number of arguments. -1 means unlimited */
939 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */
940 u8 flags; /* Some combination of SQLITE_FUNC_* */
941 void *pUserData; /* User data parameter */
942 FuncDef *pNext; /* Next function with same name */
943 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
944 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
945 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */
946 char *zName; /* SQL name of the function. */
947 FuncDef *pHash; /* Next with a different name but the same hash */
948 };
949
950 /*
951 ** Possible values for FuncDef.flags
952 */
953 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */
954 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */
955 #define SQLITE_FUNC_EPHEM 0x04 /* Ephemeral. Delete with VDBE */
956 #define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */
957 #define SQLITE_FUNC_PRIVATE 0x10 /* Allowed for internal use only */
958 #define SQLITE_FUNC_COUNT 0x20 /* Built-in count(*) aggregate */
959
960 /*
961 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
962 ** used to create the initializers for the FuncDef structures.
963 **
964 ** FUNCTION(zName, nArg, iArg, bNC, xFunc)
965 ** Used to create a scalar function definition of a function zName
966 ** implemented by C function xFunc that accepts nArg arguments. The
967 ** value passed as iArg is cast to a (void*) and made available
968 ** as the user-data (sqlite3_user_data()) for the function. If
969 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set.
970 **
971 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal)
972 ** Used to create an aggregate function definition implemented by
973 ** the C functions xStep and xFinal. The first four parameters
974 ** are interpreted in the same way as the first 4 parameters to
975 ** FUNCTION().
976 **
977 ** LIKEFUNC(zName, nArg, pArg, flags)
978 ** Used to create a scalar function definition of a function zName
979 ** that accepts nArg arguments and is implemented by a call to C
980 ** function likeFunc. Argument pArg is cast to a (void *) and made
981 ** available as the function user-data (sqlite3_user_data()). The
982 ** FuncDef.flags variable is set to the value passed as the flags
983 ** parameter.
984 */
985 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \
986 {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \
987 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0}
988 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \
989 {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \
990 pArg, 0, xFunc, 0, 0, #zName, 0}
991 #define LIKEFUNC(zName, nArg, arg, flags) \
992 {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0}
993 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \
994 {nArg, SQLITE_UTF8, nc*SQLITE_FUNC_NEEDCOLL, \
995 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0}
996
997 /*
998 ** All current savepoints are stored in a linked list starting at
999 ** sqlite3.pSavepoint. The first element in the list is the most recently
1000 ** opened savepoint. Savepoints are added to the list by the vdbe
1001 ** OP_Savepoint instruction.
1002 */
1003 struct Savepoint {
1004 char *zName; /* Savepoint name (nul-terminated) */
1005 Savepoint *pNext; /* Parent savepoint (if any) */
1006 };
1007
1008 /*
1009 ** The following are used as the second parameter to sqlite3Savepoint(),
1010 ** and as the P1 argument to the OP_Savepoint instruction.
1011 */
1012 #define SAVEPOINT_BEGIN 0
1013 #define SAVEPOINT_RELEASE 1
1014 #define SAVEPOINT_ROLLBACK 2
1015
1016
1017 /*
1018 ** Each SQLite module (virtual table definition) is defined by an
1019 ** instance of the following structure, stored in the sqlite3.aModule
1020 ** hash table.
1021 */
1022 struct Module {
1023 const sqlite3_module *pModule; /* Callback pointers */
1024 const char *zName; /* Name passed to create_module() */
1025 void *pAux; /* pAux passed to create_module() */
1026 void (*xDestroy)(void *); /* Module destructor function */
1027 };
1028
1029 /*
1030 ** information about each column of an SQL table is held in an instance
1031 ** of this structure.
1032 */
1033 struct Column {
1034 char *zName; /* Name of this column */
1035 Expr *pDflt; /* Default value of this column */
1036 char *zDflt; /* Original text of the default value */
1037 char *zType; /* Data type for this column */
1038 char *zColl; /* Collating sequence. If NULL, use the default */
1039 u8 notNull; /* True if there is a NOT NULL constraint */
1040 u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */
1041 char affinity; /* One of the SQLITE_AFF_... values */
1042 #ifndef SQLITE_OMIT_VIRTUALTABLE
1043 u8 isHidden; /* True if this column is 'hidden' */
1044 #endif
1045 };
1046
1047 /*
1048 ** A "Collating Sequence" is defined by an instance of the following
1049 ** structure. Conceptually, a collating sequence consists of a name and
1050 ** a comparison routine that defines the order of that sequence.
1051 **
1052 ** There may two separate implementations of the collation function, one
1053 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that
1054 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine
1055 ** native byte order. When a collation sequence is invoked, SQLite selects
1056 ** the version that will require the least expensive encoding
1057 ** translations, if any.
1058 **
1059 ** The CollSeq.pUser member variable is an extra parameter that passed in
1060 ** as the first argument to the UTF-8 comparison function, xCmp.
1061 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function,
1062 ** xCmp16.
1063 **
1064 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the
1065 ** collating sequence is undefined. Indices built on an undefined
1066 ** collating sequence may not be read or written.
1067 */
1068 struct CollSeq {
1069 char *zName; /* Name of the collating sequence, UTF-8 encoded */
1070 u8 enc; /* Text encoding handled by xCmp() */
1071 u8 type; /* One of the SQLITE_COLL_... values below */
1072 void *pUser; /* First argument to xCmp() */
1073 int (*xCmp)(void*,int, const void*, int, const void*);
1074 void (*xDel)(void*); /* Destructor for pUser */
1075 };
1076
1077 /*
1078 ** Allowed values of CollSeq.type:
1079 */
1080 #define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */
1081 #define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */
1082 #define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */
1083 #define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */
1084
1085 /*
1086 ** A sort order can be either ASC or DESC.
1087 */
1088 #define SQLITE_SO_ASC 0 /* Sort in ascending order */
1089 #define SQLITE_SO_DESC 1 /* Sort in ascending order */
1090
1091 /*
1092 ** Column affinity types.
1093 **
1094 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
1095 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve
1096 ** the speed a little by numbering the values consecutively.
1097 **
1098 ** But rather than start with 0 or 1, we begin with 'a'. That way,
1099 ** when multiple affinity types are concatenated into a string and
1100 ** used as the P4 operand, they will be more readable.
1101 **
1102 ** Note also that the numeric types are grouped together so that testing
1103 ** for a numeric type is a single comparison.
1104 */
1105 #define SQLITE_AFF_TEXT 'a'
1106 #define SQLITE_AFF_NONE 'b'
1107 #define SQLITE_AFF_NUMERIC 'c'
1108 #define SQLITE_AFF_INTEGER 'd'
1109 #define SQLITE_AFF_REAL 'e'
1110
1111 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC)
1112
1113 /*
1114 ** The SQLITE_AFF_MASK values masks off the significant bits of an
1115 ** affinity value.
1116 */
1117 #define SQLITE_AFF_MASK 0x67
1118
1119 /*
1120 ** Additional bit values that can be ORed with an affinity without
1121 ** changing the affinity.
1122 */
1123 #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */
1124 #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */
1125
1126 /*
1127 ** An object of this type is created for each virtual table present in
1128 ** the database schema.
1129 **
1130 ** If the database schema is shared, then there is one instance of this
1131 ** structure for each database connection (sqlite3*) that uses the shared
1132 ** schema. This is because each database connection requires its own unique
1133 ** instance of the sqlite3_vtab* handle used to access the virtual table
1134 ** implementation. sqlite3_vtab* handles can not be shared between
1135 ** database connections, even when the rest of the in-memory database
1136 ** schema is shared, as the implementation often stores the database
1137 ** connection handle passed to it via the xConnect() or xCreate() method
1138 ** during initialization internally. This database connection handle may
1139 ** then used by the virtual table implementation to access real tables
1140 ** within the database. So that they appear as part of the callers
1141 ** transaction, these accesses need to be made via the same database
1142 ** connection as that used to execute SQL operations on the virtual table.
1143 **
1144 ** All VTable objects that correspond to a single table in a shared
1145 ** database schema are initially stored in a linked-list pointed to by
1146 ** the Table.pVTable member variable of the corresponding Table object.
1147 ** When an sqlite3_prepare() operation is required to access the virtual
1148 ** table, it searches the list for the VTable that corresponds to the
1149 ** database connection doing the preparing so as to use the correct
1150 ** sqlite3_vtab* handle in the compiled query.
1151 **
1152 ** When an in-memory Table object is deleted (for example when the
1153 ** schema is being reloaded for some reason), the VTable objects are not
1154 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed
1155 ** immediately. Instead, they are moved from the Table.pVTable list to
1156 ** another linked list headed by the sqlite3.pDisconnect member of the
1157 ** corresponding sqlite3 structure. They are then deleted/xDisconnected
1158 ** next time a statement is prepared using said sqlite3*. This is done
1159 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes.
1160 ** Refer to comments above function sqlite3VtabUnlockList() for an
1161 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect
1162 ** list without holding the corresponding sqlite3.mutex mutex.
1163 **
1164 ** The memory for objects of this type is always allocated by
1165 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as
1166 ** the first argument.
1167 */
1168 struct VTable {
1169 sqlite3 *db; /* Database connection associated with this table */
1170 Module *pMod; /* Pointer to module implementation */
1171 sqlite3_vtab *pVtab; /* Pointer to vtab instance */
1172 int nRef; /* Number of pointers to this structure */
1173 VTable *pNext; /* Next in linked list (see above) */
1174 };
1175
1176 /*
1177 ** Each SQL table is represented in memory by an instance of the
1178 ** following structure.
1179 **
1180 ** Table.zName is the name of the table. The case of the original
1181 ** CREATE TABLE statement is stored, but case is not significant for
1182 ** comparisons.
1183 **
1184 ** Table.nCol is the number of columns in this table. Table.aCol is a
1185 ** pointer to an array of Column structures, one for each column.
1186 **
1187 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
1188 ** the column that is that key. Otherwise Table.iPKey is negative. Note
1189 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to
1190 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of
1191 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid
1192 ** is generated for each row of the table. TF_HasPrimaryKey is set if
1193 ** the table has any PRIMARY KEY, INTEGER or otherwise.
1194 **
1195 ** Table.tnum is the page number for the root BTree page of the table in the
1196 ** database file. If Table.iDb is the index of the database table backend
1197 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that
1198 ** holds temporary tables and indices. If TF_Ephemeral is set
1199 ** then the table is stored in a file that is automatically deleted
1200 ** when the VDBE cursor to the table is closed. In this case Table.tnum
1201 ** refers VDBE cursor number that holds the table open, not to the root
1202 ** page number. Transient tables are used to hold the results of a
1203 ** sub-query that appears instead of a real table name in the FROM clause
1204 ** of a SELECT statement.
1205 */
1206 struct Table {
1207 sqlite3 *dbMem; /* DB connection used for lookaside allocations. */
1208 char *zName; /* Name of the table or view */
1209 int iPKey; /* If not negative, use aCol[iPKey] as the primary key */
1210 int nCol; /* Number of columns in this table */
1211 Column *aCol; /* Information about each column */
1212 Index *pIndex; /* List of SQL indexes on this table. */
1213 int tnum; /* Root BTree node for this table (see note above) */
1214 Select *pSelect; /* NULL for tables. Points to definition if a view. */
1215 u16 nRef; /* Number of pointers to this Table */
1216 u8 tabFlags; /* Mask of TF_* values */
1217 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */
1218 FKey *pFKey; /* Linked list of all foreign keys in this table */
1219 char *zColAff; /* String defining the affinity of each column */
1220 #ifndef SQLITE_OMIT_CHECK
1221 Expr *pCheck; /* The AND of all CHECK constraints */
1222 #endif
1223 #ifndef SQLITE_OMIT_ALTERTABLE
1224 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */
1225 #endif
1226 #ifndef SQLITE_OMIT_VIRTUALTABLE
1227 VTable *pVTable; /* List of VTable objects. */
1228 int nModuleArg; /* Number of arguments to the module */
1229 char **azModuleArg; /* Text of all module args. [0] is module name */
1230 #endif
1231 Trigger *pTrigger; /* List of triggers stored in pSchema */
1232 Schema *pSchema; /* Schema that contains this table */
1233 Table *pNextZombie; /* Next on the Parse.pZombieTab list */
1234 };
1235
1236 /*
1237 ** Allowed values for Tabe.tabFlags.
1238 */
1239 #define TF_Readonly 0x01 /* Read-only system table */
1240 #define TF_Ephemeral 0x02 /* An ephemeral table */
1241 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */
1242 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */
1243 #define TF_Virtual 0x10 /* Is a virtual table */
1244 #define TF_NeedMetadata 0x20 /* aCol[].zType and aCol[].pColl missing */
1245
1246
1247
1248 /*
1249 ** Test to see whether or not a table is a virtual table. This is
1250 ** done as a macro so that it will be optimized out when virtual
1251 ** table support is omitted from the build.
1252 */
1253 #ifndef SQLITE_OMIT_VIRTUALTABLE
1254 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0)
1255 # define IsHiddenColumn(X) ((X)->isHidden)
1256 #else
1257 # define IsVirtual(X) 0
1258 # define IsHiddenColumn(X) 0
1259 #endif
1260
1261 /*
1262 ** Each foreign key constraint is an instance of the following structure.
1263 **
1264 ** A foreign key is associated with two tables. The "from" table is
1265 ** the table that contains the REFERENCES clause that creates the foreign
1266 ** key. The "to" table is the table that is named in the REFERENCES clause.
1267 ** Consider this example:
1268 **
1269 ** CREATE TABLE ex1(
1270 ** a INTEGER PRIMARY KEY,
1271 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
1272 ** );
1273 **
1274 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
1275 **
1276 ** Each REFERENCES clause generates an instance of the following structure
1277 ** which is attached to the from-table. The to-table need not exist when
1278 ** the from-table is created. The existence of the to-table is not checked.
1279 */
1280 struct FKey {
1281 Table *pFrom; /* The table that contains the REFERENCES clause */
1282 FKey *pNextFrom; /* Next foreign key in pFrom */
1283 char *zTo; /* Name of table that the key points to */
1284 int nCol; /* Number of columns in this key */
1285 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */
1286 u8 updateConf; /* How to resolve conflicts that occur on UPDATE */
1287 u8 deleteConf; /* How to resolve conflicts that occur on DELETE */
1288 u8 insertConf; /* How to resolve conflicts that occur on INSERT */
1289 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */
1290 int iFrom; /* Index of column in pFrom */
1291 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */
1292 } aCol[1]; /* One entry for each of nCol column s */
1293 };
1294
1295 /*
1296 ** SQLite supports many different ways to resolve a constraint
1297 ** error. ROLLBACK processing means that a constraint violation
1298 ** causes the operation in process to fail and for the current transaction
1299 ** to be rolled back. ABORT processing means the operation in process
1300 ** fails and any prior changes from that one operation are backed out,
1301 ** but the transaction is not rolled back. FAIL processing means that
1302 ** the operation in progress stops and returns an error code. But prior
1303 ** changes due to the same operation are not backed out and no rollback
1304 ** occurs. IGNORE means that the particular row that caused the constraint
1305 ** error is not inserted or updated. Processing continues and no error
1306 ** is returned. REPLACE means that preexisting database rows that caused
1307 ** a UNIQUE constraint violation are removed so that the new insert or
1308 ** update can proceed. Processing continues and no error is reported.
1309 **
1310 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
1311 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
1312 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign
1313 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the
1314 ** referenced table row is propagated into the row that holds the
1315 ** foreign key.
1316 **
1317 ** The following symbolic values are used to record which type
1318 ** of action to take.
1319 */
1320 #define OE_None 0 /* There is no constraint to check */
1321 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */
1322 #define OE_Abort 2 /* Back out changes but do no rollback transaction */
1323 #define OE_Fail 3 /* Stop the operation but leave all prior changes */
1324 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */
1325 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */
1326
1327 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
1328 #define OE_SetNull 7 /* Set the foreign key value to NULL */
1329 #define OE_SetDflt 8 /* Set the foreign key value to its default */
1330 #define OE_Cascade 9 /* Cascade the changes */
1331
1332 #define OE_Default 99 /* Do whatever the default action is */
1333
1334
1335 /*
1336 ** An instance of the following structure is passed as the first
1337 ** argument to sqlite3VdbeKeyCompare and is used to control the
1338 ** comparison of the two index keys.
1339 */
1340 struct KeyInfo {
1341 sqlite3 *db; /* The database connection */
1342 u8 enc; /* Text encoding - one of the TEXT_Utf* values */
1343 u16 nField; /* Number of entries in aColl[] */
1344 u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */
1345 CollSeq *aColl[1]; /* Collating sequence for each term of the key */
1346 };
1347
1348 /*
1349 ** An instance of the following structure holds information about a
1350 ** single index record that has already been parsed out into individual
1351 ** values.
1352 **
1353 ** A record is an object that contains one or more fields of data.
1354 ** Records are used to store the content of a table row and to store
1355 ** the key of an index. A blob encoding of a record is created by
1356 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the
1357 ** OP_Column opcode.
1358 **
1359 ** This structure holds a record that has already been disassembled
1360 ** into its constituent fields.
1361 */
1362 struct UnpackedRecord {
1363 KeyInfo *pKeyInfo; /* Collation and sort-order information */
1364 u16 nField; /* Number of entries in apMem[] */
1365 u16 flags; /* Boolean settings. UNPACKED_... below */
1366 i64 rowid; /* Used by UNPACKED_PREFIX_SEARCH */
1367 Mem *aMem; /* Values */
1368 };
1369
1370 /*
1371 ** Allowed values of UnpackedRecord.flags
1372 */
1373 #define UNPACKED_NEED_FREE 0x0001 /* Memory is from sqlite3Malloc() */
1374 #define UNPACKED_NEED_DESTROY 0x0002 /* apMem[]s should all be destroyed */
1375 #define UNPACKED_IGNORE_ROWID 0x0004 /* Ignore trailing rowid on key1 */
1376 #define UNPACKED_INCRKEY 0x0008 /* Make this key an epsilon larger */
1377 #define UNPACKED_PREFIX_MATCH 0x0010 /* A prefix match is considered OK */
1378 #define UNPACKED_PREFIX_SEARCH 0x0020 /* A prefix match is considered OK */
1379
1380 /*
1381 ** Each SQL index is represented in memory by an
1382 ** instance of the following structure.
1383 **
1384 ** The columns of the table that are to be indexed are described
1385 ** by the aiColumn[] field of this structure. For example, suppose
1386 ** we have the following table and index:
1387 **
1388 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text);
1389 ** CREATE INDEX Ex2 ON Ex1(c3,c1);
1390 **
1391 ** In the Table structure describing Ex1, nCol==3 because there are
1392 ** three columns in the table. In the Index structure describing
1393 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
1394 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the
1395 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
1396 ** The second column to be indexed (c1) has an index of 0 in
1397 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
1398 **
1399 ** The Index.onError field determines whether or not the indexed columns
1400 ** must be unique and what to do if they are not. When Index.onError=OE_None,
1401 ** it means this is not a unique index. Otherwise it is a unique index
1402 ** and the value of Index.onError indicate the which conflict resolution
1403 ** algorithm to employ whenever an attempt is made to insert a non-unique
1404 ** element.
1405 */
1406 struct Index {
1407 char *zName; /* Name of this index */
1408 int nColumn; /* Number of columns in the table used by this index */
1409 int *aiColumn; /* Which columns are used by this index. 1st is 0 */
1410 unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */
1411 Table *pTable; /* The SQL table being indexed */
1412 int tnum; /* Page containing root of this index in database file */
1413 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
1414 u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */
1415 char *zColAff; /* String defining the affinity of each column */
1416 Index *pNext; /* The next index associated with the same table */
1417 Schema *pSchema; /* Schema containing this index */
1418 u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */
1419 char **azColl; /* Array of collation sequence names for index */
1420 IndexSample *aSample; /* Array of SQLITE_INDEX_SAMPLES samples */
1421 };
1422
1423 /*
1424 ** Each sample stored in the sqlite_stat2 table is represented in memory
1425 ** using a structure of this type.
1426 */
1427 struct IndexSample {
1428 union {
1429 char *z; /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */
1430 double r; /* Value if eType is SQLITE_FLOAT or SQLITE_INTEGER */
1431 } u;
1432 u8 eType; /* SQLITE_NULL, SQLITE_INTEGER ... etc. */
1433 u8 nByte; /* Size in byte of text or blob. */
1434 };
1435
1436 /*
1437 ** Each token coming out of the lexer is an instance of
1438 ** this structure. Tokens are also used as part of an expression.
1439 **
1440 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and
1441 ** may contain random values. Do not make any assumptions about Token.dyn
1442 ** and Token.n when Token.z==0.
1443 */
1444 struct Token {
1445 const char *z; /* Text of the token. Not NULL-terminated! */
1446 unsigned int n; /* Number of characters in this token */
1447 };
1448
1449 /*
1450 ** An instance of this structure contains information needed to generate
1451 ** code for a SELECT that contains aggregate functions.
1452 **
1453 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
1454 ** pointer to this structure. The Expr.iColumn field is the index in
1455 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
1456 ** code for that node.
1457 **
1458 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
1459 ** original Select structure that describes the SELECT statement. These
1460 ** fields do not need to be freed when deallocating the AggInfo structure.
1461 */
1462 struct AggInfo {
1463 u8 directMode; /* Direct rendering mode means take data directly
1464 ** from source tables rather than from accumulators */
1465 u8 useSortingIdx; /* In direct mode, reference the sorting index rather
1466 ** than the source table */
1467 int sortingIdx; /* Cursor number of the sorting index */
1468 ExprList *pGroupBy; /* The group by clause */
1469 int nSortingColumn; /* Number of columns in the sorting index */
1470 struct AggInfo_col { /* For each column used in source tables */
1471 Table *pTab; /* Source table */
1472 int iTable; /* Cursor number of the source table */
1473 int iColumn; /* Column number within the source table */
1474 int iSorterColumn; /* Column number in the sorting index */
1475 int iMem; /* Memory location that acts as accumulator */
1476 Expr *pExpr; /* The original expression */
1477 } *aCol;
1478 int nColumn; /* Number of used entries in aCol[] */
1479 int nColumnAlloc; /* Number of slots allocated for aCol[] */
1480 int nAccumulator; /* Number of columns that show through to the output.
1481 ** Additional columns are used only as parameters to
1482 ** aggregate functions */
1483 struct AggInfo_func { /* For each aggregate function */
1484 Expr *pExpr; /* Expression encoding the function */
1485 FuncDef *pFunc; /* The aggregate function implementation */
1486 int iMem; /* Memory location that acts as accumulator */
1487 int iDistinct; /* Ephemeral table used to enforce DISTINCT */
1488 } *aFunc;
1489 int nFunc; /* Number of entries in aFunc[] */
1490 int nFuncAlloc; /* Number of slots allocated for aFunc[] */
1491 };
1492
1493 /*
1494 ** Each node of an expression in the parse tree is an instance
1495 ** of this structure.
1496 **
1497 ** Expr.op is the opcode. The integer parser token codes are reused
1498 ** as opcodes here. For example, the parser defines TK_GE to be an integer
1499 ** code representing the ">=" operator. This same integer code is reused
1500 ** to represent the greater-than-or-equal-to operator in the expression
1501 ** tree.
1502 **
1503 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB,
1504 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If
1505 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the
1506 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION),
1507 ** then Expr.token contains the name of the function.
1508 **
1509 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a
1510 ** binary operator. Either or both may be NULL.
1511 **
1512 ** Expr.x.pList is a list of arguments if the expression is an SQL function,
1513 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)".
1514 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of
1515 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the
1516 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is
1517 ** valid.
1518 **
1519 ** An expression of the form ID or ID.ID refers to a column in a table.
1520 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
1521 ** the integer cursor number of a VDBE cursor pointing to that table and
1522 ** Expr.iColumn is the column number for the specific column. If the
1523 ** expression is used as a result in an aggregate SELECT, then the
1524 ** value is also stored in the Expr.iAgg column in the aggregate so that
1525 ** it can be accessed after all aggregates are computed.
1526 **
1527 ** If the expression is an unbound variable marker (a question mark
1528 ** character '?' in the original SQL) then the Expr.iTable holds the index
1529 ** number for that variable.
1530 **
1531 ** If the expression is a subquery then Expr.iColumn holds an integer
1532 ** register number containing the result of the subquery. If the
1533 ** subquery gives a constant result, then iTable is -1. If the subquery
1534 ** gives a different answer at different times during statement processing
1535 ** then iTable is the address of a subroutine that computes the subquery.
1536 **
1537 ** If the Expr is of type OP_Column, and the table it is selecting from
1538 ** is a disk table or the "old.*" pseudo-table, then pTab points to the
1539 ** corresponding table definition.
1540 **
1541 ** ALLOCATION NOTES:
1542 **
1543 ** Expr objects can use a lot of memory space in database schema. To
1544 ** help reduce memory requirements, sometimes an Expr object will be
1545 ** truncated. And to reduce the number of memory allocations, sometimes
1546 ** two or more Expr objects will be stored in a single memory allocation,
1547 ** together with Expr.zToken strings.
1548 **
1549 ** If the EP_Reduced and EP_TokenOnly flags are set when
1550 ** an Expr object is truncated. When EP_Reduced is set, then all
1551 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees
1552 ** are contained within the same memory allocation. Note, however, that
1553 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately
1554 ** allocated, regardless of whether or not EP_Reduced is set.
1555 */
1556 struct Expr {
1557 u8 op; /* Operation performed by this node */
1558 char affinity; /* The affinity of the column or 0 if not a column */
1559 u16 flags; /* Various flags. EP_* See below */
1560 union {
1561 char *zToken; /* Token value. Zero terminated and dequoted */
1562 int iValue; /* Integer value if EP_IntValue */
1563 } u;
1564
1565 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no
1566 ** space is allocated for the fields below this point. An attempt to
1567 ** access them will result in a segfault or malfunction.
1568 *********************************************************************/
1569
1570 Expr *pLeft; /* Left subnode */
1571 Expr *pRight; /* Right subnode */
1572 union {
1573 ExprList *pList; /* Function arguments or in "<expr> IN (<expr-list)" */
1574 Select *pSelect; /* Used for sub-selects and "<expr> IN (<select>)" */
1575 } x;
1576 CollSeq *pColl; /* The collation type of the column or 0 */
1577
1578 /* If the EP_Reduced flag is set in the Expr.flags mask, then no
1579 ** space is allocated for the fields below this point. An attempt to
1580 ** access them will result in a segfault or malfunction.
1581 *********************************************************************/
1582
1583 int iTable; /* TK_COLUMN: cursor number of table holding column
1584 ** TK_REGISTER: register number
1585 ** TK_TRIGGER: 1 -> new, 0 -> old */
1586 i16 iColumn; /* TK_COLUMN: column index. -1 for rowid */
1587 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
1588 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */
1589 u8 flags2; /* Second set of flags. EP2_... */
1590 u8 op2; /* If a TK_REGISTER, the original value of Expr.op */
1591 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
1592 Table *pTab; /* Table for TK_COLUMN expressions. */
1593 #if SQLITE_MAX_EXPR_DEPTH>0
1594 int nHeight; /* Height of the tree headed by this node */
1595 #endif
1596 };
1597
1598 /*
1599 ** The following are the meanings of bits in the Expr.flags field.
1600 */
1601 #define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */
1602 #define EP_Agg 0x0002 /* Contains one or more aggregate functions */
1603 #define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */
1604 #define EP_Error 0x0008 /* Expression contains one or more errors */
1605 #define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */
1606 #define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */
1607 #define EP_DblQuoted 0x0040 /* token.z was originally in "..." */
1608 #define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */
1609 #define EP_ExpCollate 0x0100 /* Collating sequence specified explicitly */
1610 #define EP_AnyAff 0x0200 /* Can take a cached column of any affinity */
1611 #define EP_FixedDest 0x0400 /* Result needed in a specific register */
1612 #define EP_IntValue 0x0800 /* Integer value contained in u.iValue */
1613 #define EP_xIsSelect 0x1000 /* x.pSelect is valid (otherwise x.pList is) */
1614
1615 #define EP_Reduced 0x2000 /* Expr struct is EXPR_REDUCEDSIZE bytes only */
1616 #define EP_TokenOnly 0x4000 /* Expr struct is EXPR_TOKENONLYSIZE bytes only */
1617 #define EP_Static 0x8000 /* Held in memory not obtained from malloc() */
1618
1619 /*
1620 ** The following are the meanings of bits in the Expr.flags2 field.
1621 */
1622 #define EP2_MallocedToken 0x0001 /* Need to sqlite3DbFree() Expr.zToken */
1623 #define EP2_Irreducible 0x0002 /* Cannot EXPRDUP_REDUCE this Expr */
1624
1625 /*
1626 ** The pseudo-routine sqlite3ExprSetIrreducible sets the EP2_Irreducible
1627 ** flag on an expression structure. This flag is used for VV&A only. The
1628 ** routine is implemented as a macro that only works when in debugging mode,
1629 ** so as not to burden production code.
1630 */
1631 #ifdef SQLITE_DEBUG
1632 # define ExprSetIrreducible(X) (X)->flags2 |= EP2_Irreducible
1633 #else
1634 # define ExprSetIrreducible(X)
1635 #endif
1636
1637 /*
1638 ** These macros can be used to test, set, or clear bits in the
1639 ** Expr.flags field.
1640 */
1641 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P))
1642 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0)
1643 #define ExprSetProperty(E,P) (E)->flags|=(P)
1644 #define ExprClearProperty(E,P) (E)->flags&=~(P)
1645
1646 /*
1647 ** Macros to determine the number of bytes required by a normal Expr
1648 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags
1649 ** and an Expr struct with the EP_TokenOnly flag set.
1650 */
1651 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */
1652 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */
1653 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */
1654
1655 /*
1656 ** Flags passed to the sqlite3ExprDup() function. See the header comment
1657 ** above sqlite3ExprDup() for details.
1658 */
1659 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */
1660
1661 /*
1662 ** A list of expressions. Each expression may optionally have a
1663 ** name. An expr/name combination can be used in several ways, such
1664 ** as the list of "expr AS ID" fields following a "SELECT" or in the
1665 ** list of "ID = expr" items in an UPDATE. A list of expressions can
1666 ** also be used as the argument to a function, in which case the a.zName
1667 ** field is not used.
1668 */
1669 struct ExprList {
1670 int nExpr; /* Number of expressions on the list */
1671 int nAlloc; /* Number of entries allocated below */
1672 int iECursor; /* VDBE Cursor associated with this ExprList */
1673 struct ExprList_item {
1674 Expr *pExpr; /* The list of expressions */
1675 char *zName; /* Token associated with this expression */
1676 char *zSpan; /* Original text of the expression */
1677 u8 sortOrder; /* 1 for DESC or 0 for ASC */
1678 u8 done; /* A flag to indicate when processing is finished */
1679 u16 iCol; /* For ORDER BY, column number in result set */
1680 u16 iAlias; /* Index into Parse.aAlias[] for zName */
1681 } *a; /* One entry for each expression */
1682 };
1683
1684 /*
1685 ** An instance of this structure is used by the parser to record both
1686 ** the parse tree for an expression and the span of input text for an
1687 ** expression.
1688 */
1689 struct ExprSpan {
1690 Expr *pExpr; /* The expression parse tree */
1691 const char *zStart; /* First character of input text */
1692 const char *zEnd; /* One character past the end of input text */
1693 };
1694
1695 /*
1696 ** An instance of this structure can hold a simple list of identifiers,
1697 ** such as the list "a,b,c" in the following statements:
1698 **
1699 ** INSERT INTO t(a,b,c) VALUES ...;
1700 ** CREATE INDEX idx ON t(a,b,c);
1701 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
1702 **
1703 ** The IdList.a.idx field is used when the IdList represents the list of
1704 ** column names after a table name in an INSERT statement. In the statement
1705 **
1706 ** INSERT INTO t(a,b,c) ...
1707 **
1708 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
1709 */
1710 struct IdList {
1711 struct IdList_item {
1712 char *zName; /* Name of the identifier */
1713 int idx; /* Index in some Table.aCol[] of a column named zName */
1714 } *a;
1715 int nId; /* Number of identifiers on the list */
1716 int nAlloc; /* Number of entries allocated for a[] below */
1717 };
1718
1719 /*
1720 ** The bitmask datatype defined below is used for various optimizations.
1721 **
1722 ** Changing this from a 64-bit to a 32-bit type limits the number of
1723 ** tables in a join to 32 instead of 64. But it also reduces the size
1724 ** of the library by 738 bytes on ix86.
1725 */
1726 typedef u64 Bitmask;
1727
1728 /*
1729 ** The number of bits in a Bitmask. "BMS" means "BitMask Size".
1730 */
1731 #define BMS ((int)(sizeof(Bitmask)*8))
1732
1733 /*
1734 ** The following structure describes the FROM clause of a SELECT statement.
1735 ** Each table or subquery in the FROM clause is a separate element of
1736 ** the SrcList.a[] array.
1737 **
1738 ** With the addition of multiple database support, the following structure
1739 ** can also be used to describe a particular table such as the table that
1740 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL,
1741 ** such a table must be a simple name: ID. But in SQLite, the table can
1742 ** now be identified by a database name, a dot, then the table name: ID.ID.
1743 **
1744 ** The jointype starts out showing the join type between the current table
1745 ** and the next table on the list. The parser builds the list this way.
1746 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
1747 ** jointype expresses the join between the table and the previous table.
1748 */
1749 struct SrcList {
1750 i16 nSrc; /* Number of tables or subqueries in the FROM clause */
1751 i16 nAlloc; /* Number of entries allocated in a[] below */
1752 struct SrcList_item {
1753 char *zDatabase; /* Name of database holding this table */
1754 char *zName; /* Name of the table */
1755 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */
1756 Table *pTab; /* An SQL table corresponding to zName */
1757 Select *pSelect; /* A SELECT statement used in place of a table name */
1758 u8 isPopulated; /* Temporary table associated with SELECT is populated */
1759 u8 jointype; /* Type of join between this able and the previous */
1760 u8 notIndexed; /* True if there is a NOT INDEXED clause */
1761 int iCursor; /* The VDBE cursor number used to access this table */
1762 Expr *pOn; /* The ON clause of a join */
1763 IdList *pUsing; /* The USING clause of a join */
1764 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */
1765 char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */
1766 Index *pIndex; /* Index structure corresponding to zIndex, if any */
1767 } a[1]; /* One entry for each identifier on the list */
1768 };
1769
1770 /*
1771 ** Permitted values of the SrcList.a.jointype field
1772 */
1773 #define JT_INNER 0x0001 /* Any kind of inner or cross join */
1774 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */
1775 #define JT_NATURAL 0x0004 /* True for a "natural" join */
1776 #define JT_LEFT 0x0008 /* Left outer join */
1777 #define JT_RIGHT 0x0010 /* Right outer join */
1778 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */
1779 #define JT_ERROR 0x0040 /* unknown or unsupported join type */
1780
1781
1782 /*
1783 ** A WherePlan object holds information that describes a lookup
1784 ** strategy.
1785 **
1786 ** This object is intended to be opaque outside of the where.c module.
1787 ** It is included here only so that that compiler will know how big it
1788 ** is. None of the fields in this object should be used outside of
1789 ** the where.c module.
1790 **
1791 ** Within the union, pIdx is only used when wsFlags&WHERE_INDEXED is true.
1792 ** pTerm is only used when wsFlags&WHERE_MULTI_OR is true. And pVtabIdx
1793 ** is only used when wsFlags&WHERE_VIRTUALTABLE is true. It is never the
1794 ** case that more than one of these conditions is true.
1795 */
1796 struct WherePlan {
1797 u32 wsFlags; /* WHERE_* flags that describe the strategy */
1798 u32 nEq; /* Number of == constraints */
1799 union {
1800 Index *pIdx; /* Index when WHERE_INDEXED is true */
1801 struct WhereTerm *pTerm; /* WHERE clause term for OR-search */
1802 sqlite3_index_info *pVtabIdx; /* Virtual table index to use */
1803 } u;
1804 };
1805
1806 /*
1807 ** For each nested loop in a WHERE clause implementation, the WhereInfo
1808 ** structure contains a single instance of this structure. This structure
1809 ** is intended to be private the the where.c module and should not be
1810 ** access or modified by other modules.
1811 **
1812 ** The pIdxInfo field is used to help pick the best index on a
1813 ** virtual table. The pIdxInfo pointer contains indexing
1814 ** information for the i-th table in the FROM clause before reordering.
1815 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c.
1816 ** All other information in the i-th WhereLevel object for the i-th table
1817 ** after FROM clause ordering.
1818 */
1819 struct WhereLevel {
1820 WherePlan plan; /* query plan for this element of the FROM clause */
1821 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */
1822 int iTabCur; /* The VDBE cursor used to access the table */
1823 int iIdxCur; /* The VDBE cursor used to access pIdx */
1824 int addrBrk; /* Jump here to break out of the loop */
1825 int addrNxt; /* Jump here to start the next IN combination */
1826 int addrCont; /* Jump here to continue with the next loop cycle */
1827 int addrFirst; /* First instruction of interior of the loop */
1828 u8 iFrom; /* Which entry in the FROM clause */
1829 u8 op, p5; /* Opcode and P5 of the opcode that ends the loop */
1830 int p1, p2; /* Operands of the opcode used to ends the loop */
1831 union { /* Information that depends on plan.wsFlags */
1832 struct {
1833 int nIn; /* Number of entries in aInLoop[] */
1834 struct InLoop {
1835 int iCur; /* The VDBE cursor used by this IN operator */
1836 int addrInTop; /* Top of the IN loop */
1837 } *aInLoop; /* Information about each nested IN operator */
1838 } in; /* Used when plan.wsFlags&WHERE_IN_ABLE */
1839 } u;
1840
1841 /* The following field is really not part of the current level. But
1842 ** we need a place to cache virtual table index information for each
1843 ** virtual table in the FROM clause and the WhereLevel structure is
1844 ** a convenient place since there is one WhereLevel for each FROM clause
1845 ** element.
1846 */
1847 sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */
1848 };
1849
1850 /*
1851 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin()
1852 ** and the WhereInfo.wctrlFlags member.
1853 */
1854 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */
1855 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */
1856 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */
1857 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */
1858 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */
1859 #define WHERE_OMIT_OPEN 0x0010 /* Table cursor are already open */
1860 #define WHERE_OMIT_CLOSE 0x0020 /* Omit close of table & index cursors */
1861 #define WHERE_FORCE_TABLE 0x0040 /* Do not use an index-only search */
1862
1863 /*
1864 ** The WHERE clause processing routine has two halves. The
1865 ** first part does the start of the WHERE loop and the second
1866 ** half does the tail of the WHERE loop. An instance of
1867 ** this structure is returned by the first half and passed
1868 ** into the second half to give some continuity.
1869 */
1870 struct WhereInfo {
1871 Parse *pParse; /* Parsing and code generating context */
1872 u16 wctrlFlags; /* Flags originally passed to sqlite3WhereBegin() */
1873 u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE or DELETE */
1874 SrcList *pTabList; /* List of tables in the join */
1875 int iTop; /* The very beginning of the WHERE loop */
1876 int iContinue; /* Jump here to continue with next record */
1877 int iBreak; /* Jump here to break out of the loop */
1878 int nLevel; /* Number of nested loop */
1879 struct WhereClause *pWC; /* Decomposition of the WHERE clause */
1880 WhereLevel a[1]; /* Information about each nest loop in WHERE */
1881 };
1882
1883 /*
1884 ** A NameContext defines a context in which to resolve table and column
1885 ** names. The context consists of a list of tables (the pSrcList) field and
1886 ** a list of named expression (pEList). The named expression list may
1887 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or
1888 ** to the table being operated on by INSERT, UPDATE, or DELETE. The
1889 ** pEList corresponds to the result set of a SELECT and is NULL for
1890 ** other statements.
1891 **
1892 ** NameContexts can be nested. When resolving names, the inner-most
1893 ** context is searched first. If no match is found, the next outer
1894 ** context is checked. If there is still no match, the next context
1895 ** is checked. This process continues until either a match is found
1896 ** or all contexts are check. When a match is found, the nRef member of
1897 ** the context containing the match is incremented.
1898 **
1899 ** Each subquery gets a new NameContext. The pNext field points to the
1900 ** NameContext in the parent query. Thus the process of scanning the
1901 ** NameContext list corresponds to searching through successively outer
1902 ** subqueries looking for a match.
1903 */
1904 struct NameContext {
1905 Parse *pParse; /* The parser */
1906 SrcList *pSrcList; /* One or more tables used to resolve names */
1907 ExprList *pEList; /* Optional list of named expressions */
1908 int nRef; /* Number of names resolved by this context */
1909 int nErr; /* Number of errors encountered while resolving names */
1910 u8 allowAgg; /* Aggregate functions allowed here */
1911 u8 hasAgg; /* True if aggregates are seen */
1912 u8 isCheck; /* True if resolving names in a CHECK constraint */
1913 int nDepth; /* Depth of subquery recursion. 1 for no recursion */
1914 AggInfo *pAggInfo; /* Information about aggregates at this level */
1915 NameContext *pNext; /* Next outer name context. NULL for outermost */
1916 };
1917
1918 /*
1919 ** An instance of the following structure contains all information
1920 ** needed to generate code for a single SELECT statement.
1921 **
1922 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0.
1923 ** If there is a LIMIT clause, the parser sets nLimit to the value of the
1924 ** limit and nOffset to the value of the offset (or 0 if there is not
1925 ** offset). But later on, nLimit and nOffset become the memory locations
1926 ** in the VDBE that record the limit and offset counters.
1927 **
1928 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
1929 ** These addresses must be stored so that we can go back and fill in
1930 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor
1931 ** the number of columns in P2 can be computed at the same time
1932 ** as the OP_OpenEphm instruction is coded because not
1933 ** enough information about the compound query is known at that point.
1934 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
1935 ** for the result set. The KeyInfo for addrOpenTran[2] contains collating
1936 ** sequences for the ORDER BY clause.
1937 */
1938 struct Select {
1939 ExprList *pEList; /* The fields of the result */
1940 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
1941 char affinity; /* MakeRecord with this affinity for SRT_Set */
1942 u16 selFlags; /* Various SF_* values */
1943 SrcList *pSrc; /* The FROM clause */
1944 Expr *pWhere; /* The WHERE clause */
1945 ExprList *pGroupBy; /* The GROUP BY clause */
1946 Expr *pHaving; /* The HAVING clause */
1947 ExprList *pOrderBy; /* The ORDER BY clause */
1948 Select *pPrior; /* Prior select in a compound select statement */
1949 Select *pNext; /* Next select to the left in a compound */
1950 Select *pRightmost; /* Right-most select in a compound select statement */
1951 Expr *pLimit; /* LIMIT expression. NULL means not used. */
1952 Expr *pOffset; /* OFFSET expression. NULL means not used. */
1953 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */
1954 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */
1955 };
1956
1957 /*
1958 ** Allowed values for Select.selFlags. The "SF" prefix stands for
1959 ** "Select Flag".
1960 */
1961 #define SF_Distinct 0x0001 /* Output should be DISTINCT */
1962 #define SF_Resolved 0x0002 /* Identifiers have been resolved */
1963 #define SF_Aggregate 0x0004 /* Contains aggregate functions */
1964 #define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */
1965 #define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */
1966 #define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */
1967
1968
1969 /*
1970 ** The results of a select can be distributed in several ways. The
1971 ** "SRT" prefix means "SELECT Result Type".
1972 */
1973 #define SRT_Union 1 /* Store result as keys in an index */
1974 #define SRT_Except 2 /* Remove result from a UNION index */
1975 #define SRT_Exists 3 /* Store 1 if the result is not empty */
1976 #define SRT_Discard 4 /* Do not save the results anywhere */
1977
1978 /* The ORDER BY clause is ignored for all of the above */
1979 #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard)
1980
1981 #define SRT_Output 5 /* Output each row of result */
1982 #define SRT_Mem 6 /* Store result in a memory cell */
1983 #define SRT_Set 7 /* Store results as keys in an index */
1984 #define SRT_Table 8 /* Store result as data with an automatic rowid */
1985 #define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */
1986 #define SRT_Coroutine 10 /* Generate a single row of result */
1987
1988 /*
1989 ** A structure used to customize the behavior of sqlite3Select(). See
1990 ** comments above sqlite3Select() for details.
1991 */
1992 typedef struct SelectDest SelectDest;
1993 struct SelectDest {
1994 u8 eDest; /* How to dispose of the results */
1995 u8 affinity; /* Affinity used when eDest==SRT_Set */
1996 int iParm; /* A parameter used by the eDest disposal method */
1997 int iMem; /* Base register where results are written */
1998 int nMem; /* Number of registers allocated */
1999 };
2000
2001 /*
2002 ** During code generation of statements that do inserts into AUTOINCREMENT
2003 ** tables, the following information is attached to the Table.u.autoInc.p
2004 ** pointer of each autoincrement table to record some side information that
2005 ** the code generator needs. We have to keep per-table autoincrement
2006 ** information in case inserts are down within triggers. Triggers do not
2007 ** normally coordinate their activities, but we do need to coordinate the
2008 ** loading and saving of autoincrement information.
2009 */
2010 struct AutoincInfo {
2011 AutoincInfo *pNext; /* Next info block in a list of them all */
2012 Table *pTab; /* Table this info block refers to */
2013 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */
2014 int regCtr; /* Memory register holding the rowid counter */
2015 };
2016
2017 /*
2018 ** Size of the column cache
2019 */
2020 #ifndef SQLITE_N_COLCACHE
2021 # define SQLITE_N_COLCACHE 10
2022 #endif
2023
2024 /*
2025 ** At least one instance of the following structure is created for each
2026 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE
2027 ** statement. All such objects are stored in the linked list headed at
2028 ** Parse.pTriggerPrg and deleted once statement compilation has been
2029 ** completed.
2030 **
2031 ** A Vdbe sub-program that implements the body and WHEN clause of trigger
2032 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of
2033 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable.
2034 ** The Parse.pTriggerPrg list never contains two entries with the same
2035 ** values for both pTrigger and orconf.
2036 **
2037 ** The TriggerPrg.oldmask variable is set to a mask of old.* columns
2038 ** accessed (or set to 0 for triggers fired as a result of INSERT
2039 ** statements).
2040 */
2041 struct TriggerPrg {
2042 Trigger *pTrigger; /* Trigger this program was coded from */
2043 int orconf; /* Default ON CONFLICT policy */
2044 SubProgram *pProgram; /* Program implementing pTrigger/orconf */
2045 u32 oldmask; /* Mask of old.* columns accessed */
2046 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */
2047 };
2048
2049 /*
2050 ** An SQL parser context. A copy of this structure is passed through
2051 ** the parser and down into all the parser action routine in order to
2052 ** carry around information that is global to the entire parse.
2053 **
2054 ** The structure is divided into two parts. When the parser and code
2055 ** generate call themselves recursively, the first part of the structure
2056 ** is constant but the second part is reset at the beginning and end of
2057 ** each recursion.
2058 **
2059 ** The nTableLock and aTableLock variables are only used if the shared-cache
2060 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are
2061 ** used to store the set of table-locks required by the statement being
2062 ** compiled. Function sqlite3TableLock() is used to add entries to the
2063 ** list.
2064 */
2065 struct Parse {
2066 sqlite3 *db; /* The main database structure */
2067 int rc; /* Return code from execution */
2068 char *zErrMsg; /* An error message */
2069 Vdbe *pVdbe; /* An engine for executing database bytecode */
2070 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */
2071 u8 nameClash; /* A permanent table name clashes with temp table name */
2072 u8 checkSchema; /* Causes schema cookie check after an error */
2073 u8 nested; /* Number of nested calls to the parser/code generator */
2074 u8 parseError; /* True after a parsing error. Ticket #1794 */
2075 u8 nTempReg; /* Number of temporary registers in aTempReg[] */
2076 u8 nTempInUse; /* Number of aTempReg[] currently checked out */
2077 int aTempReg[8]; /* Holding area for temporary registers */
2078 int nRangeReg; /* Size of the temporary register block */
2079 int iRangeReg; /* First register in temporary register block */
2080 int nErr; /* Number of errors seen */
2081 int nTab; /* Number of previously allocated VDBE cursors */
2082 int nMem; /* Number of memory cells used so far */
2083 int nSet; /* Number of sets used so far */
2084 int ckBase; /* Base register of data during check constraints */
2085 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */
2086 int iCacheCnt; /* Counter used to generate aColCache[].lru values */
2087 u8 nColCache; /* Number of entries in the column cache */
2088 u8 iColCache; /* Next entry of the cache to replace */
2089 struct yColCache {
2090 int iTable; /* Table cursor number */
2091 int iColumn; /* Table column number */
2092 u8 affChange; /* True if this register has had an affinity change */
2093 u8 tempReg; /* iReg is a temp register that needs to be freed */
2094 int iLevel; /* Nesting level */
2095 int iReg; /* Reg with value of this column. 0 means none. */
2096 int lru; /* Least recently used entry has the smallest value */
2097 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */
2098 u32 writeMask; /* Start a write transaction on these databases */
2099 u32 cookieMask; /* Bitmask of schema verified databases */
2100 u8 isMultiWrite; /* True if statement may affect/insert multiple rows */
2101 u8 mayAbort; /* True if statement may throw an ABORT exception */
2102 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */
2103 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */
2104 #ifndef SQLITE_OMIT_SHARED_CACHE
2105 int nTableLock; /* Number of locks in aTableLock */
2106 TableLock *aTableLock; /* Required table locks for shared-cache mode */
2107 #endif
2108 int regRowid; /* Register holding rowid of CREATE TABLE entry */
2109 int regRoot; /* Register holding root page number for new objects */
2110 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */
2111 int nMaxArg; /* Max args passed to user function by sub-program */
2112
2113 /* Information used while coding trigger programs. */
2114 Parse *pToplevel; /* Parse structure for main program (or NULL) */
2115 Table *pTriggerTab; /* Table triggers are being coded for */
2116 u32 oldmask; /* Mask of old.* columns referenced */
2117 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */
2118 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */
2119
2120 /* Above is constant between recursions. Below is reset before and after
2121 ** each recursion */
2122
2123 int nVar; /* Number of '?' variables seen in the SQL so far */
2124 int nVarExpr; /* Number of used slots in apVarExpr[] */
2125 int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */
2126 Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */
2127 int nAlias; /* Number of aliased result set columns */
2128 int nAliasAlloc; /* Number of allocated slots for aAlias[] */
2129 int *aAlias; /* Register used to hold aliased result */
2130 u8 explain; /* True if the EXPLAIN flag is found on the query */
2131 Token sNameToken; /* Token with unqualified schema object name */
2132 Token sLastToken; /* The last token parsed */
2133 const char *zTail; /* All SQL text past the last semicolon parsed */
2134 Table *pNewTable; /* A table being constructed by CREATE TABLE */
2135 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */
2136 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
2137 #ifndef SQLITE_OMIT_VIRTUALTABLE
2138 Token sArg; /* Complete text of a module argument */
2139 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */
2140 int nVtabLock; /* Number of virtual tables to lock */
2141 Table **apVtabLock; /* Pointer to virtual tables needing locking */
2142 #endif
2143 int nHeight; /* Expression tree height of current sub-select */
2144 Table *pZombieTab; /* List of Table objects to delete after code gen */
2145 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */
2146 };
2147
2148 #ifdef SQLITE_OMIT_VIRTUALTABLE
2149 #define IN_DECLARE_VTAB 0
2150 #else
2151 #define IN_DECLARE_VTAB (pParse->declareVtab)
2152 #endif
2153
2154 /*
2155 ** An instance of the following structure can be declared on a stack and used
2156 ** to save the Parse.zAuthContext value so that it can be restored later.
2157 */
2158 struct AuthContext {
2159 const char *zAuthContext; /* Put saved Parse.zAuthContext here */
2160 Parse *pParse; /* The Parse structure */
2161 };
2162
2163 /*
2164 ** Bitfield flags for P5 value in OP_Insert and OP_Delete
2165 */
2166 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */
2167 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */
2168 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */
2169 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */
2170 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */
2171 #define OPFLAG_CLEARCACHE 0x20 /* Clear pseudo-table cache in OP_Column */
2172
2173 /*
2174 * Each trigger present in the database schema is stored as an instance of
2175 * struct Trigger.
2176 *
2177 * Pointers to instances of struct Trigger are stored in two ways.
2178 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the
2179 * database). This allows Trigger structures to be retrieved by name.
2180 * 2. All triggers associated with a single table form a linked list, using the
2181 * pNext member of struct Trigger. A pointer to the first element of the
2182 * linked list is stored as the "pTrigger" member of the associated
2183 * struct Table.
2184 *
2185 * The "step_list" member points to the first element of a linked list
2186 * containing the SQL statements specified as the trigger program.
2187 */
2188 struct Trigger {
2189 char *zName; /* The name of the trigger */
2190 char *table; /* The table or view to which the trigger applies */
2191 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */
2192 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
2193 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */
2194 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger,
2195 the <column-list> is stored here */
2196 Schema *pSchema; /* Schema containing the trigger */
2197 Schema *pTabSchema; /* Schema containing the table */
2198 TriggerStep *step_list; /* Link list of trigger program steps */
2199 Trigger *pNext; /* Next trigger associated with the table */
2200 };
2201
2202 /*
2203 ** A trigger is either a BEFORE or an AFTER trigger. The following constants
2204 ** determine which.
2205 **
2206 ** If there are multiple triggers, you might of some BEFORE and some AFTER.
2207 ** In that cases, the constants below can be ORed together.
2208 */
2209 #define TRIGGER_BEFORE 1
2210 #define TRIGGER_AFTER 2
2211
2212 /*
2213 * An instance of struct TriggerStep is used to store a single SQL statement
2214 * that is a part of a trigger-program.
2215 *
2216 * Instances of struct TriggerStep are stored in a singly linked list (linked
2217 * using the "pNext" member) referenced by the "step_list" member of the
2218 * associated struct Trigger instance. The first element of the linked list is
2219 * the first step of the trigger-program.
2220 *
2221 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
2222 * "SELECT" statement. The meanings of the other members is determined by the
2223 * value of "op" as follows:
2224 *
2225 * (op == TK_INSERT)
2226 * orconf -> stores the ON CONFLICT algorithm
2227 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then
2228 * this stores a pointer to the SELECT statement. Otherwise NULL.
2229 * target -> A token holding the quoted name of the table to insert into.
2230 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
2231 * this stores values to be inserted. Otherwise NULL.
2232 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ...
2233 * statement, then this stores the column-names to be
2234 * inserted into.
2235 *
2236 * (op == TK_DELETE)
2237 * target -> A token holding the quoted name of the table to delete from.
2238 * pWhere -> The WHERE clause of the DELETE statement if one is specified.
2239 * Otherwise NULL.
2240 *
2241 * (op == TK_UPDATE)
2242 * target -> A token holding the quoted name of the table to update rows of.
2243 * pWhere -> The WHERE clause of the UPDATE statement if one is specified.
2244 * Otherwise NULL.
2245 * pExprList -> A list of the columns to update and the expressions to update
2246 * them to. See sqlite3Update() documentation of "pChanges"
2247 * argument.
2248 *
2249 */
2250 struct TriggerStep {
2251 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
2252 u8 orconf; /* OE_Rollback etc. */
2253 Trigger *pTrig; /* The trigger that this step is a part of */
2254 Select *pSelect; /* SELECT statment or RHS of INSERT INTO .. SELECT ... */
2255 Token target; /* Target table for DELETE, UPDATE, INSERT */
2256 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */
2257 ExprList *pExprList; /* SET clause for UPDATE. VALUES clause for INSERT */
2258 IdList *pIdList; /* Column names for INSERT */
2259 TriggerStep *pNext; /* Next in the link-list */
2260 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */
2261 };
2262
2263 /*
2264 ** The following structure contains information used by the sqliteFix...
2265 ** routines as they walk the parse tree to make database references
2266 ** explicit.
2267 */
2268 typedef struct DbFixer DbFixer;
2269 struct DbFixer {
2270 Parse *pParse; /* The parsing context. Error messages written here */
2271 const char *zDb; /* Make sure all objects are contained in this database */
2272 const char *zType; /* Type of the container - used for error messages */
2273 const Token *pName; /* Name of the container - used for error messages */
2274 };
2275
2276 /*
2277 ** An objected used to accumulate the text of a string where we
2278 ** do not necessarily know how big the string will be in the end.
2279 */
2280 struct StrAccum {
2281 sqlite3 *db; /* Optional database for lookaside. Can be NULL */
2282 char *zBase; /* A base allocation. Not from malloc. */
2283 char *zText; /* The string collected so far */
2284 int nChar; /* Length of the string so far */
2285 int nAlloc; /* Amount of space allocated in zText */
2286 int mxAlloc; /* Maximum allowed string length */
2287 u8 mallocFailed; /* Becomes true if any memory allocation fails */
2288 u8 useMalloc; /* True if zText is enlargeable using realloc */
2289 u8 tooBig; /* Becomes true if string size exceeds limits */
2290 };
2291
2292 /*
2293 ** A pointer to this structure is used to communicate information
2294 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
2295 */
2296 typedef struct {
2297 sqlite3 *db; /* The database being initialized */
2298 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */
2299 char **pzErrMsg; /* Error message stored here */
2300 int rc; /* Result code stored here */
2301 } InitData;
2302
2303 /*
2304 ** Structure containing global configuration data for the SQLite library.
2305 **
2306 ** This structure also contains some state information.
2307 */
2308 struct Sqlite3Config {
2309 int bMemstat; /* True to enable memory status */
2310 int bCoreMutex; /* True to enable core mutexing */
2311 int bFullMutex; /* True to enable full mutexing */
2312 int mxStrlen; /* Maximum string length */
2313 int szLookaside; /* Default lookaside buffer size */
2314 int nLookaside; /* Default lookaside buffer count */
2315 sqlite3_mem_methods m; /* Low-level memory allocation interface */
2316 sqlite3_mutex_methods mutex; /* Low-level mutex interface */
2317 sqlite3_pcache_methods pcache; /* Low-level page-cache interface */
2318 void *pHeap; /* Heap storage space */
2319 int nHeap; /* Size of pHeap[] */
2320 int mnReq, mxReq; /* Min and max heap requests sizes */
2321 void *pScratch; /* Scratch memory */
2322 int szScratch; /* Size of each scratch buffer */
2323 int nScratch; /* Number of scratch buffers */
2324 void *pPage; /* Page cache memory */
2325 int szPage; /* Size of each page in pPage[] */
2326 int nPage; /* Number of pages in pPage[] */
2327 int mxParserStack; /* maximum depth of the parser stack */
2328 int sharedCacheEnabled; /* true if shared-cache mode enabled */
2329 /* The above might be initialized to non-zero. The following need to always
2330 ** initially be zero, however. */
2331 int isInit; /* True after initialization has finished */
2332 int inProgress; /* True while initialization in progress */
2333 int isMutexInit; /* True after mutexes are initialized */
2334 int isMallocInit; /* True after malloc is initialized */
2335 int isPCacheInit; /* True after malloc is initialized */
2336 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */
2337 int nRefInitMutex; /* Number of users of pInitMutex */
2338 };
2339
2340 /*
2341 ** Context pointer passed down through the tree-walk.
2342 */
2343 struct Walker {
2344 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */
2345 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */
2346 Parse *pParse; /* Parser context. */
2347 union { /* Extra data for callback */
2348 NameContext *pNC; /* Naming context */
2349 int i; /* Integer value */
2350 } u;
2351 };
2352
2353 /* Forward declarations */
2354 int sqlite3WalkExpr(Walker*, Expr*);
2355 int sqlite3WalkExprList(Walker*, ExprList*);
2356 int sqlite3WalkSelect(Walker*, Select*);
2357 int sqlite3WalkSelectExpr(Walker*, Select*);
2358 int sqlite3WalkSelectFrom(Walker*, Select*);
2359
2360 /*
2361 ** Return code from the parse-tree walking primitives and their
2362 ** callbacks.
2363 */
2364 #define WRC_Continue 0 /* Continue down into children */
2365 #define WRC_Prune 1 /* Omit children but continue walking siblings */
2366 #define WRC_Abort 2 /* Abandon the tree walk */
2367
2368 /*
2369 ** Assuming zIn points to the first byte of a UTF-8 character,
2370 ** advance zIn to point to the first byte of the next UTF-8 character.
2371 */
2372 #define SQLITE_SKIP_UTF8(zIn) { \
2373 if( (*(zIn++))>=0xc0 ){ \
2374 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \
2375 } \
2376 }
2377
2378 /*
2379 ** The SQLITE_CORRUPT_BKPT macro can be either a constant (for production
2380 ** builds) or a function call (for debugging). If it is a function call,
2381 ** it allows the operator to set a breakpoint at the spot where database
2382 ** corruption is first detected.
2383 */
2384 #ifdef SQLITE_DEBUG
2385 int sqlite3Corrupt(void);
2386 # define SQLITE_CORRUPT_BKPT sqlite3Corrupt()
2387 #else
2388 # define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT
2389 #endif
2390
2391 /*
2392 ** The ctype.h header is needed for non-ASCII systems. It is also
2393 ** needed by FTS3 when FTS3 is included in the amalgamation.
2394 */
2395 #if !defined(SQLITE_ASCII) || \
2396 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION))
2397 # include <ctype.h>
2398 #endif
2399
2400 /*
2401 ** The following macros mimic the standard library functions toupper(),
2402 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The
2403 ** sqlite versions only work for ASCII characters, regardless of locale.
2404 */
2405 #ifdef SQLITE_ASCII
2406 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20))
2407 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01)
2408 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06)
2409 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02)
2410 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04)
2411 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08)
2412 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)])
2413 #else
2414 # define sqlite3Toupper(x) toupper((unsigned char)(x))
2415 # define sqlite3Isspace(x) isspace((unsigned char)(x))
2416 # define sqlite3Isalnum(x) isalnum((unsigned char)(x))
2417 # define sqlite3Isalpha(x) isalpha((unsigned char)(x))
2418 # define sqlite3Isdigit(x) isdigit((unsigned char)(x))
2419 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x))
2420 # define sqlite3Tolower(x) tolower((unsigned char)(x))
2421 #endif
2422
2423 /*
2424 ** Internal function prototypes
2425 */
2426 int sqlite3StrICmp(const char *, const char *);
2427 int sqlite3IsNumber(const char*, int*, u8);
2428 int sqlite3Strlen30(const char*);
2429 #define sqlite3StrNICmp sqlite3_strnicmp
2430
2431 int sqlite3MallocInit(void);
2432 void sqlite3MallocEnd(void);
2433 void *sqlite3Malloc(int);
2434 void *sqlite3MallocZero(int);
2435 void *sqlite3DbMallocZero(sqlite3*, int);
2436 void *sqlite3DbMallocRaw(sqlite3*, int);
2437 char *sqlite3DbStrDup(sqlite3*,const char*);
2438 char *sqlite3DbStrNDup(sqlite3*,const char*, int);
2439 void *sqlite3Realloc(void*, int);
2440 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int);
2441 void *sqlite3DbRealloc(sqlite3 *, void *, int);
2442 void sqlite3DbFree(sqlite3*, void*);
2443 int sqlite3MallocSize(void*);
2444 int sqlite3DbMallocSize(sqlite3*, void*);
2445 void *sqlite3ScratchMalloc(int);
2446 void sqlite3ScratchFree(void*);
2447 void *sqlite3PageMalloc(int);
2448 void sqlite3PageFree(void*);
2449 void sqlite3MemSetDefault(void);
2450 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void));
2451 int sqlite3MemoryAlarm(void (*)(void*, sqlite3_int64, int), void*, sqlite3_int64 );
2452
2453 /*
2454 ** On systems with ample stack space and that support alloca(), make
2455 ** use of alloca() to obtain space for large automatic objects. By default,
2456 ** obtain space from malloc().
2457 **
2458 ** The alloca() routine never returns NULL. This will cause code paths
2459 ** that deal with sqlite3StackAlloc() failures to be unreachable.
2460 */
2461 #ifdef SQLITE_USE_ALLOCA
2462 # define sqlite3StackAllocRaw(D,N) alloca(N)
2463 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N)
2464 # define sqlite3StackFree(D,P)
2465 #else
2466 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N)
2467 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N)
2468 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P)
2469 #endif
2470
2471 #ifdef SQLITE_ENABLE_MEMSYS3
2472 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void);
2473 #endif
2474 #ifdef SQLITE_ENABLE_MEMSYS5
2475 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void);
2476 #endif
2477
2478
2479 #ifndef SQLITE_MUTEX_OMIT
2480 sqlite3_mutex_methods *sqlite3DefaultMutex(void);
2481 sqlite3_mutex *sqlite3MutexAlloc(int);
2482 int sqlite3MutexInit(void);
2483 int sqlite3MutexEnd(void);
2484 #endif
2485
2486 int sqlite3StatusValue(int);
2487 void sqlite3StatusAdd(int, int);
2488 void sqlite3StatusSet(int, int);
2489
2490 int sqlite3IsNaN(double);
2491
2492 void sqlite3VXPrintf(StrAccum*, int, const char*, va_list);
2493 char *sqlite3MPrintf(sqlite3*,const char*, ...);
2494 char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
2495 char *sqlite3MAppendf(sqlite3*,char*,const char*,...);
2496 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
2497 void sqlite3DebugPrintf(const char*, ...);
2498 #endif
2499 #if defined(SQLITE_TEST)
2500 void *sqlite3TestTextToPtr(const char*);
2501 #endif
2502 void sqlite3SetString(char **, sqlite3*, const char*, ...);
2503 void sqlite3ErrorMsg(Parse*, const char*, ...);
2504 void sqlite3ErrorClear(Parse*);
2505 int sqlite3Dequote(char*);
2506 int sqlite3KeywordCode(const unsigned char*, int);
2507 int sqlite3RunParser(Parse*, const char*, char **);
2508 void sqlite3FinishCoding(Parse*);
2509 int sqlite3GetTempReg(Parse*);
2510 void sqlite3ReleaseTempReg(Parse*,int);
2511 int sqlite3GetTempRange(Parse*,int);
2512 void sqlite3ReleaseTempRange(Parse*,int,int);
2513 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int);
2514 Expr *sqlite3Expr(sqlite3*,int,const char*);
2515 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*);
2516 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*);
2517 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
2518 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
2519 void sqlite3ExprAssignVarNumber(Parse*, Expr*);
2520 void sqlite3ExprClear(sqlite3*, Expr*);
2521 void sqlite3ExprDelete(sqlite3*, Expr*);
2522 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*);
2523 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int);
2524 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*);
2525 void sqlite3ExprListDelete(sqlite3*, ExprList*);
2526 int sqlite3Init(sqlite3*, char**);
2527 int sqlite3InitCallback(void*, int, char**, char**);
2528 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
2529 void sqlite3ResetInternalSchema(sqlite3*, int);
2530 void sqlite3BeginParse(Parse*,int);
2531 void sqlite3CommitInternalChanges(sqlite3*);
2532 Table *sqlite3ResultSetOfSelect(Parse*,Select*);
2533 void sqlite3OpenMasterTable(Parse *, int);
2534 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
2535 void sqlite3AddColumn(Parse*,Token*);
2536 void sqlite3AddNotNull(Parse*, int);
2537 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
2538 void sqlite3AddCheckConstraint(Parse*, Expr*);
2539 void sqlite3AddColumnType(Parse*,Token*);
2540 void sqlite3AddDefaultValue(Parse*,ExprSpan*);
2541 void sqlite3AddCollateType(Parse*, Token*);
2542 void sqlite3EndTable(Parse*,Token*,Token*,Select*);
2543
2544 Bitvec *sqlite3BitvecCreate(u32);
2545 int sqlite3BitvecTest(Bitvec*, u32);
2546 int sqlite3BitvecSet(Bitvec*, u32);
2547 void sqlite3BitvecClear(Bitvec*, u32, void*);
2548 void sqlite3BitvecDestroy(Bitvec*);
2549 u32 sqlite3BitvecSize(Bitvec*);
2550 int sqlite3BitvecBuiltinTest(int,int*);
2551
2552 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int);
2553 void sqlite3RowSetClear(RowSet*);
2554 void sqlite3RowSetInsert(RowSet*, i64);
2555 int sqlite3RowSetTest(RowSet*, u8 iBatch, i64);
2556 int sqlite3RowSetNext(RowSet*, i64*);
2557
2558 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int);
2559
2560 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2561 int sqlite3ViewGetColumnNames(Parse*,Table*);
2562 #else
2563 # define sqlite3ViewGetColumnNames(A,B) 0
2564 #endif
2565
2566 void sqlite3DropTable(Parse*, SrcList*, int, int);
2567 void sqlite3DeleteTable(Table*);
2568 #ifndef SQLITE_OMIT_AUTOINCREMENT
2569 void sqlite3AutoincrementBegin(Parse *pParse);
2570 void sqlite3AutoincrementEnd(Parse *pParse);
2571 #else
2572 # define sqlite3AutoincrementBegin(X)
2573 # define sqlite3AutoincrementEnd(X)
2574 #endif
2575 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int);
2576 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*);
2577 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*);
2578 int sqlite3IdListIndex(IdList*,const char*);
2579 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int);
2580 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*);
2581 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*,
2582 Token*, Select*, Expr*, IdList*);
2583 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *);
2584 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *);
2585 void sqlite3SrcListShiftJoinType(SrcList*);
2586 void sqlite3SrcListAssignCursors(Parse*, SrcList*);
2587 void sqlite3IdListDelete(sqlite3*, IdList*);
2588 void sqlite3SrcListDelete(sqlite3*, SrcList*);
2589 void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
2590 Token*, int, int);
2591 void sqlite3DropIndex(Parse*, SrcList*, int);
2592 int sqlite3Select(Parse*, Select*, SelectDest*);
2593 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
2594 Expr*,ExprList*,int,Expr*,Expr*);
2595 void sqlite3SelectDelete(sqlite3*, Select*);
2596 Table *sqlite3SrcListLookup(Parse*, SrcList*);
2597 int sqlite3IsReadOnly(Parse*, Table*, int);
2598 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
2599 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
2600 Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *);
2601 #endif
2602 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
2603 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
2604 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u16);
2605 void sqlite3WhereEnd(WhereInfo*);
2606 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, int);
2607 void sqlite3ExprCodeMove(Parse*, int, int, int);
2608 void sqlite3ExprCodeCopy(Parse*, int, int, int);
2609 void sqlite3ExprCacheStore(Parse*, int, int, int);
2610 void sqlite3ExprCachePush(Parse*);
2611 void sqlite3ExprCachePop(Parse*, int);
2612 void sqlite3ExprCacheRemove(Parse*, int);
2613 void sqlite3ExprCacheClear(Parse*);
2614 void sqlite3ExprCacheAffinityChange(Parse*, int, int);
2615 void sqlite3ExprHardCopy(Parse*,int,int);
2616 int sqlite3ExprCode(Parse*, Expr*, int);
2617 int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
2618 int sqlite3ExprCodeTarget(Parse*, Expr*, int);
2619 int sqlite3ExprCodeAndCache(Parse*, Expr*, int);
2620 void sqlite3ExprCodeConstants(Parse*, Expr*);
2621 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int);
2622 void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
2623 void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
2624 Table *sqlite3FindTable(sqlite3*,const char*, const char*);
2625 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*);
2626 Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
2627 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
2628 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
2629 void sqlite3Vacuum(Parse*);
2630 int sqlite3RunVacuum(char**, sqlite3*);
2631 char *sqlite3NameFromToken(sqlite3*, Token*);
2632 int sqlite3ExprCompare(Expr*, Expr*);
2633 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
2634 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
2635 Vdbe *sqlite3GetVdbe(Parse*);
2636 Expr *sqlite3CreateIdExpr(Parse *, const char*);
2637 void sqlite3PrngSaveState(void);
2638 void sqlite3PrngRestoreState(void);
2639 void sqlite3PrngResetState(void);
2640 void sqlite3RollbackAll(sqlite3*);
2641 void sqlite3CodeVerifySchema(Parse*, int);
2642 void sqlite3BeginTransaction(Parse*, int);
2643 void sqlite3CommitTransaction(Parse*);
2644 void sqlite3RollbackTransaction(Parse*);
2645 void sqlite3Savepoint(Parse*, int, Token*);
2646 void sqlite3CloseSavepoints(sqlite3 *);
2647 int sqlite3ExprIsConstant(Expr*);
2648 int sqlite3ExprIsConstantNotJoin(Expr*);
2649 int sqlite3ExprIsConstantOrFunction(Expr*);
2650 int sqlite3ExprIsInteger(Expr*, int*);
2651 int sqlite3IsRowid(const char*);
2652 void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int, Trigger *, int);
2653 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*);
2654 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int);
2655 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int,
2656 int*,int,int,int,int,int*);
2657 void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int);
2658 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int);
2659 void sqlite3BeginWriteOperation(Parse*, int, int);
2660 void sqlite3MayAbort(Parse *);
2661 void sqlite3HaltConstraint(Parse*, int, char*, int);
2662 Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
2663 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
2664 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
2665 IdList *sqlite3IdListDup(sqlite3*,IdList*);
2666 Select *sqlite3SelectDup(sqlite3*,Select*,int);
2667 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
2668 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int);
2669 void sqlite3RegisterBuiltinFunctions(sqlite3*);
2670 void sqlite3RegisterDateTimeFunctions(void);
2671 void sqlite3RegisterGlobalFunctions(void);
2672 #ifdef SQLITE_DEBUG
2673 int sqlite3SafetyOn(sqlite3*);
2674 int sqlite3SafetyOff(sqlite3*);
2675 #else
2676 # define sqlite3SafetyOn(A) 0
2677 # define sqlite3SafetyOff(A) 0
2678 #endif
2679 int sqlite3SafetyCheckOk(sqlite3*);
2680 int sqlite3SafetyCheckSickOrOk(sqlite3*);
2681 void sqlite3ChangeCookie(Parse*, int);
2682
2683 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
2684 void sqlite3MaterializeView(Parse*, Table*, Expr*, int);
2685 #endif
2686
2687 #ifndef SQLITE_OMIT_TRIGGER
2688 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
2689 Expr*,int, int);
2690 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
2691 void sqlite3DropTrigger(Parse*, SrcList*, int);
2692 void sqlite3DropTriggerPtr(Parse*, Trigger*);
2693 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask);
2694 Trigger *sqlite3TriggerList(Parse *, Table *);
2695 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *,
2696 int, int, int, int);
2697 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
2698 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
2699 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);
2700 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
2701 ExprList*,Select*,u8);
2702 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8);
2703 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);
2704 void sqlite3DeleteTrigger(sqlite3*, Trigger*);
2705 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
2706 u32 sqlite3TriggerOldmask(Parse*,Trigger*,int,ExprList*,Table*,int);
2707 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p))
2708 #else
2709 # define sqlite3TriggersExist(B,C,D,E,F) 0
2710 # define sqlite3DeleteTrigger(A,B)
2711 # define sqlite3DropTriggerPtr(A,B)
2712 # define sqlite3UnlinkAndDeleteTrigger(A,B,C)
2713 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I,J)
2714 # define sqlite3TriggerList(X, Y) 0
2715 # define sqlite3ParseToplevel(p) p
2716 # define sqlite3TriggerOldmask(A,B,C,D,E,F) 0
2717 #endif
2718
2719 int sqlite3JoinType(Parse*, Token*, Token*, Token*);
2720 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
2721 void sqlite3DeferForeignKey(Parse*, int);
2722 #ifndef SQLITE_OMIT_AUTHORIZATION
2723 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);
2724 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
2725 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
2726 void sqlite3AuthContextPop(AuthContext*);
2727 #else
2728 # define sqlite3AuthRead(a,b,c,d)
2729 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK
2730 # define sqlite3AuthContextPush(a,b,c)
2731 # define sqlite3AuthContextPop(a) ((void)(a))
2732 #endif
2733 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
2734 void sqlite3Detach(Parse*, Expr*);
2735 int sqlite3BtreeFactory(const sqlite3 *db, const char *zFilename,
2736 int omitJournal, int nCache, int flags, Btree **ppBtree);
2737 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
2738 int sqlite3FixSrcList(DbFixer*, SrcList*);
2739 int sqlite3FixSelect(DbFixer*, Select*);
2740 int sqlite3FixExpr(DbFixer*, Expr*);
2741 int sqlite3FixExprList(DbFixer*, ExprList*);
2742 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
2743 int sqlite3AtoF(const char *z, double*);
2744 int sqlite3GetInt32(const char *, int*);
2745 int sqlite3FitsIn64Bits(const char *, int);
2746 int sqlite3Utf16ByteLen(const void *pData, int nChar);
2747 int sqlite3Utf8CharLen(const char *pData, int nByte);
2748 int sqlite3Utf8Read(const u8*, const u8**);
2749
2750 /*
2751 ** Routines to read and write variable-length integers. These used to
2752 ** be defined locally, but now we use the varint routines in the util.c
2753 ** file. Code should use the MACRO forms below, as the Varint32 versions
2754 ** are coded to assume the single byte case is already handled (which
2755 ** the MACRO form does).
2756 */
2757 int sqlite3PutVarint(unsigned char*, u64);
2758 int sqlite3PutVarint32(unsigned char*, u32);
2759 u8 sqlite3GetVarint(const unsigned char *, u64 *);
2760 u8 sqlite3GetVarint32(const unsigned char *, u32 *);
2761 int sqlite3VarintLen(u64 v);
2762
2763 /*
2764 ** The header of a record consists of a sequence variable-length integers.
2765 ** These integers are almost always small and are encoded as a single byte.
2766 ** The following macros take advantage this fact to provide a fast encode
2767 ** and decode of the integers in a record header. It is faster for the common
2768 ** case where the integer is a single byte. It is a little slower when the
2769 ** integer is two or more bytes. But overall it is faster.
2770 **
2771 ** The following expressions are equivalent:
2772 **
2773 ** x = sqlite3GetVarint32( A, &B );
2774 ** x = sqlite3PutVarint32( A, B );
2775 **
2776 ** x = getVarint32( A, B );
2777 ** x = putVarint32( A, B );
2778 **
2779 */
2780 #define getVarint32(A,B) (u8)((*(A)<(u8)0x80) ? ((B) = (u32)*(A)),1 : sqlite3Ge tVarint32((A), (u32 *)&(B)))
2781 #define putVarint32(A,B) (u8)(((u32)(B)<(u32)0x80) ? (*(A) = (unsigned char)(B) ),1 : sqlite3PutVarint32((A), (B)))
2782 #define getVarint sqlite3GetVarint
2783 #define putVarint sqlite3PutVarint
2784
2785
2786 const char *sqlite3IndexAffinityStr(Vdbe *, Index *);
2787 void sqlite3TableAffinityStr(Vdbe *, Table *);
2788 char sqlite3CompareAffinity(Expr *pExpr, char aff2);
2789 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
2790 char sqlite3ExprAffinity(Expr *pExpr);
2791 int sqlite3Atoi64(const char*, i64*);
2792 void sqlite3Error(sqlite3*, int, const char*,...);
2793 void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
2794 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
2795 const char *sqlite3ErrStr(int);
2796 int sqlite3ReadSchema(Parse *pParse);
2797 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int);
2798 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName);
2799 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
2800 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *);
2801 int sqlite3CheckCollSeq(Parse *, CollSeq *);
2802 int sqlite3CheckObjectName(Parse *, const char *);
2803 void sqlite3VdbeSetChanges(sqlite3 *, int);
2804
2805 const void *sqlite3ValueText(sqlite3_value*, u8);
2806 int sqlite3ValueBytes(sqlite3_value*, u8);
2807 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8,
2808 void(*)(void*));
2809 void sqlite3ValueFree(sqlite3_value*);
2810 sqlite3_value *sqlite3ValueNew(sqlite3 *);
2811 char *sqlite3Utf16to8(sqlite3 *, const void*, int);
2812 #ifdef SQLITE_ENABLE_STAT2
2813 char *sqlite3Utf8to16(sqlite3 *, u8, char *, int, int *);
2814 #endif
2815 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
2816 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
2817 #ifndef SQLITE_AMALGAMATION
2818 extern const unsigned char sqlite3UpperToLower[];
2819 extern const unsigned char sqlite3CtypeMap[];
2820 extern SQLITE_WSD struct Sqlite3Config sqlite3Config;
2821 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions;
2822 extern int sqlite3PendingByte;
2823 #endif
2824 void sqlite3RootPageMoved(Db*, int, int);
2825 void sqlite3Reindex(Parse*, Token*, Token*);
2826 void sqlite3AlterFunctions(sqlite3*);
2827 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
2828 int sqlite3GetToken(const unsigned char *, int *);
2829 void sqlite3NestedParse(Parse*, const char*, ...);
2830 void sqlite3ExpirePreparedStatements(sqlite3*);
2831 void sqlite3CodeSubselect(Parse *, Expr *, int, int);
2832 void sqlite3SelectPrep(Parse*, Select*, NameContext*);
2833 int sqlite3ResolveExprNames(NameContext*, Expr*);
2834 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
2835 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
2836 void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
2837 void sqlite3AlterFinishAddColumn(Parse *, Token *);
2838 void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
2839 CollSeq *sqlite3GetCollSeq(sqlite3*, u8, CollSeq *, const char*);
2840 char sqlite3AffinityType(const char*);
2841 void sqlite3Analyze(Parse*, Token*, Token*);
2842 int sqlite3InvokeBusyHandler(BusyHandler*);
2843 int sqlite3FindDb(sqlite3*, Token*);
2844 int sqlite3FindDbName(sqlite3 *, const char *);
2845 int sqlite3AnalysisLoad(sqlite3*,int iDB);
2846 void sqlite3DeleteIndexSamples(Index*);
2847 void sqlite3DefaultRowEst(Index*);
2848 void sqlite3RegisterLikeFunctions(sqlite3*, int);
2849 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
2850 void sqlite3MinimumFileFormat(Parse*, int, int);
2851 void sqlite3SchemaFree(void *);
2852 Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
2853 int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
2854 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *);
2855 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
2856 void (*)(sqlite3_context*,int,sqlite3_value **),
2857 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*));
2858 int sqlite3ApiExit(sqlite3 *db, int);
2859 int sqlite3OpenTempDatabase(Parse *);
2860
2861 void sqlite3StrAccumInit(StrAccum*, char*, int, int);
2862 void sqlite3StrAccumAppend(StrAccum*,const char*,int);
2863 char *sqlite3StrAccumFinish(StrAccum*);
2864 void sqlite3StrAccumReset(StrAccum*);
2865 void sqlite3SelectDestInit(SelectDest*,int,int);
2866
2867 void sqlite3BackupRestart(sqlite3_backup *);
2868 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);
2869
2870 /*
2871 ** The interface to the LEMON-generated parser
2872 */
2873 void *sqlite3ParserAlloc(void*(*)(size_t));
2874 void sqlite3ParserFree(void*, void(*)(void*));
2875 void sqlite3Parser(void*, int, Token, Parse*);
2876 #ifdef YYTRACKMAXSTACKDEPTH
2877 int sqlite3ParserStackPeak(void*);
2878 #endif
2879
2880 void sqlite3AutoLoadExtensions(sqlite3*);
2881 #ifndef SQLITE_OMIT_LOAD_EXTENSION
2882 void sqlite3CloseExtensions(sqlite3*);
2883 #else
2884 # define sqlite3CloseExtensions(X)
2885 #endif
2886
2887 #ifndef SQLITE_OMIT_SHARED_CACHE
2888 void sqlite3TableLock(Parse *, int, int, u8, const char *);
2889 #else
2890 #define sqlite3TableLock(v,w,x,y,z)
2891 #endif
2892
2893 #ifdef SQLITE_TEST
2894 int sqlite3Utf8To8(unsigned char*);
2895 #endif
2896
2897 #ifdef SQLITE_OMIT_VIRTUALTABLE
2898 # define sqlite3VtabClear(Y)
2899 # define sqlite3VtabSync(X,Y) SQLITE_OK
2900 # define sqlite3VtabRollback(X)
2901 # define sqlite3VtabCommit(X)
2902 # define sqlite3VtabInSync(db) 0
2903 # define sqlite3VtabLock(X)
2904 # define sqlite3VtabUnlock(X)
2905 # define sqlite3VtabUnlockList(X)
2906 #else
2907 void sqlite3VtabClear(Table*);
2908 int sqlite3VtabSync(sqlite3 *db, char **);
2909 int sqlite3VtabRollback(sqlite3 *db);
2910 int sqlite3VtabCommit(sqlite3 *db);
2911 void sqlite3VtabLock(VTable *);
2912 void sqlite3VtabUnlock(VTable *);
2913 void sqlite3VtabUnlockList(sqlite3*);
2914 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0)
2915 #endif
2916 void sqlite3VtabMakeWritable(Parse*,Table*);
2917 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*);
2918 void sqlite3VtabFinishParse(Parse*, Token*);
2919 void sqlite3VtabArgInit(Parse*);
2920 void sqlite3VtabArgExtend(Parse*, Token*);
2921 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
2922 int sqlite3VtabCallConnect(Parse*, Table*);
2923 int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
2924 int sqlite3VtabBegin(sqlite3 *, VTable *);
2925 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
2926 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**);
2927 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *);
2928 int sqlite3Reprepare(Vdbe*);
2929 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
2930 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
2931 int sqlite3TempInMemory(const sqlite3*);
2932 VTable *sqlite3GetVTable(sqlite3*, Table*);
2933
2934
2935
2936 /*
2937 ** Available fault injectors. Should be numbered beginning with 0.
2938 */
2939 #define SQLITE_FAULTINJECTOR_MALLOC 0
2940 #define SQLITE_FAULTINJECTOR_COUNT 1
2941
2942 /*
2943 ** The interface to the code in fault.c used for identifying "benign"
2944 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST
2945 ** is not defined.
2946 */
2947 #ifndef SQLITE_OMIT_BUILTIN_TEST
2948 void sqlite3BeginBenignMalloc(void);
2949 void sqlite3EndBenignMalloc(void);
2950 #else
2951 #define sqlite3BeginBenignMalloc()
2952 #define sqlite3EndBenignMalloc()
2953 #endif
2954
2955 #define IN_INDEX_ROWID 1
2956 #define IN_INDEX_EPH 2
2957 #define IN_INDEX_INDEX 3
2958 int sqlite3FindInIndex(Parse *, Expr *, int*);
2959
2960 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
2961 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
2962 int sqlite3JournalSize(sqlite3_vfs *);
2963 int sqlite3JournalCreate(sqlite3_file *);
2964 #else
2965 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile)
2966 #endif
2967
2968 void sqlite3MemJournalOpen(sqlite3_file *);
2969 int sqlite3MemJournalSize(void);
2970 int sqlite3IsMemJournal(sqlite3_file *);
2971
2972 #if SQLITE_MAX_EXPR_DEPTH>0
2973 void sqlite3ExprSetHeight(Parse *pParse, Expr *p);
2974 int sqlite3SelectExprHeight(Select *);
2975 int sqlite3ExprCheckHeight(Parse*, int);
2976 #else
2977 #define sqlite3ExprSetHeight(x,y)
2978 #define sqlite3SelectExprHeight(x) 0
2979 #define sqlite3ExprCheckHeight(x,y)
2980 #endif
2981
2982 u32 sqlite3Get4byte(const u8*);
2983 void sqlite3Put4byte(u8*, u32);
2984
2985 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
2986 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *);
2987 void sqlite3ConnectionUnlocked(sqlite3 *db);
2988 void sqlite3ConnectionClosed(sqlite3 *db);
2989 #else
2990 #define sqlite3ConnectionBlocked(x,y)
2991 #define sqlite3ConnectionUnlocked(x)
2992 #define sqlite3ConnectionClosed(x)
2993 #endif
2994
2995 #ifdef SQLITE_DEBUG
2996 void sqlite3ParserTrace(FILE*, char *);
2997 #endif
2998
2999 /*
3000 ** If the SQLITE_ENABLE IOTRACE exists then the global variable
3001 ** sqlite3IoTrace is a pointer to a printf-like routine used to
3002 ** print I/O tracing messages.
3003 */
3004 #ifdef SQLITE_ENABLE_IOTRACE
3005 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; }
3006 void sqlite3VdbeIOTraceSql(Vdbe*);
3007 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...);
3008 #else
3009 # define IOTRACE(A)
3010 # define sqlite3VdbeIOTraceSql(X)
3011 #endif
3012
3013 #endif
OLDNEW
« no previous file with comments | « third_party/sqlite/src/sqlite3ext.h ('k') | third_party/sqlite/src/sqliteLimit.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698