Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(903)

Side by Side Diff: third_party/sqlite/src/rowset.c

Issue 3108030: Move bundled copy of sqlite one level deeper to better separate it... (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src/
Patch Set: Created 10 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « third_party/sqlite/src/resolve.c ('k') | third_party/sqlite/src/select.c » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /*
2 ** 2008 December 3
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This module implements an object we call a "RowSet".
14 **
15 ** The RowSet object is a collection of rowids. Rowids
16 ** are inserted into the RowSet in an arbitrary order. Inserts
17 ** can be intermixed with tests to see if a given rowid has been
18 ** previously inserted into the RowSet.
19 **
20 ** After all inserts are finished, it is possible to extract the
21 ** elements of the RowSet in sorted order. Once this extraction
22 ** process has started, no new elements may be inserted.
23 **
24 ** Hence, the primitive operations for a RowSet are:
25 **
26 ** CREATE
27 ** INSERT
28 ** TEST
29 ** SMALLEST
30 ** DESTROY
31 **
32 ** The CREATE and DESTROY primitives are the constructor and destructor,
33 ** obviously. The INSERT primitive adds a new element to the RowSet.
34 ** TEST checks to see if an element is already in the RowSet. SMALLEST
35 ** extracts the least value from the RowSet.
36 **
37 ** The INSERT primitive might allocate additional memory. Memory is
38 ** allocated in chunks so most INSERTs do no allocation. There is an
39 ** upper bound on the size of allocated memory. No memory is freed
40 ** until DESTROY.
41 **
42 ** The TEST primitive includes a "batch" number. The TEST primitive
43 ** will only see elements that were inserted before the last change
44 ** in the batch number. In other words, if an INSERT occurs between
45 ** two TESTs where the TESTs have the same batch nubmer, then the
46 ** value added by the INSERT will not be visible to the second TEST.
47 ** The initial batch number is zero, so if the very first TEST contains
48 ** a non-zero batch number, it will see all prior INSERTs.
49 **
50 ** No INSERTs may occurs after a SMALLEST. An assertion will fail if
51 ** that is attempted.
52 **
53 ** The cost of an INSERT is roughly constant. (Sometime new memory
54 ** has to be allocated on an INSERT.) The cost of a TEST with a new
55 ** batch number is O(NlogN) where N is the number of elements in the RowSet.
56 ** The cost of a TEST using the same batch number is O(logN). The cost
57 ** of the first SMALLEST is O(NlogN). Second and subsequent SMALLEST
58 ** primitives are constant time. The cost of DESTROY is O(N).
59 **
60 ** There is an added cost of O(N) when switching between TEST and
61 ** SMALLEST primitives.
62 **
63 ** $Id: rowset.c,v 1.7 2009/05/22 01:00:13 drh Exp $
64 */
65 #include "sqliteInt.h"
66
67
68 /*
69 ** Target size for allocation chunks.
70 */
71 #define ROWSET_ALLOCATION_SIZE 1024
72
73 /*
74 ** The number of rowset entries per allocation chunk.
75 */
76 #define ROWSET_ENTRY_PER_CHUNK \
77 ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry))
78
79 /*
80 ** Each entry in a RowSet is an instance of the following object.
81 */
82 struct RowSetEntry {
83 i64 v; /* ROWID value for this entry */
84 struct RowSetEntry *pRight; /* Right subtree (larger entries) or list */
85 struct RowSetEntry *pLeft; /* Left subtree (smaller entries) */
86 };
87
88 /*
89 ** RowSetEntry objects are allocated in large chunks (instances of the
90 ** following structure) to reduce memory allocation overhead. The
91 ** chunks are kept on a linked list so that they can be deallocated
92 ** when the RowSet is destroyed.
93 */
94 struct RowSetChunk {
95 struct RowSetChunk *pNextChunk; /* Next chunk on list of them all */
96 struct RowSetEntry aEntry[ROWSET_ENTRY_PER_CHUNK]; /* Allocated entries */
97 };
98
99 /*
100 ** A RowSet in an instance of the following structure.
101 **
102 ** A typedef of this structure if found in sqliteInt.h.
103 */
104 struct RowSet {
105 struct RowSetChunk *pChunk; /* List of all chunk allocations */
106 sqlite3 *db; /* The database connection */
107 struct RowSetEntry *pEntry; /* List of entries using pRight */
108 struct RowSetEntry *pLast; /* Last entry on the pEntry list */
109 struct RowSetEntry *pFresh; /* Source of new entry objects */
110 struct RowSetEntry *pTree; /* Binary tree of entries */
111 u16 nFresh; /* Number of objects on pFresh */
112 u8 isSorted; /* True if pEntry is sorted */
113 u8 iBatch; /* Current insert batch */
114 };
115
116 /*
117 ** Turn bulk memory into a RowSet object. N bytes of memory
118 ** are available at pSpace. The db pointer is used as a memory context
119 ** for any subsequent allocations that need to occur.
120 ** Return a pointer to the new RowSet object.
121 **
122 ** It must be the case that N is sufficient to make a Rowset. If not
123 ** an assertion fault occurs.
124 **
125 ** If N is larger than the minimum, use the surplus as an initial
126 ** allocation of entries available to be filled.
127 */
128 RowSet *sqlite3RowSetInit(sqlite3 *db, void *pSpace, unsigned int N){
129 RowSet *p;
130 assert( N >= ROUND8(sizeof(*p)) );
131 p = pSpace;
132 p->pChunk = 0;
133 p->db = db;
134 p->pEntry = 0;
135 p->pLast = 0;
136 p->pTree = 0;
137 p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p);
138 p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry));
139 p->isSorted = 1;
140 p->iBatch = 0;
141 return p;
142 }
143
144 /*
145 ** Deallocate all chunks from a RowSet. This frees all memory that
146 ** the RowSet has allocated over its lifetime. This routine is
147 ** the destructor for the RowSet.
148 */
149 void sqlite3RowSetClear(RowSet *p){
150 struct RowSetChunk *pChunk, *pNextChunk;
151 for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){
152 pNextChunk = pChunk->pNextChunk;
153 sqlite3DbFree(p->db, pChunk);
154 }
155 p->pChunk = 0;
156 p->nFresh = 0;
157 p->pEntry = 0;
158 p->pLast = 0;
159 p->pTree = 0;
160 p->isSorted = 1;
161 }
162
163 /*
164 ** Insert a new value into a RowSet.
165 **
166 ** The mallocFailed flag of the database connection is set if a
167 ** memory allocation fails.
168 */
169 void sqlite3RowSetInsert(RowSet *p, i64 rowid){
170 struct RowSetEntry *pEntry; /* The new entry */
171 struct RowSetEntry *pLast; /* The last prior entry */
172 assert( p!=0 );
173 if( p->nFresh==0 ){
174 struct RowSetChunk *pNew;
175 pNew = sqlite3DbMallocRaw(p->db, sizeof(*pNew));
176 if( pNew==0 ){
177 return;
178 }
179 pNew->pNextChunk = p->pChunk;
180 p->pChunk = pNew;
181 p->pFresh = pNew->aEntry;
182 p->nFresh = ROWSET_ENTRY_PER_CHUNK;
183 }
184 pEntry = p->pFresh++;
185 p->nFresh--;
186 pEntry->v = rowid;
187 pEntry->pRight = 0;
188 pLast = p->pLast;
189 if( pLast ){
190 if( p->isSorted && rowid<=pLast->v ){
191 p->isSorted = 0;
192 }
193 pLast->pRight = pEntry;
194 }else{
195 assert( p->pEntry==0 ); /* Fires if INSERT after SMALLEST */
196 p->pEntry = pEntry;
197 }
198 p->pLast = pEntry;
199 }
200
201 /*
202 ** Merge two lists of RowSetEntry objects. Remove duplicates.
203 **
204 ** The input lists are connected via pRight pointers and are
205 ** assumed to each already be in sorted order.
206 */
207 static struct RowSetEntry *rowSetMerge(
208 struct RowSetEntry *pA, /* First sorted list to be merged */
209 struct RowSetEntry *pB /* Second sorted list to be merged */
210 ){
211 struct RowSetEntry head;
212 struct RowSetEntry *pTail;
213
214 pTail = &head;
215 while( pA && pB ){
216 assert( pA->pRight==0 || pA->v<=pA->pRight->v );
217 assert( pB->pRight==0 || pB->v<=pB->pRight->v );
218 if( pA->v<pB->v ){
219 pTail->pRight = pA;
220 pA = pA->pRight;
221 pTail = pTail->pRight;
222 }else if( pB->v<pA->v ){
223 pTail->pRight = pB;
224 pB = pB->pRight;
225 pTail = pTail->pRight;
226 }else{
227 pA = pA->pRight;
228 }
229 }
230 if( pA ){
231 assert( pA->pRight==0 || pA->v<=pA->pRight->v );
232 pTail->pRight = pA;
233 }else{
234 assert( pB==0 || pB->pRight==0 || pB->v<=pB->pRight->v );
235 pTail->pRight = pB;
236 }
237 return head.pRight;
238 }
239
240 /*
241 ** Sort all elements on the pEntry list of the RowSet into ascending order.
242 */
243 static void rowSetSort(RowSet *p){
244 unsigned int i;
245 struct RowSetEntry *pEntry;
246 struct RowSetEntry *aBucket[40];
247
248 assert( p->isSorted==0 );
249 memset(aBucket, 0, sizeof(aBucket));
250 while( p->pEntry ){
251 pEntry = p->pEntry;
252 p->pEntry = pEntry->pRight;
253 pEntry->pRight = 0;
254 for(i=0; aBucket[i]; i++){
255 pEntry = rowSetMerge(aBucket[i], pEntry);
256 aBucket[i] = 0;
257 }
258 aBucket[i] = pEntry;
259 }
260 pEntry = 0;
261 for(i=0; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){
262 pEntry = rowSetMerge(pEntry, aBucket[i]);
263 }
264 p->pEntry = pEntry;
265 p->pLast = 0;
266 p->isSorted = 1;
267 }
268
269
270 /*
271 ** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects.
272 ** Convert this tree into a linked list connected by the pRight pointers
273 ** and return pointers to the first and last elements of the new list.
274 */
275 static void rowSetTreeToList(
276 struct RowSetEntry *pIn, /* Root of the input tree */
277 struct RowSetEntry **ppFirst, /* Write head of the output list here */
278 struct RowSetEntry **ppLast /* Write tail of the output list here */
279 ){
280 assert( pIn!=0 );
281 if( pIn->pLeft ){
282 struct RowSetEntry *p;
283 rowSetTreeToList(pIn->pLeft, ppFirst, &p);
284 p->pRight = pIn;
285 }else{
286 *ppFirst = pIn;
287 }
288 if( pIn->pRight ){
289 rowSetTreeToList(pIn->pRight, &pIn->pRight, ppLast);
290 }else{
291 *ppLast = pIn;
292 }
293 assert( (*ppLast)->pRight==0 );
294 }
295
296
297 /*
298 ** Convert a sorted list of elements (connected by pRight) into a binary
299 ** tree with depth of iDepth. A depth of 1 means the tree contains a single
300 ** node taken from the head of *ppList. A depth of 2 means a tree with
301 ** three nodes. And so forth.
302 **
303 ** Use as many entries from the input list as required and update the
304 ** *ppList to point to the unused elements of the list. If the input
305 ** list contains too few elements, then construct an incomplete tree
306 ** and leave *ppList set to NULL.
307 **
308 ** Return a pointer to the root of the constructed binary tree.
309 */
310 static struct RowSetEntry *rowSetNDeepTree(
311 struct RowSetEntry **ppList,
312 int iDepth
313 ){
314 struct RowSetEntry *p; /* Root of the new tree */
315 struct RowSetEntry *pLeft; /* Left subtree */
316 if( *ppList==0 ){
317 return 0;
318 }
319 if( iDepth==1 ){
320 p = *ppList;
321 *ppList = p->pRight;
322 p->pLeft = p->pRight = 0;
323 return p;
324 }
325 pLeft = rowSetNDeepTree(ppList, iDepth-1);
326 p = *ppList;
327 if( p==0 ){
328 return pLeft;
329 }
330 p->pLeft = pLeft;
331 *ppList = p->pRight;
332 p->pRight = rowSetNDeepTree(ppList, iDepth-1);
333 return p;
334 }
335
336 /*
337 ** Convert a sorted list of elements into a binary tree. Make the tree
338 ** as deep as it needs to be in order to contain the entire list.
339 */
340 static struct RowSetEntry *rowSetListToTree(struct RowSetEntry *pList){
341 int iDepth; /* Depth of the tree so far */
342 struct RowSetEntry *p; /* Current tree root */
343 struct RowSetEntry *pLeft; /* Left subtree */
344
345 assert( pList!=0 );
346 p = pList;
347 pList = p->pRight;
348 p->pLeft = p->pRight = 0;
349 for(iDepth=1; pList; iDepth++){
350 pLeft = p;
351 p = pList;
352 pList = p->pRight;
353 p->pLeft = pLeft;
354 p->pRight = rowSetNDeepTree(&pList, iDepth);
355 }
356 return p;
357 }
358
359 /*
360 ** Convert the list in p->pEntry into a sorted list if it is not
361 ** sorted already. If there is a binary tree on p->pTree, then
362 ** convert it into a list too and merge it into the p->pEntry list.
363 */
364 static void rowSetToList(RowSet *p){
365 if( !p->isSorted ){
366 rowSetSort(p);
367 }
368 if( p->pTree ){
369 struct RowSetEntry *pHead, *pTail;
370 rowSetTreeToList(p->pTree, &pHead, &pTail);
371 p->pTree = 0;
372 p->pEntry = rowSetMerge(p->pEntry, pHead);
373 }
374 }
375
376 /*
377 ** Extract the smallest element from the RowSet.
378 ** Write the element into *pRowid. Return 1 on success. Return
379 ** 0 if the RowSet is already empty.
380 **
381 ** After this routine has been called, the sqlite3RowSetInsert()
382 ** routine may not be called again.
383 */
384 int sqlite3RowSetNext(RowSet *p, i64 *pRowid){
385 rowSetToList(p);
386 if( p->pEntry ){
387 *pRowid = p->pEntry->v;
388 p->pEntry = p->pEntry->pRight;
389 if( p->pEntry==0 ){
390 sqlite3RowSetClear(p);
391 }
392 return 1;
393 }else{
394 return 0;
395 }
396 }
397
398 /*
399 ** Check to see if element iRowid was inserted into the the rowset as
400 ** part of any insert batch prior to iBatch. Return 1 or 0.
401 */
402 int sqlite3RowSetTest(RowSet *pRowSet, u8 iBatch, sqlite3_int64 iRowid){
403 struct RowSetEntry *p;
404 if( iBatch!=pRowSet->iBatch ){
405 if( pRowSet->pEntry ){
406 rowSetToList(pRowSet);
407 pRowSet->pTree = rowSetListToTree(pRowSet->pEntry);
408 pRowSet->pEntry = 0;
409 pRowSet->pLast = 0;
410 }
411 pRowSet->iBatch = iBatch;
412 }
413 p = pRowSet->pTree;
414 while( p ){
415 if( p->v<iRowid ){
416 p = p->pRight;
417 }else if( p->v>iRowid ){
418 p = p->pLeft;
419 }else{
420 return 1;
421 }
422 }
423 return 0;
424 }
OLDNEW
« no previous file with comments | « third_party/sqlite/src/resolve.c ('k') | third_party/sqlite/src/select.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698