Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(571)

Side by Side Diff: third_party/sqlite/src/os_unix.c

Issue 3108030: Move bundled copy of sqlite one level deeper to better separate it... (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src/
Patch Set: Created 10 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « third_party/sqlite/src/os_symbian.cc ('k') | third_party/sqlite/src/os_win.c » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /*
2 ** 2004 May 22
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 ******************************************************************************
12 **
13 ** This file contains the VFS implementation for unix-like operating systems
14 ** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others.
15 **
16 ** There are actually several different VFS implementations in this file.
17 ** The differences are in the way that file locking is done. The default
18 ** implementation uses Posix Advisory Locks. Alternative implementations
19 ** use flock(), dot-files, various proprietary locking schemas, or simply
20 ** skip locking all together.
21 **
22 ** This source file is organized into divisions where the logic for various
23 ** subfunctions is contained within the appropriate division. PLEASE
24 ** KEEP THE STRUCTURE OF THIS FILE INTACT. New code should be placed
25 ** in the correct division and should be clearly labeled.
26 **
27 ** The layout of divisions is as follows:
28 **
29 ** * General-purpose declarations and utility functions.
30 ** * Unique file ID logic used by VxWorks.
31 ** * Various locking primitive implementations (all except proxy locking):
32 ** + for Posix Advisory Locks
33 ** + for no-op locks
34 ** + for dot-file locks
35 ** + for flock() locking
36 ** + for named semaphore locks (VxWorks only)
37 ** + for AFP filesystem locks (MacOSX only)
38 ** * sqlite3_file methods not associated with locking.
39 ** * Definitions of sqlite3_io_methods objects for all locking
40 ** methods plus "finder" functions for each locking method.
41 ** * sqlite3_vfs method implementations.
42 ** * Locking primitives for the proxy uber-locking-method. (MacOSX only)
43 ** * Definitions of sqlite3_vfs objects for all locking methods
44 ** plus implementations of sqlite3_os_init() and sqlite3_os_end().
45 */
46 #include "sqliteInt.h"
47 #if SQLITE_OS_UNIX /* This file is used on unix only */
48
49 /*
50 ** There are various methods for file locking used for concurrency
51 ** control:
52 **
53 ** 1. POSIX locking (the default),
54 ** 2. No locking,
55 ** 3. Dot-file locking,
56 ** 4. flock() locking,
57 ** 5. AFP locking (OSX only),
58 ** 6. Named POSIX semaphores (VXWorks only),
59 ** 7. proxy locking. (OSX only)
60 **
61 ** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE
62 ** is defined to 1. The SQLITE_ENABLE_LOCKING_STYLE also enables automatic
63 ** selection of the appropriate locking style based on the filesystem
64 ** where the database is located.
65 */
66 #if !defined(SQLITE_ENABLE_LOCKING_STYLE)
67 # if defined(__APPLE__)
68 # define SQLITE_ENABLE_LOCKING_STYLE 1
69 # else
70 # define SQLITE_ENABLE_LOCKING_STYLE 0
71 # endif
72 #endif
73
74 /*
75 ** Define the OS_VXWORKS pre-processor macro to 1 if building on
76 ** vxworks, or 0 otherwise.
77 */
78 #ifndef OS_VXWORKS
79 # if defined(__RTP__) || defined(_WRS_KERNEL)
80 # define OS_VXWORKS 1
81 # else
82 # define OS_VXWORKS 0
83 # endif
84 #endif
85
86 /*
87 ** These #defines should enable >2GB file support on Posix if the
88 ** underlying operating system supports it. If the OS lacks
89 ** large file support, these should be no-ops.
90 **
91 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
92 ** on the compiler command line. This is necessary if you are compiling
93 ** on a recent machine (ex: RedHat 7.2) but you want your code to work
94 ** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2
95 ** without this option, LFS is enable. But LFS does not exist in the kernel
96 ** in RedHat 6.0, so the code won't work. Hence, for maximum binary
97 ** portability you should omit LFS.
98 **
99 ** The previous paragraph was written in 2005. (This paragraph is written
100 ** on 2008-11-28.) These days, all Linux kernels support large files, so
101 ** you should probably leave LFS enabled. But some embedded platforms might
102 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful.
103 */
104 #ifndef SQLITE_DISABLE_LFS
105 # define _LARGE_FILE 1
106 # ifndef _FILE_OFFSET_BITS
107 # define _FILE_OFFSET_BITS 64
108 # endif
109 # define _LARGEFILE_SOURCE 1
110 #endif
111
112 /*
113 ** standard include files.
114 */
115 #include <sys/types.h>
116 #include <sys/stat.h>
117 #include <fcntl.h>
118 #include <unistd.h>
119 #include <time.h>
120 #include <sys/time.h>
121 #include <errno.h>
122
123 #if SQLITE_ENABLE_LOCKING_STYLE
124 # include <sys/ioctl.h>
125 # if OS_VXWORKS
126 # include <semaphore.h>
127 # include <limits.h>
128 # else
129 # include <sys/file.h>
130 # include <sys/param.h>
131 # include <sys/mount.h>
132 # endif
133 #endif /* SQLITE_ENABLE_LOCKING_STYLE */
134
135 /*
136 ** If we are to be thread-safe, include the pthreads header and define
137 ** the SQLITE_UNIX_THREADS macro.
138 */
139 #if SQLITE_THREADSAFE
140 # include <pthread.h>
141 # define SQLITE_UNIX_THREADS 1
142 #endif
143
144 /*
145 ** Default permissions when creating a new file
146 */
147 #ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
148 # define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
149 #endif
150
151 /*
152 ** Default permissions when creating auto proxy dir
153 */
154 #ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
155 # define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755
156 #endif
157
158 /*
159 ** Maximum supported path-length.
160 */
161 #define MAX_PATHNAME 512
162
163 /*
164 ** Only set the lastErrno if the error code is a real error and not
165 ** a normal expected return code of SQLITE_BUSY or SQLITE_OK
166 */
167 #define IS_LOCK_ERROR(x) ((x != SQLITE_OK) && (x != SQLITE_BUSY))
168
169
170 /*
171 ** Sometimes, after a file handle is closed by SQLite, the file descriptor
172 ** cannot be closed immediately. In these cases, instances of the following
173 ** structure are used to store the file descriptor while waiting for an
174 ** opportunity to either close or reuse it.
175 */
176 typedef struct UnixUnusedFd UnixUnusedFd;
177 struct UnixUnusedFd {
178 int fd; /* File descriptor to close */
179 int flags; /* Flags this file descriptor was opened with */
180 UnixUnusedFd *pNext; /* Next unused file descriptor on same file */
181 };
182
183 /*
184 ** The unixFile structure is subclass of sqlite3_file specific to the unix
185 ** VFS implementations.
186 */
187 typedef struct unixFile unixFile;
188 struct unixFile {
189 sqlite3_io_methods const *pMethod; /* Always the first entry */
190 struct unixOpenCnt *pOpen; /* Info about all open fd's on this inode */
191 struct unixLockInfo *pLock; /* Info about locks on this inode */
192 int h; /* The file descriptor */
193 int dirfd; /* File descriptor for the directory */
194 unsigned char locktype; /* The type of lock held on this fd */
195 int lastErrno; /* The unix errno from the last I/O error */
196 void *lockingContext; /* Locking style specific state */
197 UnixUnusedFd *pUnused; /* Pre-allocated UnixUnusedFd */
198 int fileFlags; /* Miscellanous flags */
199 #if SQLITE_ENABLE_LOCKING_STYLE
200 int openFlags; /* The flags specified at open() */
201 #endif
202 #if SQLITE_THREADSAFE && defined(__linux__)
203 pthread_t tid; /* The thread that "owns" this unixFile */
204 #endif
205 #if OS_VXWORKS
206 int isDelete; /* Delete on close if true */
207 struct vxworksFileId *pId; /* Unique file ID */
208 #endif
209 #ifndef NDEBUG
210 /* The next group of variables are used to track whether or not the
211 ** transaction counter in bytes 24-27 of database files are updated
212 ** whenever any part of the database changes. An assertion fault will
213 ** occur if a file is updated without also updating the transaction
214 ** counter. This test is made to avoid new problems similar to the
215 ** one described by ticket #3584.
216 */
217 unsigned char transCntrChng; /* True if the transaction counter changed */
218 unsigned char dbUpdate; /* True if any part of database file changed */
219 unsigned char inNormalWrite; /* True if in a normal write operation */
220 #endif
221 #ifdef SQLITE_TEST
222 /* In test mode, increase the size of this structure a bit so that
223 ** it is larger than the struct CrashFile defined in test6.c.
224 */
225 char aPadding[32];
226 #endif
227 };
228
229 /*
230 ** The following macros define bits in unixFile.fileFlags
231 */
232 #define SQLITE_WHOLE_FILE_LOCKING 0x0001 /* Use whole-file locking */
233
234 /*
235 ** Include code that is common to all os_*.c files
236 */
237 #include "os_common.h"
238
239 /*
240 ** Define various macros that are missing from some systems.
241 */
242 #ifndef O_LARGEFILE
243 # define O_LARGEFILE 0
244 #endif
245 #ifdef SQLITE_DISABLE_LFS
246 # undef O_LARGEFILE
247 # define O_LARGEFILE 0
248 #endif
249 #ifndef O_NOFOLLOW
250 # define O_NOFOLLOW 0
251 #endif
252 #ifndef O_BINARY
253 # define O_BINARY 0
254 #endif
255
256 /*
257 ** The DJGPP compiler environment looks mostly like Unix, but it
258 ** lacks the fcntl() system call. So redefine fcntl() to be something
259 ** that always succeeds. This means that locking does not occur under
260 ** DJGPP. But it is DOS - what did you expect?
261 */
262 #ifdef __DJGPP__
263 # define fcntl(A,B,C) 0
264 #endif
265
266 /*
267 ** The threadid macro resolves to the thread-id or to 0. Used for
268 ** testing and debugging only.
269 */
270 #if SQLITE_THREADSAFE
271 #define threadid pthread_self()
272 #else
273 #define threadid 0
274 #endif
275
276
277 /*
278 ** Helper functions to obtain and relinquish the global mutex. The
279 ** global mutex is used to protect the unixOpenCnt, unixLockInfo and
280 ** vxworksFileId objects used by this file, all of which may be
281 ** shared by multiple threads.
282 **
283 ** Function unixMutexHeld() is used to assert() that the global mutex
284 ** is held when required. This function is only used as part of assert()
285 ** statements. e.g.
286 **
287 ** unixEnterMutex()
288 ** assert( unixMutexHeld() );
289 ** unixEnterLeave()
290 */
291 static void unixEnterMutex(void){
292 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
293 }
294 static void unixLeaveMutex(void){
295 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
296 }
297 #ifdef SQLITE_DEBUG
298 static int unixMutexHeld(void) {
299 return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
300 }
301 #endif
302
303
304 #ifdef SQLITE_DEBUG
305 /*
306 ** Helper function for printing out trace information from debugging
307 ** binaries. This returns the string represetation of the supplied
308 ** integer lock-type.
309 */
310 static const char *locktypeName(int locktype){
311 switch( locktype ){
312 case NO_LOCK: return "NONE";
313 case SHARED_LOCK: return "SHARED";
314 case RESERVED_LOCK: return "RESERVED";
315 case PENDING_LOCK: return "PENDING";
316 case EXCLUSIVE_LOCK: return "EXCLUSIVE";
317 }
318 return "ERROR";
319 }
320 #endif
321
322 #ifdef SQLITE_LOCK_TRACE
323 /*
324 ** Print out information about all locking operations.
325 **
326 ** This routine is used for troubleshooting locks on multithreaded
327 ** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE
328 ** command-line option on the compiler. This code is normally
329 ** turned off.
330 */
331 static int lockTrace(int fd, int op, struct flock *p){
332 char *zOpName, *zType;
333 int s;
334 int savedErrno;
335 if( op==F_GETLK ){
336 zOpName = "GETLK";
337 }else if( op==F_SETLK ){
338 zOpName = "SETLK";
339 }else{
340 s = fcntl(fd, op, p);
341 sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
342 return s;
343 }
344 if( p->l_type==F_RDLCK ){
345 zType = "RDLCK";
346 }else if( p->l_type==F_WRLCK ){
347 zType = "WRLCK";
348 }else if( p->l_type==F_UNLCK ){
349 zType = "UNLCK";
350 }else{
351 assert( 0 );
352 }
353 assert( p->l_whence==SEEK_SET );
354 s = fcntl(fd, op, p);
355 savedErrno = errno;
356 sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
357 threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len,
358 (int)p->l_pid, s);
359 if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){
360 struct flock l2;
361 l2 = *p;
362 fcntl(fd, F_GETLK, &l2);
363 if( l2.l_type==F_RDLCK ){
364 zType = "RDLCK";
365 }else if( l2.l_type==F_WRLCK ){
366 zType = "WRLCK";
367 }else if( l2.l_type==F_UNLCK ){
368 zType = "UNLCK";
369 }else{
370 assert( 0 );
371 }
372 sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
373 zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid);
374 }
375 errno = savedErrno;
376 return s;
377 }
378 #define fcntl lockTrace
379 #endif /* SQLITE_LOCK_TRACE */
380
381
382
383 /*
384 ** This routine translates a standard POSIX errno code into something
385 ** useful to the clients of the sqlite3 functions. Specifically, it is
386 ** intended to translate a variety of "try again" errors into SQLITE_BUSY
387 ** and a variety of "please close the file descriptor NOW" errors into
388 ** SQLITE_IOERR
389 **
390 ** Errors during initialization of locks, or file system support for locks,
391 ** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately.
392 */
393 static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) {
394 switch (posixError) {
395 case 0:
396 return SQLITE_OK;
397
398 case EAGAIN:
399 case ETIMEDOUT:
400 case EBUSY:
401 case EINTR:
402 case ENOLCK:
403 /* random NFS retry error, unless during file system support
404 * introspection, in which it actually means what it says */
405 return SQLITE_BUSY;
406
407 case EACCES:
408 /* EACCES is like EAGAIN during locking operations, but not any other time*/
409 if( (sqliteIOErr == SQLITE_IOERR_LOCK) ||
410 (sqliteIOErr == SQLITE_IOERR_UNLOCK) ||
411 (sqliteIOErr == SQLITE_IOERR_RDLOCK) ||
412 (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ){
413 return SQLITE_BUSY;
414 }
415 /* else fall through */
416 case EPERM:
417 return SQLITE_PERM;
418
419 case EDEADLK:
420 return SQLITE_IOERR_BLOCKED;
421
422 #if EOPNOTSUPP!=ENOTSUP
423 case EOPNOTSUPP:
424 /* something went terribly awry, unless during file system support
425 * introspection, in which it actually means what it says */
426 #endif
427 #ifdef ENOTSUP
428 case ENOTSUP:
429 /* invalid fd, unless during file system support introspection, in which
430 * it actually means what it says */
431 #endif
432 case EIO:
433 case EBADF:
434 case EINVAL:
435 case ENOTCONN:
436 case ENODEV:
437 case ENXIO:
438 case ENOENT:
439 case ESTALE:
440 case ENOSYS:
441 /* these should force the client to close the file and reconnect */
442
443 default:
444 return sqliteIOErr;
445 }
446 }
447
448
449
450 /******************************************************************************
451 ****************** Begin Unique File ID Utility Used By VxWorks ***************
452 **
453 ** On most versions of unix, we can get a unique ID for a file by concatenating
454 ** the device number and the inode number. But this does not work on VxWorks.
455 ** On VxWorks, a unique file id must be based on the canonical filename.
456 **
457 ** A pointer to an instance of the following structure can be used as a
458 ** unique file ID in VxWorks. Each instance of this structure contains
459 ** a copy of the canonical filename. There is also a reference count.
460 ** The structure is reclaimed when the number of pointers to it drops to
461 ** zero.
462 **
463 ** There are never very many files open at one time and lookups are not
464 ** a performance-critical path, so it is sufficient to put these
465 ** structures on a linked list.
466 */
467 struct vxworksFileId {
468 struct vxworksFileId *pNext; /* Next in a list of them all */
469 int nRef; /* Number of references to this one */
470 int nName; /* Length of the zCanonicalName[] string */
471 char *zCanonicalName; /* Canonical filename */
472 };
473
474 #if OS_VXWORKS
475 /*
476 ** All unique filenames are held on a linked list headed by this
477 ** variable:
478 */
479 static struct vxworksFileId *vxworksFileList = 0;
480
481 /*
482 ** Simplify a filename into its canonical form
483 ** by making the following changes:
484 **
485 ** * removing any trailing and duplicate /
486 ** * convert /./ into just /
487 ** * convert /A/../ where A is any simple name into just /
488 **
489 ** Changes are made in-place. Return the new name length.
490 **
491 ** The original filename is in z[0..n-1]. Return the number of
492 ** characters in the simplified name.
493 */
494 static int vxworksSimplifyName(char *z, int n){
495 int i, j;
496 while( n>1 && z[n-1]=='/' ){ n--; }
497 for(i=j=0; i<n; i++){
498 if( z[i]=='/' ){
499 if( z[i+1]=='/' ) continue;
500 if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){
501 i += 1;
502 continue;
503 }
504 if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){
505 while( j>0 && z[j-1]!='/' ){ j--; }
506 if( j>0 ){ j--; }
507 i += 2;
508 continue;
509 }
510 }
511 z[j++] = z[i];
512 }
513 z[j] = 0;
514 return j;
515 }
516
517 /*
518 ** Find a unique file ID for the given absolute pathname. Return
519 ** a pointer to the vxworksFileId object. This pointer is the unique
520 ** file ID.
521 **
522 ** The nRef field of the vxworksFileId object is incremented before
523 ** the object is returned. A new vxworksFileId object is created
524 ** and added to the global list if necessary.
525 **
526 ** If a memory allocation error occurs, return NULL.
527 */
528 static struct vxworksFileId *vxworksFindFileId(const char *zAbsoluteName){
529 struct vxworksFileId *pNew; /* search key and new file ID */
530 struct vxworksFileId *pCandidate; /* For looping over existing file IDs */
531 int n; /* Length of zAbsoluteName string */
532
533 assert( zAbsoluteName[0]=='/' );
534 n = (int)strlen(zAbsoluteName);
535 pNew = sqlite3_malloc( sizeof(*pNew) + (n+1) );
536 if( pNew==0 ) return 0;
537 pNew->zCanonicalName = (char*)&pNew[1];
538 memcpy(pNew->zCanonicalName, zAbsoluteName, n+1);
539 n = vxworksSimplifyName(pNew->zCanonicalName, n);
540
541 /* Search for an existing entry that matching the canonical name.
542 ** If found, increment the reference count and return a pointer to
543 ** the existing file ID.
544 */
545 unixEnterMutex();
546 for(pCandidate=vxworksFileList; pCandidate; pCandidate=pCandidate->pNext){
547 if( pCandidate->nName==n
548 && memcmp(pCandidate->zCanonicalName, pNew->zCanonicalName, n)==0
549 ){
550 sqlite3_free(pNew);
551 pCandidate->nRef++;
552 unixLeaveMutex();
553 return pCandidate;
554 }
555 }
556
557 /* No match was found. We will make a new file ID */
558 pNew->nRef = 1;
559 pNew->nName = n;
560 pNew->pNext = vxworksFileList;
561 vxworksFileList = pNew;
562 unixLeaveMutex();
563 return pNew;
564 }
565
566 /*
567 ** Decrement the reference count on a vxworksFileId object. Free
568 ** the object when the reference count reaches zero.
569 */
570 static void vxworksReleaseFileId(struct vxworksFileId *pId){
571 unixEnterMutex();
572 assert( pId->nRef>0 );
573 pId->nRef--;
574 if( pId->nRef==0 ){
575 struct vxworksFileId **pp;
576 for(pp=&vxworksFileList; *pp && *pp!=pId; pp = &((*pp)->pNext)){}
577 assert( *pp==pId );
578 *pp = pId->pNext;
579 sqlite3_free(pId);
580 }
581 unixLeaveMutex();
582 }
583 #endif /* OS_VXWORKS */
584 /*************** End of Unique File ID Utility Used By VxWorks ****************
585 ******************************************************************************/
586
587
588 /******************************************************************************
589 *************************** Posix Advisory Locking ****************************
590 **
591 ** POSIX advisory locks are broken by design. ANSI STD 1003.1 (1996)
592 ** section 6.5.2.2 lines 483 through 490 specify that when a process
593 ** sets or clears a lock, that operation overrides any prior locks set
594 ** by the same process. It does not explicitly say so, but this implies
595 ** that it overrides locks set by the same process using a different
596 ** file descriptor. Consider this test case:
597 **
598 ** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
599 ** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
600 **
601 ** Suppose ./file1 and ./file2 are really the same file (because
602 ** one is a hard or symbolic link to the other) then if you set
603 ** an exclusive lock on fd1, then try to get an exclusive lock
604 ** on fd2, it works. I would have expected the second lock to
605 ** fail since there was already a lock on the file due to fd1.
606 ** But not so. Since both locks came from the same process, the
607 ** second overrides the first, even though they were on different
608 ** file descriptors opened on different file names.
609 **
610 ** This means that we cannot use POSIX locks to synchronize file access
611 ** among competing threads of the same process. POSIX locks will work fine
612 ** to synchronize access for threads in separate processes, but not
613 ** threads within the same process.
614 **
615 ** To work around the problem, SQLite has to manage file locks internally
616 ** on its own. Whenever a new database is opened, we have to find the
617 ** specific inode of the database file (the inode is determined by the
618 ** st_dev and st_ino fields of the stat structure that fstat() fills in)
619 ** and check for locks already existing on that inode. When locks are
620 ** created or removed, we have to look at our own internal record of the
621 ** locks to see if another thread has previously set a lock on that same
622 ** inode.
623 **
624 ** (Aside: The use of inode numbers as unique IDs does not work on VxWorks.
625 ** For VxWorks, we have to use the alternative unique ID system based on
626 ** canonical filename and implemented in the previous division.)
627 **
628 ** The sqlite3_file structure for POSIX is no longer just an integer file
629 ** descriptor. It is now a structure that holds the integer file
630 ** descriptor and a pointer to a structure that describes the internal
631 ** locks on the corresponding inode. There is one locking structure
632 ** per inode, so if the same inode is opened twice, both unixFile structures
633 ** point to the same locking structure. The locking structure keeps
634 ** a reference count (so we will know when to delete it) and a "cnt"
635 ** field that tells us its internal lock status. cnt==0 means the
636 ** file is unlocked. cnt==-1 means the file has an exclusive lock.
637 ** cnt>0 means there are cnt shared locks on the file.
638 **
639 ** Any attempt to lock or unlock a file first checks the locking
640 ** structure. The fcntl() system call is only invoked to set a
641 ** POSIX lock if the internal lock structure transitions between
642 ** a locked and an unlocked state.
643 **
644 ** But wait: there are yet more problems with POSIX advisory locks.
645 **
646 ** If you close a file descriptor that points to a file that has locks,
647 ** all locks on that file that are owned by the current process are
648 ** released. To work around this problem, each unixFile structure contains
649 ** a pointer to an unixOpenCnt structure. There is one unixOpenCnt structure
650 ** per open inode, which means that multiple unixFile can point to a single
651 ** unixOpenCnt. When an attempt is made to close an unixFile, if there are
652 ** other unixFile open on the same inode that are holding locks, the call
653 ** to close() the file descriptor is deferred until all of the locks clear.
654 ** The unixOpenCnt structure keeps a list of file descriptors that need to
655 ** be closed and that list is walked (and cleared) when the last lock
656 ** clears.
657 **
658 ** Yet another problem: LinuxThreads do not play well with posix locks.
659 **
660 ** Many older versions of linux use the LinuxThreads library which is
661 ** not posix compliant. Under LinuxThreads, a lock created by thread
662 ** A cannot be modified or overridden by a different thread B.
663 ** Only thread A can modify the lock. Locking behavior is correct
664 ** if the appliation uses the newer Native Posix Thread Library (NPTL)
665 ** on linux - with NPTL a lock created by thread A can override locks
666 ** in thread B. But there is no way to know at compile-time which
667 ** threading library is being used. So there is no way to know at
668 ** compile-time whether or not thread A can override locks on thread B.
669 ** We have to do a run-time check to discover the behavior of the
670 ** current process.
671 **
672 ** On systems where thread A is unable to modify locks created by
673 ** thread B, we have to keep track of which thread created each
674 ** lock. Hence there is an extra field in the key to the unixLockInfo
675 ** structure to record this information. And on those systems it
676 ** is illegal to begin a transaction in one thread and finish it
677 ** in another. For this latter restriction, there is no work-around.
678 ** It is a limitation of LinuxThreads.
679 */
680
681 /*
682 ** Set or check the unixFile.tid field. This field is set when an unixFile
683 ** is first opened. All subsequent uses of the unixFile verify that the
684 ** same thread is operating on the unixFile. Some operating systems do
685 ** not allow locks to be overridden by other threads and that restriction
686 ** means that sqlite3* database handles cannot be moved from one thread
687 ** to another while locks are held.
688 **
689 ** Version 3.3.1 (2006-01-15): unixFile can be moved from one thread to
690 ** another as long as we are running on a system that supports threads
691 ** overriding each others locks (which is now the most common behavior)
692 ** or if no locks are held. But the unixFile.pLock field needs to be
693 ** recomputed because its key includes the thread-id. See the
694 ** transferOwnership() function below for additional information
695 */
696 #if SQLITE_THREADSAFE && defined(__linux__)
697 # define SET_THREADID(X) (X)->tid = pthread_self()
698 # define CHECK_THREADID(X) (threadsOverrideEachOthersLocks==0 && \
699 !pthread_equal((X)->tid, pthread_self()))
700 #else
701 # define SET_THREADID(X)
702 # define CHECK_THREADID(X) 0
703 #endif
704
705 /*
706 ** An instance of the following structure serves as the key used
707 ** to locate a particular unixOpenCnt structure given its inode. This
708 ** is the same as the unixLockKey except that the thread ID is omitted.
709 */
710 struct unixFileId {
711 dev_t dev; /* Device number */
712 #if OS_VXWORKS
713 struct vxworksFileId *pId; /* Unique file ID for vxworks. */
714 #else
715 ino_t ino; /* Inode number */
716 #endif
717 };
718
719 /*
720 ** An instance of the following structure serves as the key used
721 ** to locate a particular unixLockInfo structure given its inode.
722 **
723 ** If threads cannot override each others locks (LinuxThreads), then we
724 ** set the unixLockKey.tid field to the thread ID. If threads can override
725 ** each others locks (Posix and NPTL) then tid is always set to zero.
726 ** tid is omitted if we compile without threading support or on an OS
727 ** other than linux.
728 */
729 struct unixLockKey {
730 struct unixFileId fid; /* Unique identifier for the file */
731 #if SQLITE_THREADSAFE && defined(__linux__)
732 pthread_t tid; /* Thread ID of lock owner. Zero if not using LinuxThreads */
733 #endif
734 };
735
736 /*
737 ** An instance of the following structure is allocated for each open
738 ** inode. Or, on LinuxThreads, there is one of these structures for
739 ** each inode opened by each thread.
740 **
741 ** A single inode can have multiple file descriptors, so each unixFile
742 ** structure contains a pointer to an instance of this object and this
743 ** object keeps a count of the number of unixFile pointing to it.
744 */
745 struct unixLockInfo {
746 struct unixLockKey lockKey; /* The lookup key */
747 int cnt; /* Number of SHARED locks held */
748 int locktype; /* One of SHARED_LOCK, RESERVED_LOCK etc. */
749 int nRef; /* Number of pointers to this structure */
750 struct unixLockInfo *pNext; /* List of all unixLockInfo objects */
751 struct unixLockInfo *pPrev; /* .... doubly linked */
752 };
753
754 /*
755 ** An instance of the following structure is allocated for each open
756 ** inode. This structure keeps track of the number of locks on that
757 ** inode. If a close is attempted against an inode that is holding
758 ** locks, the close is deferred until all locks clear by adding the
759 ** file descriptor to be closed to the pending list.
760 **
761 ** TODO: Consider changing this so that there is only a single file
762 ** descriptor for each open file, even when it is opened multiple times.
763 ** The close() system call would only occur when the last database
764 ** using the file closes.
765 */
766 struct unixOpenCnt {
767 struct unixFileId fileId; /* The lookup key */
768 int nRef; /* Number of pointers to this structure */
769 int nLock; /* Number of outstanding locks */
770 UnixUnusedFd *pUnused; /* Unused file descriptors to close */
771 #if OS_VXWORKS
772 sem_t *pSem; /* Named POSIX semaphore */
773 char aSemName[MAX_PATHNAME+2]; /* Name of that semaphore */
774 #endif
775 struct unixOpenCnt *pNext, *pPrev; /* List of all unixOpenCnt objects */
776 };
777
778 /*
779 ** Lists of all unixLockInfo and unixOpenCnt objects. These used to be hash
780 ** tables. But the number of objects is rarely more than a dozen and
781 ** never exceeds a few thousand. And lookup is not on a critical
782 ** path so a simple linked list will suffice.
783 */
784 static struct unixLockInfo *lockList = 0;
785 static struct unixOpenCnt *openList = 0;
786
787 /*
788 ** This variable remembers whether or not threads can override each others
789 ** locks.
790 **
791 ** 0: No. Threads cannot override each others locks. (LinuxThreads)
792 ** 1: Yes. Threads can override each others locks. (Posix & NLPT)
793 ** -1: We don't know yet.
794 **
795 ** On some systems, we know at compile-time if threads can override each
796 ** others locks. On those systems, the SQLITE_THREAD_OVERRIDE_LOCK macro
797 ** will be set appropriately. On other systems, we have to check at
798 ** runtime. On these latter systems, SQLTIE_THREAD_OVERRIDE_LOCK is
799 ** undefined.
800 **
801 ** This variable normally has file scope only. But during testing, we make
802 ** it a global so that the test code can change its value in order to verify
803 ** that the right stuff happens in either case.
804 */
805 #if SQLITE_THREADSAFE && defined(__linux__)
806 # ifndef SQLITE_THREAD_OVERRIDE_LOCK
807 # define SQLITE_THREAD_OVERRIDE_LOCK -1
808 # endif
809 # ifdef SQLITE_TEST
810 int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK;
811 # else
812 static int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK;
813 # endif
814 #endif
815
816 /*
817 ** This structure holds information passed into individual test
818 ** threads by the testThreadLockingBehavior() routine.
819 */
820 struct threadTestData {
821 int fd; /* File to be locked */
822 struct flock lock; /* The locking operation */
823 int result; /* Result of the locking operation */
824 };
825
826 #if SQLITE_THREADSAFE && defined(__linux__)
827 /*
828 ** This function is used as the main routine for a thread launched by
829 ** testThreadLockingBehavior(). It tests whether the shared-lock obtained
830 ** by the main thread in testThreadLockingBehavior() conflicts with a
831 ** hypothetical write-lock obtained by this thread on the same file.
832 **
833 ** The write-lock is not actually acquired, as this is not possible if
834 ** the file is open in read-only mode (see ticket #3472).
835 */
836 static void *threadLockingTest(void *pArg){
837 struct threadTestData *pData = (struct threadTestData*)pArg;
838 pData->result = fcntl(pData->fd, F_GETLK, &pData->lock);
839 return pArg;
840 }
841 #endif /* SQLITE_THREADSAFE && defined(__linux__) */
842
843
844 #if SQLITE_THREADSAFE && defined(__linux__)
845 /*
846 ** This procedure attempts to determine whether or not threads
847 ** can override each others locks then sets the
848 ** threadsOverrideEachOthersLocks variable appropriately.
849 */
850 static void testThreadLockingBehavior(int fd_orig){
851 int fd;
852 int rc;
853 struct threadTestData d;
854 struct flock l;
855 pthread_t t;
856
857 fd = dup(fd_orig);
858 if( fd<0 ) return;
859 memset(&l, 0, sizeof(l));
860 l.l_type = F_RDLCK;
861 l.l_len = 1;
862 l.l_start = 0;
863 l.l_whence = SEEK_SET;
864 rc = fcntl(fd_orig, F_SETLK, &l);
865 if( rc!=0 ) return;
866 memset(&d, 0, sizeof(d));
867 d.fd = fd;
868 d.lock = l;
869 d.lock.l_type = F_WRLCK;
870 if( pthread_create(&t, 0, threadLockingTest, &d)==0 ){
871 pthread_join(t, 0);
872 }
873 close(fd);
874 if( d.result!=0 ) return;
875 threadsOverrideEachOthersLocks = (d.lock.l_type==F_UNLCK);
876 }
877 #endif /* SQLITE_THREADSAFE && defined(__linux__) */
878
879 /*
880 ** Release a unixLockInfo structure previously allocated by findLockInfo().
881 **
882 ** The mutex entered using the unixEnterMutex() function must be held
883 ** when this function is called.
884 */
885 static void releaseLockInfo(struct unixLockInfo *pLock){
886 assert( unixMutexHeld() );
887 if( pLock ){
888 pLock->nRef--;
889 if( pLock->nRef==0 ){
890 if( pLock->pPrev ){
891 assert( pLock->pPrev->pNext==pLock );
892 pLock->pPrev->pNext = pLock->pNext;
893 }else{
894 assert( lockList==pLock );
895 lockList = pLock->pNext;
896 }
897 if( pLock->pNext ){
898 assert( pLock->pNext->pPrev==pLock );
899 pLock->pNext->pPrev = pLock->pPrev;
900 }
901 sqlite3_free(pLock);
902 }
903 }
904 }
905
906 /*
907 ** Release a unixOpenCnt structure previously allocated by findLockInfo().
908 **
909 ** The mutex entered using the unixEnterMutex() function must be held
910 ** when this function is called.
911 */
912 static void releaseOpenCnt(struct unixOpenCnt *pOpen){
913 assert( unixMutexHeld() );
914 if( pOpen ){
915 pOpen->nRef--;
916 if( pOpen->nRef==0 ){
917 if( pOpen->pPrev ){
918 assert( pOpen->pPrev->pNext==pOpen );
919 pOpen->pPrev->pNext = pOpen->pNext;
920 }else{
921 assert( openList==pOpen );
922 openList = pOpen->pNext;
923 }
924 if( pOpen->pNext ){
925 assert( pOpen->pNext->pPrev==pOpen );
926 pOpen->pNext->pPrev = pOpen->pPrev;
927 }
928 #if SQLITE_THREADSAFE && defined(__linux__)
929 assert( !pOpen->pUnused || threadsOverrideEachOthersLocks==0 );
930 #endif
931
932 /* If pOpen->pUnused is not null, then memory and file-descriptors
933 ** are leaked.
934 **
935 ** This will only happen if, under Linuxthreads, the user has opened
936 ** a transaction in one thread, then attempts to close the database
937 ** handle from another thread (without first unlocking the db file).
938 ** This is a misuse. */
939 sqlite3_free(pOpen);
940 }
941 }
942 }
943
944 /*
945 ** Given a file descriptor, locate unixLockInfo and unixOpenCnt structures that
946 ** describes that file descriptor. Create new ones if necessary. The
947 ** return values might be uninitialized if an error occurs.
948 **
949 ** The mutex entered using the unixEnterMutex() function must be held
950 ** when this function is called.
951 **
952 ** Return an appropriate error code.
953 */
954 static int findLockInfo(
955 unixFile *pFile, /* Unix file with file desc used in the key */
956 struct unixLockInfo **ppLock, /* Return the unixLockInfo structure here */
957 struct unixOpenCnt **ppOpen /* Return the unixOpenCnt structure here */
958 ){
959 int rc; /* System call return code */
960 int fd; /* The file descriptor for pFile */
961 struct unixLockKey lockKey; /* Lookup key for the unixLockInfo structure */
962 struct unixFileId fileId; /* Lookup key for the unixOpenCnt struct */
963 struct stat statbuf; /* Low-level file information */
964 struct unixLockInfo *pLock = 0;/* Candidate unixLockInfo object */
965 struct unixOpenCnt *pOpen; /* Candidate unixOpenCnt object */
966
967 assert( unixMutexHeld() );
968
969 /* Get low-level information about the file that we can used to
970 ** create a unique name for the file.
971 */
972 fd = pFile->h;
973 rc = fstat(fd, &statbuf);
974 if( rc!=0 ){
975 pFile->lastErrno = errno;
976 #ifdef EOVERFLOW
977 if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS;
978 #endif
979 return SQLITE_IOERR;
980 }
981
982 #ifdef __APPLE__
983 /* On OS X on an msdos filesystem, the inode number is reported
984 ** incorrectly for zero-size files. See ticket #3260. To work
985 ** around this problem (we consider it a bug in OS X, not SQLite)
986 ** we always increase the file size to 1 by writing a single byte
987 ** prior to accessing the inode number. The one byte written is
988 ** an ASCII 'S' character which also happens to be the first byte
989 ** in the header of every SQLite database. In this way, if there
990 ** is a race condition such that another thread has already populated
991 ** the first page of the database, no damage is done.
992 */
993 if( statbuf.st_size==0 ){
994 rc = write(fd, "S", 1);
995 if( rc!=1 ){
996 return SQLITE_IOERR;
997 }
998 rc = fstat(fd, &statbuf);
999 if( rc!=0 ){
1000 pFile->lastErrno = errno;
1001 return SQLITE_IOERR;
1002 }
1003 }
1004 #endif
1005
1006 memset(&lockKey, 0, sizeof(lockKey));
1007 lockKey.fid.dev = statbuf.st_dev;
1008 #if OS_VXWORKS
1009 lockKey.fid.pId = pFile->pId;
1010 #else
1011 lockKey.fid.ino = statbuf.st_ino;
1012 #endif
1013 #if SQLITE_THREADSAFE && defined(__linux__)
1014 if( threadsOverrideEachOthersLocks<0 ){
1015 testThreadLockingBehavior(fd);
1016 }
1017 lockKey.tid = threadsOverrideEachOthersLocks ? 0 : pthread_self();
1018 #endif
1019 fileId = lockKey.fid;
1020 if( ppLock!=0 ){
1021 pLock = lockList;
1022 while( pLock && memcmp(&lockKey, &pLock->lockKey, sizeof(lockKey)) ){
1023 pLock = pLock->pNext;
1024 }
1025 if( pLock==0 ){
1026 pLock = sqlite3_malloc( sizeof(*pLock) );
1027 if( pLock==0 ){
1028 rc = SQLITE_NOMEM;
1029 goto exit_findlockinfo;
1030 }
1031 pLock->lockKey = lockKey;
1032 pLock->nRef = 1;
1033 pLock->cnt = 0;
1034 pLock->locktype = 0;
1035 pLock->pNext = lockList;
1036 pLock->pPrev = 0;
1037 if( lockList ) lockList->pPrev = pLock;
1038 lockList = pLock;
1039 }else{
1040 pLock->nRef++;
1041 }
1042 *ppLock = pLock;
1043 }
1044 if( ppOpen!=0 ){
1045 pOpen = openList;
1046 while( pOpen && memcmp(&fileId, &pOpen->fileId, sizeof(fileId)) ){
1047 pOpen = pOpen->pNext;
1048 }
1049 if( pOpen==0 ){
1050 pOpen = sqlite3_malloc( sizeof(*pOpen) );
1051 if( pOpen==0 ){
1052 releaseLockInfo(pLock);
1053 rc = SQLITE_NOMEM;
1054 goto exit_findlockinfo;
1055 }
1056 memset(pOpen, 0, sizeof(*pOpen));
1057 pOpen->fileId = fileId;
1058 pOpen->nRef = 1;
1059 pOpen->pNext = openList;
1060 if( openList ) openList->pPrev = pOpen;
1061 openList = pOpen;
1062 }else{
1063 pOpen->nRef++;
1064 }
1065 *ppOpen = pOpen;
1066 }
1067
1068 exit_findlockinfo:
1069 return rc;
1070 }
1071
1072 /*
1073 ** If we are currently in a different thread than the thread that the
1074 ** unixFile argument belongs to, then transfer ownership of the unixFile
1075 ** over to the current thread.
1076 **
1077 ** A unixFile is only owned by a thread on systems that use LinuxThreads.
1078 **
1079 ** Ownership transfer is only allowed if the unixFile is currently unlocked.
1080 ** If the unixFile is locked and an ownership is wrong, then return
1081 ** SQLITE_MISUSE. SQLITE_OK is returned if everything works.
1082 */
1083 #if SQLITE_THREADSAFE && defined(__linux__)
1084 static int transferOwnership(unixFile *pFile){
1085 int rc;
1086 pthread_t hSelf;
1087 if( threadsOverrideEachOthersLocks ){
1088 /* Ownership transfers not needed on this system */
1089 return SQLITE_OK;
1090 }
1091 hSelf = pthread_self();
1092 if( pthread_equal(pFile->tid, hSelf) ){
1093 /* We are still in the same thread */
1094 OSTRACE1("No-transfer, same thread\n");
1095 return SQLITE_OK;
1096 }
1097 if( pFile->locktype!=NO_LOCK ){
1098 /* We cannot change ownership while we are holding a lock! */
1099 return SQLITE_MISUSE;
1100 }
1101 OSTRACE4("Transfer ownership of %d from %d to %d\n",
1102 pFile->h, pFile->tid, hSelf);
1103 pFile->tid = hSelf;
1104 if (pFile->pLock != NULL) {
1105 releaseLockInfo(pFile->pLock);
1106 rc = findLockInfo(pFile, &pFile->pLock, 0);
1107 OSTRACE5("LOCK %d is now %s(%s,%d)\n", pFile->h,
1108 locktypeName(pFile->locktype),
1109 locktypeName(pFile->pLock->locktype), pFile->pLock->cnt);
1110 return rc;
1111 } else {
1112 return SQLITE_OK;
1113 }
1114 }
1115 #else /* if not SQLITE_THREADSAFE */
1116 /* On single-threaded builds, ownership transfer is a no-op */
1117 # define transferOwnership(X) SQLITE_OK
1118 #endif /* SQLITE_THREADSAFE */
1119
1120
1121 /*
1122 ** This routine checks if there is a RESERVED lock held on the specified
1123 ** file by this or any other process. If such a lock is held, set *pResOut
1124 ** to a non-zero value otherwise *pResOut is set to zero. The return value
1125 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
1126 */
1127 static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){
1128 int rc = SQLITE_OK;
1129 int reserved = 0;
1130 unixFile *pFile = (unixFile*)id;
1131
1132 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
1133
1134 assert( pFile );
1135 unixEnterMutex(); /* Because pFile->pLock is shared across threads */
1136
1137 /* Check if a thread in this process holds such a lock */
1138 if( pFile->pLock->locktype>SHARED_LOCK ){
1139 reserved = 1;
1140 }
1141
1142 /* Otherwise see if some other process holds it.
1143 */
1144 #ifndef __DJGPP__
1145 if( !reserved ){
1146 struct flock lock;
1147 lock.l_whence = SEEK_SET;
1148 lock.l_start = RESERVED_BYTE;
1149 lock.l_len = 1;
1150 lock.l_type = F_WRLCK;
1151 if (-1 == fcntl(pFile->h, F_GETLK, &lock)) {
1152 int tErrno = errno;
1153 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK);
1154 pFile->lastErrno = tErrno;
1155 } else if( lock.l_type!=F_UNLCK ){
1156 reserved = 1;
1157 }
1158 }
1159 #endif
1160
1161 unixLeaveMutex();
1162 OSTRACE4("TEST WR-LOCK %d %d %d\n", pFile->h, rc, reserved);
1163
1164 *pResOut = reserved;
1165 return rc;
1166 }
1167
1168 /*
1169 ** Perform a file locking operation on a range of bytes in a file.
1170 ** The "op" parameter should be one of F_RDLCK, F_WRLCK, or F_UNLCK.
1171 ** Return 0 on success or -1 for failure. On failure, write the error
1172 ** code into *pErrcode.
1173 **
1174 ** If the SQLITE_WHOLE_FILE_LOCKING bit is clear, then only lock
1175 ** the range of bytes on the locking page between SHARED_FIRST and
1176 ** SHARED_SIZE. If SQLITE_WHOLE_FILE_LOCKING is set, then lock all
1177 ** bytes from 0 up to but not including PENDING_BYTE, and all bytes
1178 ** that follow SHARED_FIRST.
1179 **
1180 ** In other words, of SQLITE_WHOLE_FILE_LOCKING if false (the historical
1181 ** default case) then only lock a small range of bytes from SHARED_FIRST
1182 ** through SHARED_FIRST+SHARED_SIZE-1. But if SQLITE_WHOLE_FILE_LOCKING is
1183 ** true then lock every byte in the file except for PENDING_BYTE and
1184 ** RESERVED_BYTE.
1185 **
1186 ** SQLITE_WHOLE_FILE_LOCKING=true overlaps SQLITE_WHOLE_FILE_LOCKING=false
1187 ** and so the locking schemes are compatible. One type of lock will
1188 ** effectively exclude the other type. The reason for using the
1189 ** SQLITE_WHOLE_FILE_LOCKING=true is that by indicating the full range
1190 ** of bytes to be read or written, we give hints to NFS to help it
1191 ** maintain cache coherency. On the other hand, whole file locking
1192 ** is slower, so we don't want to use it except for NFS.
1193 */
1194 static int rangeLock(unixFile *pFile, int op, int *pErrcode){
1195 struct flock lock;
1196 int rc;
1197 lock.l_type = op;
1198 lock.l_start = SHARED_FIRST;
1199 lock.l_whence = SEEK_SET;
1200 if( (pFile->fileFlags & SQLITE_WHOLE_FILE_LOCKING)==0 ){
1201 lock.l_len = SHARED_SIZE;
1202 rc = fcntl(pFile->h, F_SETLK, &lock);
1203 *pErrcode = errno;
1204 }else{
1205 lock.l_len = 0;
1206 rc = fcntl(pFile->h, F_SETLK, &lock);
1207 *pErrcode = errno;
1208 if( NEVER(op==F_UNLCK) || rc!=(-1) ){
1209 lock.l_start = 0;
1210 lock.l_len = PENDING_BYTE;
1211 rc = fcntl(pFile->h, F_SETLK, &lock);
1212 if( ALWAYS(op!=F_UNLCK) && rc==(-1) ){
1213 *pErrcode = errno;
1214 lock.l_type = F_UNLCK;
1215 lock.l_start = SHARED_FIRST;
1216 lock.l_len = 0;
1217 fcntl(pFile->h, F_SETLK, &lock);
1218 }
1219 }
1220 }
1221 return rc;
1222 }
1223
1224 /*
1225 ** Lock the file with the lock specified by parameter locktype - one
1226 ** of the following:
1227 **
1228 ** (1) SHARED_LOCK
1229 ** (2) RESERVED_LOCK
1230 ** (3) PENDING_LOCK
1231 ** (4) EXCLUSIVE_LOCK
1232 **
1233 ** Sometimes when requesting one lock state, additional lock states
1234 ** are inserted in between. The locking might fail on one of the later
1235 ** transitions leaving the lock state different from what it started but
1236 ** still short of its goal. The following chart shows the allowed
1237 ** transitions and the inserted intermediate states:
1238 **
1239 ** UNLOCKED -> SHARED
1240 ** SHARED -> RESERVED
1241 ** SHARED -> (PENDING) -> EXCLUSIVE
1242 ** RESERVED -> (PENDING) -> EXCLUSIVE
1243 ** PENDING -> EXCLUSIVE
1244 **
1245 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
1246 ** routine to lower a locking level.
1247 */
1248 static int unixLock(sqlite3_file *id, int locktype){
1249 /* The following describes the implementation of the various locks and
1250 ** lock transitions in terms of the POSIX advisory shared and exclusive
1251 ** lock primitives (called read-locks and write-locks below, to avoid
1252 ** confusion with SQLite lock names). The algorithms are complicated
1253 ** slightly in order to be compatible with windows systems simultaneously
1254 ** accessing the same database file, in case that is ever required.
1255 **
1256 ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
1257 ** byte', each single bytes at well known offsets, and the 'shared byte
1258 ** range', a range of 510 bytes at a well known offset.
1259 **
1260 ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
1261 ** byte'. If this is successful, a random byte from the 'shared byte
1262 ** range' is read-locked and the lock on the 'pending byte' released.
1263 **
1264 ** A process may only obtain a RESERVED lock after it has a SHARED lock.
1265 ** A RESERVED lock is implemented by grabbing a write-lock on the
1266 ** 'reserved byte'.
1267 **
1268 ** A process may only obtain a PENDING lock after it has obtained a
1269 ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
1270 ** on the 'pending byte'. This ensures that no new SHARED locks can be
1271 ** obtained, but existing SHARED locks are allowed to persist. A process
1272 ** does not have to obtain a RESERVED lock on the way to a PENDING lock.
1273 ** This property is used by the algorithm for rolling back a journal file
1274 ** after a crash.
1275 **
1276 ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
1277 ** implemented by obtaining a write-lock on the entire 'shared byte
1278 ** range'. Since all other locks require a read-lock on one of the bytes
1279 ** within this range, this ensures that no other locks are held on the
1280 ** database.
1281 **
1282 ** The reason a single byte cannot be used instead of the 'shared byte
1283 ** range' is that some versions of windows do not support read-locks. By
1284 ** locking a random byte from a range, concurrent SHARED locks may exist
1285 ** even if the locking primitive used is always a write-lock.
1286 */
1287 int rc = SQLITE_OK;
1288 unixFile *pFile = (unixFile*)id;
1289 struct unixLockInfo *pLock = pFile->pLock;
1290 struct flock lock;
1291 int s = 0;
1292 int tErrno;
1293
1294 assert( pFile );
1295 OSTRACE7("LOCK %d %s was %s(%s,%d) pid=%d\n", pFile->h,
1296 locktypeName(locktype), locktypeName(pFile->locktype),
1297 locktypeName(pLock->locktype), pLock->cnt , getpid());
1298
1299 /* If there is already a lock of this type or more restrictive on the
1300 ** unixFile, do nothing. Don't use the end_lock: exit path, as
1301 ** unixEnterMutex() hasn't been called yet.
1302 */
1303 if( pFile->locktype>=locktype ){
1304 OSTRACE3("LOCK %d %s ok (already held)\n", pFile->h,
1305 locktypeName(locktype));
1306 return SQLITE_OK;
1307 }
1308
1309 /* Make sure the locking sequence is correct.
1310 ** (1) We never move from unlocked to anything higher than shared lock.
1311 ** (2) SQLite never explicitly requests a pendig lock.
1312 ** (3) A shared lock is always held when a reserve lock is requested.
1313 */
1314 assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
1315 assert( locktype!=PENDING_LOCK );
1316 assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
1317
1318 /* This mutex is needed because pFile->pLock is shared across threads
1319 */
1320 unixEnterMutex();
1321
1322 /* Make sure the current thread owns the pFile.
1323 */
1324 rc = transferOwnership(pFile);
1325 if( rc!=SQLITE_OK ){
1326 unixLeaveMutex();
1327 return rc;
1328 }
1329 pLock = pFile->pLock;
1330
1331 /* If some thread using this PID has a lock via a different unixFile*
1332 ** handle that precludes the requested lock, return BUSY.
1333 */
1334 if( (pFile->locktype!=pLock->locktype &&
1335 (pLock->locktype>=PENDING_LOCK || locktype>SHARED_LOCK))
1336 ){
1337 rc = SQLITE_BUSY;
1338 goto end_lock;
1339 }
1340
1341 /* If a SHARED lock is requested, and some thread using this PID already
1342 ** has a SHARED or RESERVED lock, then increment reference counts and
1343 ** return SQLITE_OK.
1344 */
1345 if( locktype==SHARED_LOCK &&
1346 (pLock->locktype==SHARED_LOCK || pLock->locktype==RESERVED_LOCK) ){
1347 assert( locktype==SHARED_LOCK );
1348 assert( pFile->locktype==0 );
1349 assert( pLock->cnt>0 );
1350 pFile->locktype = SHARED_LOCK;
1351 pLock->cnt++;
1352 pFile->pOpen->nLock++;
1353 goto end_lock;
1354 }
1355
1356
1357 /* A PENDING lock is needed before acquiring a SHARED lock and before
1358 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
1359 ** be released.
1360 */
1361 lock.l_len = 1L;
1362 lock.l_whence = SEEK_SET;
1363 if( locktype==SHARED_LOCK
1364 || (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK)
1365 ){
1366 lock.l_type = (locktype==SHARED_LOCK?F_RDLCK:F_WRLCK);
1367 lock.l_start = PENDING_BYTE;
1368 s = fcntl(pFile->h, F_SETLK, &lock);
1369 if( s==(-1) ){
1370 tErrno = errno;
1371 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1372 if( IS_LOCK_ERROR(rc) ){
1373 pFile->lastErrno = tErrno;
1374 }
1375 goto end_lock;
1376 }
1377 }
1378
1379
1380 /* If control gets to this point, then actually go ahead and make
1381 ** operating system calls for the specified lock.
1382 */
1383 if( locktype==SHARED_LOCK ){
1384 assert( pLock->cnt==0 );
1385 assert( pLock->locktype==0 );
1386
1387 /* Now get the read-lock */
1388 s = rangeLock(pFile, F_RDLCK, &tErrno);
1389
1390 /* Drop the temporary PENDING lock */
1391 lock.l_start = PENDING_BYTE;
1392 lock.l_len = 1L;
1393 lock.l_type = F_UNLCK;
1394 if( fcntl(pFile->h, F_SETLK, &lock)!=0 ){
1395 if( s != -1 ){
1396 /* This could happen with a network mount */
1397 tErrno = errno;
1398 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
1399 if( IS_LOCK_ERROR(rc) ){
1400 pFile->lastErrno = tErrno;
1401 }
1402 goto end_lock;
1403 }
1404 }
1405 if( s==(-1) ){
1406 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1407 if( IS_LOCK_ERROR(rc) ){
1408 pFile->lastErrno = tErrno;
1409 }
1410 }else{
1411 pFile->locktype = SHARED_LOCK;
1412 pFile->pOpen->nLock++;
1413 pLock->cnt = 1;
1414 }
1415 }else if( locktype==EXCLUSIVE_LOCK && pLock->cnt>1 ){
1416 /* We are trying for an exclusive lock but another thread in this
1417 ** same process is still holding a shared lock. */
1418 rc = SQLITE_BUSY;
1419 }else{
1420 /* The request was for a RESERVED or EXCLUSIVE lock. It is
1421 ** assumed that there is a SHARED or greater lock on the file
1422 ** already.
1423 */
1424 assert( 0!=pFile->locktype );
1425 lock.l_type = F_WRLCK;
1426 switch( locktype ){
1427 case RESERVED_LOCK:
1428 lock.l_start = RESERVED_BYTE;
1429 s = fcntl(pFile->h, F_SETLK, &lock);
1430 tErrno = errno;
1431 break;
1432 case EXCLUSIVE_LOCK:
1433 s = rangeLock(pFile, F_WRLCK, &tErrno);
1434 break;
1435 default:
1436 assert(0);
1437 }
1438 if( s==(-1) ){
1439 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1440 if( IS_LOCK_ERROR(rc) ){
1441 pFile->lastErrno = tErrno;
1442 }
1443 }
1444 }
1445
1446
1447 #ifndef NDEBUG
1448 /* Set up the transaction-counter change checking flags when
1449 ** transitioning from a SHARED to a RESERVED lock. The change
1450 ** from SHARED to RESERVED marks the beginning of a normal
1451 ** write operation (not a hot journal rollback).
1452 */
1453 if( rc==SQLITE_OK
1454 && pFile->locktype<=SHARED_LOCK
1455 && locktype==RESERVED_LOCK
1456 ){
1457 pFile->transCntrChng = 0;
1458 pFile->dbUpdate = 0;
1459 pFile->inNormalWrite = 1;
1460 }
1461 #endif
1462
1463
1464 if( rc==SQLITE_OK ){
1465 pFile->locktype = locktype;
1466 pLock->locktype = locktype;
1467 }else if( locktype==EXCLUSIVE_LOCK ){
1468 pFile->locktype = PENDING_LOCK;
1469 pLock->locktype = PENDING_LOCK;
1470 }
1471
1472 end_lock:
1473 unixLeaveMutex();
1474 OSTRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype),
1475 rc==SQLITE_OK ? "ok" : "failed");
1476 return rc;
1477 }
1478
1479 /*
1480 ** Close all file descriptors accumuated in the unixOpenCnt->pUnused list.
1481 ** If all such file descriptors are closed without error, the list is
1482 ** cleared and SQLITE_OK returned.
1483 **
1484 ** Otherwise, if an error occurs, then successfully closed file descriptor
1485 ** entries are removed from the list, and SQLITE_IOERR_CLOSE returned.
1486 ** not deleted and SQLITE_IOERR_CLOSE returned.
1487 */
1488 static int closePendingFds(unixFile *pFile){
1489 int rc = SQLITE_OK;
1490 struct unixOpenCnt *pOpen = pFile->pOpen;
1491 UnixUnusedFd *pError = 0;
1492 UnixUnusedFd *p;
1493 UnixUnusedFd *pNext;
1494 for(p=pOpen->pUnused; p; p=pNext){
1495 pNext = p->pNext;
1496 if( close(p->fd) ){
1497 pFile->lastErrno = errno;
1498 rc = SQLITE_IOERR_CLOSE;
1499 p->pNext = pError;
1500 pError = p;
1501 }else{
1502 sqlite3_free(p);
1503 }
1504 }
1505 pOpen->pUnused = pError;
1506 return rc;
1507 }
1508
1509 /*
1510 ** Add the file descriptor used by file handle pFile to the corresponding
1511 ** pUnused list.
1512 */
1513 static void setPendingFd(unixFile *pFile){
1514 struct unixOpenCnt *pOpen = pFile->pOpen;
1515 UnixUnusedFd *p = pFile->pUnused;
1516 p->pNext = pOpen->pUnused;
1517 pOpen->pUnused = p;
1518 pFile->h = -1;
1519 pFile->pUnused = 0;
1520 }
1521
1522 /*
1523 ** Lower the locking level on file descriptor pFile to locktype. locktype
1524 ** must be either NO_LOCK or SHARED_LOCK.
1525 **
1526 ** If the locking level of the file descriptor is already at or below
1527 ** the requested locking level, this routine is a no-op.
1528 */
1529 static int unixUnlock(sqlite3_file *id, int locktype){
1530 unixFile *pFile = (unixFile*)id; /* The open file */
1531 struct unixLockInfo *pLock; /* Structure describing current lock state */
1532 struct flock lock; /* Information passed into fcntl() */
1533 int rc = SQLITE_OK; /* Return code from this interface */
1534 int h; /* The underlying file descriptor */
1535 int tErrno; /* Error code from system call errors */
1536
1537 assert( pFile );
1538 OSTRACE7("UNLOCK %d %d was %d(%d,%d) pid=%d\n", pFile->h, locktype,
1539 pFile->locktype, pFile->pLock->locktype, pFile->pLock->cnt, getpid());
1540
1541 assert( locktype<=SHARED_LOCK );
1542 if( pFile->locktype<=locktype ){
1543 return SQLITE_OK;
1544 }
1545 if( CHECK_THREADID(pFile) ){
1546 return SQLITE_MISUSE;
1547 }
1548 unixEnterMutex();
1549 h = pFile->h;
1550 pLock = pFile->pLock;
1551 assert( pLock->cnt!=0 );
1552 if( pFile->locktype>SHARED_LOCK ){
1553 assert( pLock->locktype==pFile->locktype );
1554 SimulateIOErrorBenign(1);
1555 SimulateIOError( h=(-1) )
1556 SimulateIOErrorBenign(0);
1557
1558 #ifndef NDEBUG
1559 /* When reducing a lock such that other processes can start
1560 ** reading the database file again, make sure that the
1561 ** transaction counter was updated if any part of the database
1562 ** file changed. If the transaction counter is not updated,
1563 ** other connections to the same file might not realize that
1564 ** the file has changed and hence might not know to flush their
1565 ** cache. The use of a stale cache can lead to database corruption.
1566 */
1567 assert( pFile->inNormalWrite==0
1568 || pFile->dbUpdate==0
1569 || pFile->transCntrChng==1 );
1570 pFile->inNormalWrite = 0;
1571 #endif
1572
1573
1574 if( locktype==SHARED_LOCK ){
1575 if( rangeLock(pFile, F_RDLCK, &tErrno)==(-1) ){
1576 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK);
1577 if( IS_LOCK_ERROR(rc) ){
1578 pFile->lastErrno = tErrno;
1579 }
1580 goto end_unlock;
1581 }
1582 }
1583 lock.l_type = F_UNLCK;
1584 lock.l_whence = SEEK_SET;
1585 lock.l_start = PENDING_BYTE;
1586 lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE );
1587 if( fcntl(h, F_SETLK, &lock)!=(-1) ){
1588 pLock->locktype = SHARED_LOCK;
1589 }else{
1590 tErrno = errno;
1591 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
1592 if( IS_LOCK_ERROR(rc) ){
1593 pFile->lastErrno = tErrno;
1594 }
1595 goto end_unlock;
1596 }
1597 }
1598 if( locktype==NO_LOCK ){
1599 struct unixOpenCnt *pOpen;
1600
1601 /* Decrement the shared lock counter. Release the lock using an
1602 ** OS call only when all threads in this same process have released
1603 ** the lock.
1604 */
1605 pLock->cnt--;
1606 if( pLock->cnt==0 ){
1607 lock.l_type = F_UNLCK;
1608 lock.l_whence = SEEK_SET;
1609 lock.l_start = lock.l_len = 0L;
1610 SimulateIOErrorBenign(1);
1611 SimulateIOError( h=(-1) )
1612 SimulateIOErrorBenign(0);
1613 if( fcntl(h, F_SETLK, &lock)!=(-1) ){
1614 pLock->locktype = NO_LOCK;
1615 }else{
1616 tErrno = errno;
1617 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
1618 if( IS_LOCK_ERROR(rc) ){
1619 pFile->lastErrno = tErrno;
1620 }
1621 pLock->locktype = NO_LOCK;
1622 pFile->locktype = NO_LOCK;
1623 }
1624 }
1625
1626 /* Decrement the count of locks against this same file. When the
1627 ** count reaches zero, close any other file descriptors whose close
1628 ** was deferred because of outstanding locks.
1629 */
1630 pOpen = pFile->pOpen;
1631 pOpen->nLock--;
1632 assert( pOpen->nLock>=0 );
1633 if( pOpen->nLock==0 ){
1634 int rc2 = closePendingFds(pFile);
1635 if( rc==SQLITE_OK ){
1636 rc = rc2;
1637 }
1638 }
1639 }
1640
1641 end_unlock:
1642 unixLeaveMutex();
1643 if( rc==SQLITE_OK ) pFile->locktype = locktype;
1644 return rc;
1645 }
1646
1647 /*
1648 ** This function performs the parts of the "close file" operation
1649 ** common to all locking schemes. It closes the directory and file
1650 ** handles, if they are valid, and sets all fields of the unixFile
1651 ** structure to 0.
1652 **
1653 ** It is *not* necessary to hold the mutex when this routine is called,
1654 ** even on VxWorks. A mutex will be acquired on VxWorks by the
1655 ** vxworksReleaseFileId() routine.
1656 */
1657 static int closeUnixFile(sqlite3_file *id){
1658 unixFile *pFile = (unixFile*)id;
1659 if( pFile ){
1660 if( pFile->dirfd>=0 ){
1661 int err = close(pFile->dirfd);
1662 if( err ){
1663 pFile->lastErrno = errno;
1664 return SQLITE_IOERR_DIR_CLOSE;
1665 }else{
1666 pFile->dirfd=-1;
1667 }
1668 }
1669 if( pFile->h>=0 ){
1670 int err = close(pFile->h);
1671 if( err ){
1672 pFile->lastErrno = errno;
1673 return SQLITE_IOERR_CLOSE;
1674 }
1675 }
1676 #if OS_VXWORKS
1677 if( pFile->pId ){
1678 if( pFile->isDelete ){
1679 unlink(pFile->pId->zCanonicalName);
1680 }
1681 vxworksReleaseFileId(pFile->pId);
1682 pFile->pId = 0;
1683 }
1684 #endif
1685 OSTRACE2("CLOSE %-3d\n", pFile->h);
1686 OpenCounter(-1);
1687 sqlite3_free(pFile->pUnused);
1688 memset(pFile, 0, sizeof(unixFile));
1689 }
1690 return SQLITE_OK;
1691 }
1692
1693 /*
1694 ** Close a file.
1695 */
1696 static int unixClose(sqlite3_file *id){
1697 int rc = SQLITE_OK;
1698 if( id ){
1699 unixFile *pFile = (unixFile *)id;
1700 unixUnlock(id, NO_LOCK);
1701 unixEnterMutex();
1702 if( pFile->pOpen && pFile->pOpen->nLock ){
1703 /* If there are outstanding locks, do not actually close the file just
1704 ** yet because that would clear those locks. Instead, add the file
1705 ** descriptor to pOpen->pUnused list. It will be automatically closed
1706 ** when the last lock is cleared.
1707 */
1708 setPendingFd(pFile);
1709 }
1710 releaseLockInfo(pFile->pLock);
1711 releaseOpenCnt(pFile->pOpen);
1712 rc = closeUnixFile(id);
1713 unixLeaveMutex();
1714 }
1715 return rc;
1716 }
1717
1718 /************** End of the posix advisory lock implementation *****************
1719 ******************************************************************************/
1720
1721 /******************************************************************************
1722 ****************************** No-op Locking **********************************
1723 **
1724 ** Of the various locking implementations available, this is by far the
1725 ** simplest: locking is ignored. No attempt is made to lock the database
1726 ** file for reading or writing.
1727 **
1728 ** This locking mode is appropriate for use on read-only databases
1729 ** (ex: databases that are burned into CD-ROM, for example.) It can
1730 ** also be used if the application employs some external mechanism to
1731 ** prevent simultaneous access of the same database by two or more
1732 ** database connections. But there is a serious risk of database
1733 ** corruption if this locking mode is used in situations where multiple
1734 ** database connections are accessing the same database file at the same
1735 ** time and one or more of those connections are writing.
1736 */
1737
1738 static int nolockCheckReservedLock(sqlite3_file *NotUsed, int *pResOut){
1739 UNUSED_PARAMETER(NotUsed);
1740 *pResOut = 0;
1741 return SQLITE_OK;
1742 }
1743 static int nolockLock(sqlite3_file *NotUsed, int NotUsed2){
1744 UNUSED_PARAMETER2(NotUsed, NotUsed2);
1745 return SQLITE_OK;
1746 }
1747 static int nolockUnlock(sqlite3_file *NotUsed, int NotUsed2){
1748 UNUSED_PARAMETER2(NotUsed, NotUsed2);
1749 return SQLITE_OK;
1750 }
1751
1752 /*
1753 ** Close the file.
1754 */
1755 static int nolockClose(sqlite3_file *id) {
1756 return closeUnixFile(id);
1757 }
1758
1759 /******************* End of the no-op lock implementation *********************
1760 ******************************************************************************/
1761
1762 /******************************************************************************
1763 ************************* Begin dot-file Locking ******************************
1764 **
1765 ** The dotfile locking implementation uses the existance of separate lock
1766 ** files in order to control access to the database. This works on just
1767 ** about every filesystem imaginable. But there are serious downsides:
1768 **
1769 ** (1) There is zero concurrency. A single reader blocks all other
1770 ** connections from reading or writing the database.
1771 **
1772 ** (2) An application crash or power loss can leave stale lock files
1773 ** sitting around that need to be cleared manually.
1774 **
1775 ** Nevertheless, a dotlock is an appropriate locking mode for use if no
1776 ** other locking strategy is available.
1777 **
1778 ** Dotfile locking works by creating a file in the same directory as the
1779 ** database and with the same name but with a ".lock" extension added.
1780 ** The existance of a lock file implies an EXCLUSIVE lock. All other lock
1781 ** types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE.
1782 */
1783
1784 /*
1785 ** The file suffix added to the data base filename in order to create the
1786 ** lock file.
1787 */
1788 #define DOTLOCK_SUFFIX ".lock"
1789
1790 /*
1791 ** This routine checks if there is a RESERVED lock held on the specified
1792 ** file by this or any other process. If such a lock is held, set *pResOut
1793 ** to a non-zero value otherwise *pResOut is set to zero. The return value
1794 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
1795 **
1796 ** In dotfile locking, either a lock exists or it does not. So in this
1797 ** variation of CheckReservedLock(), *pResOut is set to true if any lock
1798 ** is held on the file and false if the file is unlocked.
1799 */
1800 static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) {
1801 int rc = SQLITE_OK;
1802 int reserved = 0;
1803 unixFile *pFile = (unixFile*)id;
1804
1805 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
1806
1807 assert( pFile );
1808
1809 /* Check if a thread in this process holds such a lock */
1810 if( pFile->locktype>SHARED_LOCK ){
1811 /* Either this connection or some other connection in the same process
1812 ** holds a lock on the file. No need to check further. */
1813 reserved = 1;
1814 }else{
1815 /* The lock is held if and only if the lockfile exists */
1816 const char *zLockFile = (const char*)pFile->lockingContext;
1817 reserved = access(zLockFile, 0)==0;
1818 }
1819 OSTRACE4("TEST WR-LOCK %d %d %d\n", pFile->h, rc, reserved);
1820 *pResOut = reserved;
1821 return rc;
1822 }
1823
1824 /*
1825 ** Lock the file with the lock specified by parameter locktype - one
1826 ** of the following:
1827 **
1828 ** (1) SHARED_LOCK
1829 ** (2) RESERVED_LOCK
1830 ** (3) PENDING_LOCK
1831 ** (4) EXCLUSIVE_LOCK
1832 **
1833 ** Sometimes when requesting one lock state, additional lock states
1834 ** are inserted in between. The locking might fail on one of the later
1835 ** transitions leaving the lock state different from what it started but
1836 ** still short of its goal. The following chart shows the allowed
1837 ** transitions and the inserted intermediate states:
1838 **
1839 ** UNLOCKED -> SHARED
1840 ** SHARED -> RESERVED
1841 ** SHARED -> (PENDING) -> EXCLUSIVE
1842 ** RESERVED -> (PENDING) -> EXCLUSIVE
1843 ** PENDING -> EXCLUSIVE
1844 **
1845 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
1846 ** routine to lower a locking level.
1847 **
1848 ** With dotfile locking, we really only support state (4): EXCLUSIVE.
1849 ** But we track the other locking levels internally.
1850 */
1851 static int dotlockLock(sqlite3_file *id, int locktype) {
1852 unixFile *pFile = (unixFile*)id;
1853 int fd;
1854 char *zLockFile = (char *)pFile->lockingContext;
1855 int rc = SQLITE_OK;
1856
1857
1858 /* If we have any lock, then the lock file already exists. All we have
1859 ** to do is adjust our internal record of the lock level.
1860 */
1861 if( pFile->locktype > NO_LOCK ){
1862 pFile->locktype = locktype;
1863 #if !OS_VXWORKS
1864 /* Always update the timestamp on the old file */
1865 utimes(zLockFile, NULL);
1866 #endif
1867 return SQLITE_OK;
1868 }
1869
1870 /* grab an exclusive lock */
1871 fd = open(zLockFile,O_RDONLY|O_CREAT|O_EXCL,0600);
1872 if( fd<0 ){
1873 /* failed to open/create the file, someone else may have stolen the lock */
1874 int tErrno = errno;
1875 if( EEXIST == tErrno ){
1876 rc = SQLITE_BUSY;
1877 } else {
1878 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1879 if( IS_LOCK_ERROR(rc) ){
1880 pFile->lastErrno = tErrno;
1881 }
1882 }
1883 return rc;
1884 }
1885 if( close(fd) ){
1886 pFile->lastErrno = errno;
1887 rc = SQLITE_IOERR_CLOSE;
1888 }
1889
1890 /* got it, set the type and return ok */
1891 pFile->locktype = locktype;
1892 return rc;
1893 }
1894
1895 /*
1896 ** Lower the locking level on file descriptor pFile to locktype. locktype
1897 ** must be either NO_LOCK or SHARED_LOCK.
1898 **
1899 ** If the locking level of the file descriptor is already at or below
1900 ** the requested locking level, this routine is a no-op.
1901 **
1902 ** When the locking level reaches NO_LOCK, delete the lock file.
1903 */
1904 static int dotlockUnlock(sqlite3_file *id, int locktype) {
1905 unixFile *pFile = (unixFile*)id;
1906 char *zLockFile = (char *)pFile->lockingContext;
1907
1908 assert( pFile );
1909 OSTRACE5("UNLOCK %d %d was %d pid=%d\n", pFile->h, locktype,
1910 pFile->locktype, getpid());
1911 assert( locktype<=SHARED_LOCK );
1912
1913 /* no-op if possible */
1914 if( pFile->locktype==locktype ){
1915 return SQLITE_OK;
1916 }
1917
1918 /* To downgrade to shared, simply update our internal notion of the
1919 ** lock state. No need to mess with the file on disk.
1920 */
1921 if( locktype==SHARED_LOCK ){
1922 pFile->locktype = SHARED_LOCK;
1923 return SQLITE_OK;
1924 }
1925
1926 /* To fully unlock the database, delete the lock file */
1927 assert( locktype==NO_LOCK );
1928 if( unlink(zLockFile) ){
1929 int rc = 0;
1930 int tErrno = errno;
1931 if( ENOENT != tErrno ){
1932 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
1933 }
1934 if( IS_LOCK_ERROR(rc) ){
1935 pFile->lastErrno = tErrno;
1936 }
1937 return rc;
1938 }
1939 pFile->locktype = NO_LOCK;
1940 return SQLITE_OK;
1941 }
1942
1943 /*
1944 ** Close a file. Make sure the lock has been released before closing.
1945 */
1946 static int dotlockClose(sqlite3_file *id) {
1947 int rc;
1948 if( id ){
1949 unixFile *pFile = (unixFile*)id;
1950 dotlockUnlock(id, NO_LOCK);
1951 sqlite3_free(pFile->lockingContext);
1952 }
1953 rc = closeUnixFile(id);
1954 return rc;
1955 }
1956 /****************** End of the dot-file lock implementation *******************
1957 ******************************************************************************/
1958
1959 /******************************************************************************
1960 ************************** Begin flock Locking ********************************
1961 **
1962 ** Use the flock() system call to do file locking.
1963 **
1964 ** flock() locking is like dot-file locking in that the various
1965 ** fine-grain locking levels supported by SQLite are collapsed into
1966 ** a single exclusive lock. In other words, SHARED, RESERVED, and
1967 ** PENDING locks are the same thing as an EXCLUSIVE lock. SQLite
1968 ** still works when you do this, but concurrency is reduced since
1969 ** only a single process can be reading the database at a time.
1970 **
1971 ** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off or if
1972 ** compiling for VXWORKS.
1973 */
1974 #if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS
1975
1976 /*
1977 ** This routine checks if there is a RESERVED lock held on the specified
1978 ** file by this or any other process. If such a lock is held, set *pResOut
1979 ** to a non-zero value otherwise *pResOut is set to zero. The return value
1980 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
1981 */
1982 static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){
1983 int rc = SQLITE_OK;
1984 int reserved = 0;
1985 unixFile *pFile = (unixFile*)id;
1986
1987 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
1988
1989 assert( pFile );
1990
1991 /* Check if a thread in this process holds such a lock */
1992 if( pFile->locktype>SHARED_LOCK ){
1993 reserved = 1;
1994 }
1995
1996 /* Otherwise see if some other process holds it. */
1997 if( !reserved ){
1998 /* attempt to get the lock */
1999 int lrc = flock(pFile->h, LOCK_EX | LOCK_NB);
2000 if( !lrc ){
2001 /* got the lock, unlock it */
2002 lrc = flock(pFile->h, LOCK_UN);
2003 if ( lrc ) {
2004 int tErrno = errno;
2005 /* unlock failed with an error */
2006 lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
2007 if( IS_LOCK_ERROR(lrc) ){
2008 pFile->lastErrno = tErrno;
2009 rc = lrc;
2010 }
2011 }
2012 } else {
2013 int tErrno = errno;
2014 reserved = 1;
2015 /* someone else might have it reserved */
2016 lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
2017 if( IS_LOCK_ERROR(lrc) ){
2018 pFile->lastErrno = tErrno;
2019 rc = lrc;
2020 }
2021 }
2022 }
2023 OSTRACE4("TEST WR-LOCK %d %d %d\n", pFile->h, rc, reserved);
2024
2025 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2026 if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){
2027 rc = SQLITE_OK;
2028 reserved=1;
2029 }
2030 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2031 *pResOut = reserved;
2032 return rc;
2033 }
2034
2035 /*
2036 ** Lock the file with the lock specified by parameter locktype - one
2037 ** of the following:
2038 **
2039 ** (1) SHARED_LOCK
2040 ** (2) RESERVED_LOCK
2041 ** (3) PENDING_LOCK
2042 ** (4) EXCLUSIVE_LOCK
2043 **
2044 ** Sometimes when requesting one lock state, additional lock states
2045 ** are inserted in between. The locking might fail on one of the later
2046 ** transitions leaving the lock state different from what it started but
2047 ** still short of its goal. The following chart shows the allowed
2048 ** transitions and the inserted intermediate states:
2049 **
2050 ** UNLOCKED -> SHARED
2051 ** SHARED -> RESERVED
2052 ** SHARED -> (PENDING) -> EXCLUSIVE
2053 ** RESERVED -> (PENDING) -> EXCLUSIVE
2054 ** PENDING -> EXCLUSIVE
2055 **
2056 ** flock() only really support EXCLUSIVE locks. We track intermediate
2057 ** lock states in the sqlite3_file structure, but all locks SHARED or
2058 ** above are really EXCLUSIVE locks and exclude all other processes from
2059 ** access the file.
2060 **
2061 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
2062 ** routine to lower a locking level.
2063 */
2064 static int flockLock(sqlite3_file *id, int locktype) {
2065 int rc = SQLITE_OK;
2066 unixFile *pFile = (unixFile*)id;
2067
2068 assert( pFile );
2069
2070 /* if we already have a lock, it is exclusive.
2071 ** Just adjust level and punt on outta here. */
2072 if (pFile->locktype > NO_LOCK) {
2073 pFile->locktype = locktype;
2074 return SQLITE_OK;
2075 }
2076
2077 /* grab an exclusive lock */
2078
2079 if (flock(pFile->h, LOCK_EX | LOCK_NB)) {
2080 int tErrno = errno;
2081 /* didn't get, must be busy */
2082 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
2083 if( IS_LOCK_ERROR(rc) ){
2084 pFile->lastErrno = tErrno;
2085 }
2086 } else {
2087 /* got it, set the type and return ok */
2088 pFile->locktype = locktype;
2089 }
2090 OSTRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype),
2091 rc==SQLITE_OK ? "ok" : "failed");
2092 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2093 if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){
2094 rc = SQLITE_BUSY;
2095 }
2096 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2097 return rc;
2098 }
2099
2100
2101 /*
2102 ** Lower the locking level on file descriptor pFile to locktype. locktype
2103 ** must be either NO_LOCK or SHARED_LOCK.
2104 **
2105 ** If the locking level of the file descriptor is already at or below
2106 ** the requested locking level, this routine is a no-op.
2107 */
2108 static int flockUnlock(sqlite3_file *id, int locktype) {
2109 unixFile *pFile = (unixFile*)id;
2110
2111 assert( pFile );
2112 OSTRACE5("UNLOCK %d %d was %d pid=%d\n", pFile->h, locktype,
2113 pFile->locktype, getpid());
2114 assert( locktype<=SHARED_LOCK );
2115
2116 /* no-op if possible */
2117 if( pFile->locktype==locktype ){
2118 return SQLITE_OK;
2119 }
2120
2121 /* shared can just be set because we always have an exclusive */
2122 if (locktype==SHARED_LOCK) {
2123 pFile->locktype = locktype;
2124 return SQLITE_OK;
2125 }
2126
2127 /* no, really, unlock. */
2128 int rc = flock(pFile->h, LOCK_UN);
2129 if (rc) {
2130 int r, tErrno = errno;
2131 r = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
2132 if( IS_LOCK_ERROR(r) ){
2133 pFile->lastErrno = tErrno;
2134 }
2135 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2136 if( (r & SQLITE_IOERR) == SQLITE_IOERR ){
2137 r = SQLITE_BUSY;
2138 }
2139 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2140
2141 return r;
2142 } else {
2143 pFile->locktype = NO_LOCK;
2144 return SQLITE_OK;
2145 }
2146 }
2147
2148 /*
2149 ** Close a file.
2150 */
2151 static int flockClose(sqlite3_file *id) {
2152 if( id ){
2153 flockUnlock(id, NO_LOCK);
2154 }
2155 return closeUnixFile(id);
2156 }
2157
2158 #endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */
2159
2160 /******************* End of the flock lock implementation *********************
2161 ******************************************************************************/
2162
2163 /******************************************************************************
2164 ************************ Begin Named Semaphore Locking ************************
2165 **
2166 ** Named semaphore locking is only supported on VxWorks.
2167 **
2168 ** Semaphore locking is like dot-lock and flock in that it really only
2169 ** supports EXCLUSIVE locking. Only a single process can read or write
2170 ** the database file at a time. This reduces potential concurrency, but
2171 ** makes the lock implementation much easier.
2172 */
2173 #if OS_VXWORKS
2174
2175 /*
2176 ** This routine checks if there is a RESERVED lock held on the specified
2177 ** file by this or any other process. If such a lock is held, set *pResOut
2178 ** to a non-zero value otherwise *pResOut is set to zero. The return value
2179 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2180 */
2181 static int semCheckReservedLock(sqlite3_file *id, int *pResOut) {
2182 int rc = SQLITE_OK;
2183 int reserved = 0;
2184 unixFile *pFile = (unixFile*)id;
2185
2186 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2187
2188 assert( pFile );
2189
2190 /* Check if a thread in this process holds such a lock */
2191 if( pFile->locktype>SHARED_LOCK ){
2192 reserved = 1;
2193 }
2194
2195 /* Otherwise see if some other process holds it. */
2196 if( !reserved ){
2197 sem_t *pSem = pFile->pOpen->pSem;
2198 struct stat statBuf;
2199
2200 if( sem_trywait(pSem)==-1 ){
2201 int tErrno = errno;
2202 if( EAGAIN != tErrno ){
2203 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK);
2204 pFile->lastErrno = tErrno;
2205 } else {
2206 /* someone else has the lock when we are in NO_LOCK */
2207 reserved = (pFile->locktype < SHARED_LOCK);
2208 }
2209 }else{
2210 /* we could have it if we want it */
2211 sem_post(pSem);
2212 }
2213 }
2214 OSTRACE4("TEST WR-LOCK %d %d %d\n", pFile->h, rc, reserved);
2215
2216 *pResOut = reserved;
2217 return rc;
2218 }
2219
2220 /*
2221 ** Lock the file with the lock specified by parameter locktype - one
2222 ** of the following:
2223 **
2224 ** (1) SHARED_LOCK
2225 ** (2) RESERVED_LOCK
2226 ** (3) PENDING_LOCK
2227 ** (4) EXCLUSIVE_LOCK
2228 **
2229 ** Sometimes when requesting one lock state, additional lock states
2230 ** are inserted in between. The locking might fail on one of the later
2231 ** transitions leaving the lock state different from what it started but
2232 ** still short of its goal. The following chart shows the allowed
2233 ** transitions and the inserted intermediate states:
2234 **
2235 ** UNLOCKED -> SHARED
2236 ** SHARED -> RESERVED
2237 ** SHARED -> (PENDING) -> EXCLUSIVE
2238 ** RESERVED -> (PENDING) -> EXCLUSIVE
2239 ** PENDING -> EXCLUSIVE
2240 **
2241 ** Semaphore locks only really support EXCLUSIVE locks. We track intermediate
2242 ** lock states in the sqlite3_file structure, but all locks SHARED or
2243 ** above are really EXCLUSIVE locks and exclude all other processes from
2244 ** access the file.
2245 **
2246 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
2247 ** routine to lower a locking level.
2248 */
2249 static int semLock(sqlite3_file *id, int locktype) {
2250 unixFile *pFile = (unixFile*)id;
2251 int fd;
2252 sem_t *pSem = pFile->pOpen->pSem;
2253 int rc = SQLITE_OK;
2254
2255 /* if we already have a lock, it is exclusive.
2256 ** Just adjust level and punt on outta here. */
2257 if (pFile->locktype > NO_LOCK) {
2258 pFile->locktype = locktype;
2259 rc = SQLITE_OK;
2260 goto sem_end_lock;
2261 }
2262
2263 /* lock semaphore now but bail out when already locked. */
2264 if( sem_trywait(pSem)==-1 ){
2265 rc = SQLITE_BUSY;
2266 goto sem_end_lock;
2267 }
2268
2269 /* got it, set the type and return ok */
2270 pFile->locktype = locktype;
2271
2272 sem_end_lock:
2273 return rc;
2274 }
2275
2276 /*
2277 ** Lower the locking level on file descriptor pFile to locktype. locktype
2278 ** must be either NO_LOCK or SHARED_LOCK.
2279 **
2280 ** If the locking level of the file descriptor is already at or below
2281 ** the requested locking level, this routine is a no-op.
2282 */
2283 static int semUnlock(sqlite3_file *id, int locktype) {
2284 unixFile *pFile = (unixFile*)id;
2285 sem_t *pSem = pFile->pOpen->pSem;
2286
2287 assert( pFile );
2288 assert( pSem );
2289 OSTRACE5("UNLOCK %d %d was %d pid=%d\n", pFile->h, locktype,
2290 pFile->locktype, getpid());
2291 assert( locktype<=SHARED_LOCK );
2292
2293 /* no-op if possible */
2294 if( pFile->locktype==locktype ){
2295 return SQLITE_OK;
2296 }
2297
2298 /* shared can just be set because we always have an exclusive */
2299 if (locktype==SHARED_LOCK) {
2300 pFile->locktype = locktype;
2301 return SQLITE_OK;
2302 }
2303
2304 /* no, really unlock. */
2305 if ( sem_post(pSem)==-1 ) {
2306 int rc, tErrno = errno;
2307 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
2308 if( IS_LOCK_ERROR(rc) ){
2309 pFile->lastErrno = tErrno;
2310 }
2311 return rc;
2312 }
2313 pFile->locktype = NO_LOCK;
2314 return SQLITE_OK;
2315 }
2316
2317 /*
2318 ** Close a file.
2319 */
2320 static int semClose(sqlite3_file *id) {
2321 if( id ){
2322 unixFile *pFile = (unixFile*)id;
2323 semUnlock(id, NO_LOCK);
2324 assert( pFile );
2325 unixEnterMutex();
2326 releaseLockInfo(pFile->pLock);
2327 releaseOpenCnt(pFile->pOpen);
2328 unixLeaveMutex();
2329 closeUnixFile(id);
2330 }
2331 return SQLITE_OK;
2332 }
2333
2334 #endif /* OS_VXWORKS */
2335 /*
2336 ** Named semaphore locking is only available on VxWorks.
2337 **
2338 *************** End of the named semaphore lock implementation ****************
2339 ******************************************************************************/
2340
2341
2342 /******************************************************************************
2343 *************************** Begin AFP Locking *********************************
2344 **
2345 ** AFP is the Apple Filing Protocol. AFP is a network filesystem found
2346 ** on Apple Macintosh computers - both OS9 and OSX.
2347 **
2348 ** Third-party implementations of AFP are available. But this code here
2349 ** only works on OSX.
2350 */
2351
2352 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
2353 /*
2354 ** The afpLockingContext structure contains all afp lock specific state
2355 */
2356 typedef struct afpLockingContext afpLockingContext;
2357 struct afpLockingContext {
2358 unsigned long long sharedByte;
2359 const char *dbPath; /* Name of the open file */
2360 };
2361
2362 struct ByteRangeLockPB2
2363 {
2364 unsigned long long offset; /* offset to first byte to lock */
2365 unsigned long long length; /* nbr of bytes to lock */
2366 unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */
2367 unsigned char unLockFlag; /* 1 = unlock, 0 = lock */
2368 unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */
2369 int fd; /* file desc to assoc this lock with */
2370 };
2371
2372 #define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2)
2373
2374 /*
2375 ** This is a utility for setting or clearing a bit-range lock on an
2376 ** AFP filesystem.
2377 **
2378 ** Return SQLITE_OK on success, SQLITE_BUSY on failure.
2379 */
2380 static int afpSetLock(
2381 const char *path, /* Name of the file to be locked or unlocked */
2382 unixFile *pFile, /* Open file descriptor on path */
2383 unsigned long long offset, /* First byte to be locked */
2384 unsigned long long length, /* Number of bytes to lock */
2385 int setLockFlag /* True to set lock. False to clear lock */
2386 ){
2387 struct ByteRangeLockPB2 pb;
2388 int err;
2389
2390 pb.unLockFlag = setLockFlag ? 0 : 1;
2391 pb.startEndFlag = 0;
2392 pb.offset = offset;
2393 pb.length = length;
2394 pb.fd = pFile->h;
2395
2396 OSTRACE6("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n",
2397 (setLockFlag?"ON":"OFF"), pFile->h, (pb.fd==-1?"[testval-1]":""),
2398 offset, length);
2399 err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0);
2400 if ( err==-1 ) {
2401 int rc;
2402 int tErrno = errno;
2403 OSTRACE4("AFPSETLOCK failed to fsctl() '%s' %d %s\n",
2404 path, tErrno, strerror(tErrno));
2405 #ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS
2406 rc = SQLITE_BUSY;
2407 #else
2408 rc = sqliteErrorFromPosixError(tErrno,
2409 setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK);
2410 #endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */
2411 if( IS_LOCK_ERROR(rc) ){
2412 pFile->lastErrno = tErrno;
2413 }
2414 return rc;
2415 } else {
2416 return SQLITE_OK;
2417 }
2418 }
2419
2420 /*
2421 ** This routine checks if there is a RESERVED lock held on the specified
2422 ** file by this or any other process. If such a lock is held, set *pResOut
2423 ** to a non-zero value otherwise *pResOut is set to zero. The return value
2424 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2425 */
2426 static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){
2427 int rc = SQLITE_OK;
2428 int reserved = 0;
2429 unixFile *pFile = (unixFile*)id;
2430
2431 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2432
2433 assert( pFile );
2434 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
2435
2436 /* Check if a thread in this process holds such a lock */
2437 if( pFile->locktype>SHARED_LOCK ){
2438 reserved = 1;
2439 }
2440
2441 /* Otherwise see if some other process holds it.
2442 */
2443 if( !reserved ){
2444 /* lock the RESERVED byte */
2445 int lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
2446 if( SQLITE_OK==lrc ){
2447 /* if we succeeded in taking the reserved lock, unlock it to restore
2448 ** the original state */
2449 lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
2450 } else {
2451 /* if we failed to get the lock then someone else must have it */
2452 reserved = 1;
2453 }
2454 if( IS_LOCK_ERROR(lrc) ){
2455 rc=lrc;
2456 }
2457 }
2458
2459 OSTRACE4("TEST WR-LOCK %d %d %d\n", pFile->h, rc, reserved);
2460
2461 *pResOut = reserved;
2462 return rc;
2463 }
2464
2465 /*
2466 ** Lock the file with the lock specified by parameter locktype - one
2467 ** of the following:
2468 **
2469 ** (1) SHARED_LOCK
2470 ** (2) RESERVED_LOCK
2471 ** (3) PENDING_LOCK
2472 ** (4) EXCLUSIVE_LOCK
2473 **
2474 ** Sometimes when requesting one lock state, additional lock states
2475 ** are inserted in between. The locking might fail on one of the later
2476 ** transitions leaving the lock state different from what it started but
2477 ** still short of its goal. The following chart shows the allowed
2478 ** transitions and the inserted intermediate states:
2479 **
2480 ** UNLOCKED -> SHARED
2481 ** SHARED -> RESERVED
2482 ** SHARED -> (PENDING) -> EXCLUSIVE
2483 ** RESERVED -> (PENDING) -> EXCLUSIVE
2484 ** PENDING -> EXCLUSIVE
2485 **
2486 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
2487 ** routine to lower a locking level.
2488 */
2489 static int afpLock(sqlite3_file *id, int locktype){
2490 int rc = SQLITE_OK;
2491 unixFile *pFile = (unixFile*)id;
2492 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
2493
2494 assert( pFile );
2495 OSTRACE5("LOCK %d %s was %s pid=%d\n", pFile->h,
2496 locktypeName(locktype), locktypeName(pFile->locktype), getpid());
2497
2498 /* If there is already a lock of this type or more restrictive on the
2499 ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
2500 ** unixEnterMutex() hasn't been called yet.
2501 */
2502 if( pFile->locktype>=locktype ){
2503 OSTRACE3("LOCK %d %s ok (already held)\n", pFile->h,
2504 locktypeName(locktype));
2505 return SQLITE_OK;
2506 }
2507
2508 /* Make sure the locking sequence is correct
2509 */
2510 assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
2511 assert( locktype!=PENDING_LOCK );
2512 assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
2513
2514 /* This mutex is needed because pFile->pLock is shared across threads
2515 */
2516 unixEnterMutex();
2517
2518 /* Make sure the current thread owns the pFile.
2519 */
2520 rc = transferOwnership(pFile);
2521 if( rc!=SQLITE_OK ){
2522 unixLeaveMutex();
2523 return rc;
2524 }
2525
2526 /* A PENDING lock is needed before acquiring a SHARED lock and before
2527 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
2528 ** be released.
2529 */
2530 if( locktype==SHARED_LOCK
2531 || (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK)
2532 ){
2533 int failed;
2534 failed = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 1);
2535 if (failed) {
2536 rc = failed;
2537 goto afp_end_lock;
2538 }
2539 }
2540
2541 /* If control gets to this point, then actually go ahead and make
2542 ** operating system calls for the specified lock.
2543 */
2544 if( locktype==SHARED_LOCK ){
2545 int lk, lrc1, lrc2, lrc1Errno;
2546
2547 /* Now get the read-lock SHARED_LOCK */
2548 /* note that the quality of the randomness doesn't matter that much */
2549 lk = random();
2550 context->sharedByte = (lk & 0x7fffffff)%(SHARED_SIZE - 1);
2551 lrc1 = afpSetLock(context->dbPath, pFile,
2552 SHARED_FIRST+context->sharedByte, 1, 1);
2553 if( IS_LOCK_ERROR(lrc1) ){
2554 lrc1Errno = pFile->lastErrno;
2555 }
2556 /* Drop the temporary PENDING lock */
2557 lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
2558
2559 if( IS_LOCK_ERROR(lrc1) ) {
2560 pFile->lastErrno = lrc1Errno;
2561 rc = lrc1;
2562 goto afp_end_lock;
2563 } else if( IS_LOCK_ERROR(lrc2) ){
2564 rc = lrc2;
2565 goto afp_end_lock;
2566 } else if( lrc1 != SQLITE_OK ) {
2567 rc = lrc1;
2568 } else {
2569 pFile->locktype = SHARED_LOCK;
2570 pFile->pOpen->nLock++;
2571 }
2572 }else{
2573 /* The request was for a RESERVED or EXCLUSIVE lock. It is
2574 ** assumed that there is a SHARED or greater lock on the file
2575 ** already.
2576 */
2577 int failed = 0;
2578 assert( 0!=pFile->locktype );
2579 if (locktype >= RESERVED_LOCK && pFile->locktype < RESERVED_LOCK) {
2580 /* Acquire a RESERVED lock */
2581 failed = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
2582 }
2583 if (!failed && locktype == EXCLUSIVE_LOCK) {
2584 /* Acquire an EXCLUSIVE lock */
2585
2586 /* Remove the shared lock before trying the range. we'll need to
2587 ** reestablish the shared lock if we can't get the afpUnlock
2588 */
2589 if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST +
2590 context->sharedByte, 1, 0)) ){
2591 int failed2 = SQLITE_OK;
2592 /* now attemmpt to get the exclusive lock range */
2593 failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST,
2594 SHARED_SIZE, 1);
2595 if( failed && (failed2 = afpSetLock(context->dbPath, pFile,
2596 SHARED_FIRST + context->sharedByte, 1, 1)) ){
2597 /* Can't reestablish the shared lock. Sqlite can't deal, this is
2598 ** a critical I/O error
2599 */
2600 rc = ((failed & SQLITE_IOERR) == SQLITE_IOERR) ? failed2 :
2601 SQLITE_IOERR_LOCK;
2602 goto afp_end_lock;
2603 }
2604 }else{
2605 rc = failed;
2606 }
2607 }
2608 if( failed ){
2609 rc = failed;
2610 }
2611 }
2612
2613 if( rc==SQLITE_OK ){
2614 pFile->locktype = locktype;
2615 }else if( locktype==EXCLUSIVE_LOCK ){
2616 pFile->locktype = PENDING_LOCK;
2617 }
2618
2619 afp_end_lock:
2620 unixLeaveMutex();
2621 OSTRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype),
2622 rc==SQLITE_OK ? "ok" : "failed");
2623 return rc;
2624 }
2625
2626 /*
2627 ** Lower the locking level on file descriptor pFile to locktype. locktype
2628 ** must be either NO_LOCK or SHARED_LOCK.
2629 **
2630 ** If the locking level of the file descriptor is already at or below
2631 ** the requested locking level, this routine is a no-op.
2632 */
2633 static int afpUnlock(sqlite3_file *id, int locktype) {
2634 int rc = SQLITE_OK;
2635 unixFile *pFile = (unixFile*)id;
2636 afpLockingContext *pCtx = (afpLockingContext *) pFile->lockingContext;
2637
2638 assert( pFile );
2639 OSTRACE5("UNLOCK %d %d was %d pid=%d\n", pFile->h, locktype,
2640 pFile->locktype, getpid());
2641
2642 assert( locktype<=SHARED_LOCK );
2643 if( pFile->locktype<=locktype ){
2644 return SQLITE_OK;
2645 }
2646 if( CHECK_THREADID(pFile) ){
2647 return SQLITE_MISUSE;
2648 }
2649 unixEnterMutex();
2650 if( pFile->locktype>SHARED_LOCK ){
2651
2652 if( pFile->locktype==EXCLUSIVE_LOCK ){
2653 rc = afpSetLock(pCtx->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 0);
2654 if( rc==SQLITE_OK && locktype==SHARED_LOCK ){
2655 /* only re-establish the shared lock if necessary */
2656 int sharedLockByte = SHARED_FIRST+pCtx->sharedByte;
2657 rc = afpSetLock(pCtx->dbPath, pFile, sharedLockByte, 1, 1);
2658 }
2659 }
2660 if( rc==SQLITE_OK && pFile->locktype>=PENDING_LOCK ){
2661 rc = afpSetLock(pCtx->dbPath, pFile, PENDING_BYTE, 1, 0);
2662 }
2663 if( rc==SQLITE_OK && pFile->locktype>=RESERVED_LOCK ){
2664 rc = afpSetLock(pCtx->dbPath, pFile, RESERVED_BYTE, 1, 0);
2665 }
2666 }else if( locktype==NO_LOCK ){
2667 /* clear the shared lock */
2668 int sharedLockByte = SHARED_FIRST+pCtx->sharedByte;
2669 rc = afpSetLock(pCtx->dbPath, pFile, sharedLockByte, 1, 0);
2670 }
2671
2672 if( rc==SQLITE_OK ){
2673 if( locktype==NO_LOCK ){
2674 struct unixOpenCnt *pOpen = pFile->pOpen;
2675 pOpen->nLock--;
2676 assert( pOpen->nLock>=0 );
2677 if( pOpen->nLock==0 ){
2678 rc = closePendingFds(pFile);
2679 }
2680 }
2681 }
2682 unixLeaveMutex();
2683 if( rc==SQLITE_OK ){
2684 pFile->locktype = locktype;
2685 }
2686 return rc;
2687 }
2688
2689 /*
2690 ** Close a file & cleanup AFP specific locking context
2691 */
2692 static int afpClose(sqlite3_file *id) {
2693 if( id ){
2694 unixFile *pFile = (unixFile*)id;
2695 afpUnlock(id, NO_LOCK);
2696 unixEnterMutex();
2697 if( pFile->pOpen && pFile->pOpen->nLock ){
2698 /* If there are outstanding locks, do not actually close the file just
2699 ** yet because that would clear those locks. Instead, add the file
2700 ** descriptor to pOpen->aPending. It will be automatically closed when
2701 ** the last lock is cleared.
2702 */
2703 setPendingFd(pFile);
2704 }
2705 releaseOpenCnt(pFile->pOpen);
2706 sqlite3_free(pFile->lockingContext);
2707 closeUnixFile(id);
2708 unixLeaveMutex();
2709 }
2710 return SQLITE_OK;
2711 }
2712
2713 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
2714 /*
2715 ** The code above is the AFP lock implementation. The code is specific
2716 ** to MacOSX and does not work on other unix platforms. No alternative
2717 ** is available. If you don't compile for a mac, then the "unix-afp"
2718 ** VFS is not available.
2719 **
2720 ********************* End of the AFP lock implementation **********************
2721 ******************************************************************************/
2722
2723
2724 /******************************************************************************
2725 **************** Non-locking sqlite3_file methods *****************************
2726 **
2727 ** The next division contains implementations for all methods of the
2728 ** sqlite3_file object other than the locking methods. The locking
2729 ** methods were defined in divisions above (one locking method per
2730 ** division). Those methods that are common to all locking modes
2731 ** are gather together into this division.
2732 */
2733
2734 /*
2735 ** Seek to the offset passed as the second argument, then read cnt
2736 ** bytes into pBuf. Return the number of bytes actually read.
2737 **
2738 ** NB: If you define USE_PREAD or USE_PREAD64, then it might also
2739 ** be necessary to define _XOPEN_SOURCE to be 500. This varies from
2740 ** one system to another. Since SQLite does not define USE_PREAD
2741 ** any any form by default, we will not attempt to define _XOPEN_SOURCE.
2742 ** See tickets #2741 and #2681.
2743 **
2744 ** To avoid stomping the errno value on a failed read the lastErrno value
2745 ** is set before returning.
2746 */
2747 static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){
2748 int got;
2749 i64 newOffset;
2750 TIMER_START;
2751 #if defined(USE_PREAD)
2752 got = pread(id->h, pBuf, cnt, offset);
2753 SimulateIOError( got = -1 );
2754 #elif defined(USE_PREAD64)
2755 got = pread64(id->h, pBuf, cnt, offset);
2756 SimulateIOError( got = -1 );
2757 #else
2758 newOffset = lseek(id->h, offset, SEEK_SET);
2759 SimulateIOError( newOffset-- );
2760 if( newOffset!=offset ){
2761 if( newOffset == -1 ){
2762 ((unixFile*)id)->lastErrno = errno;
2763 }else{
2764 ((unixFile*)id)->lastErrno = 0;
2765 }
2766 return -1;
2767 }
2768 got = read(id->h, pBuf, cnt);
2769 #endif
2770 TIMER_END;
2771 if( got<0 ){
2772 ((unixFile*)id)->lastErrno = errno;
2773 }
2774 OSTRACE5("READ %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED);
2775 return got;
2776 }
2777
2778 /*
2779 ** Read data from a file into a buffer. Return SQLITE_OK if all
2780 ** bytes were read successfully and SQLITE_IOERR if anything goes
2781 ** wrong.
2782 */
2783 static int unixRead(
2784 sqlite3_file *id,
2785 void *pBuf,
2786 int amt,
2787 sqlite3_int64 offset
2788 ){
2789 unixFile *pFile = (unixFile *)id;
2790 int got;
2791 assert( id );
2792
2793 /* If this is a database file (not a journal, master-journal or temp
2794 ** file), the bytes in the locking range should never be read or written. */
2795 assert( pFile->pUnused==0
2796 || offset>=PENDING_BYTE+512
2797 || offset+amt<=PENDING_BYTE
2798 );
2799
2800 got = seekAndRead(pFile, offset, pBuf, amt);
2801 if( got==amt ){
2802 return SQLITE_OK;
2803 }else if( got<0 ){
2804 /* lastErrno set by seekAndRead */
2805 return SQLITE_IOERR_READ;
2806 }else{
2807 pFile->lastErrno = 0; /* not a system error */
2808 /* Unread parts of the buffer must be zero-filled */
2809 memset(&((char*)pBuf)[got], 0, amt-got);
2810 return SQLITE_IOERR_SHORT_READ;
2811 }
2812 }
2813
2814 /*
2815 ** Seek to the offset in id->offset then read cnt bytes into pBuf.
2816 ** Return the number of bytes actually read. Update the offset.
2817 **
2818 ** To avoid stomping the errno value on a failed write the lastErrno value
2819 ** is set before returning.
2820 */
2821 static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){
2822 int got;
2823 i64 newOffset;
2824 TIMER_START;
2825 #if defined(USE_PREAD)
2826 got = pwrite(id->h, pBuf, cnt, offset);
2827 #elif defined(USE_PREAD64)
2828 got = pwrite64(id->h, pBuf, cnt, offset);
2829 #else
2830 newOffset = lseek(id->h, offset, SEEK_SET);
2831 if( newOffset!=offset ){
2832 if( newOffset == -1 ){
2833 ((unixFile*)id)->lastErrno = errno;
2834 }else{
2835 ((unixFile*)id)->lastErrno = 0;
2836 }
2837 return -1;
2838 }
2839 got = write(id->h, pBuf, cnt);
2840 #endif
2841 TIMER_END;
2842 if( got<0 ){
2843 ((unixFile*)id)->lastErrno = errno;
2844 }
2845
2846 OSTRACE5("WRITE %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED);
2847 return got;
2848 }
2849
2850
2851 /*
2852 ** Write data from a buffer into a file. Return SQLITE_OK on success
2853 ** or some other error code on failure.
2854 */
2855 static int unixWrite(
2856 sqlite3_file *id,
2857 const void *pBuf,
2858 int amt,
2859 sqlite3_int64 offset
2860 ){
2861 unixFile *pFile = (unixFile*)id;
2862 int wrote = 0;
2863 assert( id );
2864 assert( amt>0 );
2865
2866 /* If this is a database file (not a journal, master-journal or temp
2867 ** file), the bytes in the locking range should never be read or written. */
2868 assert( pFile->pUnused==0
2869 || offset>=PENDING_BYTE+512
2870 || offset+amt<=PENDING_BYTE
2871 );
2872
2873 #ifndef NDEBUG
2874 /* If we are doing a normal write to a database file (as opposed to
2875 ** doing a hot-journal rollback or a write to some file other than a
2876 ** normal database file) then record the fact that the database
2877 ** has changed. If the transaction counter is modified, record that
2878 ** fact too.
2879 */
2880 if( pFile->inNormalWrite ){
2881 pFile->dbUpdate = 1; /* The database has been modified */
2882 if( offset<=24 && offset+amt>=27 ){
2883 int rc;
2884 char oldCntr[4];
2885 SimulateIOErrorBenign(1);
2886 rc = seekAndRead(pFile, 24, oldCntr, 4);
2887 SimulateIOErrorBenign(0);
2888 if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){
2889 pFile->transCntrChng = 1; /* The transaction counter has changed */
2890 }
2891 }
2892 }
2893 #endif
2894
2895 while( amt>0 && (wrote = seekAndWrite(pFile, offset, pBuf, amt))>0 ){
2896 amt -= wrote;
2897 offset += wrote;
2898 pBuf = &((char*)pBuf)[wrote];
2899 }
2900 SimulateIOError(( wrote=(-1), amt=1 ));
2901 SimulateDiskfullError(( wrote=0, amt=1 ));
2902 if( amt>0 ){
2903 if( wrote<0 ){
2904 /* lastErrno set by seekAndWrite */
2905 return SQLITE_IOERR_WRITE;
2906 }else{
2907 pFile->lastErrno = 0; /* not a system error */
2908 return SQLITE_FULL;
2909 }
2910 }
2911 return SQLITE_OK;
2912 }
2913
2914 #ifdef SQLITE_TEST
2915 /*
2916 ** Count the number of fullsyncs and normal syncs. This is used to test
2917 ** that syncs and fullsyncs are occurring at the right times.
2918 */
2919 int sqlite3_sync_count = 0;
2920 int sqlite3_fullsync_count = 0;
2921 #endif
2922
2923 /*
2924 ** We do not trust systems to provide a working fdatasync(). Some do.
2925 ** Others do no. To be safe, we will stick with the (slower) fsync().
2926 ** If you know that your system does support fdatasync() correctly,
2927 ** then simply compile with -Dfdatasync=fdatasync
2928 */
2929 #if !defined(fdatasync) && !defined(__linux__)
2930 # define fdatasync fsync
2931 #endif
2932
2933 /*
2934 ** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
2935 ** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently
2936 ** only available on Mac OS X. But that could change.
2937 */
2938 #ifdef F_FULLFSYNC
2939 # define HAVE_FULLFSYNC 1
2940 #else
2941 # define HAVE_FULLFSYNC 0
2942 #endif
2943
2944
2945 /*
2946 ** The fsync() system call does not work as advertised on many
2947 ** unix systems. The following procedure is an attempt to make
2948 ** it work better.
2949 **
2950 ** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful
2951 ** for testing when we want to run through the test suite quickly.
2952 ** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
2953 ** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
2954 ** or power failure will likely corrupt the database file.
2955 **
2956 ** SQLite sets the dataOnly flag if the size of the file is unchanged.
2957 ** The idea behind dataOnly is that it should only write the file content
2958 ** to disk, not the inode. We only set dataOnly if the file size is
2959 ** unchanged since the file size is part of the inode. However,
2960 ** Ted Ts'o tells us that fdatasync() will also write the inode if the
2961 ** file size has changed. The only real difference between fdatasync()
2962 ** and fsync(), Ted tells us, is that fdatasync() will not flush the
2963 ** inode if the mtime or owner or other inode attributes have changed.
2964 ** We only care about the file size, not the other file attributes, so
2965 ** as far as SQLite is concerned, an fdatasync() is always adequate.
2966 ** So, we always use fdatasync() if it is available, regardless of
2967 ** the value of the dataOnly flag.
2968 */
2969 static int full_fsync(int fd, int fullSync, int dataOnly){
2970 int rc;
2971
2972 /* The following "ifdef/elif/else/" block has the same structure as
2973 ** the one below. It is replicated here solely to avoid cluttering
2974 ** up the real code with the UNUSED_PARAMETER() macros.
2975 */
2976 #ifdef SQLITE_NO_SYNC
2977 UNUSED_PARAMETER(fd);
2978 UNUSED_PARAMETER(fullSync);
2979 UNUSED_PARAMETER(dataOnly);
2980 #elif HAVE_FULLFSYNC
2981 UNUSED_PARAMETER(dataOnly);
2982 #else
2983 UNUSED_PARAMETER(fullSync);
2984 UNUSED_PARAMETER(dataOnly);
2985 #endif
2986
2987 /* Record the number of times that we do a normal fsync() and
2988 ** FULLSYNC. This is used during testing to verify that this procedure
2989 ** gets called with the correct arguments.
2990 */
2991 #ifdef SQLITE_TEST
2992 if( fullSync ) sqlite3_fullsync_count++;
2993 sqlite3_sync_count++;
2994 #endif
2995
2996 /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
2997 ** no-op
2998 */
2999 #ifdef SQLITE_NO_SYNC
3000 rc = SQLITE_OK;
3001 #elif HAVE_FULLFSYNC
3002 if( fullSync ){
3003 rc = fcntl(fd, F_FULLFSYNC, 0);
3004 }else{
3005 rc = 1;
3006 }
3007 /* If the FULLFSYNC failed, fall back to attempting an fsync().
3008 ** It shouldn't be possible for fullfsync to fail on the local
3009 ** file system (on OSX), so failure indicates that FULLFSYNC
3010 ** isn't supported for this file system. So, attempt an fsync
3011 ** and (for now) ignore the overhead of a superfluous fcntl call.
3012 ** It'd be better to detect fullfsync support once and avoid
3013 ** the fcntl call every time sync is called.
3014 */
3015 if( rc ) rc = fsync(fd);
3016
3017 #else
3018 rc = fdatasync(fd);
3019 #if OS_VXWORKS
3020 if( rc==-1 && errno==ENOTSUP ){
3021 rc = fsync(fd);
3022 }
3023 #endif /* OS_VXWORKS */
3024 #endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */
3025
3026 if( OS_VXWORKS && rc!= -1 ){
3027 rc = 0;
3028 }
3029 return rc;
3030 }
3031
3032 /*
3033 ** Make sure all writes to a particular file are committed to disk.
3034 **
3035 ** If dataOnly==0 then both the file itself and its metadata (file
3036 ** size, access time, etc) are synced. If dataOnly!=0 then only the
3037 ** file data is synced.
3038 **
3039 ** Under Unix, also make sure that the directory entry for the file
3040 ** has been created by fsync-ing the directory that contains the file.
3041 ** If we do not do this and we encounter a power failure, the directory
3042 ** entry for the journal might not exist after we reboot. The next
3043 ** SQLite to access the file will not know that the journal exists (because
3044 ** the directory entry for the journal was never created) and the transaction
3045 ** will not roll back - possibly leading to database corruption.
3046 */
3047 static int unixSync(sqlite3_file *id, int flags){
3048 int rc;
3049 unixFile *pFile = (unixFile*)id;
3050
3051 int isDataOnly = (flags&SQLITE_SYNC_DATAONLY);
3052 int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL;
3053
3054 /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
3055 assert((flags&0x0F)==SQLITE_SYNC_NORMAL
3056 || (flags&0x0F)==SQLITE_SYNC_FULL
3057 );
3058
3059 /* Unix cannot, but some systems may return SQLITE_FULL from here. This
3060 ** line is to test that doing so does not cause any problems.
3061 */
3062 SimulateDiskfullError( return SQLITE_FULL );
3063
3064 assert( pFile );
3065 OSTRACE2("SYNC %-3d\n", pFile->h);
3066 rc = full_fsync(pFile->h, isFullsync, isDataOnly);
3067 SimulateIOError( rc=1 );
3068 if( rc ){
3069 pFile->lastErrno = errno;
3070 return SQLITE_IOERR_FSYNC;
3071 }
3072 if( pFile->dirfd>=0 ){
3073 int err;
3074 OSTRACE4("DIRSYNC %-3d (have_fullfsync=%d fullsync=%d)\n", pFile->dirfd,
3075 HAVE_FULLFSYNC, isFullsync);
3076 #ifndef SQLITE_DISABLE_DIRSYNC
3077 /* The directory sync is only attempted if full_fsync is
3078 ** turned off or unavailable. If a full_fsync occurred above,
3079 ** then the directory sync is superfluous.
3080 */
3081 if( (!HAVE_FULLFSYNC || !isFullsync) && full_fsync(pFile->dirfd,0,0) ){
3082 /*
3083 ** We have received multiple reports of fsync() returning
3084 ** errors when applied to directories on certain file systems.
3085 ** A failed directory sync is not a big deal. So it seems
3086 ** better to ignore the error. Ticket #1657
3087 */
3088 /* pFile->lastErrno = errno; */
3089 /* return SQLITE_IOERR; */
3090 }
3091 #endif
3092 err = close(pFile->dirfd); /* Only need to sync once, so close the */
3093 if( err==0 ){ /* directory when we are done */
3094 pFile->dirfd = -1;
3095 }else{
3096 pFile->lastErrno = errno;
3097 rc = SQLITE_IOERR_DIR_CLOSE;
3098 }
3099 }
3100 return rc;
3101 }
3102
3103 /*
3104 ** Truncate an open file to a specified size
3105 */
3106 static int unixTruncate(sqlite3_file *id, i64 nByte){
3107 int rc;
3108 assert( id );
3109 SimulateIOError( return SQLITE_IOERR_TRUNCATE );
3110 rc = ftruncate(((unixFile*)id)->h, (off_t)nByte);
3111 if( rc ){
3112 ((unixFile*)id)->lastErrno = errno;
3113 return SQLITE_IOERR_TRUNCATE;
3114 }else{
3115 return SQLITE_OK;
3116 }
3117 }
3118
3119 /*
3120 ** Determine the current size of a file in bytes
3121 */
3122 static int unixFileSize(sqlite3_file *id, i64 *pSize){
3123 int rc;
3124 struct stat buf;
3125 assert( id );
3126 rc = fstat(((unixFile*)id)->h, &buf);
3127 SimulateIOError( rc=1 );
3128 if( rc!=0 ){
3129 ((unixFile*)id)->lastErrno = errno;
3130 return SQLITE_IOERR_FSTAT;
3131 }
3132 *pSize = buf.st_size;
3133
3134 /* When opening a zero-size database, the findLockInfo() procedure
3135 ** writes a single byte into that file in order to work around a bug
3136 ** in the OS-X msdos filesystem. In order to avoid problems with upper
3137 ** layers, we need to report this file size as zero even though it is
3138 ** really 1. Ticket #3260.
3139 */
3140 if( *pSize==1 ) *pSize = 0;
3141
3142
3143 return SQLITE_OK;
3144 }
3145
3146 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
3147 /*
3148 ** Handler for proxy-locking file-control verbs. Defined below in the
3149 ** proxying locking division.
3150 */
3151 static int proxyFileControl(sqlite3_file*,int,void*);
3152 #endif
3153
3154
3155 /*
3156 ** Information and control of an open file handle.
3157 */
3158 static int unixFileControl(sqlite3_file *id, int op, void *pArg){
3159 switch( op ){
3160 case SQLITE_FCNTL_LOCKSTATE: {
3161 *(int*)pArg = ((unixFile*)id)->locktype;
3162 return SQLITE_OK;
3163 }
3164 case SQLITE_LAST_ERRNO: {
3165 *(int*)pArg = ((unixFile*)id)->lastErrno;
3166 return SQLITE_OK;
3167 }
3168 #ifndef NDEBUG
3169 /* The pager calls this method to signal that it has done
3170 ** a rollback and that the database is therefore unchanged and
3171 ** it hence it is OK for the transaction change counter to be
3172 ** unchanged.
3173 */
3174 case SQLITE_FCNTL_DB_UNCHANGED: {
3175 ((unixFile*)id)->dbUpdate = 0;
3176 return SQLITE_OK;
3177 }
3178 #endif
3179 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
3180 case SQLITE_SET_LOCKPROXYFILE:
3181 case SQLITE_GET_LOCKPROXYFILE: {
3182 return proxyFileControl(id,op,pArg);
3183 }
3184 #endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */
3185 }
3186 return SQLITE_ERROR;
3187 }
3188
3189 /*
3190 ** Return the sector size in bytes of the underlying block device for
3191 ** the specified file. This is almost always 512 bytes, but may be
3192 ** larger for some devices.
3193 **
3194 ** SQLite code assumes this function cannot fail. It also assumes that
3195 ** if two files are created in the same file-system directory (i.e.
3196 ** a database and its journal file) that the sector size will be the
3197 ** same for both.
3198 */
3199 static int unixSectorSize(sqlite3_file *NotUsed){
3200 UNUSED_PARAMETER(NotUsed);
3201 return SQLITE_DEFAULT_SECTOR_SIZE;
3202 }
3203
3204 /*
3205 ** Return the device characteristics for the file. This is always 0 for unix.
3206 */
3207 static int unixDeviceCharacteristics(sqlite3_file *NotUsed){
3208 UNUSED_PARAMETER(NotUsed);
3209 return 0;
3210 }
3211
3212 /*
3213 ** Here ends the implementation of all sqlite3_file methods.
3214 **
3215 ********************** End sqlite3_file Methods *******************************
3216 ******************************************************************************/
3217
3218
3219 /*
3220 ** This division contains definitions of sqlite3_io_methods objects that
3221 ** implement various file locking strategies. It also contains definitions
3222 ** of "finder" functions. A finder-function is used to locate the appropriate
3223 ** sqlite3_io_methods object for a particular database file. The pAppData
3224 ** field of the sqlite3_vfs VFS objects are initialized to be pointers to
3225 ** the correct finder-function for that VFS.
3226 **
3227 ** Most finder functions return a pointer to a fixed sqlite3_io_methods
3228 ** object. The only interesting finder-function is autolockIoFinder, which
3229 ** looks at the filesystem type and tries to guess the best locking
3230 ** strategy from that.
3231 **
3232 ** For finder-funtion F, two objects are created:
3233 **
3234 ** (1) The real finder-function named "FImpt()".
3235 **
3236 ** (2) A constant pointer to this function named just "F".
3237 **
3238 **
3239 ** A pointer to the F pointer is used as the pAppData value for VFS
3240 ** objects. We have to do this instead of letting pAppData point
3241 ** directly at the finder-function since C90 rules prevent a void*
3242 ** from be cast into a function pointer.
3243 **
3244 **
3245 ** Each instance of this macro generates two objects:
3246 **
3247 ** * A constant sqlite3_io_methods object call METHOD that has locking
3248 ** methods CLOSE, LOCK, UNLOCK, CKRESLOCK.
3249 **
3250 ** * An I/O method finder function called FINDER that returns a pointer
3251 ** to the METHOD object in the previous bullet.
3252 */
3253 #define IOMETHODS(FINDER, METHOD, CLOSE, LOCK, UNLOCK, CKLOCK) \
3254 static const sqlite3_io_methods METHOD = { \
3255 1, /* iVersion */ \
3256 CLOSE, /* xClose */ \
3257 unixRead, /* xRead */ \
3258 unixWrite, /* xWrite */ \
3259 unixTruncate, /* xTruncate */ \
3260 unixSync, /* xSync */ \
3261 unixFileSize, /* xFileSize */ \
3262 LOCK, /* xLock */ \
3263 UNLOCK, /* xUnlock */ \
3264 CKLOCK, /* xCheckReservedLock */ \
3265 unixFileControl, /* xFileControl */ \
3266 unixSectorSize, /* xSectorSize */ \
3267 unixDeviceCharacteristics /* xDeviceCapabilities */ \
3268 }; \
3269 static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){ \
3270 UNUSED_PARAMETER(z); UNUSED_PARAMETER(p); \
3271 return &METHOD; \
3272 } \
3273 static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p) \
3274 = FINDER##Impl;
3275
3276 /*
3277 ** Here are all of the sqlite3_io_methods objects for each of the
3278 ** locking strategies. Functions that return pointers to these methods
3279 ** are also created.
3280 */
3281 IOMETHODS(
3282 posixIoFinder, /* Finder function name */
3283 posixIoMethods, /* sqlite3_io_methods object name */
3284 unixClose, /* xClose method */
3285 unixLock, /* xLock method */
3286 unixUnlock, /* xUnlock method */
3287 unixCheckReservedLock /* xCheckReservedLock method */
3288 )
3289 IOMETHODS(
3290 nolockIoFinder, /* Finder function name */
3291 nolockIoMethods, /* sqlite3_io_methods object name */
3292 nolockClose, /* xClose method */
3293 nolockLock, /* xLock method */
3294 nolockUnlock, /* xUnlock method */
3295 nolockCheckReservedLock /* xCheckReservedLock method */
3296 )
3297 IOMETHODS(
3298 dotlockIoFinder, /* Finder function name */
3299 dotlockIoMethods, /* sqlite3_io_methods object name */
3300 dotlockClose, /* xClose method */
3301 dotlockLock, /* xLock method */
3302 dotlockUnlock, /* xUnlock method */
3303 dotlockCheckReservedLock /* xCheckReservedLock method */
3304 )
3305
3306 #if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS
3307 IOMETHODS(
3308 flockIoFinder, /* Finder function name */
3309 flockIoMethods, /* sqlite3_io_methods object name */
3310 flockClose, /* xClose method */
3311 flockLock, /* xLock method */
3312 flockUnlock, /* xUnlock method */
3313 flockCheckReservedLock /* xCheckReservedLock method */
3314 )
3315 #endif
3316
3317 #if OS_VXWORKS
3318 IOMETHODS(
3319 semIoFinder, /* Finder function name */
3320 semIoMethods, /* sqlite3_io_methods object name */
3321 semClose, /* xClose method */
3322 semLock, /* xLock method */
3323 semUnlock, /* xUnlock method */
3324 semCheckReservedLock /* xCheckReservedLock method */
3325 )
3326 #endif
3327
3328 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
3329 IOMETHODS(
3330 afpIoFinder, /* Finder function name */
3331 afpIoMethods, /* sqlite3_io_methods object name */
3332 afpClose, /* xClose method */
3333 afpLock, /* xLock method */
3334 afpUnlock, /* xUnlock method */
3335 afpCheckReservedLock /* xCheckReservedLock method */
3336 )
3337 #endif
3338
3339 /*
3340 ** The "Whole File Locking" finder returns the same set of methods as
3341 ** the posix locking finder. But it also sets the SQLITE_WHOLE_FILE_LOCKING
3342 ** flag to force the posix advisory locks to cover the whole file instead
3343 ** of just a small span of bytes near the 1GiB boundary. Whole File Locking
3344 ** is useful on NFS-mounted files since it helps NFS to maintain cache
3345 ** coherency. But it is a detriment to other filesystems since it runs
3346 ** slower.
3347 */
3348 static const sqlite3_io_methods *posixWflIoFinderImpl(const char*z, unixFile*p){
3349 UNUSED_PARAMETER(z);
3350 p->fileFlags = SQLITE_WHOLE_FILE_LOCKING;
3351 return &posixIoMethods;
3352 }
3353 static const sqlite3_io_methods
3354 *(*const posixWflIoFinder)(const char*,unixFile *p) = posixWflIoFinderImpl;
3355
3356 /*
3357 ** The proxy locking method is a "super-method" in the sense that it
3358 ** opens secondary file descriptors for the conch and lock files and
3359 ** it uses proxy, dot-file, AFP, and flock() locking methods on those
3360 ** secondary files. For this reason, the division that implements
3361 ** proxy locking is located much further down in the file. But we need
3362 ** to go ahead and define the sqlite3_io_methods and finder function
3363 ** for proxy locking here. So we forward declare the I/O methods.
3364 */
3365 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
3366 static int proxyClose(sqlite3_file*);
3367 static int proxyLock(sqlite3_file*, int);
3368 static int proxyUnlock(sqlite3_file*, int);
3369 static int proxyCheckReservedLock(sqlite3_file*, int*);
3370 IOMETHODS(
3371 proxyIoFinder, /* Finder function name */
3372 proxyIoMethods, /* sqlite3_io_methods object name */
3373 proxyClose, /* xClose method */
3374 proxyLock, /* xLock method */
3375 proxyUnlock, /* xUnlock method */
3376 proxyCheckReservedLock /* xCheckReservedLock method */
3377 )
3378 #endif
3379
3380
3381 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
3382 /*
3383 ** This "finder" function attempts to determine the best locking strategy
3384 ** for the database file "filePath". It then returns the sqlite3_io_methods
3385 ** object that implements that strategy.
3386 **
3387 ** This is for MacOSX only.
3388 */
3389 static const sqlite3_io_methods *autolockIoFinderImpl(
3390 const char *filePath, /* name of the database file */
3391 unixFile *pNew /* open file object for the database file */
3392 ){
3393 static const struct Mapping {
3394 const char *zFilesystem; /* Filesystem type name */
3395 const sqlite3_io_methods *pMethods; /* Appropriate locking method */
3396 } aMap[] = {
3397 { "hfs", &posixIoMethods },
3398 { "ufs", &posixIoMethods },
3399 { "afpfs", &afpIoMethods },
3400 #ifdef SQLITE_ENABLE_AFP_LOCKING_SMB
3401 { "smbfs", &afpIoMethods },
3402 #else
3403 { "smbfs", &flockIoMethods },
3404 #endif
3405 { "webdav", &nolockIoMethods },
3406 { 0, 0 }
3407 };
3408 int i;
3409 struct statfs fsInfo;
3410 struct flock lockInfo;
3411
3412 if( !filePath ){
3413 /* If filePath==NULL that means we are dealing with a transient file
3414 ** that does not need to be locked. */
3415 return &nolockIoMethods;
3416 }
3417 if( statfs(filePath, &fsInfo) != -1 ){
3418 if( fsInfo.f_flags & MNT_RDONLY ){
3419 return &nolockIoMethods;
3420 }
3421 for(i=0; aMap[i].zFilesystem; i++){
3422 if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){
3423 return aMap[i].pMethods;
3424 }
3425 }
3426 }
3427
3428 /* Default case. Handles, amongst others, "nfs".
3429 ** Test byte-range lock using fcntl(). If the call succeeds,
3430 ** assume that the file-system supports POSIX style locks.
3431 */
3432 lockInfo.l_len = 1;
3433 lockInfo.l_start = 0;
3434 lockInfo.l_whence = SEEK_SET;
3435 lockInfo.l_type = F_RDLCK;
3436 if( fcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
3437 pNew->fileFlags = SQLITE_WHOLE_FILE_LOCKING;
3438 return &posixIoMethods;
3439 }else{
3440 return &dotlockIoMethods;
3441 }
3442 }
3443 static const sqlite3_io_methods
3444 *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;
3445
3446 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
3447
3448 #if OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE
3449 /*
3450 ** This "finder" function attempts to determine the best locking strategy
3451 ** for the database file "filePath". It then returns the sqlite3_io_methods
3452 ** object that implements that strategy.
3453 **
3454 ** This is for VXWorks only.
3455 */
3456 static const sqlite3_io_methods *autolockIoFinderImpl(
3457 const char *filePath, /* name of the database file */
3458 unixFile *pNew /* the open file object */
3459 ){
3460 struct flock lockInfo;
3461
3462 if( !filePath ){
3463 /* If filePath==NULL that means we are dealing with a transient file
3464 ** that does not need to be locked. */
3465 return &nolockIoMethods;
3466 }
3467
3468 /* Test if fcntl() is supported and use POSIX style locks.
3469 ** Otherwise fall back to the named semaphore method.
3470 */
3471 lockInfo.l_len = 1;
3472 lockInfo.l_start = 0;
3473 lockInfo.l_whence = SEEK_SET;
3474 lockInfo.l_type = F_RDLCK;
3475 if( fcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
3476 return &posixIoMethods;
3477 }else{
3478 return &semIoMethods;
3479 }
3480 }
3481 static const sqlite3_io_methods
3482 *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;
3483
3484 #endif /* OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE */
3485
3486 /*
3487 ** An abstract type for a pointer to a IO method finder function:
3488 */
3489 typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*);
3490
3491
3492 /****************************************************************************
3493 **************************** sqlite3_vfs methods ****************************
3494 **
3495 ** This division contains the implementation of methods on the
3496 ** sqlite3_vfs object.
3497 */
3498
3499 /*
3500 ** Initialize the contents of the unixFile structure pointed to by pId.
3501 */
3502 static int fillInUnixFile(
3503 sqlite3_vfs *pVfs, /* Pointer to vfs object */
3504 int h, /* Open file descriptor of file being opened */
3505 int dirfd, /* Directory file descriptor */
3506 sqlite3_file *pId, /* Write to the unixFile structure here */
3507 const char *zFilename, /* Name of the file being opened */
3508 int noLock, /* Omit locking if true */
3509 int isDelete /* Delete on close if true */
3510 ){
3511 const sqlite3_io_methods *pLockingStyle;
3512 unixFile *pNew = (unixFile *)pId;
3513 int rc = SQLITE_OK;
3514
3515 assert( pNew->pLock==NULL );
3516 assert( pNew->pOpen==NULL );
3517
3518 /* Parameter isDelete is only used on vxworks. Express this explicitly
3519 ** here to prevent compiler warnings about unused parameters.
3520 */
3521 UNUSED_PARAMETER(isDelete);
3522
3523 OSTRACE3("OPEN %-3d %s\n", h, zFilename);
3524 pNew->h = h;
3525 pNew->dirfd = dirfd;
3526 SET_THREADID(pNew);
3527 pNew->fileFlags = 0;
3528
3529 #if OS_VXWORKS
3530 pNew->pId = vxworksFindFileId(zFilename);
3531 if( pNew->pId==0 ){
3532 noLock = 1;
3533 rc = SQLITE_NOMEM;
3534 }
3535 #endif
3536
3537 if( noLock ){
3538 pLockingStyle = &nolockIoMethods;
3539 }else{
3540 pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew);
3541 #if SQLITE_ENABLE_LOCKING_STYLE
3542 /* Cache zFilename in the locking context (AFP and dotlock override) for
3543 ** proxyLock activation is possible (remote proxy is based on db name)
3544 ** zFilename remains valid until file is closed, to support */
3545 pNew->lockingContext = (void*)zFilename;
3546 #endif
3547 }
3548
3549 if( pLockingStyle == &posixIoMethods ){
3550 unixEnterMutex();
3551 rc = findLockInfo(pNew, &pNew->pLock, &pNew->pOpen);
3552 if( rc!=SQLITE_OK ){
3553 /* If an error occured in findLockInfo(), close the file descriptor
3554 ** immediately, before releasing the mutex. findLockInfo() may fail
3555 ** in two scenarios:
3556 **
3557 ** (a) A call to fstat() failed.
3558 ** (b) A malloc failed.
3559 **
3560 ** Scenario (b) may only occur if the process is holding no other
3561 ** file descriptors open on the same file. If there were other file
3562 ** descriptors on this file, then no malloc would be required by
3563 ** findLockInfo(). If this is the case, it is quite safe to close
3564 ** handle h - as it is guaranteed that no posix locks will be released
3565 ** by doing so.
3566 **
3567 ** If scenario (a) caused the error then things are not so safe. The
3568 ** implicit assumption here is that if fstat() fails, things are in
3569 ** such bad shape that dropping a lock or two doesn't matter much.
3570 */
3571 close(h);
3572 h = -1;
3573 }
3574 unixLeaveMutex();
3575 }
3576
3577 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
3578 else if( pLockingStyle == &afpIoMethods ){
3579 /* AFP locking uses the file path so it needs to be included in
3580 ** the afpLockingContext.
3581 */
3582 afpLockingContext *pCtx;
3583 pNew->lockingContext = pCtx = sqlite3_malloc( sizeof(*pCtx) );
3584 if( pCtx==0 ){
3585 rc = SQLITE_NOMEM;
3586 }else{
3587 /* NB: zFilename exists and remains valid until the file is closed
3588 ** according to requirement F11141. So we do not need to make a
3589 ** copy of the filename. */
3590 pCtx->dbPath = zFilename;
3591 srandomdev();
3592 unixEnterMutex();
3593 rc = findLockInfo(pNew, NULL, &pNew->pOpen);
3594 unixLeaveMutex();
3595 }
3596 }
3597 #endif
3598
3599 else if( pLockingStyle == &dotlockIoMethods ){
3600 /* Dotfile locking uses the file path so it needs to be included in
3601 ** the dotlockLockingContext
3602 */
3603 char *zLockFile;
3604 int nFilename;
3605 nFilename = (int)strlen(zFilename) + 6;
3606 zLockFile = (char *)sqlite3_malloc(nFilename);
3607 if( zLockFile==0 ){
3608 rc = SQLITE_NOMEM;
3609 }else{
3610 sqlite3_snprintf(nFilename, zLockFile, "%s" DOTLOCK_SUFFIX, zFilename);
3611 }
3612 pNew->lockingContext = zLockFile;
3613 }
3614
3615 #if OS_VXWORKS
3616 else if( pLockingStyle == &semIoMethods ){
3617 /* Named semaphore locking uses the file path so it needs to be
3618 ** included in the semLockingContext
3619 */
3620 unixEnterMutex();
3621 rc = findLockInfo(pNew, &pNew->pLock, &pNew->pOpen);
3622 if( (rc==SQLITE_OK) && (pNew->pOpen->pSem==NULL) ){
3623 char *zSemName = pNew->pOpen->aSemName;
3624 int n;
3625 sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem",
3626 pNew->pId->zCanonicalName);
3627 for( n=1; zSemName[n]; n++ )
3628 if( zSemName[n]=='/' ) zSemName[n] = '_';
3629 pNew->pOpen->pSem = sem_open(zSemName, O_CREAT, 0666, 1);
3630 if( pNew->pOpen->pSem == SEM_FAILED ){
3631 rc = SQLITE_NOMEM;
3632 pNew->pOpen->aSemName[0] = '\0';
3633 }
3634 }
3635 unixLeaveMutex();
3636 }
3637 #endif
3638
3639 pNew->lastErrno = 0;
3640 #if OS_VXWORKS
3641 if( rc!=SQLITE_OK ){
3642 unlink(zFilename);
3643 isDelete = 0;
3644 }
3645 pNew->isDelete = isDelete;
3646 #endif
3647 if( rc!=SQLITE_OK ){
3648 if( dirfd>=0 ) close(dirfd); /* silent leak if fail, already in error */
3649 if( h>=0 ) close(h);
3650 }else{
3651 pNew->pMethod = pLockingStyle;
3652 OpenCounter(+1);
3653 }
3654 return rc;
3655 }
3656
3657 /*
3658 ** Open a file descriptor to the directory containing file zFilename.
3659 ** If successful, *pFd is set to the opened file descriptor and
3660 ** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM
3661 ** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined
3662 ** value.
3663 **
3664 ** If SQLITE_OK is returned, the caller is responsible for closing
3665 ** the file descriptor *pFd using close().
3666 */
3667 static int openDirectory(const char *zFilename, int *pFd){
3668 int ii;
3669 int fd = -1;
3670 char zDirname[MAX_PATHNAME+1];
3671
3672 sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
3673 for(ii=(int)strlen(zDirname); ii>1 && zDirname[ii]!='/'; ii--);
3674 if( ii>0 ){
3675 zDirname[ii] = '\0';
3676 fd = open(zDirname, O_RDONLY|O_BINARY, 0);
3677 if( fd>=0 ){
3678 #ifdef FD_CLOEXEC
3679 fcntl(fd, F_SETFD, fcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
3680 #endif
3681 OSTRACE3("OPENDIR %-3d %s\n", fd, zDirname);
3682 }
3683 }
3684 *pFd = fd;
3685 return (fd>=0?SQLITE_OK:SQLITE_CANTOPEN);
3686 }
3687
3688 /*
3689 ** Create a temporary file name in zBuf. zBuf must be allocated
3690 ** by the calling process and must be big enough to hold at least
3691 ** pVfs->mxPathname bytes.
3692 */
3693 static int getTempname(int nBuf, char *zBuf){
3694 static const char *azDirs[] = {
3695 0,
3696 0,
3697 "/var/tmp",
3698 "/usr/tmp",
3699 "/tmp",
3700 ".",
3701 };
3702 static const unsigned char zChars[] =
3703 "abcdefghijklmnopqrstuvwxyz"
3704 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
3705 "0123456789";
3706 unsigned int i, j;
3707 struct stat buf;
3708 const char *zDir = ".";
3709
3710 /* It's odd to simulate an io-error here, but really this is just
3711 ** using the io-error infrastructure to test that SQLite handles this
3712 ** function failing.
3713 */
3714 SimulateIOError( return SQLITE_IOERR );
3715
3716 azDirs[0] = sqlite3_temp_directory;
3717 if (NULL == azDirs[1]) {
3718 azDirs[1] = getenv("TMPDIR");
3719 }
3720
3721 for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); i++){
3722 if( azDirs[i]==0 ) continue;
3723 if( stat(azDirs[i], &buf) ) continue;
3724 if( !S_ISDIR(buf.st_mode) ) continue;
3725 if( access(azDirs[i], 07) ) continue;
3726 zDir = azDirs[i];
3727 break;
3728 }
3729
3730 /* Check that the output buffer is large enough for the temporary file
3731 ** name. If it is not, return SQLITE_ERROR.
3732 */
3733 if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 17) >= (size_t)nBuf ){
3734 return SQLITE_ERROR;
3735 }
3736
3737 do{
3738 sqlite3_snprintf(nBuf-17, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir);
3739 j = (int)strlen(zBuf);
3740 sqlite3_randomness(15, &zBuf[j]);
3741 for(i=0; i<15; i++, j++){
3742 zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
3743 }
3744 zBuf[j] = 0;
3745 }while( access(zBuf,0)==0 );
3746 return SQLITE_OK;
3747 }
3748
3749 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
3750 /*
3751 ** Routine to transform a unixFile into a proxy-locking unixFile.
3752 ** Implementation in the proxy-lock division, but used by unixOpen()
3753 ** if SQLITE_PREFER_PROXY_LOCKING is defined.
3754 */
3755 static int proxyTransformUnixFile(unixFile*, const char*);
3756 #endif
3757
3758 /*
3759 ** Search for an unused file descriptor that was opened on the database
3760 ** file (not a journal or master-journal file) identified by pathname
3761 ** zPath with SQLITE_OPEN_XXX flags matching those passed as the second
3762 ** argument to this function.
3763 **
3764 ** Such a file descriptor may exist if a database connection was closed
3765 ** but the associated file descriptor could not be closed because some
3766 ** other file descriptor open on the same file is holding a file-lock.
3767 ** Refer to comments in the unixClose() function and the lengthy comment
3768 ** describing "Posix Advisory Locking" at the start of this file for
3769 ** further details. Also, ticket #4018.
3770 **
3771 ** If a suitable file descriptor is found, then it is returned. If no
3772 ** such file descriptor is located, -1 is returned.
3773 */
3774 static UnixUnusedFd *findReusableFd(const char *zPath, int flags){
3775 UnixUnusedFd *pUnused = 0;
3776
3777 /* Do not search for an unused file descriptor on vxworks. Not because
3778 ** vxworks would not benefit from the change (it might, we're not sure),
3779 ** but because no way to test it is currently available. It is better
3780 ** not to risk breaking vxworks support for the sake of such an obscure
3781 ** feature. */
3782 #if !OS_VXWORKS
3783 struct stat sStat; /* Results of stat() call */
3784
3785 /* A stat() call may fail for various reasons. If this happens, it is
3786 ** almost certain that an open() call on the same path will also fail.
3787 ** For this reason, if an error occurs in the stat() call here, it is
3788 ** ignored and -1 is returned. The caller will try to open a new file
3789 ** descriptor on the same path, fail, and return an error to SQLite.
3790 **
3791 ** Even if a subsequent open() call does succeed, the consequences of
3792 ** not searching for a resusable file descriptor are not dire. */
3793 if( 0==stat(zPath, &sStat) ){
3794 struct unixOpenCnt *pO;
3795 struct unixFileId id;
3796 id.dev = sStat.st_dev;
3797 id.ino = sStat.st_ino;
3798
3799 unixEnterMutex();
3800 for(pO=openList; pO && memcmp(&id, &pO->fileId, sizeof(id)); pO=pO->pNext);
3801 if( pO ){
3802 UnixUnusedFd **pp;
3803 for(pp=&pO->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext));
3804 pUnused = *pp;
3805 if( pUnused ){
3806 *pp = pUnused->pNext;
3807 }
3808 }
3809 unixLeaveMutex();
3810 }
3811 #endif /* if !OS_VXWORKS */
3812 return pUnused;
3813 }
3814
3815 /*
3816 ** Initializes a unixFile structure with zeros.
3817 */
3818 void chromium_sqlite3_initialize_unix_sqlite3_file(sqlite3_file* file) {
3819 memset(file, 0, sizeof(unixFile));
3820 }
3821
3822 int chromium_sqlite3_fill_in_unix_sqlite3_file(sqlite3_vfs* vfs,
3823 int fd,
3824 int dirfd,
3825 sqlite3_file* file,
3826 const char* fileName,
3827 int noLock,
3828 int isDelete) {
3829 return fillInUnixFile(vfs, fd, dirfd, file, fileName, noLock, isDelete);
3830 }
3831
3832 /*
3833 ** Search for an unused file descriptor that was opened on the database file.
3834 ** If a suitable file descriptor if found, then it is stored in *fd; otherwise,
3835 ** *fd is not modified.
3836 **
3837 ** If a reusable file descriptor is not found, and a new UnixUnusedFd cannot
3838 ** be allocated, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK is returned.
3839 */
3840 int chromium_sqlite3_get_reusable_file_handle(sqlite3_file* file,
3841 const char* fileName,
3842 int flags,
3843 int* fd) {
3844 unixFile* unixSQLite3File = (unixFile*)file;
3845 int fileType = flags & 0xFFFFFF00;
3846 if (fileType == SQLITE_OPEN_MAIN_DB) {
3847 UnixUnusedFd *unusedFd = findReusableFd(fileName, flags);
3848 if (unusedFd) {
3849 *fd = unusedFd->fd;
3850 } else {
3851 unusedFd = sqlite3_malloc(sizeof(*unusedFd));
3852 if (!unusedFd) {
3853 return SQLITE_NOMEM;
3854 }
3855 }
3856 unixSQLite3File->pUnused = unusedFd;
3857 }
3858 return SQLITE_OK;
3859 }
3860
3861 /*
3862 ** Marks 'fd' as the unused file descriptor for 'pFile'.
3863 */
3864 void chromium_sqlite3_update_reusable_file_handle(sqlite3_file* file,
3865 int fd,
3866 int flags) {
3867 unixFile* unixSQLite3File = (unixFile*)file;
3868 if (unixSQLite3File->pUnused) {
3869 unixSQLite3File->pUnused->fd = fd;
3870 unixSQLite3File->pUnused->flags = flags;
3871 }
3872 }
3873
3874 /*
3875 ** Destroys pFile's field that keeps track of the unused file descriptor.
3876 */
3877 void chromium_sqlite3_destroy_reusable_file_handle(sqlite3_file* file) {
3878 unixFile* unixSQLite3File = (unixFile*)file;
3879 sqlite3_free(unixSQLite3File->pUnused);
3880 }
3881
3882 /*
3883 ** Open the file zPath.
3884 **
3885 ** Previously, the SQLite OS layer used three functions in place of this
3886 ** one:
3887 **
3888 ** sqlite3OsOpenReadWrite();
3889 ** sqlite3OsOpenReadOnly();
3890 ** sqlite3OsOpenExclusive();
3891 **
3892 ** These calls correspond to the following combinations of flags:
3893 **
3894 ** ReadWrite() -> (READWRITE | CREATE)
3895 ** ReadOnly() -> (READONLY)
3896 ** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE)
3897 **
3898 ** The old OpenExclusive() accepted a boolean argument - "delFlag". If
3899 ** true, the file was configured to be automatically deleted when the
3900 ** file handle closed. To achieve the same effect using this new
3901 ** interface, add the DELETEONCLOSE flag to those specified above for
3902 ** OpenExclusive().
3903 */
3904 static int unixOpen(
3905 sqlite3_vfs *pVfs, /* The VFS for which this is the xOpen method */
3906 const char *zPath, /* Pathname of file to be opened */
3907 sqlite3_file *pFile, /* The file descriptor to be filled in */
3908 int flags, /* Input flags to control the opening */
3909 int *pOutFlags /* Output flags returned to SQLite core */
3910 ){
3911 unixFile *p = (unixFile *)pFile;
3912 int fd = -1; /* File descriptor returned by open() */
3913 int dirfd = -1; /* Directory file descriptor */
3914 int openFlags = 0; /* Flags to pass to open() */
3915 int eType = flags&0xFFFFFF00; /* Type of file to open */
3916 int noLock; /* True to omit locking primitives */
3917 int rc = SQLITE_OK; /* Function Return Code */
3918
3919 int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE);
3920 int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE);
3921 int isCreate = (flags & SQLITE_OPEN_CREATE);
3922 int isReadonly = (flags & SQLITE_OPEN_READONLY);
3923 int isReadWrite = (flags & SQLITE_OPEN_READWRITE);
3924
3925 /* If creating a master or main-file journal, this function will open
3926 ** a file-descriptor on the directory too. The first time unixSync()
3927 ** is called the directory file descriptor will be fsync()ed and close()d.
3928 */
3929 int isOpenDirectory = (isCreate &&
3930 (eType==SQLITE_OPEN_MASTER_JOURNAL || eType==SQLITE_OPEN_MAIN_JOURNAL)
3931 );
3932
3933 /* If argument zPath is a NULL pointer, this function is required to open
3934 ** a temporary file. Use this buffer to store the file name in.
3935 */
3936 char zTmpname[MAX_PATHNAME+1];
3937 const char *zName = zPath;
3938
3939 /* Check the following statements are true:
3940 **
3941 ** (a) Exactly one of the READWRITE and READONLY flags must be set, and
3942 ** (b) if CREATE is set, then READWRITE must also be set, and
3943 ** (c) if EXCLUSIVE is set, then CREATE must also be set.
3944 ** (d) if DELETEONCLOSE is set, then CREATE must also be set.
3945 */
3946 assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
3947 assert(isCreate==0 || isReadWrite);
3948 assert(isExclusive==0 || isCreate);
3949 assert(isDelete==0 || isCreate);
3950
3951 /* The main DB, main journal, and master journal are never automatically
3952 ** deleted. Nor are they ever temporary files. */
3953 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB );
3954 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL );
3955 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL );
3956
3957 /* Assert that the upper layer has set one of the "file-type" flags. */
3958 assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB
3959 || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL
3960 || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL
3961 || eType==SQLITE_OPEN_TRANSIENT_DB
3962 );
3963
3964 chromium_sqlite3_initialize_unix_sqlite3_file(pFile);
3965
3966 if( eType==SQLITE_OPEN_MAIN_DB ){
3967 rc = chromium_sqlite3_get_reusable_file_handle(pFile, zName, flags, &fd);
3968 if( rc!=SQLITE_OK ){
3969 return rc;
3970 }
3971 }else if( !zName ){
3972 /* If zName is NULL, the upper layer is requesting a temp file. */
3973 assert(isDelete && !isOpenDirectory);
3974 rc = getTempname(MAX_PATHNAME+1, zTmpname);
3975 if( rc!=SQLITE_OK ){
3976 return rc;
3977 }
3978 zName = zTmpname;
3979 }
3980
3981 /* Determine the value of the flags parameter passed to POSIX function
3982 ** open(). These must be calculated even if open() is not called, as
3983 ** they may be stored as part of the file handle and used by the
3984 ** 'conch file' locking functions later on. */
3985 if( isReadonly ) openFlags |= O_RDONLY;
3986 if( isReadWrite ) openFlags |= O_RDWR;
3987 if( isCreate ) openFlags |= O_CREAT;
3988 if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW);
3989 openFlags |= (O_LARGEFILE|O_BINARY);
3990
3991 if( fd<0 ){
3992 mode_t openMode = (isDelete?0600:SQLITE_DEFAULT_FILE_PERMISSIONS);
3993 fd = open(zName, openFlags, openMode);
3994 OSTRACE4("OPENX %-3d %s 0%o\n", fd, zName, openFlags);
3995 if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){
3996 /* Failed to open the file for read/write access. Try read-only. */
3997 flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
3998 openFlags &= ~(O_RDWR|O_CREAT);
3999 flags |= SQLITE_OPEN_READONLY;
4000 openFlags |= O_RDONLY;
4001 fd = open(zName, openFlags, openMode);
4002 }
4003 if( fd<0 ){
4004 rc = SQLITE_CANTOPEN;
4005 goto open_finished;
4006 }
4007 }
4008 assert( fd>=0 );
4009 if( pOutFlags ){
4010 *pOutFlags = flags;
4011 }
4012
4013 chromium_sqlite3_update_reusable_file_handle(pFile, fd, flags);
4014
4015 if( isDelete ){
4016 #if OS_VXWORKS
4017 zPath = zName;
4018 #else
4019 unlink(zName);
4020 #endif
4021 }
4022 #if SQLITE_ENABLE_LOCKING_STYLE
4023 else{
4024 p->openFlags = openFlags;
4025 }
4026 #endif
4027
4028 if( isOpenDirectory ){
4029 rc = openDirectory(zPath, &dirfd);
4030 if( rc!=SQLITE_OK ){
4031 /* It is safe to close fd at this point, because it is guaranteed not
4032 ** to be open on a database file. If it were open on a database file,
4033 ** it would not be safe to close as this would release any locks held
4034 ** on the file by this process. */
4035 assert( eType!=SQLITE_OPEN_MAIN_DB );
4036 close(fd); /* silently leak if fail, already in error */
4037 goto open_finished;
4038 }
4039 }
4040
4041 #ifdef FD_CLOEXEC
4042 fcntl(fd, F_SETFD, fcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
4043 #endif
4044
4045 noLock = eType!=SQLITE_OPEN_MAIN_DB;
4046
4047 #if SQLITE_PREFER_PROXY_LOCKING
4048 if( zPath!=NULL && !noLock && pVfs->xOpen ){
4049 char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING");
4050 int useProxy = 0;
4051
4052 /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means
4053 ** never use proxy, NULL means use proxy for non-local files only. */
4054 if( envforce!=NULL ){
4055 useProxy = atoi(envforce)>0;
4056 }else{
4057 struct statfs fsInfo;
4058 if( statfs(zPath, &fsInfo) == -1 ){
4059 /* In theory, the close(fd) call is sub-optimal. If the file opened
4060 ** with fd is a database file, and there are other connections open
4061 ** on that file that are currently holding advisory locks on it,
4062 ** then the call to close() will cancel those locks. In practice,
4063 ** we're assuming that statfs() doesn't fail very often. At least
4064 ** not while other file descriptors opened by the same process on
4065 ** the same file are working. */
4066 p->lastErrno = errno;
4067 if( dirfd>=0 ){
4068 close(dirfd); /* silently leak if fail, in error */
4069 }
4070 close(fd); /* silently leak if fail, in error */
4071 rc = SQLITE_IOERR_ACCESS;
4072 goto open_finished;
4073 }
4074 useProxy = !(fsInfo.f_flags&MNT_LOCAL);
4075 }
4076 if( useProxy ){
4077 rc = fillInUnixFile(pVfs, fd, dirfd, pFile, zPath, noLock, isDelete);
4078 if( rc==SQLITE_OK ){
4079 rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:");
4080 }
4081 goto open_finished;
4082 }
4083 }
4084 #endif
4085
4086 rc = fillInUnixFile(pVfs, fd, dirfd, pFile, zPath, noLock, isDelete);
4087 open_finished:
4088 if( rc!=SQLITE_OK ){
4089 chromium_sqlite3_destroy_reusable_file_handle(pFile);
4090 }
4091 return rc;
4092 }
4093
4094
4095 /*
4096 ** Delete the file at zPath. If the dirSync argument is true, fsync()
4097 ** the directory after deleting the file.
4098 */
4099 static int unixDelete(
4100 sqlite3_vfs *NotUsed, /* VFS containing this as the xDelete method */
4101 const char *zPath, /* Name of file to be deleted */
4102 int dirSync /* If true, fsync() directory after deleting file */
4103 ){
4104 int rc = SQLITE_OK;
4105 UNUSED_PARAMETER(NotUsed);
4106 SimulateIOError(return SQLITE_IOERR_DELETE);
4107 unlink(zPath);
4108 #ifndef SQLITE_DISABLE_DIRSYNC
4109 if( dirSync ){
4110 int fd;
4111 rc = openDirectory(zPath, &fd);
4112 if( rc==SQLITE_OK ){
4113 #if OS_VXWORKS
4114 if( fsync(fd)==-1 )
4115 #else
4116 if( fsync(fd) )
4117 #endif
4118 {
4119 rc = SQLITE_IOERR_DIR_FSYNC;
4120 }
4121 if( close(fd)&&!rc ){
4122 rc = SQLITE_IOERR_DIR_CLOSE;
4123 }
4124 }
4125 }
4126 #endif
4127 return rc;
4128 }
4129
4130 /*
4131 ** Test the existance of or access permissions of file zPath. The
4132 ** test performed depends on the value of flags:
4133 **
4134 ** SQLITE_ACCESS_EXISTS: Return 1 if the file exists
4135 ** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable.
4136 ** SQLITE_ACCESS_READONLY: Return 1 if the file is readable.
4137 **
4138 ** Otherwise return 0.
4139 */
4140 static int unixAccess(
4141 sqlite3_vfs *NotUsed, /* The VFS containing this xAccess method */
4142 const char *zPath, /* Path of the file to examine */
4143 int flags, /* What do we want to learn about the zPath file? */
4144 int *pResOut /* Write result boolean here */
4145 ){
4146 int amode = 0;
4147 UNUSED_PARAMETER(NotUsed);
4148 SimulateIOError( return SQLITE_IOERR_ACCESS; );
4149 switch( flags ){
4150 case SQLITE_ACCESS_EXISTS:
4151 amode = F_OK;
4152 break;
4153 case SQLITE_ACCESS_READWRITE:
4154 amode = W_OK|R_OK;
4155 break;
4156 case SQLITE_ACCESS_READ:
4157 amode = R_OK;
4158 break;
4159
4160 default:
4161 assert(!"Invalid flags argument");
4162 }
4163 *pResOut = (access(zPath, amode)==0);
4164 return SQLITE_OK;
4165 }
4166
4167
4168 /*
4169 ** Turn a relative pathname into a full pathname. The relative path
4170 ** is stored as a nul-terminated string in the buffer pointed to by
4171 ** zPath.
4172 **
4173 ** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes
4174 ** (in this case, MAX_PATHNAME bytes). The full-path is written to
4175 ** this buffer before returning.
4176 */
4177 static int unixFullPathname(
4178 sqlite3_vfs *pVfs, /* Pointer to vfs object */
4179 const char *zPath, /* Possibly relative input path */
4180 int nOut, /* Size of output buffer in bytes */
4181 char *zOut /* Output buffer */
4182 ){
4183
4184 /* It's odd to simulate an io-error here, but really this is just
4185 ** using the io-error infrastructure to test that SQLite handles this
4186 ** function failing. This function could fail if, for example, the
4187 ** current working directory has been unlinked.
4188 */
4189 SimulateIOError( return SQLITE_ERROR );
4190
4191 assert( pVfs->mxPathname==MAX_PATHNAME );
4192 UNUSED_PARAMETER(pVfs);
4193
4194 zOut[nOut-1] = '\0';
4195 if( zPath[0]=='/' ){
4196 sqlite3_snprintf(nOut, zOut, "%s", zPath);
4197 }else{
4198 int nCwd;
4199 if( getcwd(zOut, nOut-1)==0 ){
4200 return SQLITE_CANTOPEN;
4201 }
4202 nCwd = (int)strlen(zOut);
4203 sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath);
4204 }
4205 return SQLITE_OK;
4206 }
4207
4208
4209 #ifndef SQLITE_OMIT_LOAD_EXTENSION
4210 /*
4211 ** Interfaces for opening a shared library, finding entry points
4212 ** within the shared library, and closing the shared library.
4213 */
4214 #include <dlfcn.h>
4215 static void *unixDlOpen(sqlite3_vfs *NotUsed, const char *zFilename){
4216 UNUSED_PARAMETER(NotUsed);
4217 return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL);
4218 }
4219
4220 /*
4221 ** SQLite calls this function immediately after a call to unixDlSym() or
4222 ** unixDlOpen() fails (returns a null pointer). If a more detailed error
4223 ** message is available, it is written to zBufOut. If no error message
4224 ** is available, zBufOut is left unmodified and SQLite uses a default
4225 ** error message.
4226 */
4227 static void unixDlError(sqlite3_vfs *NotUsed, int nBuf, char *zBufOut){
4228 char *zErr;
4229 UNUSED_PARAMETER(NotUsed);
4230 unixEnterMutex();
4231 zErr = dlerror();
4232 if( zErr ){
4233 sqlite3_snprintf(nBuf, zBufOut, "%s", zErr);
4234 }
4235 unixLeaveMutex();
4236 }
4237 static void (*unixDlSym(sqlite3_vfs *NotUsed, void *p, const char*zSym))(void){
4238 /*
4239 ** GCC with -pedantic-errors says that C90 does not allow a void* to be
4240 ** cast into a pointer to a function. And yet the library dlsym() routine
4241 ** returns a void* which is really a pointer to a function. So how do we
4242 ** use dlsym() with -pedantic-errors?
4243 **
4244 ** Variable x below is defined to be a pointer to a function taking
4245 ** parameters void* and const char* and returning a pointer to a function.
4246 ** We initialize x by assigning it a pointer to the dlsym() function.
4247 ** (That assignment requires a cast.) Then we call the function that
4248 ** x points to.
4249 **
4250 ** This work-around is unlikely to work correctly on any system where
4251 ** you really cannot cast a function pointer into void*. But then, on the
4252 ** other hand, dlsym() will not work on such a system either, so we have
4253 ** not really lost anything.
4254 */
4255 void (*(*x)(void*,const char*))(void);
4256 UNUSED_PARAMETER(NotUsed);
4257 x = (void(*(*)(void*,const char*))(void))dlsym;
4258 return (*x)(p, zSym);
4259 }
4260 static void unixDlClose(sqlite3_vfs *NotUsed, void *pHandle){
4261 UNUSED_PARAMETER(NotUsed);
4262 dlclose(pHandle);
4263 }
4264 #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
4265 #define unixDlOpen 0
4266 #define unixDlError 0
4267 #define unixDlSym 0
4268 #define unixDlClose 0
4269 #endif
4270
4271 /*
4272 ** Write nBuf bytes of random data to the supplied buffer zBuf.
4273 */
4274 static int unixRandomness(sqlite3_vfs *NotUsed, int nBuf, char *zBuf){
4275 UNUSED_PARAMETER(NotUsed);
4276 assert((size_t)nBuf>=(sizeof(time_t)+sizeof(int)));
4277
4278 /* We have to initialize zBuf to prevent valgrind from reporting
4279 ** errors. The reports issued by valgrind are incorrect - we would
4280 ** prefer that the randomness be increased by making use of the
4281 ** uninitialized space in zBuf - but valgrind errors tend to worry
4282 ** some users. Rather than argue, it seems easier just to initialize
4283 ** the whole array and silence valgrind, even if that means less randomness
4284 ** in the random seed.
4285 **
4286 ** When testing, initializing zBuf[] to zero is all we do. That means
4287 ** that we always use the same random number sequence. This makes the
4288 ** tests repeatable.
4289 */
4290 memset(zBuf, 0, nBuf);
4291 #if !defined(SQLITE_TEST)
4292 {
4293 int pid, fd;
4294 fd = open("/dev/urandom", O_RDONLY);
4295 if( fd<0 ){
4296 time_t t;
4297 time(&t);
4298 memcpy(zBuf, &t, sizeof(t));
4299 pid = getpid();
4300 memcpy(&zBuf[sizeof(t)], &pid, sizeof(pid));
4301 assert( sizeof(t)+sizeof(pid)<=(size_t)nBuf );
4302 nBuf = sizeof(t) + sizeof(pid);
4303 }else{
4304 nBuf = read(fd, zBuf, nBuf);
4305 close(fd);
4306 }
4307 }
4308 #endif
4309 return nBuf;
4310 }
4311
4312
4313 /*
4314 ** Sleep for a little while. Return the amount of time slept.
4315 ** The argument is the number of microseconds we want to sleep.
4316 ** The return value is the number of microseconds of sleep actually
4317 ** requested from the underlying operating system, a number which
4318 ** might be greater than or equal to the argument, but not less
4319 ** than the argument.
4320 */
4321 static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){
4322 #if OS_VXWORKS
4323 struct timespec sp;
4324
4325 sp.tv_sec = microseconds / 1000000;
4326 sp.tv_nsec = (microseconds % 1000000) * 1000;
4327 nanosleep(&sp, NULL);
4328 UNUSED_PARAMETER(NotUsed);
4329 return microseconds;
4330 #elif defined(HAVE_USLEEP) && HAVE_USLEEP
4331 usleep(microseconds);
4332 UNUSED_PARAMETER(NotUsed);
4333 return microseconds;
4334 #else
4335 int seconds = (microseconds+999999)/1000000;
4336 sleep(seconds);
4337 UNUSED_PARAMETER(NotUsed);
4338 return seconds*1000000;
4339 #endif
4340 }
4341
4342 /*
4343 ** The following variable, if set to a non-zero value, is interpreted as
4344 ** the number of seconds since 1970 and is used to set the result of
4345 ** sqlite3OsCurrentTime() during testing.
4346 */
4347 #ifdef SQLITE_TEST
4348 int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */
4349 #endif
4350
4351 /*
4352 ** Find the current time (in Universal Coordinated Time). Write the
4353 ** current time and date as a Julian Day number into *prNow and
4354 ** return 0. Return 1 if the time and date cannot be found.
4355 */
4356 static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){
4357 #if defined(SQLITE_OMIT_FLOATING_POINT)
4358 time_t t;
4359 time(&t);
4360 *prNow = (((sqlite3_int64)t)/8640 + 24405875)/10;
4361 #elif defined(NO_GETTOD)
4362 time_t t;
4363 time(&t);
4364 *prNow = t/86400.0 + 2440587.5;
4365 #elif OS_VXWORKS
4366 struct timespec sNow;
4367 clock_gettime(CLOCK_REALTIME, &sNow);
4368 *prNow = 2440587.5 + sNow.tv_sec/86400.0 + sNow.tv_nsec/86400000000000.0;
4369 #else
4370 struct timeval sNow;
4371 gettimeofday(&sNow, 0);
4372 *prNow = 2440587.5 + sNow.tv_sec/86400.0 + sNow.tv_usec/86400000000.0;
4373 #endif
4374
4375 #ifdef SQLITE_TEST
4376 if( sqlite3_current_time ){
4377 *prNow = sqlite3_current_time/86400.0 + 2440587.5;
4378 }
4379 #endif
4380 UNUSED_PARAMETER(NotUsed);
4381 return 0;
4382 }
4383
4384 /*
4385 ** We added the xGetLastError() method with the intention of providing
4386 ** better low-level error messages when operating-system problems come up
4387 ** during SQLite operation. But so far, none of that has been implemented
4388 ** in the core. So this routine is never called. For now, it is merely
4389 ** a place-holder.
4390 */
4391 static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){
4392 UNUSED_PARAMETER(NotUsed);
4393 UNUSED_PARAMETER(NotUsed2);
4394 UNUSED_PARAMETER(NotUsed3);
4395 return 0;
4396 }
4397
4398 /*
4399 ************************ End of sqlite3_vfs methods ***************************
4400 ******************************************************************************/
4401
4402 /******************************************************************************
4403 ************************** Begin Proxy Locking ********************************
4404 **
4405 ** Proxy locking is a "uber-locking-method" in this sense: It uses the
4406 ** other locking methods on secondary lock files. Proxy locking is a
4407 ** meta-layer over top of the primitive locking implemented above. For
4408 ** this reason, the division that implements of proxy locking is deferred
4409 ** until late in the file (here) after all of the other I/O methods have
4410 ** been defined - so that the primitive locking methods are available
4411 ** as services to help with the implementation of proxy locking.
4412 **
4413 ****
4414 **
4415 ** The default locking schemes in SQLite use byte-range locks on the
4416 ** database file to coordinate safe, concurrent access by multiple readers
4417 ** and writers [http://sqlite.org/lockingv3.html]. The five file locking
4418 ** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented
4419 ** as POSIX read & write locks over fixed set of locations (via fsctl),
4420 ** on AFP and SMB only exclusive byte-range locks are available via fsctl
4421 ** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states.
4422 ** To simulate a F_RDLCK on the shared range, on AFP a randomly selected
4423 ** address in the shared range is taken for a SHARED lock, the entire
4424 ** shared range is taken for an EXCLUSIVE lock):
4425 **
4426 ** PENDING_BYTE 0x40000000
4427 ** RESERVED_BYTE 0x40000001
4428 ** SHARED_RANGE 0x40000002 -> 0x40000200
4429 **
4430 ** This works well on the local file system, but shows a nearly 100x
4431 ** slowdown in read performance on AFP because the AFP client disables
4432 ** the read cache when byte-range locks are present. Enabling the read
4433 ** cache exposes a cache coherency problem that is present on all OS X
4434 ** supported network file systems. NFS and AFP both observe the
4435 ** close-to-open semantics for ensuring cache coherency
4436 ** [http://nfs.sourceforge.net/#faq_a8], which does not effectively
4437 ** address the requirements for concurrent database access by multiple
4438 ** readers and writers
4439 ** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html].
4440 **
4441 ** To address the performance and cache coherency issues, proxy file locking
4442 ** changes the way database access is controlled by limiting access to a
4443 ** single host at a time and moving file locks off of the database file
4444 ** and onto a proxy file on the local file system.
4445 **
4446 **
4447 ** Using proxy locks
4448 ** -----------------
4449 **
4450 ** C APIs
4451 **
4452 ** sqlite3_file_control(db, dbname, SQLITE_SET_LOCKPROXYFILE,
4453 ** <proxy_path> | ":auto:");
4454 ** sqlite3_file_control(db, dbname, SQLITE_GET_LOCKPROXYFILE, &<proxy_path>);
4455 **
4456 **
4457 ** SQL pragmas
4458 **
4459 ** PRAGMA [database.]lock_proxy_file=<proxy_path> | :auto:
4460 ** PRAGMA [database.]lock_proxy_file
4461 **
4462 ** Specifying ":auto:" means that if there is a conch file with a matching
4463 ** host ID in it, the proxy path in the conch file will be used, otherwise
4464 ** a proxy path based on the user's temp dir
4465 ** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the
4466 ** actual proxy file name is generated from the name and path of the
4467 ** database file. For example:
4468 **
4469 ** For database path "/Users/me/foo.db"
4470 ** The lock path will be "<tmpdir>/sqliteplocks/_Users_me_foo.db:auto:")
4471 **
4472 ** Once a lock proxy is configured for a database connection, it can not
4473 ** be removed, however it may be switched to a different proxy path via
4474 ** the above APIs (assuming the conch file is not being held by another
4475 ** connection or process).
4476 **
4477 **
4478 ** How proxy locking works
4479 ** -----------------------
4480 **
4481 ** Proxy file locking relies primarily on two new supporting files:
4482 **
4483 ** * conch file to limit access to the database file to a single host
4484 ** at a time
4485 **
4486 ** * proxy file to act as a proxy for the advisory locks normally
4487 ** taken on the database
4488 **
4489 ** The conch file - to use a proxy file, sqlite must first "hold the conch"
4490 ** by taking an sqlite-style shared lock on the conch file, reading the
4491 ** contents and comparing the host's unique host ID (see below) and lock
4492 ** proxy path against the values stored in the conch. The conch file is
4493 ** stored in the same directory as the database file and the file name
4494 ** is patterned after the database file name as ".<databasename>-conch".
4495 ** If the conch file does not exist, or it's contents do not match the
4496 ** host ID and/or proxy path, then the lock is escalated to an exclusive
4497 ** lock and the conch file contents is updated with the host ID and proxy
4498 ** path and the lock is downgraded to a shared lock again. If the conch
4499 ** is held by another process (with a shared lock), the exclusive lock
4500 ** will fail and SQLITE_BUSY is returned.
4501 **
4502 ** The proxy file - a single-byte file used for all advisory file locks
4503 ** normally taken on the database file. This allows for safe sharing
4504 ** of the database file for multiple readers and writers on the same
4505 ** host (the conch ensures that they all use the same local lock file).
4506 **
4507 ** There is a third file - the host ID file - used as a persistent record
4508 ** of a unique identifier for the host, a 128-byte unique host id file
4509 ** in the path defined by the HOSTIDPATH macro (default value is
4510 ** /Library/Caches/.com.apple.sqliteConchHostId).
4511 **
4512 ** Requesting the lock proxy does not immediately take the conch, it is
4513 ** only taken when the first request to lock database file is made.
4514 ** This matches the semantics of the traditional locking behavior, where
4515 ** opening a connection to a database file does not take a lock on it.
4516 ** The shared lock and an open file descriptor are maintained until
4517 ** the connection to the database is closed.
4518 **
4519 ** The proxy file and the lock file are never deleted so they only need
4520 ** to be created the first time they are used.
4521 **
4522 ** Configuration options
4523 ** ---------------------
4524 **
4525 ** SQLITE_PREFER_PROXY_LOCKING
4526 **
4527 ** Database files accessed on non-local file systems are
4528 ** automatically configured for proxy locking, lock files are
4529 ** named automatically using the same logic as
4530 ** PRAGMA lock_proxy_file=":auto:"
4531 **
4532 ** SQLITE_PROXY_DEBUG
4533 **
4534 ** Enables the logging of error messages during host id file
4535 ** retrieval and creation
4536 **
4537 ** HOSTIDPATH
4538 **
4539 ** Overrides the default host ID file path location
4540 **
4541 ** LOCKPROXYDIR
4542 **
4543 ** Overrides the default directory used for lock proxy files that
4544 ** are named automatically via the ":auto:" setting
4545 **
4546 ** SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
4547 **
4548 ** Permissions to use when creating a directory for storing the
4549 ** lock proxy files, only used when LOCKPROXYDIR is not set.
4550 **
4551 **
4552 ** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING,
4553 ** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will
4554 ** force proxy locking to be used for every database file opened, and 0
4555 ** will force automatic proxy locking to be disabled for all database
4556 ** files (explicity calling the SQLITE_SET_LOCKPROXYFILE pragma or
4557 ** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING).
4558 */
4559
4560 /*
4561 ** Proxy locking is only available on MacOSX
4562 */
4563 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4564
4565 #ifdef SQLITE_TEST
4566 /* simulate multiple hosts by creating unique hostid file paths */
4567 int sqlite3_hostid_num = 0;
4568 #endif
4569
4570 /*
4571 ** The proxyLockingContext has the path and file structures for the remote
4572 ** and local proxy files in it
4573 */
4574 typedef struct proxyLockingContext proxyLockingContext;
4575 struct proxyLockingContext {
4576 unixFile *conchFile; /* Open conch file */
4577 char *conchFilePath; /* Name of the conch file */
4578 unixFile *lockProxy; /* Open proxy lock file */
4579 char *lockProxyPath; /* Name of the proxy lock file */
4580 char *dbPath; /* Name of the open file */
4581 int conchHeld; /* True if the conch is currently held */
4582 void *oldLockingContext; /* Original lockingcontext to restore on close */
4583 sqlite3_io_methods const *pOldMethod; /* Original I/O methods for close */
4584 };
4585
4586 /* HOSTIDLEN and CONCHLEN both include space for the string
4587 ** terminating nul
4588 */
4589 #define HOSTIDLEN 128
4590 #define CONCHLEN (MAXPATHLEN+HOSTIDLEN+1)
4591 #ifndef HOSTIDPATH
4592 # define HOSTIDPATH "/Library/Caches/.com.apple.sqliteConchHostId"
4593 #endif
4594
4595 /* basically a copy of unixRandomness with different
4596 ** test behavior built in */
4597 static int proxyGenerateHostID(char *pHostID){
4598 int pid, fd, len;
4599 unsigned char *key = (unsigned char *)pHostID;
4600
4601 memset(key, 0, HOSTIDLEN);
4602 len = 0;
4603 fd = open("/dev/urandom", O_RDONLY);
4604 if( fd>=0 ){
4605 len = read(fd, key, HOSTIDLEN);
4606 close(fd); /* silently leak the fd if it fails */
4607 }
4608 if( len < HOSTIDLEN ){
4609 time_t t;
4610 time(&t);
4611 memcpy(key, &t, sizeof(t));
4612 pid = getpid();
4613 memcpy(&key[sizeof(t)], &pid, sizeof(pid));
4614 }
4615
4616 #ifdef MAKE_PRETTY_HOSTID
4617 {
4618 int i;
4619 /* filter the bytes into printable ascii characters and NUL terminate */
4620 key[(HOSTIDLEN-1)] = 0x00;
4621 for( i=0; i<(HOSTIDLEN-1); i++ ){
4622 unsigned char pa = key[i]&0x7F;
4623 if( pa<0x20 ){
4624 key[i] = (key[i]&0x80 == 0x80) ? pa+0x40 : pa+0x20;
4625 }else if( pa==0x7F ){
4626 key[i] = (key[i]&0x80 == 0x80) ? pa=0x20 : pa+0x7E;
4627 }
4628 }
4629 }
4630 #endif
4631 return SQLITE_OK;
4632 }
4633
4634 /* writes the host id path to path, path should be an pre-allocated buffer
4635 ** with enough space for a path
4636 */
4637 static void proxyGetHostIDPath(char *path, size_t len){
4638 strlcpy(path, HOSTIDPATH, len);
4639 #ifdef SQLITE_TEST
4640 if( sqlite3_hostid_num>0 ){
4641 char suffix[2] = "1";
4642 suffix[0] = suffix[0] + sqlite3_hostid_num;
4643 strlcat(path, suffix, len);
4644 }
4645 #endif
4646 OSTRACE3("GETHOSTIDPATH %s pid=%d\n", path, getpid());
4647 }
4648
4649 /* get the host ID from a sqlite hostid file stored in the
4650 ** user-specific tmp directory, create the ID if it's not there already
4651 */
4652 static int proxyGetHostID(char *pHostID, int *pError){
4653 int fd;
4654 char path[MAXPATHLEN];
4655 size_t len;
4656 int rc=SQLITE_OK;
4657
4658 proxyGetHostIDPath(path, MAXPATHLEN);
4659 /* try to create the host ID file, if it already exists read the contents */
4660 fd = open(path, O_CREAT|O_WRONLY|O_EXCL, 0644);
4661 if( fd<0 ){
4662 int err=errno;
4663
4664 if( err!=EEXIST ){
4665 #ifdef SQLITE_PROXY_DEBUG /* set the sqlite error message instead */
4666 fprintf(stderr, "sqlite error creating host ID file %s: %s\n",
4667 path, strerror(err));
4668 #endif
4669 return SQLITE_PERM;
4670 }
4671 /* couldn't create the file, read it instead */
4672 fd = open(path, O_RDONLY|O_EXCL);
4673 if( fd<0 ){
4674 #ifdef SQLITE_PROXY_DEBUG /* set the sqlite error message instead */
4675 int err = errno;
4676 fprintf(stderr, "sqlite error opening host ID file %s: %s\n",
4677 path, strerror(err));
4678 #endif
4679 return SQLITE_PERM;
4680 }
4681 len = pread(fd, pHostID, HOSTIDLEN, 0);
4682 if( len<0 ){
4683 *pError = errno;
4684 rc = SQLITE_IOERR_READ;
4685 }else if( len<HOSTIDLEN ){
4686 *pError = 0;
4687 rc = SQLITE_IOERR_SHORT_READ;
4688 }
4689 close(fd); /* silently leak the fd if it fails */
4690 OSTRACE3("GETHOSTID read %s pid=%d\n", pHostID, getpid());
4691 return rc;
4692 }else{
4693 /* we're creating the host ID file (use a random string of bytes) */
4694 proxyGenerateHostID(pHostID);
4695 len = pwrite(fd, pHostID, HOSTIDLEN, 0);
4696 if( len<0 ){
4697 *pError = errno;
4698 rc = SQLITE_IOERR_WRITE;
4699 }else if( len<HOSTIDLEN ){
4700 *pError = 0;
4701 rc = SQLITE_IOERR_WRITE;
4702 }
4703 close(fd); /* silently leak the fd if it fails */
4704 OSTRACE3("GETHOSTID wrote %s pid=%d\n", pHostID, getpid());
4705 return rc;
4706 }
4707 }
4708
4709 static int proxyGetLockPath(const char *dbPath, char *lPath, size_t maxLen){
4710 int len;
4711 int dbLen;
4712 int i;
4713
4714 #ifdef LOCKPROXYDIR
4715 len = strlcpy(lPath, LOCKPROXYDIR, maxLen);
4716 #else
4717 # ifdef _CS_DARWIN_USER_TEMP_DIR
4718 {
4719 confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen);
4720 len = strlcat(lPath, "sqliteplocks", maxLen);
4721 if( mkdir(lPath, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){
4722 /* if mkdir fails, handle as lock file creation failure */
4723 # ifdef SQLITE_DEBUG
4724 int err = errno;
4725 if( err!=EEXIST ){
4726 fprintf(stderr, "proxyGetLockPath: mkdir(%s,0%o) error %d %s\n", lPath,
4727 SQLITE_DEFAULT_PROXYDIR_PERMISSIONS, err, strerror(err));
4728 }
4729 # endif
4730 }else{
4731 OSTRACE3("GETLOCKPATH mkdir %s pid=%d\n", lPath, getpid());
4732 }
4733
4734 }
4735 # else
4736 len = strlcpy(lPath, "/tmp/", maxLen);
4737 # endif
4738 #endif
4739
4740 if( lPath[len-1]!='/' ){
4741 len = strlcat(lPath, "/", maxLen);
4742 }
4743
4744 /* transform the db path to a unique cache name */
4745 dbLen = (int)strlen(dbPath);
4746 for( i=0; i<dbLen && (i+len+7)<maxLen; i++){
4747 char c = dbPath[i];
4748 lPath[i+len] = (c=='/')?'_':c;
4749 }
4750 lPath[i+len]='\0';
4751 strlcat(lPath, ":auto:", maxLen);
4752 return SQLITE_OK;
4753 }
4754
4755 /*
4756 ** Create a new VFS file descriptor (stored in memory obtained from
4757 ** sqlite3_malloc) and open the file named "path" in the file descriptor.
4758 **
4759 ** The caller is responsible not only for closing the file descriptor
4760 ** but also for freeing the memory associated with the file descriptor.
4761 */
4762 static int proxyCreateUnixFile(const char *path, unixFile **ppFile) {
4763 unixFile *pNew;
4764 int flags = SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE;
4765 int rc = SQLITE_OK;
4766 sqlite3_vfs dummyVfs;
4767
4768 pNew = (unixFile *)sqlite3_malloc(sizeof(unixFile));
4769 if( !pNew ){
4770 return SQLITE_NOMEM;
4771 }
4772 memset(pNew, 0, sizeof(unixFile));
4773
4774 /* Call unixOpen() to open the proxy file. The flags passed to unixOpen()
4775 ** suggest that the file being opened is a "main database". This is
4776 ** necessary as other file types do not necessarily support locking. It
4777 ** is better to use unixOpen() instead of opening the file directly with
4778 ** open(), as unixOpen() sets up the various mechanisms required to
4779 ** make sure a call to close() does not cause the system to discard
4780 ** POSIX locks prematurely.
4781 **
4782 ** It is important that the xOpen member of the VFS object passed to
4783 ** unixOpen() is NULL. This tells unixOpen() may try to open a proxy-file
4784 ** for the proxy-file (creating a potential infinite loop).
4785 */
4786 dummyVfs.pAppData = (void*)&autolockIoFinder;
4787 dummyVfs.xOpen = 0;
4788 rc = unixOpen(&dummyVfs, path, (sqlite3_file *)pNew, flags, &flags);
4789 if( rc==SQLITE_OK && (flags&SQLITE_OPEN_READONLY) ){
4790 pNew->pMethod->xClose((sqlite3_file *)pNew);
4791 rc = SQLITE_CANTOPEN;
4792 }
4793
4794 if( rc!=SQLITE_OK ){
4795 sqlite3_free(pNew);
4796 pNew = 0;
4797 }
4798
4799 *ppFile = pNew;
4800 return rc;
4801 }
4802
4803 /* takes the conch by taking a shared lock and read the contents conch, if
4804 ** lockPath is non-NULL, the host ID and lock file path must match. A NULL
4805 ** lockPath means that the lockPath in the conch file will be used if the
4806 ** host IDs match, or a new lock path will be generated automatically
4807 ** and written to the conch file.
4808 */
4809 static int proxyTakeConch(unixFile *pFile){
4810 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
4811
4812 if( pCtx->conchHeld>0 ){
4813 return SQLITE_OK;
4814 }else{
4815 unixFile *conchFile = pCtx->conchFile;
4816 char testValue[CONCHLEN];
4817 char conchValue[CONCHLEN];
4818 char lockPath[MAXPATHLEN];
4819 char *tLockPath = NULL;
4820 int rc = SQLITE_OK;
4821 int readRc = SQLITE_OK;
4822 int syncPerms = 0;
4823
4824 OSTRACE4("TAKECONCH %d for %s pid=%d\n", conchFile->h,
4825 (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), getpid());
4826
4827 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK);
4828 if( rc==SQLITE_OK ){
4829 int pError = 0;
4830 memset(testValue, 0, CONCHLEN); /* conch is fixed size */
4831 rc = proxyGetHostID(testValue, &pError);
4832 if( (rc&0xff)==SQLITE_IOERR ){
4833 pFile->lastErrno = pError;
4834 }
4835 if( pCtx->lockProxyPath ){
4836 strlcpy(&testValue[HOSTIDLEN], pCtx->lockProxyPath, MAXPATHLEN);
4837 }
4838 }
4839 if( rc!=SQLITE_OK ){
4840 goto end_takeconch;
4841 }
4842
4843 readRc = unixRead((sqlite3_file *)conchFile, conchValue, CONCHLEN, 0);
4844 if( readRc!=SQLITE_IOERR_SHORT_READ ){
4845 if( readRc!=SQLITE_OK ){
4846 if( (rc&0xff)==SQLITE_IOERR ){
4847 pFile->lastErrno = conchFile->lastErrno;
4848 }
4849 rc = readRc;
4850 goto end_takeconch;
4851 }
4852 /* if the conch has data compare the contents */
4853 if( !pCtx->lockProxyPath ){
4854 /* for auto-named local lock file, just check the host ID and we'll
4855 ** use the local lock file path that's already in there */
4856 if( !memcmp(testValue, conchValue, HOSTIDLEN) ){
4857 tLockPath = (char *)&conchValue[HOSTIDLEN];
4858 goto end_takeconch;
4859 }
4860 }else{
4861 /* we've got the conch if conchValue matches our path and host ID */
4862 if( !memcmp(testValue, conchValue, CONCHLEN) ){
4863 goto end_takeconch;
4864 }
4865 }
4866 }else{
4867 /* a short read means we're "creating" the conch (even though it could
4868 ** have been user-intervention), if we acquire the exclusive lock,
4869 ** we'll try to match the current on-disk permissions of the database
4870 */
4871 syncPerms = 1;
4872 }
4873
4874 /* either conch was emtpy or didn't match */
4875 if( !pCtx->lockProxyPath ){
4876 proxyGetLockPath(pCtx->dbPath, lockPath, MAXPATHLEN);
4877 tLockPath = lockPath;
4878 strlcpy(&testValue[HOSTIDLEN], lockPath, MAXPATHLEN);
4879 }
4880
4881 /* update conch with host and path (this will fail if other process
4882 ** has a shared lock already) */
4883 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, EXCLUSIVE_LOCK);
4884 if( rc==SQLITE_OK ){
4885 rc = unixWrite((sqlite3_file *)conchFile, testValue, CONCHLEN, 0);
4886 if( rc==SQLITE_OK && syncPerms ){
4887 struct stat buf;
4888 int err = fstat(pFile->h, &buf);
4889 if( err==0 ){
4890 /* try to match the database file permissions, ignore failure */
4891 #ifndef SQLITE_PROXY_DEBUG
4892 fchmod(conchFile->h, buf.st_mode);
4893 #else
4894 if( fchmod(conchFile->h, buf.st_mode)!=0 ){
4895 int code = errno;
4896 fprintf(stderr, "fchmod %o FAILED with %d %s\n",
4897 buf.st_mode, code, strerror(code));
4898 } else {
4899 fprintf(stderr, "fchmod %o SUCCEDED\n",buf.st_mode);
4900 }
4901 }else{
4902 int code = errno;
4903 fprintf(stderr, "STAT FAILED[%d] with %d %s\n",
4904 err, code, strerror(code));
4905 #endif
4906 }
4907 }
4908 }
4909 conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK);
4910
4911 end_takeconch:
4912 OSTRACE2("TRANSPROXY: CLOSE %d\n", pFile->h);
4913 if( rc==SQLITE_OK && pFile->openFlags ){
4914 if( pFile->h>=0 ){
4915 #ifdef STRICT_CLOSE_ERROR
4916 if( close(pFile->h) ){
4917 pFile->lastErrno = errno;
4918 return SQLITE_IOERR_CLOSE;
4919 }
4920 #else
4921 close(pFile->h); /* silently leak fd if fail */
4922 #endif
4923 }
4924 pFile->h = -1;
4925 int fd = open(pCtx->dbPath, pFile->openFlags,
4926 SQLITE_DEFAULT_FILE_PERMISSIONS);
4927 OSTRACE2("TRANSPROXY: OPEN %d\n", fd);
4928 if( fd>=0 ){
4929 pFile->h = fd;
4930 }else{
4931 rc=SQLITE_CANTOPEN; /* SQLITE_BUSY? proxyTakeConch called
4932 during locking */
4933 }
4934 }
4935 if( rc==SQLITE_OK && !pCtx->lockProxy ){
4936 char *path = tLockPath ? tLockPath : pCtx->lockProxyPath;
4937 /* ACS: Need to make a copy of path sometimes */
4938 rc = proxyCreateUnixFile(path, &pCtx->lockProxy);
4939 }
4940 if( rc==SQLITE_OK ){
4941 pCtx->conchHeld = 1;
4942
4943 if( tLockPath ){
4944 pCtx->lockProxyPath = sqlite3DbStrDup(0, tLockPath);
4945 if( pCtx->lockProxy->pMethod == &afpIoMethods ){
4946 ((afpLockingContext *)pCtx->lockProxy->lockingContext)->dbPath =
4947 pCtx->lockProxyPath;
4948 }
4949 }
4950 } else {
4951 conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
4952 }
4953 OSTRACE3("TAKECONCH %d %s\n", conchFile->h, rc==SQLITE_OK?"ok":"failed");
4954 return rc;
4955 }
4956 }
4957
4958 /*
4959 ** If pFile holds a lock on a conch file, then release that lock.
4960 */
4961 static int proxyReleaseConch(unixFile *pFile){
4962 int rc; /* Subroutine return code */
4963 proxyLockingContext *pCtx; /* The locking context for the proxy lock */
4964 unixFile *conchFile; /* Name of the conch file */
4965
4966 pCtx = (proxyLockingContext *)pFile->lockingContext;
4967 conchFile = pCtx->conchFile;
4968 OSTRACE4("RELEASECONCH %d for %s pid=%d\n", conchFile->h,
4969 (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"),
4970 getpid());
4971 pCtx->conchHeld = 0;
4972 rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
4973 OSTRACE3("RELEASECONCH %d %s\n", conchFile->h,
4974 (rc==SQLITE_OK ? "ok" : "failed"));
4975 return rc;
4976 }
4977
4978 /*
4979 ** Given the name of a database file, compute the name of its conch file.
4980 ** Store the conch filename in memory obtained from sqlite3_malloc().
4981 ** Make *pConchPath point to the new name. Return SQLITE_OK on success
4982 ** or SQLITE_NOMEM if unable to obtain memory.
4983 **
4984 ** The caller is responsible for ensuring that the allocated memory
4985 ** space is eventually freed.
4986 **
4987 ** *pConchPath is set to NULL if a memory allocation error occurs.
4988 */
4989 static int proxyCreateConchPathname(char *dbPath, char **pConchPath){
4990 int i; /* Loop counter */
4991 int len = (int)strlen(dbPath); /* Length of database filename - dbPath */
4992 char *conchPath; /* buffer in which to construct conch name */
4993
4994 /* Allocate space for the conch filename and initialize the name to
4995 ** the name of the original database file. */
4996 *pConchPath = conchPath = (char *)sqlite3_malloc(len + 8);
4997 if( conchPath==0 ){
4998 return SQLITE_NOMEM;
4999 }
5000 memcpy(conchPath, dbPath, len+1);
5001
5002 /* now insert a "." before the last / character */
5003 for( i=(len-1); i>=0; i-- ){
5004 if( conchPath[i]=='/' ){
5005 i++;
5006 break;
5007 }
5008 }
5009 conchPath[i]='.';
5010 while ( i<len ){
5011 conchPath[i+1]=dbPath[i];
5012 i++;
5013 }
5014
5015 /* append the "-conch" suffix to the file */
5016 memcpy(&conchPath[i+1], "-conch", 7);
5017 assert( (int)strlen(conchPath) == len+7 );
5018
5019 return SQLITE_OK;
5020 }
5021
5022
5023 /* Takes a fully configured proxy locking-style unix file and switches
5024 ** the local lock file path
5025 */
5026 static int switchLockProxyPath(unixFile *pFile, const char *path) {
5027 proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
5028 char *oldPath = pCtx->lockProxyPath;
5029 int rc = SQLITE_OK;
5030
5031 if( pFile->locktype!=NO_LOCK ){
5032 return SQLITE_BUSY;
5033 }
5034
5035 /* nothing to do if the path is NULL, :auto: or matches the existing path */
5036 if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ||
5037 (oldPath && !strncmp(oldPath, path, MAXPATHLEN)) ){
5038 return SQLITE_OK;
5039 }else{
5040 unixFile *lockProxy = pCtx->lockProxy;
5041 pCtx->lockProxy=NULL;
5042 pCtx->conchHeld = 0;
5043 if( lockProxy!=NULL ){
5044 rc=lockProxy->pMethod->xClose((sqlite3_file *)lockProxy);
5045 if( rc ) return rc;
5046 sqlite3_free(lockProxy);
5047 }
5048 sqlite3_free(oldPath);
5049 pCtx->lockProxyPath = sqlite3DbStrDup(0, path);
5050 }
5051
5052 return rc;
5053 }
5054
5055 /*
5056 ** pFile is a file that has been opened by a prior xOpen call. dbPath
5057 ** is a string buffer at least MAXPATHLEN+1 characters in size.
5058 **
5059 ** This routine find the filename associated with pFile and writes it
5060 ** int dbPath.
5061 */
5062 static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){
5063 #if defined(__APPLE__)
5064 if( pFile->pMethod == &afpIoMethods ){
5065 /* afp style keeps a reference to the db path in the filePath field
5066 ** of the struct */
5067 assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
5068 strcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath);
5069 }else
5070 #endif
5071 if( pFile->pMethod == &dotlockIoMethods ){
5072 /* dot lock style uses the locking context to store the dot lock
5073 ** file path */
5074 int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX);
5075 memcpy(dbPath, (char *)pFile->lockingContext, len + 1);
5076 }else{
5077 /* all other styles use the locking context to store the db file path */
5078 assert( strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
5079 strcpy(dbPath, (char *)pFile->lockingContext);
5080 }
5081 return SQLITE_OK;
5082 }
5083
5084 /*
5085 ** Takes an already filled in unix file and alters it so all file locking
5086 ** will be performed on the local proxy lock file. The following fields
5087 ** are preserved in the locking context so that they can be restored and
5088 ** the unix structure properly cleaned up at close time:
5089 ** ->lockingContext
5090 ** ->pMethod
5091 */
5092 static int proxyTransformUnixFile(unixFile *pFile, const char *path) {
5093 proxyLockingContext *pCtx;
5094 char dbPath[MAXPATHLEN+1]; /* Name of the database file */
5095 char *lockPath=NULL;
5096 int rc = SQLITE_OK;
5097
5098 if( pFile->locktype!=NO_LOCK ){
5099 return SQLITE_BUSY;
5100 }
5101 proxyGetDbPathForUnixFile(pFile, dbPath);
5102 if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){
5103 lockPath=NULL;
5104 }else{
5105 lockPath=(char *)path;
5106 }
5107
5108 OSTRACE4("TRANSPROXY %d for %s pid=%d\n", pFile->h,
5109 (lockPath ? lockPath : ":auto:"), getpid());
5110
5111 pCtx = sqlite3_malloc( sizeof(*pCtx) );
5112 if( pCtx==0 ){
5113 return SQLITE_NOMEM;
5114 }
5115 memset(pCtx, 0, sizeof(*pCtx));
5116
5117 rc = proxyCreateConchPathname(dbPath, &pCtx->conchFilePath);
5118 if( rc==SQLITE_OK ){
5119 rc = proxyCreateUnixFile(pCtx->conchFilePath, &pCtx->conchFile);
5120 }
5121 if( rc==SQLITE_OK && lockPath ){
5122 pCtx->lockProxyPath = sqlite3DbStrDup(0, lockPath);
5123 }
5124
5125 if( rc==SQLITE_OK ){
5126 /* all memory is allocated, proxys are created and assigned,
5127 ** switch the locking context and pMethod then return.
5128 */
5129 pCtx->dbPath = sqlite3DbStrDup(0, dbPath);
5130 pCtx->oldLockingContext = pFile->lockingContext;
5131 pFile->lockingContext = pCtx;
5132 pCtx->pOldMethod = pFile->pMethod;
5133 pFile->pMethod = &proxyIoMethods;
5134 }else{
5135 if( pCtx->conchFile ){
5136 rc = pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile);
5137 if( rc ) return rc;
5138 sqlite3_free(pCtx->conchFile);
5139 }
5140 sqlite3_free(pCtx->conchFilePath);
5141 sqlite3_free(pCtx);
5142 }
5143 OSTRACE3("TRANSPROXY %d %s\n", pFile->h,
5144 (rc==SQLITE_OK ? "ok" : "failed"));
5145 return rc;
5146 }
5147
5148
5149 /*
5150 ** This routine handles sqlite3_file_control() calls that are specific
5151 ** to proxy locking.
5152 */
5153 static int proxyFileControl(sqlite3_file *id, int op, void *pArg){
5154 switch( op ){
5155 case SQLITE_GET_LOCKPROXYFILE: {
5156 unixFile *pFile = (unixFile*)id;
5157 if( pFile->pMethod == &proxyIoMethods ){
5158 proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
5159 proxyTakeConch(pFile);
5160 if( pCtx->lockProxyPath ){
5161 *(const char **)pArg = pCtx->lockProxyPath;
5162 }else{
5163 *(const char **)pArg = ":auto: (not held)";
5164 }
5165 } else {
5166 *(const char **)pArg = NULL;
5167 }
5168 return SQLITE_OK;
5169 }
5170 case SQLITE_SET_LOCKPROXYFILE: {
5171 unixFile *pFile = (unixFile*)id;
5172 int rc = SQLITE_OK;
5173 int isProxyStyle = (pFile->pMethod == &proxyIoMethods);
5174 if( pArg==NULL || (const char *)pArg==0 ){
5175 if( isProxyStyle ){
5176 /* turn off proxy locking - not supported */
5177 rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/;
5178 }else{
5179 /* turn off proxy locking - already off - NOOP */
5180 rc = SQLITE_OK;
5181 }
5182 }else{
5183 const char *proxyPath = (const char *)pArg;
5184 if( isProxyStyle ){
5185 proxyLockingContext *pCtx =
5186 (proxyLockingContext*)pFile->lockingContext;
5187 if( !strcmp(pArg, ":auto:")
5188 || (pCtx->lockProxyPath &&
5189 !strncmp(pCtx->lockProxyPath, proxyPath, MAXPATHLEN))
5190 ){
5191 rc = SQLITE_OK;
5192 }else{
5193 rc = switchLockProxyPath(pFile, proxyPath);
5194 }
5195 }else{
5196 /* turn on proxy file locking */
5197 rc = proxyTransformUnixFile(pFile, proxyPath);
5198 }
5199 }
5200 return rc;
5201 }
5202 default: {
5203 assert( 0 ); /* The call assures that only valid opcodes are sent */
5204 }
5205 }
5206 /*NOTREACHED*/
5207 return SQLITE_ERROR;
5208 }
5209
5210 /*
5211 ** Within this division (the proxying locking implementation) the procedures
5212 ** above this point are all utilities. The lock-related methods of the
5213 ** proxy-locking sqlite3_io_method object follow.
5214 */
5215
5216
5217 /*
5218 ** This routine checks if there is a RESERVED lock held on the specified
5219 ** file by this or any other process. If such a lock is held, set *pResOut
5220 ** to a non-zero value otherwise *pResOut is set to zero. The return value
5221 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
5222 */
5223 static int proxyCheckReservedLock(sqlite3_file *id, int *pResOut) {
5224 unixFile *pFile = (unixFile*)id;
5225 int rc = proxyTakeConch(pFile);
5226 if( rc==SQLITE_OK ){
5227 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
5228 unixFile *proxy = pCtx->lockProxy;
5229 return proxy->pMethod->xCheckReservedLock((sqlite3_file*)proxy, pResOut);
5230 }
5231 return rc;
5232 }
5233
5234 /*
5235 ** Lock the file with the lock specified by parameter locktype - one
5236 ** of the following:
5237 **
5238 ** (1) SHARED_LOCK
5239 ** (2) RESERVED_LOCK
5240 ** (3) PENDING_LOCK
5241 ** (4) EXCLUSIVE_LOCK
5242 **
5243 ** Sometimes when requesting one lock state, additional lock states
5244 ** are inserted in between. The locking might fail on one of the later
5245 ** transitions leaving the lock state different from what it started but
5246 ** still short of its goal. The following chart shows the allowed
5247 ** transitions and the inserted intermediate states:
5248 **
5249 ** UNLOCKED -> SHARED
5250 ** SHARED -> RESERVED
5251 ** SHARED -> (PENDING) -> EXCLUSIVE
5252 ** RESERVED -> (PENDING) -> EXCLUSIVE
5253 ** PENDING -> EXCLUSIVE
5254 **
5255 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
5256 ** routine to lower a locking level.
5257 */
5258 static int proxyLock(sqlite3_file *id, int locktype) {
5259 unixFile *pFile = (unixFile*)id;
5260 int rc = proxyTakeConch(pFile);
5261 if( rc==SQLITE_OK ){
5262 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
5263 unixFile *proxy = pCtx->lockProxy;
5264 rc = proxy->pMethod->xLock((sqlite3_file*)proxy, locktype);
5265 pFile->locktype = proxy->locktype;
5266 }
5267 return rc;
5268 }
5269
5270
5271 /*
5272 ** Lower the locking level on file descriptor pFile to locktype. locktype
5273 ** must be either NO_LOCK or SHARED_LOCK.
5274 **
5275 ** If the locking level of the file descriptor is already at or below
5276 ** the requested locking level, this routine is a no-op.
5277 */
5278 static int proxyUnlock(sqlite3_file *id, int locktype) {
5279 unixFile *pFile = (unixFile*)id;
5280 int rc = proxyTakeConch(pFile);
5281 if( rc==SQLITE_OK ){
5282 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
5283 unixFile *proxy = pCtx->lockProxy;
5284 rc = proxy->pMethod->xUnlock((sqlite3_file*)proxy, locktype);
5285 pFile->locktype = proxy->locktype;
5286 }
5287 return rc;
5288 }
5289
5290 /*
5291 ** Close a file that uses proxy locks.
5292 */
5293 static int proxyClose(sqlite3_file *id) {
5294 if( id ){
5295 unixFile *pFile = (unixFile*)id;
5296 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
5297 unixFile *lockProxy = pCtx->lockProxy;
5298 unixFile *conchFile = pCtx->conchFile;
5299 int rc = SQLITE_OK;
5300
5301 if( lockProxy ){
5302 rc = lockProxy->pMethod->xUnlock((sqlite3_file*)lockProxy, NO_LOCK);
5303 if( rc ) return rc;
5304 rc = lockProxy->pMethod->xClose((sqlite3_file*)lockProxy);
5305 if( rc ) return rc;
5306 sqlite3_free(lockProxy);
5307 pCtx->lockProxy = 0;
5308 }
5309 if( conchFile ){
5310 if( pCtx->conchHeld ){
5311 rc = proxyReleaseConch(pFile);
5312 if( rc ) return rc;
5313 }
5314 rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile);
5315 if( rc ) return rc;
5316 sqlite3_free(conchFile);
5317 }
5318 sqlite3_free(pCtx->lockProxyPath);
5319 sqlite3_free(pCtx->conchFilePath);
5320 sqlite3_free(pCtx->dbPath);
5321 /* restore the original locking context and pMethod then close it */
5322 pFile->lockingContext = pCtx->oldLockingContext;
5323 pFile->pMethod = pCtx->pOldMethod;
5324 sqlite3_free(pCtx);
5325 return pFile->pMethod->xClose(id);
5326 }
5327 return SQLITE_OK;
5328 }
5329
5330
5331
5332 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
5333 /*
5334 ** The proxy locking style is intended for use with AFP filesystems.
5335 ** And since AFP is only supported on MacOSX, the proxy locking is also
5336 ** restricted to MacOSX.
5337 **
5338 **
5339 ******************* End of the proxy lock implementation **********************
5340 ******************************************************************************/
5341
5342 /*
5343 ** Initialize the operating system interface.
5344 **
5345 ** This routine registers all VFS implementations for unix-like operating
5346 ** systems. This routine, and the sqlite3_os_end() routine that follows,
5347 ** should be the only routines in this file that are visible from other
5348 ** files.
5349 **
5350 ** This routine is called once during SQLite initialization and by a
5351 ** single thread. The memory allocation and mutex subsystems have not
5352 ** necessarily been initialized when this routine is called, and so they
5353 ** should not be used.
5354 */
5355 int sqlite3_os_init(void){
5356 /*
5357 ** The following macro defines an initializer for an sqlite3_vfs object.
5358 ** The name of the VFS is NAME. The pAppData is a pointer to a pointer
5359 ** to the "finder" function. (pAppData is a pointer to a pointer because
5360 ** silly C90 rules prohibit a void* from being cast to a function pointer
5361 ** and so we have to go through the intermediate pointer to avoid problems
5362 ** when compiling with -pedantic-errors on GCC.)
5363 **
5364 ** The FINDER parameter to this macro is the name of the pointer to the
5365 ** finder-function. The finder-function returns a pointer to the
5366 ** sqlite_io_methods object that implements the desired locking
5367 ** behaviors. See the division above that contains the IOMETHODS
5368 ** macro for addition information on finder-functions.
5369 **
5370 ** Most finders simply return a pointer to a fixed sqlite3_io_methods
5371 ** object. But the "autolockIoFinder" available on MacOSX does a little
5372 ** more than that; it looks at the filesystem type that hosts the
5373 ** database file and tries to choose an locking method appropriate for
5374 ** that filesystem time.
5375 */
5376 #define UNIXVFS(VFSNAME, FINDER) { \
5377 1, /* iVersion */ \
5378 sizeof(unixFile), /* szOsFile */ \
5379 MAX_PATHNAME, /* mxPathname */ \
5380 0, /* pNext */ \
5381 VFSNAME, /* zName */ \
5382 (void*)&FINDER, /* pAppData */ \
5383 unixOpen, /* xOpen */ \
5384 unixDelete, /* xDelete */ \
5385 unixAccess, /* xAccess */ \
5386 unixFullPathname, /* xFullPathname */ \
5387 unixDlOpen, /* xDlOpen */ \
5388 unixDlError, /* xDlError */ \
5389 unixDlSym, /* xDlSym */ \
5390 unixDlClose, /* xDlClose */ \
5391 unixRandomness, /* xRandomness */ \
5392 unixSleep, /* xSleep */ \
5393 unixCurrentTime, /* xCurrentTime */ \
5394 unixGetLastError /* xGetLastError */ \
5395 }
5396
5397 /*
5398 ** All default VFSes for unix are contained in the following array.
5399 **
5400 ** Note that the sqlite3_vfs.pNext field of the VFS object is modified
5401 ** by the SQLite core when the VFS is registered. So the following
5402 ** array cannot be const.
5403 */
5404 static sqlite3_vfs aVfs[] = {
5405 #if SQLITE_ENABLE_LOCKING_STYLE && (OS_VXWORKS || defined(__APPLE__))
5406 UNIXVFS("unix", autolockIoFinder ),
5407 #else
5408 UNIXVFS("unix", posixIoFinder ),
5409 #endif
5410 UNIXVFS("unix-none", nolockIoFinder ),
5411 UNIXVFS("unix-dotfile", dotlockIoFinder ),
5412 UNIXVFS("unix-wfl", posixWflIoFinder ),
5413 #if OS_VXWORKS
5414 UNIXVFS("unix-namedsem", semIoFinder ),
5415 #endif
5416 #if SQLITE_ENABLE_LOCKING_STYLE
5417 UNIXVFS("unix-posix", posixIoFinder ),
5418 #if !OS_VXWORKS
5419 UNIXVFS("unix-flock", flockIoFinder ),
5420 #endif
5421 #endif
5422 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
5423 UNIXVFS("unix-afp", afpIoFinder ),
5424 UNIXVFS("unix-proxy", proxyIoFinder ),
5425 #endif
5426 };
5427 unsigned int i; /* Loop counter */
5428
5429 /* Register all VFSes defined in the aVfs[] array */
5430 for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
5431 sqlite3_vfs_register(&aVfs[i], i==0);
5432 }
5433 return SQLITE_OK;
5434 }
5435
5436 /*
5437 ** Shutdown the operating system interface.
5438 **
5439 ** Some operating systems might need to do some cleanup in this routine,
5440 ** to release dynamically allocated objects. But not on unix.
5441 ** This routine is a no-op for unix.
5442 */
5443 int sqlite3_os_end(void){
5444 return SQLITE_OK;
5445 }
5446
5447 #endif /* SQLITE_OS_UNIX */
OLDNEW
« no previous file with comments | « third_party/sqlite/src/os_symbian.cc ('k') | third_party/sqlite/src/os_win.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698