Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(100)

Side by Side Diff: third_party/sqlite/src/mem3.c

Issue 3108030: Move bundled copy of sqlite one level deeper to better separate it... (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src/
Patch Set: Created 10 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « third_party/sqlite/src/mem2.c ('k') | third_party/sqlite/src/mem5.c » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /*
2 ** 2007 October 14
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains the C functions that implement a memory
13 ** allocation subsystem for use by SQLite.
14 **
15 ** This version of the memory allocation subsystem omits all
16 ** use of malloc(). The SQLite user supplies a block of memory
17 ** before calling sqlite3_initialize() from which allocations
18 ** are made and returned by the xMalloc() and xRealloc()
19 ** implementations. Once sqlite3_initialize() has been called,
20 ** the amount of memory available to SQLite is fixed and cannot
21 ** be changed.
22 **
23 ** This version of the memory allocation subsystem is included
24 ** in the build only if SQLITE_ENABLE_MEMSYS3 is defined.
25 **
26 ** $Id: mem3.c,v 1.25 2008/11/19 16:52:44 danielk1977 Exp $
27 */
28 #include "sqliteInt.h"
29
30 /*
31 ** This version of the memory allocator is only built into the library
32 ** SQLITE_ENABLE_MEMSYS3 is defined. Defining this symbol does not
33 ** mean that the library will use a memory-pool by default, just that
34 ** it is available. The mempool allocator is activated by calling
35 ** sqlite3_config().
36 */
37 #ifdef SQLITE_ENABLE_MEMSYS3
38
39 /*
40 ** Maximum size (in Mem3Blocks) of a "small" chunk.
41 */
42 #define MX_SMALL 10
43
44
45 /*
46 ** Number of freelist hash slots
47 */
48 #define N_HASH 61
49
50 /*
51 ** A memory allocation (also called a "chunk") consists of two or
52 ** more blocks where each block is 8 bytes. The first 8 bytes are
53 ** a header that is not returned to the user.
54 **
55 ** A chunk is two or more blocks that is either checked out or
56 ** free. The first block has format u.hdr. u.hdr.size4x is 4 times the
57 ** size of the allocation in blocks if the allocation is free.
58 ** The u.hdr.size4x&1 bit is true if the chunk is checked out and
59 ** false if the chunk is on the freelist. The u.hdr.size4x&2 bit
60 ** is true if the previous chunk is checked out and false if the
61 ** previous chunk is free. The u.hdr.prevSize field is the size of
62 ** the previous chunk in blocks if the previous chunk is on the
63 ** freelist. If the previous chunk is checked out, then
64 ** u.hdr.prevSize can be part of the data for that chunk and should
65 ** not be read or written.
66 **
67 ** We often identify a chunk by its index in mem3.aPool[]. When
68 ** this is done, the chunk index refers to the second block of
69 ** the chunk. In this way, the first chunk has an index of 1.
70 ** A chunk index of 0 means "no such chunk" and is the equivalent
71 ** of a NULL pointer.
72 **
73 ** The second block of free chunks is of the form u.list. The
74 ** two fields form a double-linked list of chunks of related sizes.
75 ** Pointers to the head of the list are stored in mem3.aiSmall[]
76 ** for smaller chunks and mem3.aiHash[] for larger chunks.
77 **
78 ** The second block of a chunk is user data if the chunk is checked
79 ** out. If a chunk is checked out, the user data may extend into
80 ** the u.hdr.prevSize value of the following chunk.
81 */
82 typedef struct Mem3Block Mem3Block;
83 struct Mem3Block {
84 union {
85 struct {
86 u32 prevSize; /* Size of previous chunk in Mem3Block elements */
87 u32 size4x; /* 4x the size of current chunk in Mem3Block elements */
88 } hdr;
89 struct {
90 u32 next; /* Index in mem3.aPool[] of next free chunk */
91 u32 prev; /* Index in mem3.aPool[] of previous free chunk */
92 } list;
93 } u;
94 };
95
96 /*
97 ** All of the static variables used by this module are collected
98 ** into a single structure named "mem3". This is to keep the
99 ** static variables organized and to reduce namespace pollution
100 ** when this module is combined with other in the amalgamation.
101 */
102 static SQLITE_WSD struct Mem3Global {
103 /*
104 ** Memory available for allocation. nPool is the size of the array
105 ** (in Mem3Blocks) pointed to by aPool less 2.
106 */
107 u32 nPool;
108 Mem3Block *aPool;
109
110 /*
111 ** True if we are evaluating an out-of-memory callback.
112 */
113 int alarmBusy;
114
115 /*
116 ** Mutex to control access to the memory allocation subsystem.
117 */
118 sqlite3_mutex *mutex;
119
120 /*
121 ** The minimum amount of free space that we have seen.
122 */
123 u32 mnMaster;
124
125 /*
126 ** iMaster is the index of the master chunk. Most new allocations
127 ** occur off of this chunk. szMaster is the size (in Mem3Blocks)
128 ** of the current master. iMaster is 0 if there is not master chunk.
129 ** The master chunk is not in either the aiHash[] or aiSmall[].
130 */
131 u32 iMaster;
132 u32 szMaster;
133
134 /*
135 ** Array of lists of free blocks according to the block size
136 ** for smaller chunks, or a hash on the block size for larger
137 ** chunks.
138 */
139 u32 aiSmall[MX_SMALL-1]; /* For sizes 2 through MX_SMALL, inclusive */
140 u32 aiHash[N_HASH]; /* For sizes MX_SMALL+1 and larger */
141 } mem3 = { 97535575 };
142
143 #define mem3 GLOBAL(struct Mem3Global, mem3)
144
145 /*
146 ** Unlink the chunk at mem3.aPool[i] from list it is currently
147 ** on. *pRoot is the list that i is a member of.
148 */
149 static void memsys3UnlinkFromList(u32 i, u32 *pRoot){
150 u32 next = mem3.aPool[i].u.list.next;
151 u32 prev = mem3.aPool[i].u.list.prev;
152 assert( sqlite3_mutex_held(mem3.mutex) );
153 if( prev==0 ){
154 *pRoot = next;
155 }else{
156 mem3.aPool[prev].u.list.next = next;
157 }
158 if( next ){
159 mem3.aPool[next].u.list.prev = prev;
160 }
161 mem3.aPool[i].u.list.next = 0;
162 mem3.aPool[i].u.list.prev = 0;
163 }
164
165 /*
166 ** Unlink the chunk at index i from
167 ** whatever list is currently a member of.
168 */
169 static void memsys3Unlink(u32 i){
170 u32 size, hash;
171 assert( sqlite3_mutex_held(mem3.mutex) );
172 assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
173 assert( i>=1 );
174 size = mem3.aPool[i-1].u.hdr.size4x/4;
175 assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
176 assert( size>=2 );
177 if( size <= MX_SMALL ){
178 memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]);
179 }else{
180 hash = size % N_HASH;
181 memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
182 }
183 }
184
185 /*
186 ** Link the chunk at mem3.aPool[i] so that is on the list rooted
187 ** at *pRoot.
188 */
189 static void memsys3LinkIntoList(u32 i, u32 *pRoot){
190 assert( sqlite3_mutex_held(mem3.mutex) );
191 mem3.aPool[i].u.list.next = *pRoot;
192 mem3.aPool[i].u.list.prev = 0;
193 if( *pRoot ){
194 mem3.aPool[*pRoot].u.list.prev = i;
195 }
196 *pRoot = i;
197 }
198
199 /*
200 ** Link the chunk at index i into either the appropriate
201 ** small chunk list, or into the large chunk hash table.
202 */
203 static void memsys3Link(u32 i){
204 u32 size, hash;
205 assert( sqlite3_mutex_held(mem3.mutex) );
206 assert( i>=1 );
207 assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
208 size = mem3.aPool[i-1].u.hdr.size4x/4;
209 assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
210 assert( size>=2 );
211 if( size <= MX_SMALL ){
212 memsys3LinkIntoList(i, &mem3.aiSmall[size-2]);
213 }else{
214 hash = size % N_HASH;
215 memsys3LinkIntoList(i, &mem3.aiHash[hash]);
216 }
217 }
218
219 /*
220 ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
221 ** will already be held (obtained by code in malloc.c) if
222 ** sqlite3GlobalConfig.bMemStat is true.
223 */
224 static void memsys3Enter(void){
225 if( sqlite3GlobalConfig.bMemstat==0 && mem3.mutex==0 ){
226 mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
227 }
228 sqlite3_mutex_enter(mem3.mutex);
229 }
230 static void memsys3Leave(void){
231 sqlite3_mutex_leave(mem3.mutex);
232 }
233
234 /*
235 ** Called when we are unable to satisfy an allocation of nBytes.
236 */
237 static void memsys3OutOfMemory(int nByte){
238 if( !mem3.alarmBusy ){
239 mem3.alarmBusy = 1;
240 assert( sqlite3_mutex_held(mem3.mutex) );
241 sqlite3_mutex_leave(mem3.mutex);
242 sqlite3_release_memory(nByte);
243 sqlite3_mutex_enter(mem3.mutex);
244 mem3.alarmBusy = 0;
245 }
246 }
247
248
249 /*
250 ** Chunk i is a free chunk that has been unlinked. Adjust its
251 ** size parameters for check-out and return a pointer to the
252 ** user portion of the chunk.
253 */
254 static void *memsys3Checkout(u32 i, u32 nBlock){
255 u32 x;
256 assert( sqlite3_mutex_held(mem3.mutex) );
257 assert( i>=1 );
258 assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock );
259 assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
260 x = mem3.aPool[i-1].u.hdr.size4x;
261 mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
262 mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
263 mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2;
264 return &mem3.aPool[i];
265 }
266
267 /*
268 ** Carve a piece off of the end of the mem3.iMaster free chunk.
269 ** Return a pointer to the new allocation. Or, if the master chunk
270 ** is not large enough, return 0.
271 */
272 static void *memsys3FromMaster(u32 nBlock){
273 assert( sqlite3_mutex_held(mem3.mutex) );
274 assert( mem3.szMaster>=nBlock );
275 if( nBlock>=mem3.szMaster-1 ){
276 /* Use the entire master */
277 void *p = memsys3Checkout(mem3.iMaster, mem3.szMaster);
278 mem3.iMaster = 0;
279 mem3.szMaster = 0;
280 mem3.mnMaster = 0;
281 return p;
282 }else{
283 /* Split the master block. Return the tail. */
284 u32 newi, x;
285 newi = mem3.iMaster + mem3.szMaster - nBlock;
286 assert( newi > mem3.iMaster+1 );
287 mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = nBlock;
288 mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x |= 2;
289 mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
290 mem3.szMaster -= nBlock;
291 mem3.aPool[newi-1].u.hdr.prevSize = mem3.szMaster;
292 x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
293 mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
294 if( mem3.szMaster < mem3.mnMaster ){
295 mem3.mnMaster = mem3.szMaster;
296 }
297 return (void*)&mem3.aPool[newi];
298 }
299 }
300
301 /*
302 ** *pRoot is the head of a list of free chunks of the same size
303 ** or same size hash. In other words, *pRoot is an entry in either
304 ** mem3.aiSmall[] or mem3.aiHash[].
305 **
306 ** This routine examines all entries on the given list and tries
307 ** to coalesce each entries with adjacent free chunks.
308 **
309 ** If it sees a chunk that is larger than mem3.iMaster, it replaces
310 ** the current mem3.iMaster with the new larger chunk. In order for
311 ** this mem3.iMaster replacement to work, the master chunk must be
312 ** linked into the hash tables. That is not the normal state of
313 ** affairs, of course. The calling routine must link the master
314 ** chunk before invoking this routine, then must unlink the (possibly
315 ** changed) master chunk once this routine has finished.
316 */
317 static void memsys3Merge(u32 *pRoot){
318 u32 iNext, prev, size, i, x;
319
320 assert( sqlite3_mutex_held(mem3.mutex) );
321 for(i=*pRoot; i>0; i=iNext){
322 iNext = mem3.aPool[i].u.list.next;
323 size = mem3.aPool[i-1].u.hdr.size4x;
324 assert( (size&1)==0 );
325 if( (size&2)==0 ){
326 memsys3UnlinkFromList(i, pRoot);
327 assert( i > mem3.aPool[i-1].u.hdr.prevSize );
328 prev = i - mem3.aPool[i-1].u.hdr.prevSize;
329 if( prev==iNext ){
330 iNext = mem3.aPool[prev].u.list.next;
331 }
332 memsys3Unlink(prev);
333 size = i + size/4 - prev;
334 x = mem3.aPool[prev-1].u.hdr.size4x & 2;
335 mem3.aPool[prev-1].u.hdr.size4x = size*4 | x;
336 mem3.aPool[prev+size-1].u.hdr.prevSize = size;
337 memsys3Link(prev);
338 i = prev;
339 }else{
340 size /= 4;
341 }
342 if( size>mem3.szMaster ){
343 mem3.iMaster = i;
344 mem3.szMaster = size;
345 }
346 }
347 }
348
349 /*
350 ** Return a block of memory of at least nBytes in size.
351 ** Return NULL if unable.
352 **
353 ** This function assumes that the necessary mutexes, if any, are
354 ** already held by the caller. Hence "Unsafe".
355 */
356 static void *memsys3MallocUnsafe(int nByte){
357 u32 i;
358 u32 nBlock;
359 u32 toFree;
360
361 assert( sqlite3_mutex_held(mem3.mutex) );
362 assert( sizeof(Mem3Block)==8 );
363 if( nByte<=12 ){
364 nBlock = 2;
365 }else{
366 nBlock = (nByte + 11)/8;
367 }
368 assert( nBlock>=2 );
369
370 /* STEP 1:
371 ** Look for an entry of the correct size in either the small
372 ** chunk table or in the large chunk hash table. This is
373 ** successful most of the time (about 9 times out of 10).
374 */
375 if( nBlock <= MX_SMALL ){
376 i = mem3.aiSmall[nBlock-2];
377 if( i>0 ){
378 memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]);
379 return memsys3Checkout(i, nBlock);
380 }
381 }else{
382 int hash = nBlock % N_HASH;
383 for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){
384 if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){
385 memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
386 return memsys3Checkout(i, nBlock);
387 }
388 }
389 }
390
391 /* STEP 2:
392 ** Try to satisfy the allocation by carving a piece off of the end
393 ** of the master chunk. This step usually works if step 1 fails.
394 */
395 if( mem3.szMaster>=nBlock ){
396 return memsys3FromMaster(nBlock);
397 }
398
399
400 /* STEP 3:
401 ** Loop through the entire memory pool. Coalesce adjacent free
402 ** chunks. Recompute the master chunk as the largest free chunk.
403 ** Then try again to satisfy the allocation by carving a piece off
404 ** of the end of the master chunk. This step happens very
405 ** rarely (we hope!)
406 */
407 for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){
408 memsys3OutOfMemory(toFree);
409 if( mem3.iMaster ){
410 memsys3Link(mem3.iMaster);
411 mem3.iMaster = 0;
412 mem3.szMaster = 0;
413 }
414 for(i=0; i<N_HASH; i++){
415 memsys3Merge(&mem3.aiHash[i]);
416 }
417 for(i=0; i<MX_SMALL-1; i++){
418 memsys3Merge(&mem3.aiSmall[i]);
419 }
420 if( mem3.szMaster ){
421 memsys3Unlink(mem3.iMaster);
422 if( mem3.szMaster>=nBlock ){
423 return memsys3FromMaster(nBlock);
424 }
425 }
426 }
427
428 /* If none of the above worked, then we fail. */
429 return 0;
430 }
431
432 /*
433 ** Free an outstanding memory allocation.
434 **
435 ** This function assumes that the necessary mutexes, if any, are
436 ** already held by the caller. Hence "Unsafe".
437 */
438 void memsys3FreeUnsafe(void *pOld){
439 Mem3Block *p = (Mem3Block*)pOld;
440 int i;
441 u32 size, x;
442 assert( sqlite3_mutex_held(mem3.mutex) );
443 assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] );
444 i = p - mem3.aPool;
445 assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 );
446 size = mem3.aPool[i-1].u.hdr.size4x/4;
447 assert( i+size<=mem3.nPool+1 );
448 mem3.aPool[i-1].u.hdr.size4x &= ~1;
449 mem3.aPool[i+size-1].u.hdr.prevSize = size;
450 mem3.aPool[i+size-1].u.hdr.size4x &= ~2;
451 memsys3Link(i);
452
453 /* Try to expand the master using the newly freed chunk */
454 if( mem3.iMaster ){
455 while( (mem3.aPool[mem3.iMaster-1].u.hdr.size4x&2)==0 ){
456 size = mem3.aPool[mem3.iMaster-1].u.hdr.prevSize;
457 mem3.iMaster -= size;
458 mem3.szMaster += size;
459 memsys3Unlink(mem3.iMaster);
460 x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
461 mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
462 mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
463 }
464 x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
465 while( (mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x&1)==0 ){
466 memsys3Unlink(mem3.iMaster+mem3.szMaster);
467 mem3.szMaster += mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x/4;
468 mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
469 mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
470 }
471 }
472 }
473
474 /*
475 ** Return the size of an outstanding allocation, in bytes. The
476 ** size returned omits the 8-byte header overhead. This only
477 ** works for chunks that are currently checked out.
478 */
479 static int memsys3Size(void *p){
480 Mem3Block *pBlock;
481 if( p==0 ) return 0;
482 pBlock = (Mem3Block*)p;
483 assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
484 return (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
485 }
486
487 /*
488 ** Round up a request size to the next valid allocation size.
489 */
490 static int memsys3Roundup(int n){
491 if( n<=12 ){
492 return 12;
493 }else{
494 return ((n+11)&~7) - 4;
495 }
496 }
497
498 /*
499 ** Allocate nBytes of memory.
500 */
501 static void *memsys3Malloc(int nBytes){
502 sqlite3_int64 *p;
503 assert( nBytes>0 ); /* malloc.c filters out 0 byte requests */
504 memsys3Enter();
505 p = memsys3MallocUnsafe(nBytes);
506 memsys3Leave();
507 return (void*)p;
508 }
509
510 /*
511 ** Free memory.
512 */
513 void memsys3Free(void *pPrior){
514 assert( pPrior );
515 memsys3Enter();
516 memsys3FreeUnsafe(pPrior);
517 memsys3Leave();
518 }
519
520 /*
521 ** Change the size of an existing memory allocation
522 */
523 void *memsys3Realloc(void *pPrior, int nBytes){
524 int nOld;
525 void *p;
526 if( pPrior==0 ){
527 return sqlite3_malloc(nBytes);
528 }
529 if( nBytes<=0 ){
530 sqlite3_free(pPrior);
531 return 0;
532 }
533 nOld = memsys3Size(pPrior);
534 if( nBytes<=nOld && nBytes>=nOld-128 ){
535 return pPrior;
536 }
537 memsys3Enter();
538 p = memsys3MallocUnsafe(nBytes);
539 if( p ){
540 if( nOld<nBytes ){
541 memcpy(p, pPrior, nOld);
542 }else{
543 memcpy(p, pPrior, nBytes);
544 }
545 memsys3FreeUnsafe(pPrior);
546 }
547 memsys3Leave();
548 return p;
549 }
550
551 /*
552 ** Initialize this module.
553 */
554 static int memsys3Init(void *NotUsed){
555 UNUSED_PARAMETER(NotUsed);
556 if( !sqlite3GlobalConfig.pHeap ){
557 return SQLITE_ERROR;
558 }
559
560 /* Store a pointer to the memory block in global structure mem3. */
561 assert( sizeof(Mem3Block)==8 );
562 mem3.aPool = (Mem3Block *)sqlite3GlobalConfig.pHeap;
563 mem3.nPool = (sqlite3GlobalConfig.nHeap / sizeof(Mem3Block)) - 2;
564
565 /* Initialize the master block. */
566 mem3.szMaster = mem3.nPool;
567 mem3.mnMaster = mem3.szMaster;
568 mem3.iMaster = 1;
569 mem3.aPool[0].u.hdr.size4x = (mem3.szMaster<<2) + 2;
570 mem3.aPool[mem3.nPool].u.hdr.prevSize = mem3.nPool;
571 mem3.aPool[mem3.nPool].u.hdr.size4x = 1;
572
573 return SQLITE_OK;
574 }
575
576 /*
577 ** Deinitialize this module.
578 */
579 static void memsys3Shutdown(void *NotUsed){
580 UNUSED_PARAMETER(NotUsed);
581 return;
582 }
583
584
585
586 /*
587 ** Open the file indicated and write a log of all unfreed memory
588 ** allocations into that log.
589 */
590 void sqlite3Memsys3Dump(const char *zFilename){
591 #ifdef SQLITE_DEBUG
592 FILE *out;
593 u32 i, j;
594 u32 size;
595 if( zFilename==0 || zFilename[0]==0 ){
596 out = stdout;
597 }else{
598 out = fopen(zFilename, "w");
599 if( out==0 ){
600 fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
601 zFilename);
602 return;
603 }
604 }
605 memsys3Enter();
606 fprintf(out, "CHUNKS:\n");
607 for(i=1; i<=mem3.nPool; i+=size/4){
608 size = mem3.aPool[i-1].u.hdr.size4x;
609 if( size/4<=1 ){
610 fprintf(out, "%p size error\n", &mem3.aPool[i]);
611 assert( 0 );
612 break;
613 }
614 if( (size&1)==0 && mem3.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
615 fprintf(out, "%p tail size does not match\n", &mem3.aPool[i]);
616 assert( 0 );
617 break;
618 }
619 if( ((mem3.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
620 fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]);
621 assert( 0 );
622 break;
623 }
624 if( size&1 ){
625 fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8);
626 }else{
627 fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8,
628 i==mem3.iMaster ? " **master**" : "");
629 }
630 }
631 for(i=0; i<MX_SMALL-1; i++){
632 if( mem3.aiSmall[i]==0 ) continue;
633 fprintf(out, "small(%2d):", i);
634 for(j = mem3.aiSmall[i]; j>0; j=mem3.aPool[j].u.list.next){
635 fprintf(out, " %p(%d)", &mem3.aPool[j],
636 (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
637 }
638 fprintf(out, "\n");
639 }
640 for(i=0; i<N_HASH; i++){
641 if( mem3.aiHash[i]==0 ) continue;
642 fprintf(out, "hash(%2d):", i);
643 for(j = mem3.aiHash[i]; j>0; j=mem3.aPool[j].u.list.next){
644 fprintf(out, " %p(%d)", &mem3.aPool[j],
645 (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
646 }
647 fprintf(out, "\n");
648 }
649 fprintf(out, "master=%d\n", mem3.iMaster);
650 fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szMaster*8);
651 fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnMaster*8);
652 sqlite3_mutex_leave(mem3.mutex);
653 if( out==stdout ){
654 fflush(stdout);
655 }else{
656 fclose(out);
657 }
658 #else
659 UNUSED_PARAMETER(zFilename);
660 #endif
661 }
662
663 /*
664 ** This routine is the only routine in this file with external
665 ** linkage.
666 **
667 ** Populate the low-level memory allocation function pointers in
668 ** sqlite3GlobalConfig.m with pointers to the routines in this file. The
669 ** arguments specify the block of memory to manage.
670 **
671 ** This routine is only called by sqlite3_config(), and therefore
672 ** is not required to be threadsafe (it is not).
673 */
674 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){
675 static const sqlite3_mem_methods mempoolMethods = {
676 memsys3Malloc,
677 memsys3Free,
678 memsys3Realloc,
679 memsys3Size,
680 memsys3Roundup,
681 memsys3Init,
682 memsys3Shutdown,
683 0
684 };
685 return &mempoolMethods;
686 }
687
688 #endif /* SQLITE_ENABLE_MEMSYS3 */
OLDNEW
« no previous file with comments | « third_party/sqlite/src/mem2.c ('k') | third_party/sqlite/src/mem5.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698