| OLD | NEW | 
 | (Empty) | 
|    1 /* |  | 
|    2 ** 2007 October 14 |  | 
|    3 ** |  | 
|    4 ** The author disclaims copyright to this source code.  In place of |  | 
|    5 ** a legal notice, here is a blessing: |  | 
|    6 ** |  | 
|    7 **    May you do good and not evil. |  | 
|    8 **    May you find forgiveness for yourself and forgive others. |  | 
|    9 **    May you share freely, never taking more than you give. |  | 
|   10 ** |  | 
|   11 ************************************************************************* |  | 
|   12 ** This file contains the C functions that implement a memory |  | 
|   13 ** allocation subsystem for use by SQLite.  |  | 
|   14 ** |  | 
|   15 ** This version of the memory allocation subsystem omits all |  | 
|   16 ** use of malloc(). The SQLite user supplies a block of memory |  | 
|   17 ** before calling sqlite3_initialize() from which allocations |  | 
|   18 ** are made and returned by the xMalloc() and xRealloc()  |  | 
|   19 ** implementations. Once sqlite3_initialize() has been called, |  | 
|   20 ** the amount of memory available to SQLite is fixed and cannot |  | 
|   21 ** be changed. |  | 
|   22 ** |  | 
|   23 ** This version of the memory allocation subsystem is included |  | 
|   24 ** in the build only if SQLITE_ENABLE_MEMSYS3 is defined. |  | 
|   25 ** |  | 
|   26 ** $Id: mem3.c,v 1.25 2008/11/19 16:52:44 danielk1977 Exp $ |  | 
|   27 */ |  | 
|   28 #include "sqliteInt.h" |  | 
|   29  |  | 
|   30 /* |  | 
|   31 ** This version of the memory allocator is only built into the library |  | 
|   32 ** SQLITE_ENABLE_MEMSYS3 is defined. Defining this symbol does not |  | 
|   33 ** mean that the library will use a memory-pool by default, just that |  | 
|   34 ** it is available. The mempool allocator is activated by calling |  | 
|   35 ** sqlite3_config(). |  | 
|   36 */ |  | 
|   37 #ifdef SQLITE_ENABLE_MEMSYS3 |  | 
|   38  |  | 
|   39 /* |  | 
|   40 ** Maximum size (in Mem3Blocks) of a "small" chunk. |  | 
|   41 */ |  | 
|   42 #define MX_SMALL 10 |  | 
|   43  |  | 
|   44  |  | 
|   45 /* |  | 
|   46 ** Number of freelist hash slots |  | 
|   47 */ |  | 
|   48 #define N_HASH  61 |  | 
|   49  |  | 
|   50 /* |  | 
|   51 ** A memory allocation (also called a "chunk") consists of two or  |  | 
|   52 ** more blocks where each block is 8 bytes.  The first 8 bytes are  |  | 
|   53 ** a header that is not returned to the user. |  | 
|   54 ** |  | 
|   55 ** A chunk is two or more blocks that is either checked out or |  | 
|   56 ** free.  The first block has format u.hdr.  u.hdr.size4x is 4 times the |  | 
|   57 ** size of the allocation in blocks if the allocation is free. |  | 
|   58 ** The u.hdr.size4x&1 bit is true if the chunk is checked out and |  | 
|   59 ** false if the chunk is on the freelist.  The u.hdr.size4x&2 bit |  | 
|   60 ** is true if the previous chunk is checked out and false if the |  | 
|   61 ** previous chunk is free.  The u.hdr.prevSize field is the size of |  | 
|   62 ** the previous chunk in blocks if the previous chunk is on the |  | 
|   63 ** freelist. If the previous chunk is checked out, then |  | 
|   64 ** u.hdr.prevSize can be part of the data for that chunk and should |  | 
|   65 ** not be read or written. |  | 
|   66 ** |  | 
|   67 ** We often identify a chunk by its index in mem3.aPool[].  When |  | 
|   68 ** this is done, the chunk index refers to the second block of |  | 
|   69 ** the chunk.  In this way, the first chunk has an index of 1. |  | 
|   70 ** A chunk index of 0 means "no such chunk" and is the equivalent |  | 
|   71 ** of a NULL pointer. |  | 
|   72 ** |  | 
|   73 ** The second block of free chunks is of the form u.list.  The |  | 
|   74 ** two fields form a double-linked list of chunks of related sizes. |  | 
|   75 ** Pointers to the head of the list are stored in mem3.aiSmall[]  |  | 
|   76 ** for smaller chunks and mem3.aiHash[] for larger chunks. |  | 
|   77 ** |  | 
|   78 ** The second block of a chunk is user data if the chunk is checked  |  | 
|   79 ** out.  If a chunk is checked out, the user data may extend into |  | 
|   80 ** the u.hdr.prevSize value of the following chunk. |  | 
|   81 */ |  | 
|   82 typedef struct Mem3Block Mem3Block; |  | 
|   83 struct Mem3Block { |  | 
|   84   union { |  | 
|   85     struct { |  | 
|   86       u32 prevSize;   /* Size of previous chunk in Mem3Block elements */ |  | 
|   87       u32 size4x;     /* 4x the size of current chunk in Mem3Block elements */ |  | 
|   88     } hdr; |  | 
|   89     struct { |  | 
|   90       u32 next;       /* Index in mem3.aPool[] of next free chunk */ |  | 
|   91       u32 prev;       /* Index in mem3.aPool[] of previous free chunk */ |  | 
|   92     } list; |  | 
|   93   } u; |  | 
|   94 }; |  | 
|   95  |  | 
|   96 /* |  | 
|   97 ** All of the static variables used by this module are collected |  | 
|   98 ** into a single structure named "mem3".  This is to keep the |  | 
|   99 ** static variables organized and to reduce namespace pollution |  | 
|  100 ** when this module is combined with other in the amalgamation. |  | 
|  101 */ |  | 
|  102 static SQLITE_WSD struct Mem3Global { |  | 
|  103   /* |  | 
|  104   ** Memory available for allocation. nPool is the size of the array |  | 
|  105   ** (in Mem3Blocks) pointed to by aPool less 2. |  | 
|  106   */ |  | 
|  107   u32 nPool; |  | 
|  108   Mem3Block *aPool; |  | 
|  109  |  | 
|  110   /* |  | 
|  111   ** True if we are evaluating an out-of-memory callback. |  | 
|  112   */ |  | 
|  113   int alarmBusy; |  | 
|  114    |  | 
|  115   /* |  | 
|  116   ** Mutex to control access to the memory allocation subsystem. |  | 
|  117   */ |  | 
|  118   sqlite3_mutex *mutex; |  | 
|  119    |  | 
|  120   /* |  | 
|  121   ** The minimum amount of free space that we have seen. |  | 
|  122   */ |  | 
|  123   u32 mnMaster; |  | 
|  124  |  | 
|  125   /* |  | 
|  126   ** iMaster is the index of the master chunk.  Most new allocations |  | 
|  127   ** occur off of this chunk.  szMaster is the size (in Mem3Blocks) |  | 
|  128   ** of the current master.  iMaster is 0 if there is not master chunk. |  | 
|  129   ** The master chunk is not in either the aiHash[] or aiSmall[]. |  | 
|  130   */ |  | 
|  131   u32 iMaster; |  | 
|  132   u32 szMaster; |  | 
|  133  |  | 
|  134   /* |  | 
|  135   ** Array of lists of free blocks according to the block size  |  | 
|  136   ** for smaller chunks, or a hash on the block size for larger |  | 
|  137   ** chunks. |  | 
|  138   */ |  | 
|  139   u32 aiSmall[MX_SMALL-1];   /* For sizes 2 through MX_SMALL, inclusive */ |  | 
|  140   u32 aiHash[N_HASH];        /* For sizes MX_SMALL+1 and larger */ |  | 
|  141 } mem3 = { 97535575 }; |  | 
|  142  |  | 
|  143 #define mem3 GLOBAL(struct Mem3Global, mem3) |  | 
|  144  |  | 
|  145 /* |  | 
|  146 ** Unlink the chunk at mem3.aPool[i] from list it is currently |  | 
|  147 ** on.  *pRoot is the list that i is a member of. |  | 
|  148 */ |  | 
|  149 static void memsys3UnlinkFromList(u32 i, u32 *pRoot){ |  | 
|  150   u32 next = mem3.aPool[i].u.list.next; |  | 
|  151   u32 prev = mem3.aPool[i].u.list.prev; |  | 
|  152   assert( sqlite3_mutex_held(mem3.mutex) ); |  | 
|  153   if( prev==0 ){ |  | 
|  154     *pRoot = next; |  | 
|  155   }else{ |  | 
|  156     mem3.aPool[prev].u.list.next = next; |  | 
|  157   } |  | 
|  158   if( next ){ |  | 
|  159     mem3.aPool[next].u.list.prev = prev; |  | 
|  160   } |  | 
|  161   mem3.aPool[i].u.list.next = 0; |  | 
|  162   mem3.aPool[i].u.list.prev = 0; |  | 
|  163 } |  | 
|  164  |  | 
|  165 /* |  | 
|  166 ** Unlink the chunk at index i from  |  | 
|  167 ** whatever list is currently a member of. |  | 
|  168 */ |  | 
|  169 static void memsys3Unlink(u32 i){ |  | 
|  170   u32 size, hash; |  | 
|  171   assert( sqlite3_mutex_held(mem3.mutex) ); |  | 
|  172   assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 ); |  | 
|  173   assert( i>=1 ); |  | 
|  174   size = mem3.aPool[i-1].u.hdr.size4x/4; |  | 
|  175   assert( size==mem3.aPool[i+size-1].u.hdr.prevSize ); |  | 
|  176   assert( size>=2 ); |  | 
|  177   if( size <= MX_SMALL ){ |  | 
|  178     memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]); |  | 
|  179   }else{ |  | 
|  180     hash = size % N_HASH; |  | 
|  181     memsys3UnlinkFromList(i, &mem3.aiHash[hash]); |  | 
|  182   } |  | 
|  183 } |  | 
|  184  |  | 
|  185 /* |  | 
|  186 ** Link the chunk at mem3.aPool[i] so that is on the list rooted |  | 
|  187 ** at *pRoot. |  | 
|  188 */ |  | 
|  189 static void memsys3LinkIntoList(u32 i, u32 *pRoot){ |  | 
|  190   assert( sqlite3_mutex_held(mem3.mutex) ); |  | 
|  191   mem3.aPool[i].u.list.next = *pRoot; |  | 
|  192   mem3.aPool[i].u.list.prev = 0; |  | 
|  193   if( *pRoot ){ |  | 
|  194     mem3.aPool[*pRoot].u.list.prev = i; |  | 
|  195   } |  | 
|  196   *pRoot = i; |  | 
|  197 } |  | 
|  198  |  | 
|  199 /* |  | 
|  200 ** Link the chunk at index i into either the appropriate |  | 
|  201 ** small chunk list, or into the large chunk hash table. |  | 
|  202 */ |  | 
|  203 static void memsys3Link(u32 i){ |  | 
|  204   u32 size, hash; |  | 
|  205   assert( sqlite3_mutex_held(mem3.mutex) ); |  | 
|  206   assert( i>=1 ); |  | 
|  207   assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 ); |  | 
|  208   size = mem3.aPool[i-1].u.hdr.size4x/4; |  | 
|  209   assert( size==mem3.aPool[i+size-1].u.hdr.prevSize ); |  | 
|  210   assert( size>=2 ); |  | 
|  211   if( size <= MX_SMALL ){ |  | 
|  212     memsys3LinkIntoList(i, &mem3.aiSmall[size-2]); |  | 
|  213   }else{ |  | 
|  214     hash = size % N_HASH; |  | 
|  215     memsys3LinkIntoList(i, &mem3.aiHash[hash]); |  | 
|  216   } |  | 
|  217 } |  | 
|  218  |  | 
|  219 /* |  | 
|  220 ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex |  | 
|  221 ** will already be held (obtained by code in malloc.c) if |  | 
|  222 ** sqlite3GlobalConfig.bMemStat is true. |  | 
|  223 */ |  | 
|  224 static void memsys3Enter(void){ |  | 
|  225   if( sqlite3GlobalConfig.bMemstat==0 && mem3.mutex==0 ){ |  | 
|  226     mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); |  | 
|  227   } |  | 
|  228   sqlite3_mutex_enter(mem3.mutex); |  | 
|  229 } |  | 
|  230 static void memsys3Leave(void){ |  | 
|  231   sqlite3_mutex_leave(mem3.mutex); |  | 
|  232 } |  | 
|  233  |  | 
|  234 /* |  | 
|  235 ** Called when we are unable to satisfy an allocation of nBytes. |  | 
|  236 */ |  | 
|  237 static void memsys3OutOfMemory(int nByte){ |  | 
|  238   if( !mem3.alarmBusy ){ |  | 
|  239     mem3.alarmBusy = 1; |  | 
|  240     assert( sqlite3_mutex_held(mem3.mutex) ); |  | 
|  241     sqlite3_mutex_leave(mem3.mutex); |  | 
|  242     sqlite3_release_memory(nByte); |  | 
|  243     sqlite3_mutex_enter(mem3.mutex); |  | 
|  244     mem3.alarmBusy = 0; |  | 
|  245   } |  | 
|  246 } |  | 
|  247  |  | 
|  248  |  | 
|  249 /* |  | 
|  250 ** Chunk i is a free chunk that has been unlinked.  Adjust its  |  | 
|  251 ** size parameters for check-out and return a pointer to the  |  | 
|  252 ** user portion of the chunk. |  | 
|  253 */ |  | 
|  254 static void *memsys3Checkout(u32 i, u32 nBlock){ |  | 
|  255   u32 x; |  | 
|  256   assert( sqlite3_mutex_held(mem3.mutex) ); |  | 
|  257   assert( i>=1 ); |  | 
|  258   assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ); |  | 
|  259   assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock ); |  | 
|  260   x = mem3.aPool[i-1].u.hdr.size4x; |  | 
|  261   mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2); |  | 
|  262   mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock; |  | 
|  263   mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2; |  | 
|  264   return &mem3.aPool[i]; |  | 
|  265 } |  | 
|  266  |  | 
|  267 /* |  | 
|  268 ** Carve a piece off of the end of the mem3.iMaster free chunk. |  | 
|  269 ** Return a pointer to the new allocation.  Or, if the master chunk |  | 
|  270 ** is not large enough, return 0. |  | 
|  271 */ |  | 
|  272 static void *memsys3FromMaster(u32 nBlock){ |  | 
|  273   assert( sqlite3_mutex_held(mem3.mutex) ); |  | 
|  274   assert( mem3.szMaster>=nBlock ); |  | 
|  275   if( nBlock>=mem3.szMaster-1 ){ |  | 
|  276     /* Use the entire master */ |  | 
|  277     void *p = memsys3Checkout(mem3.iMaster, mem3.szMaster); |  | 
|  278     mem3.iMaster = 0; |  | 
|  279     mem3.szMaster = 0; |  | 
|  280     mem3.mnMaster = 0; |  | 
|  281     return p; |  | 
|  282   }else{ |  | 
|  283     /* Split the master block.  Return the tail. */ |  | 
|  284     u32 newi, x; |  | 
|  285     newi = mem3.iMaster + mem3.szMaster - nBlock; |  | 
|  286     assert( newi > mem3.iMaster+1 ); |  | 
|  287     mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = nBlock; |  | 
|  288     mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x |= 2; |  | 
|  289     mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1; |  | 
|  290     mem3.szMaster -= nBlock; |  | 
|  291     mem3.aPool[newi-1].u.hdr.prevSize = mem3.szMaster; |  | 
|  292     x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2; |  | 
|  293     mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x; |  | 
|  294     if( mem3.szMaster < mem3.mnMaster ){ |  | 
|  295       mem3.mnMaster = mem3.szMaster; |  | 
|  296     } |  | 
|  297     return (void*)&mem3.aPool[newi]; |  | 
|  298   } |  | 
|  299 } |  | 
|  300  |  | 
|  301 /* |  | 
|  302 ** *pRoot is the head of a list of free chunks of the same size |  | 
|  303 ** or same size hash.  In other words, *pRoot is an entry in either |  | 
|  304 ** mem3.aiSmall[] or mem3.aiHash[].   |  | 
|  305 ** |  | 
|  306 ** This routine examines all entries on the given list and tries |  | 
|  307 ** to coalesce each entries with adjacent free chunks.   |  | 
|  308 ** |  | 
|  309 ** If it sees a chunk that is larger than mem3.iMaster, it replaces  |  | 
|  310 ** the current mem3.iMaster with the new larger chunk.  In order for |  | 
|  311 ** this mem3.iMaster replacement to work, the master chunk must be |  | 
|  312 ** linked into the hash tables.  That is not the normal state of |  | 
|  313 ** affairs, of course.  The calling routine must link the master |  | 
|  314 ** chunk before invoking this routine, then must unlink the (possibly |  | 
|  315 ** changed) master chunk once this routine has finished. |  | 
|  316 */ |  | 
|  317 static void memsys3Merge(u32 *pRoot){ |  | 
|  318   u32 iNext, prev, size, i, x; |  | 
|  319  |  | 
|  320   assert( sqlite3_mutex_held(mem3.mutex) ); |  | 
|  321   for(i=*pRoot; i>0; i=iNext){ |  | 
|  322     iNext = mem3.aPool[i].u.list.next; |  | 
|  323     size = mem3.aPool[i-1].u.hdr.size4x; |  | 
|  324     assert( (size&1)==0 ); |  | 
|  325     if( (size&2)==0 ){ |  | 
|  326       memsys3UnlinkFromList(i, pRoot); |  | 
|  327       assert( i > mem3.aPool[i-1].u.hdr.prevSize ); |  | 
|  328       prev = i - mem3.aPool[i-1].u.hdr.prevSize; |  | 
|  329       if( prev==iNext ){ |  | 
|  330         iNext = mem3.aPool[prev].u.list.next; |  | 
|  331       } |  | 
|  332       memsys3Unlink(prev); |  | 
|  333       size = i + size/4 - prev; |  | 
|  334       x = mem3.aPool[prev-1].u.hdr.size4x & 2; |  | 
|  335       mem3.aPool[prev-1].u.hdr.size4x = size*4 | x; |  | 
|  336       mem3.aPool[prev+size-1].u.hdr.prevSize = size; |  | 
|  337       memsys3Link(prev); |  | 
|  338       i = prev; |  | 
|  339     }else{ |  | 
|  340       size /= 4; |  | 
|  341     } |  | 
|  342     if( size>mem3.szMaster ){ |  | 
|  343       mem3.iMaster = i; |  | 
|  344       mem3.szMaster = size; |  | 
|  345     } |  | 
|  346   } |  | 
|  347 } |  | 
|  348  |  | 
|  349 /* |  | 
|  350 ** Return a block of memory of at least nBytes in size. |  | 
|  351 ** Return NULL if unable. |  | 
|  352 ** |  | 
|  353 ** This function assumes that the necessary mutexes, if any, are |  | 
|  354 ** already held by the caller. Hence "Unsafe". |  | 
|  355 */ |  | 
|  356 static void *memsys3MallocUnsafe(int nByte){ |  | 
|  357   u32 i; |  | 
|  358   u32 nBlock; |  | 
|  359   u32 toFree; |  | 
|  360  |  | 
|  361   assert( sqlite3_mutex_held(mem3.mutex) ); |  | 
|  362   assert( sizeof(Mem3Block)==8 ); |  | 
|  363   if( nByte<=12 ){ |  | 
|  364     nBlock = 2; |  | 
|  365   }else{ |  | 
|  366     nBlock = (nByte + 11)/8; |  | 
|  367   } |  | 
|  368   assert( nBlock>=2 ); |  | 
|  369  |  | 
|  370   /* STEP 1: |  | 
|  371   ** Look for an entry of the correct size in either the small |  | 
|  372   ** chunk table or in the large chunk hash table.  This is |  | 
|  373   ** successful most of the time (about 9 times out of 10). |  | 
|  374   */ |  | 
|  375   if( nBlock <= MX_SMALL ){ |  | 
|  376     i = mem3.aiSmall[nBlock-2]; |  | 
|  377     if( i>0 ){ |  | 
|  378       memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]); |  | 
|  379       return memsys3Checkout(i, nBlock); |  | 
|  380     } |  | 
|  381   }else{ |  | 
|  382     int hash = nBlock % N_HASH; |  | 
|  383     for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){ |  | 
|  384       if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){ |  | 
|  385         memsys3UnlinkFromList(i, &mem3.aiHash[hash]); |  | 
|  386         return memsys3Checkout(i, nBlock); |  | 
|  387       } |  | 
|  388     } |  | 
|  389   } |  | 
|  390  |  | 
|  391   /* STEP 2: |  | 
|  392   ** Try to satisfy the allocation by carving a piece off of the end |  | 
|  393   ** of the master chunk.  This step usually works if step 1 fails. |  | 
|  394   */ |  | 
|  395   if( mem3.szMaster>=nBlock ){ |  | 
|  396     return memsys3FromMaster(nBlock); |  | 
|  397   } |  | 
|  398  |  | 
|  399  |  | 
|  400   /* STEP 3:   |  | 
|  401   ** Loop through the entire memory pool.  Coalesce adjacent free |  | 
|  402   ** chunks.  Recompute the master chunk as the largest free chunk. |  | 
|  403   ** Then try again to satisfy the allocation by carving a piece off |  | 
|  404   ** of the end of the master chunk.  This step happens very |  | 
|  405   ** rarely (we hope!) |  | 
|  406   */ |  | 
|  407   for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){ |  | 
|  408     memsys3OutOfMemory(toFree); |  | 
|  409     if( mem3.iMaster ){ |  | 
|  410       memsys3Link(mem3.iMaster); |  | 
|  411       mem3.iMaster = 0; |  | 
|  412       mem3.szMaster = 0; |  | 
|  413     } |  | 
|  414     for(i=0; i<N_HASH; i++){ |  | 
|  415       memsys3Merge(&mem3.aiHash[i]); |  | 
|  416     } |  | 
|  417     for(i=0; i<MX_SMALL-1; i++){ |  | 
|  418       memsys3Merge(&mem3.aiSmall[i]); |  | 
|  419     } |  | 
|  420     if( mem3.szMaster ){ |  | 
|  421       memsys3Unlink(mem3.iMaster); |  | 
|  422       if( mem3.szMaster>=nBlock ){ |  | 
|  423         return memsys3FromMaster(nBlock); |  | 
|  424       } |  | 
|  425     } |  | 
|  426   } |  | 
|  427  |  | 
|  428   /* If none of the above worked, then we fail. */ |  | 
|  429   return 0; |  | 
|  430 } |  | 
|  431  |  | 
|  432 /* |  | 
|  433 ** Free an outstanding memory allocation. |  | 
|  434 ** |  | 
|  435 ** This function assumes that the necessary mutexes, if any, are |  | 
|  436 ** already held by the caller. Hence "Unsafe". |  | 
|  437 */ |  | 
|  438 void memsys3FreeUnsafe(void *pOld){ |  | 
|  439   Mem3Block *p = (Mem3Block*)pOld; |  | 
|  440   int i; |  | 
|  441   u32 size, x; |  | 
|  442   assert( sqlite3_mutex_held(mem3.mutex) ); |  | 
|  443   assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] ); |  | 
|  444   i = p - mem3.aPool; |  | 
|  445   assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 ); |  | 
|  446   size = mem3.aPool[i-1].u.hdr.size4x/4; |  | 
|  447   assert( i+size<=mem3.nPool+1 ); |  | 
|  448   mem3.aPool[i-1].u.hdr.size4x &= ~1; |  | 
|  449   mem3.aPool[i+size-1].u.hdr.prevSize = size; |  | 
|  450   mem3.aPool[i+size-1].u.hdr.size4x &= ~2; |  | 
|  451   memsys3Link(i); |  | 
|  452  |  | 
|  453   /* Try to expand the master using the newly freed chunk */ |  | 
|  454   if( mem3.iMaster ){ |  | 
|  455     while( (mem3.aPool[mem3.iMaster-1].u.hdr.size4x&2)==0 ){ |  | 
|  456       size = mem3.aPool[mem3.iMaster-1].u.hdr.prevSize; |  | 
|  457       mem3.iMaster -= size; |  | 
|  458       mem3.szMaster += size; |  | 
|  459       memsys3Unlink(mem3.iMaster); |  | 
|  460       x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2; |  | 
|  461       mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x; |  | 
|  462       mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster; |  | 
|  463     } |  | 
|  464     x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2; |  | 
|  465     while( (mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x&1)==0 ){ |  | 
|  466       memsys3Unlink(mem3.iMaster+mem3.szMaster); |  | 
|  467       mem3.szMaster += mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x/4; |  | 
|  468       mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x; |  | 
|  469       mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster; |  | 
|  470     } |  | 
|  471   } |  | 
|  472 } |  | 
|  473  |  | 
|  474 /* |  | 
|  475 ** Return the size of an outstanding allocation, in bytes.  The |  | 
|  476 ** size returned omits the 8-byte header overhead.  This only |  | 
|  477 ** works for chunks that are currently checked out. |  | 
|  478 */ |  | 
|  479 static int memsys3Size(void *p){ |  | 
|  480   Mem3Block *pBlock; |  | 
|  481   if( p==0 ) return 0; |  | 
|  482   pBlock = (Mem3Block*)p; |  | 
|  483   assert( (pBlock[-1].u.hdr.size4x&1)!=0 ); |  | 
|  484   return (pBlock[-1].u.hdr.size4x&~3)*2 - 4; |  | 
|  485 } |  | 
|  486  |  | 
|  487 /* |  | 
|  488 ** Round up a request size to the next valid allocation size. |  | 
|  489 */ |  | 
|  490 static int memsys3Roundup(int n){ |  | 
|  491   if( n<=12 ){ |  | 
|  492     return 12; |  | 
|  493   }else{ |  | 
|  494     return ((n+11)&~7) - 4; |  | 
|  495   } |  | 
|  496 } |  | 
|  497  |  | 
|  498 /* |  | 
|  499 ** Allocate nBytes of memory. |  | 
|  500 */ |  | 
|  501 static void *memsys3Malloc(int nBytes){ |  | 
|  502   sqlite3_int64 *p; |  | 
|  503   assert( nBytes>0 );          /* malloc.c filters out 0 byte requests */ |  | 
|  504   memsys3Enter(); |  | 
|  505   p = memsys3MallocUnsafe(nBytes); |  | 
|  506   memsys3Leave(); |  | 
|  507   return (void*)p;  |  | 
|  508 } |  | 
|  509  |  | 
|  510 /* |  | 
|  511 ** Free memory. |  | 
|  512 */ |  | 
|  513 void memsys3Free(void *pPrior){ |  | 
|  514   assert( pPrior ); |  | 
|  515   memsys3Enter(); |  | 
|  516   memsys3FreeUnsafe(pPrior); |  | 
|  517   memsys3Leave(); |  | 
|  518 } |  | 
|  519  |  | 
|  520 /* |  | 
|  521 ** Change the size of an existing memory allocation |  | 
|  522 */ |  | 
|  523 void *memsys3Realloc(void *pPrior, int nBytes){ |  | 
|  524   int nOld; |  | 
|  525   void *p; |  | 
|  526   if( pPrior==0 ){ |  | 
|  527     return sqlite3_malloc(nBytes); |  | 
|  528   } |  | 
|  529   if( nBytes<=0 ){ |  | 
|  530     sqlite3_free(pPrior); |  | 
|  531     return 0; |  | 
|  532   } |  | 
|  533   nOld = memsys3Size(pPrior); |  | 
|  534   if( nBytes<=nOld && nBytes>=nOld-128 ){ |  | 
|  535     return pPrior; |  | 
|  536   } |  | 
|  537   memsys3Enter(); |  | 
|  538   p = memsys3MallocUnsafe(nBytes); |  | 
|  539   if( p ){ |  | 
|  540     if( nOld<nBytes ){ |  | 
|  541       memcpy(p, pPrior, nOld); |  | 
|  542     }else{ |  | 
|  543       memcpy(p, pPrior, nBytes); |  | 
|  544     } |  | 
|  545     memsys3FreeUnsafe(pPrior); |  | 
|  546   } |  | 
|  547   memsys3Leave(); |  | 
|  548   return p; |  | 
|  549 } |  | 
|  550  |  | 
|  551 /* |  | 
|  552 ** Initialize this module. |  | 
|  553 */ |  | 
|  554 static int memsys3Init(void *NotUsed){ |  | 
|  555   UNUSED_PARAMETER(NotUsed); |  | 
|  556   if( !sqlite3GlobalConfig.pHeap ){ |  | 
|  557     return SQLITE_ERROR; |  | 
|  558   } |  | 
|  559  |  | 
|  560   /* Store a pointer to the memory block in global structure mem3. */ |  | 
|  561   assert( sizeof(Mem3Block)==8 ); |  | 
|  562   mem3.aPool = (Mem3Block *)sqlite3GlobalConfig.pHeap; |  | 
|  563   mem3.nPool = (sqlite3GlobalConfig.nHeap / sizeof(Mem3Block)) - 2; |  | 
|  564  |  | 
|  565   /* Initialize the master block. */ |  | 
|  566   mem3.szMaster = mem3.nPool; |  | 
|  567   mem3.mnMaster = mem3.szMaster; |  | 
|  568   mem3.iMaster = 1; |  | 
|  569   mem3.aPool[0].u.hdr.size4x = (mem3.szMaster<<2) + 2; |  | 
|  570   mem3.aPool[mem3.nPool].u.hdr.prevSize = mem3.nPool; |  | 
|  571   mem3.aPool[mem3.nPool].u.hdr.size4x = 1; |  | 
|  572  |  | 
|  573   return SQLITE_OK; |  | 
|  574 } |  | 
|  575  |  | 
|  576 /* |  | 
|  577 ** Deinitialize this module. |  | 
|  578 */ |  | 
|  579 static void memsys3Shutdown(void *NotUsed){ |  | 
|  580   UNUSED_PARAMETER(NotUsed); |  | 
|  581   return; |  | 
|  582 } |  | 
|  583  |  | 
|  584  |  | 
|  585  |  | 
|  586 /* |  | 
|  587 ** Open the file indicated and write a log of all unfreed memory  |  | 
|  588 ** allocations into that log. |  | 
|  589 */ |  | 
|  590 void sqlite3Memsys3Dump(const char *zFilename){ |  | 
|  591 #ifdef SQLITE_DEBUG |  | 
|  592   FILE *out; |  | 
|  593   u32 i, j; |  | 
|  594   u32 size; |  | 
|  595   if( zFilename==0 || zFilename[0]==0 ){ |  | 
|  596     out = stdout; |  | 
|  597   }else{ |  | 
|  598     out = fopen(zFilename, "w"); |  | 
|  599     if( out==0 ){ |  | 
|  600       fprintf(stderr, "** Unable to output memory debug output log: %s **\n", |  | 
|  601                       zFilename); |  | 
|  602       return; |  | 
|  603     } |  | 
|  604   } |  | 
|  605   memsys3Enter(); |  | 
|  606   fprintf(out, "CHUNKS:\n"); |  | 
|  607   for(i=1; i<=mem3.nPool; i+=size/4){ |  | 
|  608     size = mem3.aPool[i-1].u.hdr.size4x; |  | 
|  609     if( size/4<=1 ){ |  | 
|  610       fprintf(out, "%p size error\n", &mem3.aPool[i]); |  | 
|  611       assert( 0 ); |  | 
|  612       break; |  | 
|  613     } |  | 
|  614     if( (size&1)==0 && mem3.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){ |  | 
|  615       fprintf(out, "%p tail size does not match\n", &mem3.aPool[i]); |  | 
|  616       assert( 0 ); |  | 
|  617       break; |  | 
|  618     } |  | 
|  619     if( ((mem3.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){ |  | 
|  620       fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]); |  | 
|  621       assert( 0 ); |  | 
|  622       break; |  | 
|  623     } |  | 
|  624     if( size&1 ){ |  | 
|  625       fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8); |  | 
|  626     }else{ |  | 
|  627       fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8, |  | 
|  628                   i==mem3.iMaster ? " **master**" : ""); |  | 
|  629     } |  | 
|  630   } |  | 
|  631   for(i=0; i<MX_SMALL-1; i++){ |  | 
|  632     if( mem3.aiSmall[i]==0 ) continue; |  | 
|  633     fprintf(out, "small(%2d):", i); |  | 
|  634     for(j = mem3.aiSmall[i]; j>0; j=mem3.aPool[j].u.list.next){ |  | 
|  635       fprintf(out, " %p(%d)", &mem3.aPool[j], |  | 
|  636               (mem3.aPool[j-1].u.hdr.size4x/4)*8-8); |  | 
|  637     } |  | 
|  638     fprintf(out, "\n");  |  | 
|  639   } |  | 
|  640   for(i=0; i<N_HASH; i++){ |  | 
|  641     if( mem3.aiHash[i]==0 ) continue; |  | 
|  642     fprintf(out, "hash(%2d):", i); |  | 
|  643     for(j = mem3.aiHash[i]; j>0; j=mem3.aPool[j].u.list.next){ |  | 
|  644       fprintf(out, " %p(%d)", &mem3.aPool[j], |  | 
|  645               (mem3.aPool[j-1].u.hdr.size4x/4)*8-8); |  | 
|  646     } |  | 
|  647     fprintf(out, "\n");  |  | 
|  648   } |  | 
|  649   fprintf(out, "master=%d\n", mem3.iMaster); |  | 
|  650   fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szMaster*8); |  | 
|  651   fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnMaster*8); |  | 
|  652   sqlite3_mutex_leave(mem3.mutex); |  | 
|  653   if( out==stdout ){ |  | 
|  654     fflush(stdout); |  | 
|  655   }else{ |  | 
|  656     fclose(out); |  | 
|  657   } |  | 
|  658 #else |  | 
|  659   UNUSED_PARAMETER(zFilename); |  | 
|  660 #endif |  | 
|  661 } |  | 
|  662  |  | 
|  663 /* |  | 
|  664 ** This routine is the only routine in this file with external  |  | 
|  665 ** linkage. |  | 
|  666 ** |  | 
|  667 ** Populate the low-level memory allocation function pointers in |  | 
|  668 ** sqlite3GlobalConfig.m with pointers to the routines in this file. The |  | 
|  669 ** arguments specify the block of memory to manage. |  | 
|  670 ** |  | 
|  671 ** This routine is only called by sqlite3_config(), and therefore |  | 
|  672 ** is not required to be threadsafe (it is not). |  | 
|  673 */ |  | 
|  674 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){ |  | 
|  675   static const sqlite3_mem_methods mempoolMethods = { |  | 
|  676      memsys3Malloc, |  | 
|  677      memsys3Free, |  | 
|  678      memsys3Realloc, |  | 
|  679      memsys3Size, |  | 
|  680      memsys3Roundup, |  | 
|  681      memsys3Init, |  | 
|  682      memsys3Shutdown, |  | 
|  683      0 |  | 
|  684   }; |  | 
|  685   return &mempoolMethods; |  | 
|  686 } |  | 
|  687  |  | 
|  688 #endif /* SQLITE_ENABLE_MEMSYS3 */ |  | 
| OLD | NEW |