Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(426)

Side by Side Diff: third_party/sqlite/src/malloc.c

Issue 3108030: Move bundled copy of sqlite one level deeper to better separate it... (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src/
Patch Set: Created 10 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « third_party/sqlite/src/main.mk ('k') | third_party/sqlite/src/manifest » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** Memory allocation functions used throughout sqlite.
14 **
15 ** $Id: malloc.c,v 1.66 2009/07/17 11:44:07 drh Exp $
16 */
17 #include "sqliteInt.h"
18 #include <stdarg.h>
19
20 /*
21 ** This routine runs when the memory allocator sees that the
22 ** total memory allocation is about to exceed the soft heap
23 ** limit.
24 */
25 static void softHeapLimitEnforcer(
26 void *NotUsed,
27 sqlite3_int64 NotUsed2,
28 int allocSize
29 ){
30 UNUSED_PARAMETER2(NotUsed, NotUsed2);
31 sqlite3_release_memory(allocSize);
32 }
33
34 /*
35 ** Set the soft heap-size limit for the library. Passing a zero or
36 ** negative value indicates no limit.
37 */
38 void sqlite3_soft_heap_limit(int n){
39 sqlite3_uint64 iLimit;
40 int overage;
41 if( n<0 ){
42 iLimit = 0;
43 }else{
44 iLimit = n;
45 }
46 #ifndef SQLITE_OMIT_AUTOINIT
47 sqlite3_initialize();
48 #endif
49 if( iLimit>0 ){
50 sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, iLimit);
51 }else{
52 sqlite3MemoryAlarm(0, 0, 0);
53 }
54 overage = (int)(sqlite3_memory_used() - (i64)n);
55 if( overage>0 ){
56 sqlite3_release_memory(overage);
57 }
58 }
59
60 /*
61 ** Attempt to release up to n bytes of non-essential memory currently
62 ** held by SQLite. An example of non-essential memory is memory used to
63 ** cache database pages that are not currently in use.
64 */
65 int sqlite3_release_memory(int n){
66 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
67 int nRet = 0;
68 #if 0
69 nRet += sqlite3VdbeReleaseMemory(n);
70 #endif
71 nRet += sqlite3PcacheReleaseMemory(n-nRet);
72 return nRet;
73 #else
74 UNUSED_PARAMETER(n);
75 return SQLITE_OK;
76 #endif
77 }
78
79 /*
80 ** State information local to the memory allocation subsystem.
81 */
82 static SQLITE_WSD struct Mem0Global {
83 /* Number of free pages for scratch and page-cache memory */
84 u32 nScratchFree;
85 u32 nPageFree;
86
87 sqlite3_mutex *mutex; /* Mutex to serialize access */
88
89 /*
90 ** The alarm callback and its arguments. The mem0.mutex lock will
91 ** be held while the callback is running. Recursive calls into
92 ** the memory subsystem are allowed, but no new callbacks will be
93 ** issued.
94 */
95 sqlite3_int64 alarmThreshold;
96 void (*alarmCallback)(void*, sqlite3_int64,int);
97 void *alarmArg;
98
99 /*
100 ** Pointers to the end of sqlite3GlobalConfig.pScratch and
101 ** sqlite3GlobalConfig.pPage to a block of memory that records
102 ** which pages are available.
103 */
104 u32 *aScratchFree;
105 u32 *aPageFree;
106 } mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 };
107
108 #define mem0 GLOBAL(struct Mem0Global, mem0)
109
110 /*
111 ** Initialize the memory allocation subsystem.
112 */
113 int sqlite3MallocInit(void){
114 if( sqlite3GlobalConfig.m.xMalloc==0 ){
115 sqlite3MemSetDefault();
116 }
117 memset(&mem0, 0, sizeof(mem0));
118 if( sqlite3GlobalConfig.bCoreMutex ){
119 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
120 }
121 if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100
122 && sqlite3GlobalConfig.nScratch>=0 ){
123 int i;
124 sqlite3GlobalConfig.szScratch = ROUNDDOWN8(sqlite3GlobalConfig.szScratch-4);
125 mem0.aScratchFree = (u32*)&((char*)sqlite3GlobalConfig.pScratch)
126 [sqlite3GlobalConfig.szScratch*sqlite3GlobalConfig.nScratch];
127 for(i=0; i<sqlite3GlobalConfig.nScratch; i++){ mem0.aScratchFree[i] = i; }
128 mem0.nScratchFree = sqlite3GlobalConfig.nScratch;
129 }else{
130 sqlite3GlobalConfig.pScratch = 0;
131 sqlite3GlobalConfig.szScratch = 0;
132 }
133 if( sqlite3GlobalConfig.pPage && sqlite3GlobalConfig.szPage>=512
134 && sqlite3GlobalConfig.nPage>=1 ){
135 int i;
136 int overhead;
137 int sz = ROUNDDOWN8(sqlite3GlobalConfig.szPage);
138 int n = sqlite3GlobalConfig.nPage;
139 overhead = (4*n + sz - 1)/sz;
140 sqlite3GlobalConfig.nPage -= overhead;
141 mem0.aPageFree = (u32*)&((char*)sqlite3GlobalConfig.pPage)
142 [sqlite3GlobalConfig.szPage*sqlite3GlobalConfig.nPage];
143 for(i=0; i<sqlite3GlobalConfig.nPage; i++){ mem0.aPageFree[i] = i; }
144 mem0.nPageFree = sqlite3GlobalConfig.nPage;
145 }else{
146 sqlite3GlobalConfig.pPage = 0;
147 sqlite3GlobalConfig.szPage = 0;
148 }
149 return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
150 }
151
152 /*
153 ** Deinitialize the memory allocation subsystem.
154 */
155 void sqlite3MallocEnd(void){
156 if( sqlite3GlobalConfig.m.xShutdown ){
157 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
158 }
159 memset(&mem0, 0, sizeof(mem0));
160 }
161
162 /*
163 ** Return the amount of memory currently checked out.
164 */
165 sqlite3_int64 sqlite3_memory_used(void){
166 int n, mx;
167 sqlite3_int64 res;
168 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0);
169 res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */
170 return res;
171 }
172
173 /*
174 ** Return the maximum amount of memory that has ever been
175 ** checked out since either the beginning of this process
176 ** or since the most recent reset.
177 */
178 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
179 int n, mx;
180 sqlite3_int64 res;
181 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag);
182 res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */
183 return res;
184 }
185
186 /*
187 ** Change the alarm callback
188 */
189 int sqlite3MemoryAlarm(
190 void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
191 void *pArg,
192 sqlite3_int64 iThreshold
193 ){
194 sqlite3_mutex_enter(mem0.mutex);
195 mem0.alarmCallback = xCallback;
196 mem0.alarmArg = pArg;
197 mem0.alarmThreshold = iThreshold;
198 sqlite3_mutex_leave(mem0.mutex);
199 return SQLITE_OK;
200 }
201
202 #ifndef SQLITE_OMIT_DEPRECATED
203 /*
204 ** Deprecated external interface. Internal/core SQLite code
205 ** should call sqlite3MemoryAlarm.
206 */
207 int sqlite3_memory_alarm(
208 void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
209 void *pArg,
210 sqlite3_int64 iThreshold
211 ){
212 return sqlite3MemoryAlarm(xCallback, pArg, iThreshold);
213 }
214 #endif
215
216 /*
217 ** Trigger the alarm
218 */
219 static void sqlite3MallocAlarm(int nByte){
220 void (*xCallback)(void*,sqlite3_int64,int);
221 sqlite3_int64 nowUsed;
222 void *pArg;
223 if( mem0.alarmCallback==0 ) return;
224 xCallback = mem0.alarmCallback;
225 nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
226 pArg = mem0.alarmArg;
227 mem0.alarmCallback = 0;
228 sqlite3_mutex_leave(mem0.mutex);
229 xCallback(pArg, nowUsed, nByte);
230 sqlite3_mutex_enter(mem0.mutex);
231 mem0.alarmCallback = xCallback;
232 mem0.alarmArg = pArg;
233 }
234
235 /*
236 ** Do a memory allocation with statistics and alarms. Assume the
237 ** lock is already held.
238 */
239 static int mallocWithAlarm(int n, void **pp){
240 int nFull;
241 void *p;
242 assert( sqlite3_mutex_held(mem0.mutex) );
243 nFull = sqlite3GlobalConfig.m.xRoundup(n);
244 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
245 if( mem0.alarmCallback!=0 ){
246 int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
247 if( nUsed+nFull >= mem0.alarmThreshold ){
248 sqlite3MallocAlarm(nFull);
249 }
250 }
251 p = sqlite3GlobalConfig.m.xMalloc(nFull);
252 if( p==0 && mem0.alarmCallback ){
253 sqlite3MallocAlarm(nFull);
254 p = sqlite3GlobalConfig.m.xMalloc(nFull);
255 }
256 if( p ){
257 nFull = sqlite3MallocSize(p);
258 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull);
259 }
260 *pp = p;
261 return nFull;
262 }
263
264 /*
265 ** Allocate memory. This routine is like sqlite3_malloc() except that it
266 ** assumes the memory subsystem has already been initialized.
267 */
268 void *sqlite3Malloc(int n){
269 void *p;
270 if( n<=0 || n>=0x7fffff00 ){
271 /* A memory allocation of a number of bytes which is near the maximum
272 ** signed integer value might cause an integer overflow inside of the
273 ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving
274 ** 255 bytes of overhead. SQLite itself will never use anything near
275 ** this amount. The only way to reach the limit is with sqlite3_malloc() */
276 p = 0;
277 }else if( sqlite3GlobalConfig.bMemstat ){
278 sqlite3_mutex_enter(mem0.mutex);
279 mallocWithAlarm(n, &p);
280 sqlite3_mutex_leave(mem0.mutex);
281 }else{
282 p = sqlite3GlobalConfig.m.xMalloc(n);
283 }
284 return p;
285 }
286
287 /*
288 ** This version of the memory allocation is for use by the application.
289 ** First make sure the memory subsystem is initialized, then do the
290 ** allocation.
291 */
292 void *sqlite3_malloc(int n){
293 #ifndef SQLITE_OMIT_AUTOINIT
294 if( sqlite3_initialize() ) return 0;
295 #endif
296 return sqlite3Malloc(n);
297 }
298
299 /*
300 ** Each thread may only have a single outstanding allocation from
301 ** xScratchMalloc(). We verify this constraint in the single-threaded
302 ** case by setting scratchAllocOut to 1 when an allocation
303 ** is outstanding clearing it when the allocation is freed.
304 */
305 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
306 static int scratchAllocOut = 0;
307 #endif
308
309
310 /*
311 ** Allocate memory that is to be used and released right away.
312 ** This routine is similar to alloca() in that it is not intended
313 ** for situations where the memory might be held long-term. This
314 ** routine is intended to get memory to old large transient data
315 ** structures that would not normally fit on the stack of an
316 ** embedded processor.
317 */
318 void *sqlite3ScratchMalloc(int n){
319 void *p;
320 assert( n>0 );
321
322 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
323 /* Verify that no more than one scratch allocation per thread
324 ** is outstanding at one time. (This is only checked in the
325 ** single-threaded case since checking in the multi-threaded case
326 ** would be much more complicated.) */
327 assert( scratchAllocOut==0 );
328 #endif
329
330 if( sqlite3GlobalConfig.szScratch<n ){
331 goto scratch_overflow;
332 }else{
333 sqlite3_mutex_enter(mem0.mutex);
334 if( mem0.nScratchFree==0 ){
335 sqlite3_mutex_leave(mem0.mutex);
336 goto scratch_overflow;
337 }else{
338 int i;
339 i = mem0.aScratchFree[--mem0.nScratchFree];
340 i *= sqlite3GlobalConfig.szScratch;
341 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
342 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
343 sqlite3_mutex_leave(mem0.mutex);
344 p = (void*)&((char*)sqlite3GlobalConfig.pScratch)[i];
345 assert( (((u8*)p - (u8*)0) & 7)==0 );
346 }
347 }
348 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
349 scratchAllocOut = p!=0;
350 #endif
351
352 return p;
353
354 scratch_overflow:
355 if( sqlite3GlobalConfig.bMemstat ){
356 sqlite3_mutex_enter(mem0.mutex);
357 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
358 n = mallocWithAlarm(n, &p);
359 if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n);
360 sqlite3_mutex_leave(mem0.mutex);
361 }else{
362 p = sqlite3GlobalConfig.m.xMalloc(n);
363 }
364 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
365 scratchAllocOut = p!=0;
366 #endif
367 return p;
368 }
369 void sqlite3ScratchFree(void *p){
370 if( p ){
371
372 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
373 /* Verify that no more than one scratch allocation per thread
374 ** is outstanding at one time. (This is only checked in the
375 ** single-threaded case since checking in the multi-threaded case
376 ** would be much more complicated.) */
377 assert( scratchAllocOut==1 );
378 scratchAllocOut = 0;
379 #endif
380
381 if( sqlite3GlobalConfig.pScratch==0
382 || p<sqlite3GlobalConfig.pScratch
383 || p>=(void*)mem0.aScratchFree ){
384 if( sqlite3GlobalConfig.bMemstat ){
385 int iSize = sqlite3MallocSize(p);
386 sqlite3_mutex_enter(mem0.mutex);
387 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
388 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
389 sqlite3GlobalConfig.m.xFree(p);
390 sqlite3_mutex_leave(mem0.mutex);
391 }else{
392 sqlite3GlobalConfig.m.xFree(p);
393 }
394 }else{
395 int i;
396 i = (int)((u8*)p - (u8*)sqlite3GlobalConfig.pScratch);
397 i /= sqlite3GlobalConfig.szScratch;
398 assert( i>=0 && i<sqlite3GlobalConfig.nScratch );
399 sqlite3_mutex_enter(mem0.mutex);
400 assert( mem0.nScratchFree<(u32)sqlite3GlobalConfig.nScratch );
401 mem0.aScratchFree[mem0.nScratchFree++] = i;
402 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1);
403 sqlite3_mutex_leave(mem0.mutex);
404 }
405 }
406 }
407
408 /*
409 ** TRUE if p is a lookaside memory allocation from db
410 */
411 #ifndef SQLITE_OMIT_LOOKASIDE
412 static int isLookaside(sqlite3 *db, void *p){
413 return db && p && p>=db->lookaside.pStart && p<db->lookaside.pEnd;
414 }
415 #else
416 #define isLookaside(A,B) 0
417 #endif
418
419 /*
420 ** Return the size of a memory allocation previously obtained from
421 ** sqlite3Malloc() or sqlite3_malloc().
422 */
423 int sqlite3MallocSize(void *p){
424 return sqlite3GlobalConfig.m.xSize(p);
425 }
426 int sqlite3DbMallocSize(sqlite3 *db, void *p){
427 assert( db==0 || sqlite3_mutex_held(db->mutex) );
428 if( isLookaside(db, p) ){
429 return db->lookaside.sz;
430 }else{
431 return sqlite3GlobalConfig.m.xSize(p);
432 }
433 }
434
435 /*
436 ** Free memory previously obtained from sqlite3Malloc().
437 */
438 void sqlite3_free(void *p){
439 if( p==0 ) return;
440 if( sqlite3GlobalConfig.bMemstat ){
441 sqlite3_mutex_enter(mem0.mutex);
442 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
443 sqlite3GlobalConfig.m.xFree(p);
444 sqlite3_mutex_leave(mem0.mutex);
445 }else{
446 sqlite3GlobalConfig.m.xFree(p);
447 }
448 }
449
450 /*
451 ** Free memory that might be associated with a particular database
452 ** connection.
453 */
454 void sqlite3DbFree(sqlite3 *db, void *p){
455 assert( db==0 || sqlite3_mutex_held(db->mutex) );
456 if( isLookaside(db, p) ){
457 LookasideSlot *pBuf = (LookasideSlot*)p;
458 pBuf->pNext = db->lookaside.pFree;
459 db->lookaside.pFree = pBuf;
460 db->lookaside.nOut--;
461 }else{
462 sqlite3_free(p);
463 }
464 }
465
466 /*
467 ** Change the size of an existing memory allocation
468 */
469 void *sqlite3Realloc(void *pOld, int nBytes){
470 int nOld, nNew;
471 void *pNew;
472 if( pOld==0 ){
473 return sqlite3Malloc(nBytes);
474 }
475 if( nBytes<=0 ){
476 sqlite3_free(pOld);
477 return 0;
478 }
479 if( nBytes>=0x7fffff00 ){
480 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
481 return 0;
482 }
483 nOld = sqlite3MallocSize(pOld);
484 nNew = sqlite3GlobalConfig.m.xRoundup(nBytes);
485 if( nOld==nNew ){
486 pNew = pOld;
487 }else if( sqlite3GlobalConfig.bMemstat ){
488 sqlite3_mutex_enter(mem0.mutex);
489 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes);
490 if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >=
491 mem0.alarmThreshold ){
492 sqlite3MallocAlarm(nNew-nOld);
493 }
494 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
495 if( pNew==0 && mem0.alarmCallback ){
496 sqlite3MallocAlarm(nBytes);
497 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
498 }
499 if( pNew ){
500 nNew = sqlite3MallocSize(pNew);
501 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
502 }
503 sqlite3_mutex_leave(mem0.mutex);
504 }else{
505 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
506 }
507 return pNew;
508 }
509
510 /*
511 ** The public interface to sqlite3Realloc. Make sure that the memory
512 ** subsystem is initialized prior to invoking sqliteRealloc.
513 */
514 void *sqlite3_realloc(void *pOld, int n){
515 #ifndef SQLITE_OMIT_AUTOINIT
516 if( sqlite3_initialize() ) return 0;
517 #endif
518 return sqlite3Realloc(pOld, n);
519 }
520
521
522 /*
523 ** Allocate and zero memory.
524 */
525 void *sqlite3MallocZero(int n){
526 void *p = sqlite3Malloc(n);
527 if( p ){
528 memset(p, 0, n);
529 }
530 return p;
531 }
532
533 /*
534 ** Allocate and zero memory. If the allocation fails, make
535 ** the mallocFailed flag in the connection pointer.
536 */
537 void *sqlite3DbMallocZero(sqlite3 *db, int n){
538 void *p = sqlite3DbMallocRaw(db, n);
539 if( p ){
540 memset(p, 0, n);
541 }
542 return p;
543 }
544
545 /*
546 ** Allocate and zero memory. If the allocation fails, make
547 ** the mallocFailed flag in the connection pointer.
548 **
549 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc
550 ** failure on the same database connection) then always return 0.
551 ** Hence for a particular database connection, once malloc starts
552 ** failing, it fails consistently until mallocFailed is reset.
553 ** This is an important assumption. There are many places in the
554 ** code that do things like this:
555 **
556 ** int *a = (int*)sqlite3DbMallocRaw(db, 100);
557 ** int *b = (int*)sqlite3DbMallocRaw(db, 200);
558 ** if( b ) a[10] = 9;
559 **
560 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
561 ** that all prior mallocs (ex: "a") worked too.
562 */
563 void *sqlite3DbMallocRaw(sqlite3 *db, int n){
564 void *p;
565 assert( db==0 || sqlite3_mutex_held(db->mutex) );
566 #ifndef SQLITE_OMIT_LOOKASIDE
567 if( db ){
568 LookasideSlot *pBuf;
569 if( db->mallocFailed ){
570 return 0;
571 }
572 if( db->lookaside.bEnabled && n<=db->lookaside.sz
573 && (pBuf = db->lookaside.pFree)!=0 ){
574 db->lookaside.pFree = pBuf->pNext;
575 db->lookaside.nOut++;
576 if( db->lookaside.nOut>db->lookaside.mxOut ){
577 db->lookaside.mxOut = db->lookaside.nOut;
578 }
579 return (void*)pBuf;
580 }
581 }
582 #else
583 if( db && db->mallocFailed ){
584 return 0;
585 }
586 #endif
587 p = sqlite3Malloc(n);
588 if( !p && db ){
589 db->mallocFailed = 1;
590 }
591 return p;
592 }
593
594 /*
595 ** Resize the block of memory pointed to by p to n bytes. If the
596 ** resize fails, set the mallocFailed flag in the connection object.
597 */
598 void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){
599 void *pNew = 0;
600 assert( db!=0 );
601 assert( sqlite3_mutex_held(db->mutex) );
602 if( db->mallocFailed==0 ){
603 if( p==0 ){
604 return sqlite3DbMallocRaw(db, n);
605 }
606 if( isLookaside(db, p) ){
607 if( n<=db->lookaside.sz ){
608 return p;
609 }
610 pNew = sqlite3DbMallocRaw(db, n);
611 if( pNew ){
612 memcpy(pNew, p, db->lookaside.sz);
613 sqlite3DbFree(db, p);
614 }
615 }else{
616 pNew = sqlite3_realloc(p, n);
617 if( !pNew ){
618 db->mallocFailed = 1;
619 }
620 }
621 }
622 return pNew;
623 }
624
625 /*
626 ** Attempt to reallocate p. If the reallocation fails, then free p
627 ** and set the mallocFailed flag in the database connection.
628 */
629 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){
630 void *pNew;
631 pNew = sqlite3DbRealloc(db, p, n);
632 if( !pNew ){
633 sqlite3DbFree(db, p);
634 }
635 return pNew;
636 }
637
638 /*
639 ** Make a copy of a string in memory obtained from sqliteMalloc(). These
640 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
641 ** is because when memory debugging is turned on, these two functions are
642 ** called via macros that record the current file and line number in the
643 ** ThreadData structure.
644 */
645 char *sqlite3DbStrDup(sqlite3 *db, const char *z){
646 char *zNew;
647 size_t n;
648 if( z==0 ){
649 return 0;
650 }
651 n = sqlite3Strlen30(z) + 1;
652 assert( (n&0x7fffffff)==n );
653 zNew = sqlite3DbMallocRaw(db, (int)n);
654 if( zNew ){
655 memcpy(zNew, z, n);
656 }
657 return zNew;
658 }
659 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){
660 char *zNew;
661 if( z==0 ){
662 return 0;
663 }
664 assert( (n&0x7fffffff)==n );
665 zNew = sqlite3DbMallocRaw(db, n+1);
666 if( zNew ){
667 memcpy(zNew, z, n);
668 zNew[n] = 0;
669 }
670 return zNew;
671 }
672
673 /*
674 ** Create a string from the zFromat argument and the va_list that follows.
675 ** Store the string in memory obtained from sqliteMalloc() and make *pz
676 ** point to that string.
677 */
678 void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){
679 va_list ap;
680 char *z;
681
682 va_start(ap, zFormat);
683 z = sqlite3VMPrintf(db, zFormat, ap);
684 va_end(ap);
685 sqlite3DbFree(db, *pz);
686 *pz = z;
687 }
688
689
690 /*
691 ** This function must be called before exiting any API function (i.e.
692 ** returning control to the user) that has called sqlite3_malloc or
693 ** sqlite3_realloc.
694 **
695 ** The returned value is normally a copy of the second argument to this
696 ** function. However, if a malloc() failure has occurred since the previous
697 ** invocation SQLITE_NOMEM is returned instead.
698 **
699 ** If the first argument, db, is not NULL and a malloc() error has occurred,
700 ** then the connection error-code (the value returned by sqlite3_errcode())
701 ** is set to SQLITE_NOMEM.
702 */
703 int sqlite3ApiExit(sqlite3* db, int rc){
704 /* If the db handle is not NULL, then we must hold the connection handle
705 ** mutex here. Otherwise the read (and possible write) of db->mallocFailed
706 ** is unsafe, as is the call to sqlite3Error().
707 */
708 assert( !db || sqlite3_mutex_held(db->mutex) );
709 if( db && (db->mallocFailed || rc==SQLITE_IOERR_NOMEM) ){
710 sqlite3Error(db, SQLITE_NOMEM, 0);
711 db->mallocFailed = 0;
712 rc = SQLITE_NOMEM;
713 }
714 return rc & (db ? db->errMask : 0xff);
715 }
OLDNEW
« no previous file with comments | « third_party/sqlite/src/main.mk ('k') | third_party/sqlite/src/manifest » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698