Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(76)

Side by Side Diff: third_party/sqlite/src/expr.c

Issue 3108030: Move bundled copy of sqlite one level deeper to better separate it... (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src/
Patch Set: Created 10 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « third_party/sqlite/src/delete.c ('k') | third_party/sqlite/src/fault.c » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16
17 /*
18 ** Return the 'affinity' of the expression pExpr if any.
19 **
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
24 **
25 ** i.e. the WHERE clause expresssions in the following statements all
26 ** have an affinity:
27 **
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
32 */
33 char sqlite3ExprAffinity(Expr *pExpr){
34 int op = pExpr->op;
35 if( op==TK_SELECT ){
36 assert( pExpr->flags&EP_xIsSelect );
37 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
38 }
39 #ifndef SQLITE_OMIT_CAST
40 if( op==TK_CAST ){
41 assert( !ExprHasProperty(pExpr, EP_IntValue) );
42 return sqlite3AffinityType(pExpr->u.zToken);
43 }
44 #endif
45 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
46 && pExpr->pTab!=0
47 ){
48 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
49 ** a TK_COLUMN but was previously evaluated and cached in a register */
50 int j = pExpr->iColumn;
51 if( j<0 ) return SQLITE_AFF_INTEGER;
52 assert( pExpr->pTab && j<pExpr->pTab->nCol );
53 return pExpr->pTab->aCol[j].affinity;
54 }
55 return pExpr->affinity;
56 }
57
58 /*
59 ** Set the collating sequence for expression pExpr to be the collating
60 ** sequence named by pToken. Return a pointer to the revised expression.
61 ** The collating sequence is marked as "explicit" using the EP_ExpCollate
62 ** flag. An explicit collating sequence will override implicit
63 ** collating sequences.
64 */
65 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pCollName){
66 char *zColl = 0; /* Dequoted name of collation sequence */
67 CollSeq *pColl;
68 sqlite3 *db = pParse->db;
69 zColl = sqlite3NameFromToken(db, pCollName);
70 if( pExpr && zColl ){
71 pColl = sqlite3LocateCollSeq(pParse, zColl);
72 if( pColl ){
73 pExpr->pColl = pColl;
74 pExpr->flags |= EP_ExpCollate;
75 }
76 }
77 sqlite3DbFree(db, zColl);
78 return pExpr;
79 }
80
81 /*
82 ** Return the default collation sequence for the expression pExpr. If
83 ** there is no default collation type, return 0.
84 */
85 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
86 CollSeq *pColl = 0;
87 Expr *p = pExpr;
88 while( ALWAYS(p) ){
89 int op;
90 pColl = p->pColl;
91 if( pColl ) break;
92 op = p->op;
93 if( p->pTab!=0 && (
94 op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER
95 )){
96 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
97 ** a TK_COLUMN but was previously evaluated and cached in a register */
98 const char *zColl;
99 int j = p->iColumn;
100 if( j>=0 ){
101 sqlite3 *db = pParse->db;
102 zColl = p->pTab->aCol[j].zColl;
103 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
104 pExpr->pColl = pColl;
105 }
106 break;
107 }
108 if( op!=TK_CAST && op!=TK_UPLUS ){
109 break;
110 }
111 p = p->pLeft;
112 }
113 if( sqlite3CheckCollSeq(pParse, pColl) ){
114 pColl = 0;
115 }
116 return pColl;
117 }
118
119 /*
120 ** pExpr is an operand of a comparison operator. aff2 is the
121 ** type affinity of the other operand. This routine returns the
122 ** type affinity that should be used for the comparison operator.
123 */
124 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
125 char aff1 = sqlite3ExprAffinity(pExpr);
126 if( aff1 && aff2 ){
127 /* Both sides of the comparison are columns. If one has numeric
128 ** affinity, use that. Otherwise use no affinity.
129 */
130 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
131 return SQLITE_AFF_NUMERIC;
132 }else{
133 return SQLITE_AFF_NONE;
134 }
135 }else if( !aff1 && !aff2 ){
136 /* Neither side of the comparison is a column. Compare the
137 ** results directly.
138 */
139 return SQLITE_AFF_NONE;
140 }else{
141 /* One side is a column, the other is not. Use the columns affinity. */
142 assert( aff1==0 || aff2==0 );
143 return (aff1 + aff2);
144 }
145 }
146
147 /*
148 ** pExpr is a comparison operator. Return the type affinity that should
149 ** be applied to both operands prior to doing the comparison.
150 */
151 static char comparisonAffinity(Expr *pExpr){
152 char aff;
153 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
154 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
155 pExpr->op==TK_NE );
156 assert( pExpr->pLeft );
157 aff = sqlite3ExprAffinity(pExpr->pLeft);
158 if( pExpr->pRight ){
159 aff = sqlite3CompareAffinity(pExpr->pRight, aff);
160 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
161 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
162 }else if( !aff ){
163 aff = SQLITE_AFF_NONE;
164 }
165 return aff;
166 }
167
168 /*
169 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
170 ** idx_affinity is the affinity of an indexed column. Return true
171 ** if the index with affinity idx_affinity may be used to implement
172 ** the comparison in pExpr.
173 */
174 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
175 char aff = comparisonAffinity(pExpr);
176 switch( aff ){
177 case SQLITE_AFF_NONE:
178 return 1;
179 case SQLITE_AFF_TEXT:
180 return idx_affinity==SQLITE_AFF_TEXT;
181 default:
182 return sqlite3IsNumericAffinity(idx_affinity);
183 }
184 }
185
186 /*
187 ** Return the P5 value that should be used for a binary comparison
188 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
189 */
190 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
191 u8 aff = (char)sqlite3ExprAffinity(pExpr2);
192 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
193 return aff;
194 }
195
196 /*
197 ** Return a pointer to the collation sequence that should be used by
198 ** a binary comparison operator comparing pLeft and pRight.
199 **
200 ** If the left hand expression has a collating sequence type, then it is
201 ** used. Otherwise the collation sequence for the right hand expression
202 ** is used, or the default (BINARY) if neither expression has a collating
203 ** type.
204 **
205 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
206 ** it is not considered.
207 */
208 CollSeq *sqlite3BinaryCompareCollSeq(
209 Parse *pParse,
210 Expr *pLeft,
211 Expr *pRight
212 ){
213 CollSeq *pColl;
214 assert( pLeft );
215 if( pLeft->flags & EP_ExpCollate ){
216 assert( pLeft->pColl );
217 pColl = pLeft->pColl;
218 }else if( pRight && pRight->flags & EP_ExpCollate ){
219 assert( pRight->pColl );
220 pColl = pRight->pColl;
221 }else{
222 pColl = sqlite3ExprCollSeq(pParse, pLeft);
223 if( !pColl ){
224 pColl = sqlite3ExprCollSeq(pParse, pRight);
225 }
226 }
227 return pColl;
228 }
229
230 /*
231 ** Generate the operands for a comparison operation. Before
232 ** generating the code for each operand, set the EP_AnyAff
233 ** flag on the expression so that it will be able to used a
234 ** cached column value that has previously undergone an
235 ** affinity change.
236 */
237 static void codeCompareOperands(
238 Parse *pParse, /* Parsing and code generating context */
239 Expr *pLeft, /* The left operand */
240 int *pRegLeft, /* Register where left operand is stored */
241 int *pFreeLeft, /* Free this register when done */
242 Expr *pRight, /* The right operand */
243 int *pRegRight, /* Register where right operand is stored */
244 int *pFreeRight /* Write temp register for right operand there */
245 ){
246 while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft;
247 pLeft->flags |= EP_AnyAff;
248 *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft);
249 while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft;
250 pRight->flags |= EP_AnyAff;
251 *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight);
252 }
253
254 /*
255 ** Generate code for a comparison operator.
256 */
257 static int codeCompare(
258 Parse *pParse, /* The parsing (and code generating) context */
259 Expr *pLeft, /* The left operand */
260 Expr *pRight, /* The right operand */
261 int opcode, /* The comparison opcode */
262 int in1, int in2, /* Register holding operands */
263 int dest, /* Jump here if true. */
264 int jumpIfNull /* If true, jump if either operand is NULL */
265 ){
266 int p5;
267 int addr;
268 CollSeq *p4;
269
270 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
271 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
272 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
273 (void*)p4, P4_COLLSEQ);
274 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
275 if( (p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_NONE ){
276 sqlite3ExprCacheAffinityChange(pParse, in1, 1);
277 sqlite3ExprCacheAffinityChange(pParse, in2, 1);
278 }
279 return addr;
280 }
281
282 #if SQLITE_MAX_EXPR_DEPTH>0
283 /*
284 ** Check that argument nHeight is less than or equal to the maximum
285 ** expression depth allowed. If it is not, leave an error message in
286 ** pParse.
287 */
288 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
289 int rc = SQLITE_OK;
290 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
291 if( nHeight>mxHeight ){
292 sqlite3ErrorMsg(pParse,
293 "Expression tree is too large (maximum depth %d)", mxHeight
294 );
295 rc = SQLITE_ERROR;
296 }
297 return rc;
298 }
299
300 /* The following three functions, heightOfExpr(), heightOfExprList()
301 ** and heightOfSelect(), are used to determine the maximum height
302 ** of any expression tree referenced by the structure passed as the
303 ** first argument.
304 **
305 ** If this maximum height is greater than the current value pointed
306 ** to by pnHeight, the second parameter, then set *pnHeight to that
307 ** value.
308 */
309 static void heightOfExpr(Expr *p, int *pnHeight){
310 if( p ){
311 if( p->nHeight>*pnHeight ){
312 *pnHeight = p->nHeight;
313 }
314 }
315 }
316 static void heightOfExprList(ExprList *p, int *pnHeight){
317 if( p ){
318 int i;
319 for(i=0; i<p->nExpr; i++){
320 heightOfExpr(p->a[i].pExpr, pnHeight);
321 }
322 }
323 }
324 static void heightOfSelect(Select *p, int *pnHeight){
325 if( p ){
326 heightOfExpr(p->pWhere, pnHeight);
327 heightOfExpr(p->pHaving, pnHeight);
328 heightOfExpr(p->pLimit, pnHeight);
329 heightOfExpr(p->pOffset, pnHeight);
330 heightOfExprList(p->pEList, pnHeight);
331 heightOfExprList(p->pGroupBy, pnHeight);
332 heightOfExprList(p->pOrderBy, pnHeight);
333 heightOfSelect(p->pPrior, pnHeight);
334 }
335 }
336
337 /*
338 ** Set the Expr.nHeight variable in the structure passed as an
339 ** argument. An expression with no children, Expr.pList or
340 ** Expr.pSelect member has a height of 1. Any other expression
341 ** has a height equal to the maximum height of any other
342 ** referenced Expr plus one.
343 */
344 static void exprSetHeight(Expr *p){
345 int nHeight = 0;
346 heightOfExpr(p->pLeft, &nHeight);
347 heightOfExpr(p->pRight, &nHeight);
348 if( ExprHasProperty(p, EP_xIsSelect) ){
349 heightOfSelect(p->x.pSelect, &nHeight);
350 }else{
351 heightOfExprList(p->x.pList, &nHeight);
352 }
353 p->nHeight = nHeight + 1;
354 }
355
356 /*
357 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
358 ** the height is greater than the maximum allowed expression depth,
359 ** leave an error in pParse.
360 */
361 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
362 exprSetHeight(p);
363 sqlite3ExprCheckHeight(pParse, p->nHeight);
364 }
365
366 /*
367 ** Return the maximum height of any expression tree referenced
368 ** by the select statement passed as an argument.
369 */
370 int sqlite3SelectExprHeight(Select *p){
371 int nHeight = 0;
372 heightOfSelect(p, &nHeight);
373 return nHeight;
374 }
375 #else
376 #define exprSetHeight(y)
377 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
378
379 /*
380 ** This routine is the core allocator for Expr nodes.
381 **
382 ** Construct a new expression node and return a pointer to it. Memory
383 ** for this node and for the pToken argument is a single allocation
384 ** obtained from sqlite3DbMalloc(). The calling function
385 ** is responsible for making sure the node eventually gets freed.
386 **
387 ** If dequote is true, then the token (if it exists) is dequoted.
388 ** If dequote is false, no dequoting is performance. The deQuote
389 ** parameter is ignored if pToken is NULL or if the token does not
390 ** appear to be quoted. If the quotes were of the form "..." (double-quotes)
391 ** then the EP_DblQuoted flag is set on the expression node.
392 **
393 ** Special case: If op==TK_INTEGER and pToken points to a string that
394 ** can be translated into a 32-bit integer, then the token is not
395 ** stored in u.zToken. Instead, the integer values is written
396 ** into u.iValue and the EP_IntValue flag is set. No extra storage
397 ** is allocated to hold the integer text and the dequote flag is ignored.
398 */
399 Expr *sqlite3ExprAlloc(
400 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
401 int op, /* Expression opcode */
402 const Token *pToken, /* Token argument. Might be NULL */
403 int dequote /* True to dequote */
404 ){
405 Expr *pNew;
406 int nExtra = 0;
407 int iValue = 0;
408
409 if( pToken ){
410 if( op!=TK_INTEGER || pToken->z==0
411 || sqlite3GetInt32(pToken->z, &iValue)==0 ){
412 nExtra = pToken->n+1;
413 }
414 }
415 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
416 if( pNew ){
417 pNew->op = (u8)op;
418 pNew->iAgg = -1;
419 if( pToken ){
420 if( nExtra==0 ){
421 pNew->flags |= EP_IntValue;
422 pNew->u.iValue = iValue;
423 }else{
424 int c;
425 pNew->u.zToken = (char*)&pNew[1];
426 memcpy(pNew->u.zToken, pToken->z, pToken->n);
427 pNew->u.zToken[pToken->n] = 0;
428 if( dequote && nExtra>=3
429 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
430 sqlite3Dequote(pNew->u.zToken);
431 if( c=='"' ) pNew->flags |= EP_DblQuoted;
432 }
433 }
434 }
435 #if SQLITE_MAX_EXPR_DEPTH>0
436 pNew->nHeight = 1;
437 #endif
438 }
439 return pNew;
440 }
441
442 /*
443 ** Allocate a new expression node from a zero-terminated token that has
444 ** already been dequoted.
445 */
446 Expr *sqlite3Expr(
447 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
448 int op, /* Expression opcode */
449 const char *zToken /* Token argument. Might be NULL */
450 ){
451 Token x;
452 x.z = zToken;
453 x.n = zToken ? sqlite3Strlen30(zToken) : 0;
454 return sqlite3ExprAlloc(db, op, &x, 0);
455 }
456
457 /*
458 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
459 **
460 ** If pRoot==NULL that means that a memory allocation error has occurred.
461 ** In that case, delete the subtrees pLeft and pRight.
462 */
463 void sqlite3ExprAttachSubtrees(
464 sqlite3 *db,
465 Expr *pRoot,
466 Expr *pLeft,
467 Expr *pRight
468 ){
469 if( pRoot==0 ){
470 assert( db->mallocFailed );
471 sqlite3ExprDelete(db, pLeft);
472 sqlite3ExprDelete(db, pRight);
473 }else{
474 if( pRight ){
475 pRoot->pRight = pRight;
476 if( pRight->flags & EP_ExpCollate ){
477 pRoot->flags |= EP_ExpCollate;
478 pRoot->pColl = pRight->pColl;
479 }
480 }
481 if( pLeft ){
482 pRoot->pLeft = pLeft;
483 if( pLeft->flags & EP_ExpCollate ){
484 pRoot->flags |= EP_ExpCollate;
485 pRoot->pColl = pLeft->pColl;
486 }
487 }
488 exprSetHeight(pRoot);
489 }
490 }
491
492 /*
493 ** Allocate a Expr node which joins as many as two subtrees.
494 **
495 ** One or both of the subtrees can be NULL. Return a pointer to the new
496 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed,
497 ** free the subtrees and return NULL.
498 */
499 Expr *sqlite3PExpr(
500 Parse *pParse, /* Parsing context */
501 int op, /* Expression opcode */
502 Expr *pLeft, /* Left operand */
503 Expr *pRight, /* Right operand */
504 const Token *pToken /* Argument token */
505 ){
506 Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
507 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
508 return p;
509 }
510
511 /*
512 ** Join two expressions using an AND operator. If either expression is
513 ** NULL, then just return the other expression.
514 */
515 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
516 if( pLeft==0 ){
517 return pRight;
518 }else if( pRight==0 ){
519 return pLeft;
520 }else{
521 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
522 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
523 return pNew;
524 }
525 }
526
527 /*
528 ** Construct a new expression node for a function with multiple
529 ** arguments.
530 */
531 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
532 Expr *pNew;
533 sqlite3 *db = pParse->db;
534 assert( pToken );
535 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
536 if( pNew==0 ){
537 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
538 return 0;
539 }
540 pNew->x.pList = pList;
541 assert( !ExprHasProperty(pNew, EP_xIsSelect) );
542 sqlite3ExprSetHeight(pParse, pNew);
543 return pNew;
544 }
545
546 /*
547 ** Assign a variable number to an expression that encodes a wildcard
548 ** in the original SQL statement.
549 **
550 ** Wildcards consisting of a single "?" are assigned the next sequential
551 ** variable number.
552 **
553 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make
554 ** sure "nnn" is not too be to avoid a denial of service attack when
555 ** the SQL statement comes from an external source.
556 **
557 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
558 ** as the previous instance of the same wildcard. Or if this is the first
559 ** instance of the wildcard, the next sequenial variable number is
560 ** assigned.
561 */
562 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
563 sqlite3 *db = pParse->db;
564 const char *z;
565
566 if( pExpr==0 ) return;
567 assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
568 z = pExpr->u.zToken;
569 assert( z!=0 );
570 assert( z[0]!=0 );
571 if( z[1]==0 ){
572 /* Wildcard of the form "?". Assign the next variable number */
573 assert( z[0]=='?' );
574 pExpr->iTable = ++pParse->nVar;
575 }else if( z[0]=='?' ){
576 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
577 ** use it as the variable number */
578 int i;
579 pExpr->iTable = i = atoi((char*)&z[1]);
580 testcase( i==0 );
581 testcase( i==1 );
582 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
583 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
584 if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
585 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
586 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
587 }
588 if( i>pParse->nVar ){
589 pParse->nVar = i;
590 }
591 }else{
592 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
593 ** number as the prior appearance of the same name, or if the name
594 ** has never appeared before, reuse the same variable number
595 */
596 int i;
597 u32 n;
598 n = sqlite3Strlen30(z);
599 for(i=0; i<pParse->nVarExpr; i++){
600 Expr *pE = pParse->apVarExpr[i];
601 assert( pE!=0 );
602 if( memcmp(pE->u.zToken, z, n)==0 && pE->u.zToken[n]==0 ){
603 pExpr->iTable = pE->iTable;
604 break;
605 }
606 }
607 if( i>=pParse->nVarExpr ){
608 pExpr->iTable = ++pParse->nVar;
609 if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
610 pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
611 pParse->apVarExpr =
612 sqlite3DbReallocOrFree(
613 db,
614 pParse->apVarExpr,
615 pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
616 );
617 }
618 if( !db->mallocFailed ){
619 assert( pParse->apVarExpr!=0 );
620 pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
621 }
622 }
623 }
624 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
625 sqlite3ErrorMsg(pParse, "too many SQL variables");
626 }
627 }
628
629 /*
630 ** Clear an expression structure without deleting the structure itself.
631 ** Substructure is deleted.
632 */
633 void sqlite3ExprClear(sqlite3 *db, Expr *p){
634 assert( p!=0 );
635 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
636 sqlite3ExprDelete(db, p->pLeft);
637 sqlite3ExprDelete(db, p->pRight);
638 if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){
639 sqlite3DbFree(db, p->u.zToken);
640 }
641 if( ExprHasProperty(p, EP_xIsSelect) ){
642 sqlite3SelectDelete(db, p->x.pSelect);
643 }else{
644 sqlite3ExprListDelete(db, p->x.pList);
645 }
646 }
647 }
648
649 /*
650 ** Recursively delete an expression tree.
651 */
652 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
653 if( p==0 ) return;
654 sqlite3ExprClear(db, p);
655 if( !ExprHasProperty(p, EP_Static) ){
656 sqlite3DbFree(db, p);
657 }
658 }
659
660 /*
661 ** Return the number of bytes allocated for the expression structure
662 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
663 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
664 */
665 static int exprStructSize(Expr *p){
666 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
667 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
668 return EXPR_FULLSIZE;
669 }
670
671 /*
672 ** The dupedExpr*Size() routines each return the number of bytes required
673 ** to store a copy of an expression or expression tree. They differ in
674 ** how much of the tree is measured.
675 **
676 ** dupedExprStructSize() Size of only the Expr structure
677 ** dupedExprNodeSize() Size of Expr + space for token
678 ** dupedExprSize() Expr + token + subtree components
679 **
680 ***************************************************************************
681 **
682 ** The dupedExprStructSize() function returns two values OR-ed together:
683 ** (1) the space required for a copy of the Expr structure only and
684 ** (2) the EP_xxx flags that indicate what the structure size should be.
685 ** The return values is always one of:
686 **
687 ** EXPR_FULLSIZE
688 ** EXPR_REDUCEDSIZE | EP_Reduced
689 ** EXPR_TOKENONLYSIZE | EP_TokenOnly
690 **
691 ** The size of the structure can be found by masking the return value
692 ** of this routine with 0xfff. The flags can be found by masking the
693 ** return value with EP_Reduced|EP_TokenOnly.
694 **
695 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
696 ** (unreduced) Expr objects as they or originally constructed by the parser.
697 ** During expression analysis, extra information is computed and moved into
698 ** later parts of teh Expr object and that extra information might get chopped
699 ** off if the expression is reduced. Note also that it does not work to
700 ** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal
701 ** to reduce a pristine expression tree from the parser. The implementation
702 ** of dupedExprStructSize() contain multiple assert() statements that attempt
703 ** to enforce this constraint.
704 */
705 static int dupedExprStructSize(Expr *p, int flags){
706 int nSize;
707 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
708 if( 0==(flags&EXPRDUP_REDUCE) ){
709 nSize = EXPR_FULLSIZE;
710 }else{
711 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
712 assert( !ExprHasProperty(p, EP_FromJoin) );
713 assert( (p->flags2 & EP2_MallocedToken)==0 );
714 assert( (p->flags2 & EP2_Irreducible)==0 );
715 if( p->pLeft || p->pRight || p->pColl || p->x.pList ){
716 nSize = EXPR_REDUCEDSIZE | EP_Reduced;
717 }else{
718 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
719 }
720 }
721 return nSize;
722 }
723
724 /*
725 ** This function returns the space in bytes required to store the copy
726 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
727 ** string is defined.)
728 */
729 static int dupedExprNodeSize(Expr *p, int flags){
730 int nByte = dupedExprStructSize(p, flags) & 0xfff;
731 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
732 nByte += sqlite3Strlen30(p->u.zToken)+1;
733 }
734 return ROUND8(nByte);
735 }
736
737 /*
738 ** Return the number of bytes required to create a duplicate of the
739 ** expression passed as the first argument. The second argument is a
740 ** mask containing EXPRDUP_XXX flags.
741 **
742 ** The value returned includes space to create a copy of the Expr struct
743 ** itself and the buffer referred to by Expr.u.zToken, if any.
744 **
745 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
746 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
747 ** and Expr.pRight variables (but not for any structures pointed to or
748 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
749 */
750 static int dupedExprSize(Expr *p, int flags){
751 int nByte = 0;
752 if( p ){
753 nByte = dupedExprNodeSize(p, flags);
754 if( flags&EXPRDUP_REDUCE ){
755 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
756 }
757 }
758 return nByte;
759 }
760
761 /*
762 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
763 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
764 ** to store the copy of expression p, the copies of p->u.zToken
765 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
766 ** if any. Before returning, *pzBuffer is set to the first byte passed the
767 ** portion of the buffer copied into by this function.
768 */
769 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
770 Expr *pNew = 0; /* Value to return */
771 if( p ){
772 const int isReduced = (flags&EXPRDUP_REDUCE);
773 u8 *zAlloc;
774 u32 staticFlag = 0;
775
776 assert( pzBuffer==0 || isReduced );
777
778 /* Figure out where to write the new Expr structure. */
779 if( pzBuffer ){
780 zAlloc = *pzBuffer;
781 staticFlag = EP_Static;
782 }else{
783 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
784 }
785 pNew = (Expr *)zAlloc;
786
787 if( pNew ){
788 /* Set nNewSize to the size allocated for the structure pointed to
789 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
790 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
791 ** by the copy of the p->u.zToken string (if any).
792 */
793 const unsigned nStructSize = dupedExprStructSize(p, flags);
794 const int nNewSize = nStructSize & 0xfff;
795 int nToken;
796 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
797 nToken = sqlite3Strlen30(p->u.zToken) + 1;
798 }else{
799 nToken = 0;
800 }
801 if( isReduced ){
802 assert( ExprHasProperty(p, EP_Reduced)==0 );
803 memcpy(zAlloc, p, nNewSize);
804 }else{
805 int nSize = exprStructSize(p);
806 memcpy(zAlloc, p, nSize);
807 if( EXPR_FULLSIZE>nSize ){
808 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
809 }
810 }
811
812 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
813 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
814 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
815 pNew->flags |= staticFlag;
816
817 /* Copy the p->u.zToken string, if any. */
818 if( nToken ){
819 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
820 memcpy(zToken, p->u.zToken, nToken);
821 }
822
823 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
824 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
825 if( ExprHasProperty(p, EP_xIsSelect) ){
826 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
827 }else{
828 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
829 }
830 }
831
832 /* Fill in pNew->pLeft and pNew->pRight. */
833 if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){
834 zAlloc += dupedExprNodeSize(p, flags);
835 if( ExprHasProperty(pNew, EP_Reduced) ){
836 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
837 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
838 }
839 if( pzBuffer ){
840 *pzBuffer = zAlloc;
841 }
842 }else{
843 pNew->flags2 = 0;
844 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
845 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
846 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
847 }
848 }
849
850 }
851 }
852 return pNew;
853 }
854
855 /*
856 ** The following group of routines make deep copies of expressions,
857 ** expression lists, ID lists, and select statements. The copies can
858 ** be deleted (by being passed to their respective ...Delete() routines)
859 ** without effecting the originals.
860 **
861 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
862 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
863 ** by subsequent calls to sqlite*ListAppend() routines.
864 **
865 ** Any tables that the SrcList might point to are not duplicated.
866 **
867 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
868 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
869 ** truncated version of the usual Expr structure that will be stored as
870 ** part of the in-memory representation of the database schema.
871 */
872 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
873 return exprDup(db, p, flags, 0);
874 }
875 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
876 ExprList *pNew;
877 struct ExprList_item *pItem, *pOldItem;
878 int i;
879 if( p==0 ) return 0;
880 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
881 if( pNew==0 ) return 0;
882 pNew->iECursor = 0;
883 pNew->nExpr = pNew->nAlloc = p->nExpr;
884 pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) );
885 if( pItem==0 ){
886 sqlite3DbFree(db, pNew);
887 return 0;
888 }
889 pOldItem = p->a;
890 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
891 Expr *pOldExpr = pOldItem->pExpr;
892 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
893 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
894 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
895 pItem->sortOrder = pOldItem->sortOrder;
896 pItem->done = 0;
897 pItem->iCol = pOldItem->iCol;
898 pItem->iAlias = pOldItem->iAlias;
899 }
900 return pNew;
901 }
902
903 /*
904 ** If cursors, triggers, views and subqueries are all omitted from
905 ** the build, then none of the following routines, except for
906 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
907 ** called with a NULL argument.
908 */
909 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
910 || !defined(SQLITE_OMIT_SUBQUERY)
911 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
912 SrcList *pNew;
913 int i;
914 int nByte;
915 if( p==0 ) return 0;
916 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
917 pNew = sqlite3DbMallocRaw(db, nByte );
918 if( pNew==0 ) return 0;
919 pNew->nSrc = pNew->nAlloc = p->nSrc;
920 for(i=0; i<p->nSrc; i++){
921 struct SrcList_item *pNewItem = &pNew->a[i];
922 struct SrcList_item *pOldItem = &p->a[i];
923 Table *pTab;
924 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
925 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
926 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
927 pNewItem->jointype = pOldItem->jointype;
928 pNewItem->iCursor = pOldItem->iCursor;
929 pNewItem->isPopulated = pOldItem->isPopulated;
930 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
931 pNewItem->notIndexed = pOldItem->notIndexed;
932 pNewItem->pIndex = pOldItem->pIndex;
933 pTab = pNewItem->pTab = pOldItem->pTab;
934 if( pTab ){
935 pTab->nRef++;
936 }
937 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
938 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
939 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
940 pNewItem->colUsed = pOldItem->colUsed;
941 }
942 return pNew;
943 }
944 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
945 IdList *pNew;
946 int i;
947 if( p==0 ) return 0;
948 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
949 if( pNew==0 ) return 0;
950 pNew->nId = pNew->nAlloc = p->nId;
951 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
952 if( pNew->a==0 ){
953 sqlite3DbFree(db, pNew);
954 return 0;
955 }
956 for(i=0; i<p->nId; i++){
957 struct IdList_item *pNewItem = &pNew->a[i];
958 struct IdList_item *pOldItem = &p->a[i];
959 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
960 pNewItem->idx = pOldItem->idx;
961 }
962 return pNew;
963 }
964 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
965 Select *pNew;
966 if( p==0 ) return 0;
967 pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
968 if( pNew==0 ) return 0;
969 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
970 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
971 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
972 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
973 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
974 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
975 pNew->op = p->op;
976 pNew->pPrior = sqlite3SelectDup(db, p->pPrior, flags);
977 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
978 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
979 pNew->iLimit = 0;
980 pNew->iOffset = 0;
981 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
982 pNew->pRightmost = 0;
983 pNew->addrOpenEphm[0] = -1;
984 pNew->addrOpenEphm[1] = -1;
985 pNew->addrOpenEphm[2] = -1;
986 return pNew;
987 }
988 #else
989 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
990 assert( p==0 );
991 return 0;
992 }
993 #endif
994
995
996 /*
997 ** Add a new element to the end of an expression list. If pList is
998 ** initially NULL, then create a new expression list.
999 **
1000 ** If a memory allocation error occurs, the entire list is freed and
1001 ** NULL is returned. If non-NULL is returned, then it is guaranteed
1002 ** that the new entry was successfully appended.
1003 */
1004 ExprList *sqlite3ExprListAppend(
1005 Parse *pParse, /* Parsing context */
1006 ExprList *pList, /* List to which to append. Might be NULL */
1007 Expr *pExpr /* Expression to be appended. Might be NULL */
1008 ){
1009 sqlite3 *db = pParse->db;
1010 if( pList==0 ){
1011 pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
1012 if( pList==0 ){
1013 goto no_mem;
1014 }
1015 assert( pList->nAlloc==0 );
1016 }
1017 if( pList->nAlloc<=pList->nExpr ){
1018 struct ExprList_item *a;
1019 int n = pList->nAlloc*2 + 4;
1020 a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
1021 if( a==0 ){
1022 goto no_mem;
1023 }
1024 pList->a = a;
1025 pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]);
1026 }
1027 assert( pList->a!=0 );
1028 if( 1 ){
1029 struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1030 memset(pItem, 0, sizeof(*pItem));
1031 pItem->pExpr = pExpr;
1032 }
1033 return pList;
1034
1035 no_mem:
1036 /* Avoid leaking memory if malloc has failed. */
1037 sqlite3ExprDelete(db, pExpr);
1038 sqlite3ExprListDelete(db, pList);
1039 return 0;
1040 }
1041
1042 /*
1043 ** Set the ExprList.a[].zName element of the most recently added item
1044 ** on the expression list.
1045 **
1046 ** pList might be NULL following an OOM error. But pName should never be
1047 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
1048 ** is set.
1049 */
1050 void sqlite3ExprListSetName(
1051 Parse *pParse, /* Parsing context */
1052 ExprList *pList, /* List to which to add the span. */
1053 Token *pName, /* Name to be added */
1054 int dequote /* True to cause the name to be dequoted */
1055 ){
1056 assert( pList!=0 || pParse->db->mallocFailed!=0 );
1057 if( pList ){
1058 struct ExprList_item *pItem;
1059 assert( pList->nExpr>0 );
1060 pItem = &pList->a[pList->nExpr-1];
1061 assert( pItem->zName==0 );
1062 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1063 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1064 }
1065 }
1066
1067 /*
1068 ** Set the ExprList.a[].zSpan element of the most recently added item
1069 ** on the expression list.
1070 **
1071 ** pList might be NULL following an OOM error. But pSpan should never be
1072 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
1073 ** is set.
1074 */
1075 void sqlite3ExprListSetSpan(
1076 Parse *pParse, /* Parsing context */
1077 ExprList *pList, /* List to which to add the span. */
1078 ExprSpan *pSpan /* The span to be added */
1079 ){
1080 sqlite3 *db = pParse->db;
1081 assert( pList!=0 || db->mallocFailed!=0 );
1082 if( pList ){
1083 struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1084 assert( pList->nExpr>0 );
1085 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1086 sqlite3DbFree(db, pItem->zSpan);
1087 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1088 (int)(pSpan->zEnd - pSpan->zStart));
1089 }
1090 }
1091
1092 /*
1093 ** If the expression list pEList contains more than iLimit elements,
1094 ** leave an error message in pParse.
1095 */
1096 void sqlite3ExprListCheckLength(
1097 Parse *pParse,
1098 ExprList *pEList,
1099 const char *zObject
1100 ){
1101 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1102 testcase( pEList && pEList->nExpr==mx );
1103 testcase( pEList && pEList->nExpr==mx+1 );
1104 if( pEList && pEList->nExpr>mx ){
1105 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1106 }
1107 }
1108
1109 /*
1110 ** Delete an entire expression list.
1111 */
1112 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1113 int i;
1114 struct ExprList_item *pItem;
1115 if( pList==0 ) return;
1116 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
1117 assert( pList->nExpr<=pList->nAlloc );
1118 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1119 sqlite3ExprDelete(db, pItem->pExpr);
1120 sqlite3DbFree(db, pItem->zName);
1121 sqlite3DbFree(db, pItem->zSpan);
1122 }
1123 sqlite3DbFree(db, pList->a);
1124 sqlite3DbFree(db, pList);
1125 }
1126
1127 /*
1128 ** These routines are Walker callbacks. Walker.u.pi is a pointer
1129 ** to an integer. These routines are checking an expression to see
1130 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is
1131 ** not constant.
1132 **
1133 ** These callback routines are used to implement the following:
1134 **
1135 ** sqlite3ExprIsConstant()
1136 ** sqlite3ExprIsConstantNotJoin()
1137 ** sqlite3ExprIsConstantOrFunction()
1138 **
1139 */
1140 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1141
1142 /* If pWalker->u.i is 3 then any term of the expression that comes from
1143 ** the ON or USING clauses of a join disqualifies the expression
1144 ** from being considered constant. */
1145 if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
1146 pWalker->u.i = 0;
1147 return WRC_Abort;
1148 }
1149
1150 switch( pExpr->op ){
1151 /* Consider functions to be constant if all their arguments are constant
1152 ** and pWalker->u.i==2 */
1153 case TK_FUNCTION:
1154 if( pWalker->u.i==2 ) return 0;
1155 /* Fall through */
1156 case TK_ID:
1157 case TK_COLUMN:
1158 case TK_AGG_FUNCTION:
1159 case TK_AGG_COLUMN:
1160 testcase( pExpr->op==TK_ID );
1161 testcase( pExpr->op==TK_COLUMN );
1162 testcase( pExpr->op==TK_AGG_FUNCTION );
1163 testcase( pExpr->op==TK_AGG_COLUMN );
1164 pWalker->u.i = 0;
1165 return WRC_Abort;
1166 default:
1167 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1168 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1169 return WRC_Continue;
1170 }
1171 }
1172 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1173 UNUSED_PARAMETER(NotUsed);
1174 pWalker->u.i = 0;
1175 return WRC_Abort;
1176 }
1177 static int exprIsConst(Expr *p, int initFlag){
1178 Walker w;
1179 w.u.i = initFlag;
1180 w.xExprCallback = exprNodeIsConstant;
1181 w.xSelectCallback = selectNodeIsConstant;
1182 sqlite3WalkExpr(&w, p);
1183 return w.u.i;
1184 }
1185
1186 /*
1187 ** Walk an expression tree. Return 1 if the expression is constant
1188 ** and 0 if it involves variables or function calls.
1189 **
1190 ** For the purposes of this function, a double-quoted string (ex: "abc")
1191 ** is considered a variable but a single-quoted string (ex: 'abc') is
1192 ** a constant.
1193 */
1194 int sqlite3ExprIsConstant(Expr *p){
1195 return exprIsConst(p, 1);
1196 }
1197
1198 /*
1199 ** Walk an expression tree. Return 1 if the expression is constant
1200 ** that does no originate from the ON or USING clauses of a join.
1201 ** Return 0 if it involves variables or function calls or terms from
1202 ** an ON or USING clause.
1203 */
1204 int sqlite3ExprIsConstantNotJoin(Expr *p){
1205 return exprIsConst(p, 3);
1206 }
1207
1208 /*
1209 ** Walk an expression tree. Return 1 if the expression is constant
1210 ** or a function call with constant arguments. Return and 0 if there
1211 ** are any variables.
1212 **
1213 ** For the purposes of this function, a double-quoted string (ex: "abc")
1214 ** is considered a variable but a single-quoted string (ex: 'abc') is
1215 ** a constant.
1216 */
1217 int sqlite3ExprIsConstantOrFunction(Expr *p){
1218 return exprIsConst(p, 2);
1219 }
1220
1221 /*
1222 ** If the expression p codes a constant integer that is small enough
1223 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1224 ** in *pValue. If the expression is not an integer or if it is too big
1225 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1226 */
1227 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1228 int rc = 0;
1229 if( p->flags & EP_IntValue ){
1230 *pValue = p->u.iValue;
1231 return 1;
1232 }
1233 switch( p->op ){
1234 case TK_INTEGER: {
1235 rc = sqlite3GetInt32(p->u.zToken, pValue);
1236 assert( rc==0 );
1237 break;
1238 }
1239 case TK_UPLUS: {
1240 rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1241 break;
1242 }
1243 case TK_UMINUS: {
1244 int v;
1245 if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1246 *pValue = -v;
1247 rc = 1;
1248 }
1249 break;
1250 }
1251 default: break;
1252 }
1253 if( rc ){
1254 assert( ExprHasAnyProperty(p, EP_Reduced|EP_TokenOnly)
1255 || (p->flags2 & EP2_MallocedToken)==0 );
1256 p->op = TK_INTEGER;
1257 p->flags |= EP_IntValue;
1258 p->u.iValue = *pValue;
1259 }
1260 return rc;
1261 }
1262
1263 /*
1264 ** Return TRUE if the given string is a row-id column name.
1265 */
1266 int sqlite3IsRowid(const char *z){
1267 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1268 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1269 if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1270 return 0;
1271 }
1272
1273 /*
1274 ** Return true if we are able to the IN operator optimization on a
1275 ** query of the form
1276 **
1277 ** x IN (SELECT ...)
1278 **
1279 ** Where the SELECT... clause is as specified by the parameter to this
1280 ** routine.
1281 **
1282 ** The Select object passed in has already been preprocessed and no
1283 ** errors have been found.
1284 */
1285 #ifndef SQLITE_OMIT_SUBQUERY
1286 static int isCandidateForInOpt(Select *p){
1287 SrcList *pSrc;
1288 ExprList *pEList;
1289 Table *pTab;
1290 if( p==0 ) return 0; /* right-hand side of IN is SELECT */
1291 if( p->pPrior ) return 0; /* Not a compound SELECT */
1292 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1293 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1294 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1295 return 0; /* No DISTINCT keyword and no aggregate functions */
1296 }
1297 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */
1298 if( p->pLimit ) return 0; /* Has no LIMIT clause */
1299 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */
1300 if( p->pWhere ) return 0; /* Has no WHERE clause */
1301 pSrc = p->pSrc;
1302 assert( pSrc!=0 );
1303 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */
1304 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */
1305 pTab = pSrc->a[0].pTab;
1306 if( NEVER(pTab==0) ) return 0;
1307 assert( pTab->pSelect==0 ); /* FROM clause is not a view */
1308 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */
1309 pEList = p->pEList;
1310 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */
1311 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1312 return 1;
1313 }
1314 #endif /* SQLITE_OMIT_SUBQUERY */
1315
1316 /*
1317 ** This function is used by the implementation of the IN (...) operator.
1318 ** It's job is to find or create a b-tree structure that may be used
1319 ** either to test for membership of the (...) set or to iterate through
1320 ** its members, skipping duplicates.
1321 **
1322 ** The index of the cursor opened on the b-tree (database table, database index
1323 ** or ephermal table) is stored in pX->iTable before this function returns.
1324 ** The returned value of this function indicates the b-tree type, as follows:
1325 **
1326 ** IN_INDEX_ROWID - The cursor was opened on a database table.
1327 ** IN_INDEX_INDEX - The cursor was opened on a database index.
1328 ** IN_INDEX_EPH - The cursor was opened on a specially created and
1329 ** populated epheremal table.
1330 **
1331 ** An existing b-tree may only be used if the SELECT is of the simple
1332 ** form:
1333 **
1334 ** SELECT <column> FROM <table>
1335 **
1336 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate
1337 ** through the set members, skipping any duplicates. In this case an
1338 ** epheremal table must be used unless the selected <column> is guaranteed
1339 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1340 ** has a UNIQUE constraint or UNIQUE index.
1341 **
1342 ** If the prNotFound parameter is not 0, then the b-tree will be used
1343 ** for fast set membership tests. In this case an epheremal table must
1344 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1345 ** be found with <column> as its left-most column.
1346 **
1347 ** When the b-tree is being used for membership tests, the calling function
1348 ** needs to know whether or not the structure contains an SQL NULL
1349 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
1350 ** If there is a chance that the b-tree might contain a NULL value at
1351 ** runtime, then a register is allocated and the register number written
1352 ** to *prNotFound. If there is no chance that the b-tree contains a
1353 ** NULL value, then *prNotFound is left unchanged.
1354 **
1355 ** If a register is allocated and its location stored in *prNotFound, then
1356 ** its initial value is NULL. If the b-tree does not remain constant
1357 ** for the duration of the query (i.e. the SELECT that generates the b-tree
1358 ** is a correlated subquery) then the value of the allocated register is
1359 ** reset to NULL each time the b-tree is repopulated. This allows the
1360 ** caller to use vdbe code equivalent to the following:
1361 **
1362 ** if( register==NULL ){
1363 ** has_null = <test if data structure contains null>
1364 ** register = 1
1365 ** }
1366 **
1367 ** in order to avoid running the <test if data structure contains null>
1368 ** test more often than is necessary.
1369 */
1370 #ifndef SQLITE_OMIT_SUBQUERY
1371 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
1372 Select *p; /* SELECT to the right of IN operator */
1373 int eType = 0; /* Type of RHS table. IN_INDEX_* */
1374 int iTab = pParse->nTab++; /* Cursor of the RHS table */
1375 int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */
1376
1377 /* Check to see if an existing table or index can be used to
1378 ** satisfy the query. This is preferable to generating a new
1379 ** ephemeral table.
1380 */
1381 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1382 if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
1383 sqlite3 *db = pParse->db; /* Database connection */
1384 Expr *pExpr = p->pEList->a[0].pExpr; /* Expression <column> */
1385 int iCol = pExpr->iColumn; /* Index of column <column> */
1386 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
1387 Table *pTab = p->pSrc->a[0].pTab; /* Table <table>. */
1388 int iDb; /* Database idx for pTab */
1389
1390 /* Code an OP_VerifyCookie and OP_TableLock for <table>. */
1391 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1392 sqlite3CodeVerifySchema(pParse, iDb);
1393 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1394
1395 /* This function is only called from two places. In both cases the vdbe
1396 ** has already been allocated. So assume sqlite3GetVdbe() is always
1397 ** successful here.
1398 */
1399 assert(v);
1400 if( iCol<0 ){
1401 int iMem = ++pParse->nMem;
1402 int iAddr;
1403
1404 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1405 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1406
1407 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1408 eType = IN_INDEX_ROWID;
1409
1410 sqlite3VdbeJumpHere(v, iAddr);
1411 }else{
1412 Index *pIdx; /* Iterator variable */
1413
1414 /* The collation sequence used by the comparison. If an index is to
1415 ** be used in place of a temp-table, it must be ordered according
1416 ** to this collation sequence. */
1417 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1418
1419 /* Check that the affinity that will be used to perform the
1420 ** comparison is the same as the affinity of the column. If
1421 ** it is not, it is not possible to use any index.
1422 */
1423 char aff = comparisonAffinity(pX);
1424 int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
1425
1426 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1427 if( (pIdx->aiColumn[0]==iCol)
1428 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1429 && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
1430 ){
1431 int iMem = ++pParse->nMem;
1432 int iAddr;
1433 char *pKey;
1434
1435 pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
1436 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1437 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1438
1439 sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
1440 pKey,P4_KEYINFO_HANDOFF);
1441 VdbeComment((v, "%s", pIdx->zName));
1442 eType = IN_INDEX_INDEX;
1443
1444 sqlite3VdbeJumpHere(v, iAddr);
1445 if( prNotFound && !pTab->aCol[iCol].notNull ){
1446 *prNotFound = ++pParse->nMem;
1447 }
1448 }
1449 }
1450 }
1451 }
1452
1453 if( eType==0 ){
1454 /* Could not found an existing able or index to use as the RHS b-tree.
1455 ** We will have to generate an ephemeral table to do the job.
1456 */
1457 int rMayHaveNull = 0;
1458 eType = IN_INDEX_EPH;
1459 if( prNotFound ){
1460 *prNotFound = rMayHaveNull = ++pParse->nMem;
1461 }else if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){
1462 eType = IN_INDEX_ROWID;
1463 }
1464 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1465 }else{
1466 pX->iTable = iTab;
1467 }
1468 return eType;
1469 }
1470 #endif
1471
1472 /*
1473 ** Generate code for scalar subqueries used as an expression
1474 ** and IN operators. Examples:
1475 **
1476 ** (SELECT a FROM b) -- subquery
1477 ** EXISTS (SELECT a FROM b) -- EXISTS subquery
1478 ** x IN (4,5,11) -- IN operator with list on right-hand side
1479 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right
1480 **
1481 ** The pExpr parameter describes the expression that contains the IN
1482 ** operator or subquery.
1483 **
1484 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1485 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1486 ** to some integer key column of a table B-Tree. In this case, use an
1487 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1488 ** (slower) variable length keys B-Tree.
1489 **
1490 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1491 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1492 ** Furthermore, the IN is in a WHERE clause and that we really want
1493 ** to iterate over the RHS of the IN operator in order to quickly locate
1494 ** all corresponding LHS elements. All this routine does is initialize
1495 ** the register given by rMayHaveNull to NULL. Calling routines will take
1496 ** care of changing this register value to non-NULL if the RHS is NULL-free.
1497 **
1498 ** If rMayHaveNull is zero, that means that the subquery is being used
1499 ** for membership testing only. There is no need to initialize any
1500 ** registers to indicate the presense or absence of NULLs on the RHS.
1501 */
1502 #ifndef SQLITE_OMIT_SUBQUERY
1503 void sqlite3CodeSubselect(
1504 Parse *pParse, /* Parsing context */
1505 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */
1506 int rMayHaveNull, /* Register that records whether NULLs exist in RHS */
1507 int isRowid /* If true, LHS of IN operator is a rowid */
1508 ){
1509 int testAddr = 0; /* One-time test address */
1510 Vdbe *v = sqlite3GetVdbe(pParse);
1511 if( NEVER(v==0) ) return;
1512 sqlite3ExprCachePush(pParse);
1513
1514 /* This code must be run in its entirety every time it is encountered
1515 ** if any of the following is true:
1516 **
1517 ** * The right-hand side is a correlated subquery
1518 ** * The right-hand side is an expression list containing variables
1519 ** * We are inside a trigger
1520 **
1521 ** If all of the above are false, then we can run this code just once
1522 ** save the results, and reuse the same result on subsequent invocations.
1523 */
1524 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->pTriggerTab ){
1525 int mem = ++pParse->nMem;
1526 sqlite3VdbeAddOp1(v, OP_If, mem);
1527 testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
1528 assert( testAddr>0 || pParse->db->mallocFailed );
1529 }
1530
1531 switch( pExpr->op ){
1532 case TK_IN: {
1533 char affinity;
1534 KeyInfo keyInfo;
1535 int addr; /* Address of OP_OpenEphemeral instruction */
1536 Expr *pLeft = pExpr->pLeft;
1537
1538 if( rMayHaveNull ){
1539 sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
1540 }
1541
1542 affinity = sqlite3ExprAffinity(pLeft);
1543
1544 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1545 ** expression it is handled the same way. A virtual table is
1546 ** filled with single-field index keys representing the results
1547 ** from the SELECT or the <exprlist>.
1548 **
1549 ** If the 'x' expression is a column value, or the SELECT...
1550 ** statement returns a column value, then the affinity of that
1551 ** column is used to build the index keys. If both 'x' and the
1552 ** SELECT... statement are columns, then numeric affinity is used
1553 ** if either column has NUMERIC or INTEGER affinity. If neither
1554 ** 'x' nor the SELECT... statement are columns, then numeric affinity
1555 ** is used.
1556 */
1557 pExpr->iTable = pParse->nTab++;
1558 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1559 memset(&keyInfo, 0, sizeof(keyInfo));
1560 keyInfo.nField = 1;
1561
1562 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1563 /* Case 1: expr IN (SELECT ...)
1564 **
1565 ** Generate code to write the results of the select into the temporary
1566 ** table allocated and opened above.
1567 */
1568 SelectDest dest;
1569 ExprList *pEList;
1570
1571 assert( !isRowid );
1572 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1573 dest.affinity = (u8)affinity;
1574 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1575 if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
1576 return;
1577 }
1578 pEList = pExpr->x.pSelect->pEList;
1579 if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){
1580 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1581 pEList->a[0].pExpr);
1582 }
1583 }else if( pExpr->x.pList!=0 ){
1584 /* Case 2: expr IN (exprlist)
1585 **
1586 ** For each expression, build an index key from the evaluation and
1587 ** store it in the temporary table. If <expr> is a column, then use
1588 ** that columns affinity when building index keys. If <expr> is not
1589 ** a column, use numeric affinity.
1590 */
1591 int i;
1592 ExprList *pList = pExpr->x.pList;
1593 struct ExprList_item *pItem;
1594 int r1, r2, r3;
1595
1596 if( !affinity ){
1597 affinity = SQLITE_AFF_NONE;
1598 }
1599 keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1600
1601 /* Loop through each expression in <exprlist>. */
1602 r1 = sqlite3GetTempReg(pParse);
1603 r2 = sqlite3GetTempReg(pParse);
1604 sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1605 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1606 Expr *pE2 = pItem->pExpr;
1607
1608 /* If the expression is not constant then we will need to
1609 ** disable the test that was generated above that makes sure
1610 ** this code only executes once. Because for a non-constant
1611 ** expression we need to rerun this code each time.
1612 */
1613 if( testAddr && !sqlite3ExprIsConstant(pE2) ){
1614 sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
1615 testAddr = 0;
1616 }
1617
1618 /* Evaluate the expression and insert it into the temp table */
1619 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1620 if( isRowid ){
1621 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, sqlite3VdbeCurrentAddr(v)+2);
1622 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1623 }else{
1624 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1625 sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1626 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1627 }
1628 }
1629 sqlite3ReleaseTempReg(pParse, r1);
1630 sqlite3ReleaseTempReg(pParse, r2);
1631 }
1632 if( !isRowid ){
1633 sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
1634 }
1635 break;
1636 }
1637
1638 case TK_EXISTS:
1639 case TK_SELECT:
1640 default: {
1641 /* If this has to be a scalar SELECT. Generate code to put the
1642 ** value of this select in a memory cell and record the number
1643 ** of the memory cell in iColumn. If this is an EXISTS, write
1644 ** an integer 0 (not exists) or 1 (exists) into a memory cell
1645 ** and record that memory cell in iColumn.
1646 */
1647 static const Token one = { "1", 1 }; /* Token for literal value 1 */
1648 Select *pSel; /* SELECT statement to encode */
1649 SelectDest dest; /* How to deal with SELECt result */
1650
1651 testcase( pExpr->op==TK_EXISTS );
1652 testcase( pExpr->op==TK_SELECT );
1653 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
1654
1655 assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1656 pSel = pExpr->x.pSelect;
1657 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
1658 if( pExpr->op==TK_SELECT ){
1659 dest.eDest = SRT_Mem;
1660 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
1661 VdbeComment((v, "Init subquery result"));
1662 }else{
1663 dest.eDest = SRT_Exists;
1664 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
1665 VdbeComment((v, "Init EXISTS result"));
1666 }
1667 sqlite3ExprDelete(pParse->db, pSel->pLimit);
1668 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
1669 if( sqlite3Select(pParse, pSel, &dest) ){
1670 return;
1671 }
1672 pExpr->iColumn = (i16)dest.iParm;
1673 ExprSetIrreducible(pExpr);
1674 break;
1675 }
1676 }
1677
1678 if( testAddr ){
1679 sqlite3VdbeJumpHere(v, testAddr-1);
1680 }
1681 sqlite3ExprCachePop(pParse, 1);
1682
1683 return;
1684 }
1685 #endif /* SQLITE_OMIT_SUBQUERY */
1686
1687 /*
1688 ** Duplicate an 8-byte value
1689 */
1690 static char *dup8bytes(Vdbe *v, const char *in){
1691 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
1692 if( out ){
1693 memcpy(out, in, 8);
1694 }
1695 return out;
1696 }
1697
1698 /*
1699 ** Generate an instruction that will put the floating point
1700 ** value described by z[0..n-1] into register iMem.
1701 **
1702 ** The z[] string will probably not be zero-terminated. But the
1703 ** z[n] character is guaranteed to be something that does not look
1704 ** like the continuation of the number.
1705 */
1706 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
1707 if( ALWAYS(z!=0) ){
1708 double value;
1709 char *zV;
1710 sqlite3AtoF(z, &value);
1711 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
1712 if( negateFlag ) value = -value;
1713 zV = dup8bytes(v, (char*)&value);
1714 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
1715 }
1716 }
1717
1718
1719 /*
1720 ** Generate an instruction that will put the integer describe by
1721 ** text z[0..n-1] into register iMem.
1722 **
1723 ** The z[] string will probably not be zero-terminated. But the
1724 ** z[n] character is guaranteed to be something that does not look
1725 ** like the continuation of the number.
1726 */
1727 static void codeInteger(Vdbe *v, Expr *pExpr, int negFlag, int iMem){
1728 if( pExpr->flags & EP_IntValue ){
1729 int i = pExpr->u.iValue;
1730 if( negFlag ) i = -i;
1731 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
1732 }else{
1733 const char *z = pExpr->u.zToken;
1734 assert( z!=0 );
1735 if( sqlite3FitsIn64Bits(z, negFlag) ){
1736 i64 value;
1737 char *zV;
1738 sqlite3Atoi64(z, &value);
1739 if( negFlag ) value = -value;
1740 zV = dup8bytes(v, (char*)&value);
1741 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
1742 }else{
1743 codeReal(v, z, negFlag, iMem);
1744 }
1745 }
1746 }
1747
1748 /*
1749 ** Clear a cache entry.
1750 */
1751 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
1752 if( p->tempReg ){
1753 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
1754 pParse->aTempReg[pParse->nTempReg++] = p->iReg;
1755 }
1756 p->tempReg = 0;
1757 }
1758 }
1759
1760
1761 /*
1762 ** Record in the column cache that a particular column from a
1763 ** particular table is stored in a particular register.
1764 */
1765 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
1766 int i;
1767 int minLru;
1768 int idxLru;
1769 struct yColCache *p;
1770
1771 assert( iReg>0 ); /* Register numbers are always positive */
1772 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */
1773
1774 /* First replace any existing entry */
1775 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
1776 if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){
1777 cacheEntryClear(pParse, p);
1778 p->iLevel = pParse->iCacheLevel;
1779 p->iReg = iReg;
1780 p->affChange = 0;
1781 p->lru = pParse->iCacheCnt++;
1782 return;
1783 }
1784 }
1785
1786 /* Find an empty slot and replace it */
1787 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
1788 if( p->iReg==0 ){
1789 p->iLevel = pParse->iCacheLevel;
1790 p->iTable = iTab;
1791 p->iColumn = iCol;
1792 p->iReg = iReg;
1793 p->affChange = 0;
1794 p->tempReg = 0;
1795 p->lru = pParse->iCacheCnt++;
1796 return;
1797 }
1798 }
1799
1800 /* Replace the last recently used */
1801 minLru = 0x7fffffff;
1802 idxLru = -1;
1803 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
1804 if( p->lru<minLru ){
1805 idxLru = i;
1806 minLru = p->lru;
1807 }
1808 }
1809 if( ALWAYS(idxLru>=0) ){
1810 p = &pParse->aColCache[idxLru];
1811 p->iLevel = pParse->iCacheLevel;
1812 p->iTable = iTab;
1813 p->iColumn = iCol;
1814 p->iReg = iReg;
1815 p->affChange = 0;
1816 p->tempReg = 0;
1817 p->lru = pParse->iCacheCnt++;
1818 return;
1819 }
1820 }
1821
1822 /*
1823 ** Indicate that a register is being overwritten. Purge the register
1824 ** from the column cache.
1825 */
1826 void sqlite3ExprCacheRemove(Parse *pParse, int iReg){
1827 int i;
1828 struct yColCache *p;
1829 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
1830 if( p->iReg==iReg ){
1831 cacheEntryClear(pParse, p);
1832 p->iReg = 0;
1833 }
1834 }
1835 }
1836
1837 /*
1838 ** Remember the current column cache context. Any new entries added
1839 ** added to the column cache after this call are removed when the
1840 ** corresponding pop occurs.
1841 */
1842 void sqlite3ExprCachePush(Parse *pParse){
1843 pParse->iCacheLevel++;
1844 }
1845
1846 /*
1847 ** Remove from the column cache any entries that were added since the
1848 ** the previous N Push operations. In other words, restore the cache
1849 ** to the state it was in N Pushes ago.
1850 */
1851 void sqlite3ExprCachePop(Parse *pParse, int N){
1852 int i;
1853 struct yColCache *p;
1854 assert( N>0 );
1855 assert( pParse->iCacheLevel>=N );
1856 pParse->iCacheLevel -= N;
1857 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
1858 if( p->iReg && p->iLevel>pParse->iCacheLevel ){
1859 cacheEntryClear(pParse, p);
1860 p->iReg = 0;
1861 }
1862 }
1863 }
1864
1865 /*
1866 ** When a cached column is reused, make sure that its register is
1867 ** no longer available as a temp register. ticket #3879: that same
1868 ** register might be in the cache in multiple places, so be sure to
1869 ** get them all.
1870 */
1871 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
1872 int i;
1873 struct yColCache *p;
1874 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
1875 if( p->iReg==iReg ){
1876 p->tempReg = 0;
1877 }
1878 }
1879 }
1880
1881 /*
1882 ** Generate code that will extract the iColumn-th column from
1883 ** table pTab and store the column value in a register. An effort
1884 ** is made to store the column value in register iReg, but this is
1885 ** not guaranteed. The location of the column value is returned.
1886 **
1887 ** There must be an open cursor to pTab in iTable when this routine
1888 ** is called. If iColumn<0 then code is generated that extracts the rowid.
1889 **
1890 ** This routine might attempt to reuse the value of the column that
1891 ** has already been loaded into a register. The value will always
1892 ** be used if it has not undergone any affinity changes. But if
1893 ** an affinity change has occurred, then the cached value will only be
1894 ** used if allowAffChng is true.
1895 */
1896 int sqlite3ExprCodeGetColumn(
1897 Parse *pParse, /* Parsing and code generating context */
1898 Table *pTab, /* Description of the table we are reading from */
1899 int iColumn, /* Index of the table column */
1900 int iTable, /* The cursor pointing to the table */
1901 int iReg, /* Store results here */
1902 int allowAffChng /* True if prior affinity changes are OK */
1903 ){
1904 Vdbe *v = pParse->pVdbe;
1905 int i;
1906 struct yColCache *p;
1907
1908 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
1909 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn
1910 && (!p->affChange || allowAffChng) ){
1911 p->lru = pParse->iCacheCnt++;
1912 sqlite3ExprCachePinRegister(pParse, p->iReg);
1913 return p->iReg;
1914 }
1915 }
1916 assert( v!=0 );
1917 if( iColumn<0 ){
1918 sqlite3VdbeAddOp2(v, OP_Rowid, iTable, iReg);
1919 }else if( ALWAYS(pTab!=0) ){
1920 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
1921 sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg);
1922 sqlite3ColumnDefault(v, pTab, iColumn, iReg);
1923 }
1924 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
1925 return iReg;
1926 }
1927
1928 /*
1929 ** Clear all column cache entries.
1930 */
1931 void sqlite3ExprCacheClear(Parse *pParse){
1932 int i;
1933 struct yColCache *p;
1934
1935 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
1936 if( p->iReg ){
1937 cacheEntryClear(pParse, p);
1938 p->iReg = 0;
1939 }
1940 }
1941 }
1942
1943 /*
1944 ** Record the fact that an affinity change has occurred on iCount
1945 ** registers starting with iStart.
1946 */
1947 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
1948 int iEnd = iStart + iCount - 1;
1949 int i;
1950 struct yColCache *p;
1951 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
1952 int r = p->iReg;
1953 if( r>=iStart && r<=iEnd ){
1954 p->affChange = 1;
1955 }
1956 }
1957 }
1958
1959 /*
1960 ** Generate code to move content from registers iFrom...iFrom+nReg-1
1961 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
1962 */
1963 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
1964 int i;
1965 struct yColCache *p;
1966 if( NEVER(iFrom==iTo) ) return;
1967 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
1968 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
1969 int x = p->iReg;
1970 if( x>=iFrom && x<iFrom+nReg ){
1971 p->iReg += iTo-iFrom;
1972 }
1973 }
1974 }
1975
1976 /*
1977 ** Generate code to copy content from registers iFrom...iFrom+nReg-1
1978 ** over to iTo..iTo+nReg-1.
1979 */
1980 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
1981 int i;
1982 if( NEVER(iFrom==iTo) ) return;
1983 for(i=0; i<nReg; i++){
1984 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
1985 }
1986 }
1987
1988 /*
1989 ** Return true if any register in the range iFrom..iTo (inclusive)
1990 ** is used as part of the column cache.
1991 */
1992 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
1993 int i;
1994 struct yColCache *p;
1995 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
1996 int r = p->iReg;
1997 if( r>=iFrom && r<=iTo ) return 1;
1998 }
1999 return 0;
2000 }
2001
2002 /*
2003 ** If the last instruction coded is an ephemeral copy of any of
2004 ** the registers in the nReg registers beginning with iReg, then
2005 ** convert the last instruction from OP_SCopy to OP_Copy.
2006 */
2007 void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){
2008 VdbeOp *pOp;
2009 Vdbe *v;
2010
2011 assert( pParse->db->mallocFailed==0 );
2012 v = pParse->pVdbe;
2013 assert( v!=0 );
2014 pOp = sqlite3VdbeGetOp(v, -1);
2015 assert( pOp!=0 );
2016 if( pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){
2017 pOp->opcode = OP_Copy;
2018 }
2019 }
2020
2021 /*
2022 ** Generate code to store the value of the iAlias-th alias in register
2023 ** target. The first time this is called, pExpr is evaluated to compute
2024 ** the value of the alias. The value is stored in an auxiliary register
2025 ** and the number of that register is returned. On subsequent calls,
2026 ** the register number is returned without generating any code.
2027 **
2028 ** Note that in order for this to work, code must be generated in the
2029 ** same order that it is executed.
2030 **
2031 ** Aliases are numbered starting with 1. So iAlias is in the range
2032 ** of 1 to pParse->nAlias inclusive.
2033 **
2034 ** pParse->aAlias[iAlias-1] records the register number where the value
2035 ** of the iAlias-th alias is stored. If zero, that means that the
2036 ** alias has not yet been computed.
2037 */
2038 static int codeAlias(Parse *pParse, int iAlias, Expr *pExpr, int target){
2039 #if 0
2040 sqlite3 *db = pParse->db;
2041 int iReg;
2042 if( pParse->nAliasAlloc<pParse->nAlias ){
2043 pParse->aAlias = sqlite3DbReallocOrFree(db, pParse->aAlias,
2044 sizeof(pParse->aAlias[0])*pParse->nAlias );
2045 testcase( db->mallocFailed && pParse->nAliasAlloc>0 );
2046 if( db->mallocFailed ) return 0;
2047 memset(&pParse->aAlias[pParse->nAliasAlloc], 0,
2048 (pParse->nAlias-pParse->nAliasAlloc)*sizeof(pParse->aAlias[0]));
2049 pParse->nAliasAlloc = pParse->nAlias;
2050 }
2051 assert( iAlias>0 && iAlias<=pParse->nAlias );
2052 iReg = pParse->aAlias[iAlias-1];
2053 if( iReg==0 ){
2054 if( pParse->iCacheLevel>0 ){
2055 iReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
2056 }else{
2057 iReg = ++pParse->nMem;
2058 sqlite3ExprCode(pParse, pExpr, iReg);
2059 pParse->aAlias[iAlias-1] = iReg;
2060 }
2061 }
2062 return iReg;
2063 #else
2064 UNUSED_PARAMETER(iAlias);
2065 return sqlite3ExprCodeTarget(pParse, pExpr, target);
2066 #endif
2067 }
2068
2069 /*
2070 ** Generate code into the current Vdbe to evaluate the given
2071 ** expression. Attempt to store the results in register "target".
2072 ** Return the register where results are stored.
2073 **
2074 ** With this routine, there is no guarantee that results will
2075 ** be stored in target. The result might be stored in some other
2076 ** register if it is convenient to do so. The calling function
2077 ** must check the return code and move the results to the desired
2078 ** register.
2079 */
2080 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2081 Vdbe *v = pParse->pVdbe; /* The VM under construction */
2082 int op; /* The opcode being coded */
2083 int inReg = target; /* Results stored in register inReg */
2084 int regFree1 = 0; /* If non-zero free this temporary register */
2085 int regFree2 = 0; /* If non-zero free this temporary register */
2086 int r1, r2, r3, r4; /* Various register numbers */
2087 sqlite3 *db = pParse->db; /* The database connection */
2088
2089 assert( target>0 && target<=pParse->nMem );
2090 if( v==0 ){
2091 assert( pParse->db->mallocFailed );
2092 return 0;
2093 }
2094
2095 if( pExpr==0 ){
2096 op = TK_NULL;
2097 }else{
2098 op = pExpr->op;
2099 }
2100 switch( op ){
2101 case TK_AGG_COLUMN: {
2102 AggInfo *pAggInfo = pExpr->pAggInfo;
2103 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2104 if( !pAggInfo->directMode ){
2105 assert( pCol->iMem>0 );
2106 inReg = pCol->iMem;
2107 break;
2108 }else if( pAggInfo->useSortingIdx ){
2109 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
2110 pCol->iSorterColumn, target);
2111 break;
2112 }
2113 /* Otherwise, fall thru into the TK_COLUMN case */
2114 }
2115 case TK_COLUMN: {
2116 if( pExpr->iTable<0 ){
2117 /* This only happens when coding check constraints */
2118 assert( pParse->ckBase>0 );
2119 inReg = pExpr->iColumn + pParse->ckBase;
2120 }else{
2121 testcase( (pExpr->flags & EP_AnyAff)!=0 );
2122 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2123 pExpr->iColumn, pExpr->iTable, target,
2124 pExpr->flags & EP_AnyAff);
2125 }
2126 break;
2127 }
2128 case TK_INTEGER: {
2129 codeInteger(v, pExpr, 0, target);
2130 break;
2131 }
2132 case TK_FLOAT: {
2133 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2134 codeReal(v, pExpr->u.zToken, 0, target);
2135 break;
2136 }
2137 case TK_STRING: {
2138 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2139 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
2140 break;
2141 }
2142 case TK_NULL: {
2143 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2144 break;
2145 }
2146 #ifndef SQLITE_OMIT_BLOB_LITERAL
2147 case TK_BLOB: {
2148 int n;
2149 const char *z;
2150 char *zBlob;
2151 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2152 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2153 assert( pExpr->u.zToken[1]=='\'' );
2154 z = &pExpr->u.zToken[2];
2155 n = sqlite3Strlen30(z) - 1;
2156 assert( z[n]=='\'' );
2157 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2158 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2159 break;
2160 }
2161 #endif
2162 case TK_VARIABLE: {
2163 VdbeOp *pOp;
2164 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2165 assert( pExpr->u.zToken!=0 );
2166 assert( pExpr->u.zToken[0]!=0 );
2167 if( pExpr->u.zToken[1]==0
2168 && (pOp = sqlite3VdbeGetOp(v, -1))->opcode==OP_Variable
2169 && pOp->p1+pOp->p3==pExpr->iTable
2170 && pOp->p2+pOp->p3==target
2171 && pOp->p4.z==0
2172 ){
2173 /* If the previous instruction was a copy of the previous unnamed
2174 ** parameter into the previous register, then simply increment the
2175 ** repeat count on the prior instruction rather than making a new
2176 ** instruction.
2177 */
2178 pOp->p3++;
2179 }else{
2180 sqlite3VdbeAddOp3(v, OP_Variable, pExpr->iTable, target, 1);
2181 if( pExpr->u.zToken[1]!=0 ){
2182 sqlite3VdbeChangeP4(v, -1, pExpr->u.zToken, 0);
2183 }
2184 }
2185 break;
2186 }
2187 case TK_REGISTER: {
2188 inReg = pExpr->iTable;
2189 break;
2190 }
2191 case TK_AS: {
2192 inReg = codeAlias(pParse, pExpr->iTable, pExpr->pLeft, target);
2193 break;
2194 }
2195 #ifndef SQLITE_OMIT_CAST
2196 case TK_CAST: {
2197 /* Expressions of the form: CAST(pLeft AS token) */
2198 int aff, to_op;
2199 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2200 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2201 aff = sqlite3AffinityType(pExpr->u.zToken);
2202 to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
2203 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT );
2204 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE );
2205 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
2206 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER );
2207 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL );
2208 testcase( to_op==OP_ToText );
2209 testcase( to_op==OP_ToBlob );
2210 testcase( to_op==OP_ToNumeric );
2211 testcase( to_op==OP_ToInt );
2212 testcase( to_op==OP_ToReal );
2213 if( inReg!=target ){
2214 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2215 inReg = target;
2216 }
2217 sqlite3VdbeAddOp1(v, to_op, inReg);
2218 testcase( usedAsColumnCache(pParse, inReg, inReg) );
2219 sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2220 break;
2221 }
2222 #endif /* SQLITE_OMIT_CAST */
2223 case TK_LT:
2224 case TK_LE:
2225 case TK_GT:
2226 case TK_GE:
2227 case TK_NE:
2228 case TK_EQ: {
2229 assert( TK_LT==OP_Lt );
2230 assert( TK_LE==OP_Le );
2231 assert( TK_GT==OP_Gt );
2232 assert( TK_GE==OP_Ge );
2233 assert( TK_EQ==OP_Eq );
2234 assert( TK_NE==OP_Ne );
2235 testcase( op==TK_LT );
2236 testcase( op==TK_LE );
2237 testcase( op==TK_GT );
2238 testcase( op==TK_GE );
2239 testcase( op==TK_EQ );
2240 testcase( op==TK_NE );
2241 codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
2242 pExpr->pRight, &r2, &regFree2);
2243 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2244 r1, r2, inReg, SQLITE_STOREP2);
2245 testcase( regFree1==0 );
2246 testcase( regFree2==0 );
2247 break;
2248 }
2249 case TK_AND:
2250 case TK_OR:
2251 case TK_PLUS:
2252 case TK_STAR:
2253 case TK_MINUS:
2254 case TK_REM:
2255 case TK_BITAND:
2256 case TK_BITOR:
2257 case TK_SLASH:
2258 case TK_LSHIFT:
2259 case TK_RSHIFT:
2260 case TK_CONCAT: {
2261 assert( TK_AND==OP_And );
2262 assert( TK_OR==OP_Or );
2263 assert( TK_PLUS==OP_Add );
2264 assert( TK_MINUS==OP_Subtract );
2265 assert( TK_REM==OP_Remainder );
2266 assert( TK_BITAND==OP_BitAnd );
2267 assert( TK_BITOR==OP_BitOr );
2268 assert( TK_SLASH==OP_Divide );
2269 assert( TK_LSHIFT==OP_ShiftLeft );
2270 assert( TK_RSHIFT==OP_ShiftRight );
2271 assert( TK_CONCAT==OP_Concat );
2272 testcase( op==TK_AND );
2273 testcase( op==TK_OR );
2274 testcase( op==TK_PLUS );
2275 testcase( op==TK_MINUS );
2276 testcase( op==TK_REM );
2277 testcase( op==TK_BITAND );
2278 testcase( op==TK_BITOR );
2279 testcase( op==TK_SLASH );
2280 testcase( op==TK_LSHIFT );
2281 testcase( op==TK_RSHIFT );
2282 testcase( op==TK_CONCAT );
2283 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2284 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2285 sqlite3VdbeAddOp3(v, op, r2, r1, target);
2286 testcase( regFree1==0 );
2287 testcase( regFree2==0 );
2288 break;
2289 }
2290 case TK_UMINUS: {
2291 Expr *pLeft = pExpr->pLeft;
2292 assert( pLeft );
2293 if( pLeft->op==TK_FLOAT ){
2294 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2295 codeReal(v, pLeft->u.zToken, 1, target);
2296 }else if( pLeft->op==TK_INTEGER ){
2297 codeInteger(v, pLeft, 1, target);
2298 }else{
2299 regFree1 = r1 = sqlite3GetTempReg(pParse);
2300 sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
2301 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2302 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2303 testcase( regFree2==0 );
2304 }
2305 inReg = target;
2306 break;
2307 }
2308 case TK_BITNOT:
2309 case TK_NOT: {
2310 assert( TK_BITNOT==OP_BitNot );
2311 assert( TK_NOT==OP_Not );
2312 testcase( op==TK_BITNOT );
2313 testcase( op==TK_NOT );
2314 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2315 testcase( regFree1==0 );
2316 inReg = target;
2317 sqlite3VdbeAddOp2(v, op, r1, inReg);
2318 break;
2319 }
2320 case TK_ISNULL:
2321 case TK_NOTNULL: {
2322 int addr;
2323 assert( TK_ISNULL==OP_IsNull );
2324 assert( TK_NOTNULL==OP_NotNull );
2325 testcase( op==TK_ISNULL );
2326 testcase( op==TK_NOTNULL );
2327 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2328 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2329 testcase( regFree1==0 );
2330 addr = sqlite3VdbeAddOp1(v, op, r1);
2331 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
2332 sqlite3VdbeJumpHere(v, addr);
2333 break;
2334 }
2335 case TK_AGG_FUNCTION: {
2336 AggInfo *pInfo = pExpr->pAggInfo;
2337 if( pInfo==0 ){
2338 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2339 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2340 }else{
2341 inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2342 }
2343 break;
2344 }
2345 case TK_CONST_FUNC:
2346 case TK_FUNCTION: {
2347 ExprList *pFarg; /* List of function arguments */
2348 int nFarg; /* Number of function arguments */
2349 FuncDef *pDef; /* The function definition object */
2350 int nId; /* Length of the function name in bytes */
2351 const char *zId; /* The function name */
2352 int constMask = 0; /* Mask of function arguments that are constant */
2353 int i; /* Loop counter */
2354 u8 enc = ENC(db); /* The text encoding used by this database */
2355 CollSeq *pColl = 0; /* A collating sequence */
2356
2357 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2358 testcase( op==TK_CONST_FUNC );
2359 testcase( op==TK_FUNCTION );
2360 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
2361 pFarg = 0;
2362 }else{
2363 pFarg = pExpr->x.pList;
2364 }
2365 nFarg = pFarg ? pFarg->nExpr : 0;
2366 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2367 zId = pExpr->u.zToken;
2368 nId = sqlite3Strlen30(zId);
2369 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2370 if( pDef==0 ){
2371 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2372 break;
2373 }
2374 if( pFarg ){
2375 r1 = sqlite3GetTempRange(pParse, nFarg);
2376 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */
2377 sqlite3ExprCodeExprList(pParse, pFarg, r1, 1);
2378 sqlite3ExprCachePop(pParse, 1); /* Ticket 2ea2425d34be */
2379 }else{
2380 r1 = 0;
2381 }
2382 #ifndef SQLITE_OMIT_VIRTUALTABLE
2383 /* Possibly overload the function if the first argument is
2384 ** a virtual table column.
2385 **
2386 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2387 ** second argument, not the first, as the argument to test to
2388 ** see if it is a column in a virtual table. This is done because
2389 ** the left operand of infix functions (the operand we want to
2390 ** control overloading) ends up as the second argument to the
2391 ** function. The expression "A glob B" is equivalent to
2392 ** "glob(B,A). We want to use the A in "A glob B" to test
2393 ** for function overloading. But we use the B term in "glob(B,A)".
2394 */
2395 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2396 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2397 }else if( nFarg>0 ){
2398 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2399 }
2400 #endif
2401 for(i=0; i<nFarg; i++){
2402 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2403 constMask |= (1<<i);
2404 }
2405 if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2406 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2407 }
2408 }
2409 if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){
2410 if( !pColl ) pColl = db->pDfltColl;
2411 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2412 }
2413 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2414 (char*)pDef, P4_FUNCDEF);
2415 sqlite3VdbeChangeP5(v, (u8)nFarg);
2416 if( nFarg ){
2417 sqlite3ReleaseTempRange(pParse, r1, nFarg);
2418 }
2419 sqlite3ExprCacheAffinityChange(pParse, r1, nFarg);
2420 break;
2421 }
2422 #ifndef SQLITE_OMIT_SUBQUERY
2423 case TK_EXISTS:
2424 case TK_SELECT: {
2425 testcase( op==TK_EXISTS );
2426 testcase( op==TK_SELECT );
2427 sqlite3CodeSubselect(pParse, pExpr, 0, 0);
2428 inReg = pExpr->iColumn;
2429 break;
2430 }
2431 case TK_IN: {
2432 int rNotFound = 0;
2433 int rMayHaveNull = 0;
2434 int j2, j3, j4, j5;
2435 char affinity;
2436 int eType;
2437
2438 VdbeNoopComment((v, "begin IN expr r%d", target));
2439 eType = sqlite3FindInIndex(pParse, pExpr, &rMayHaveNull);
2440 if( rMayHaveNull ){
2441 rNotFound = ++pParse->nMem;
2442 }
2443
2444 /* Figure out the affinity to use to create a key from the results
2445 ** of the expression. affinityStr stores a static string suitable for
2446 ** P4 of OP_MakeRecord.
2447 */
2448 affinity = comparisonAffinity(pExpr);
2449
2450
2451 /* Code the <expr> from "<expr> IN (...)". The temporary table
2452 ** pExpr->iTable contains the values that make up the (...) set.
2453 */
2454 sqlite3ExprCachePush(pParse);
2455 sqlite3ExprCode(pParse, pExpr->pLeft, target);
2456 j2 = sqlite3VdbeAddOp1(v, OP_IsNull, target);
2457 if( eType==IN_INDEX_ROWID ){
2458 j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, target);
2459 j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, target);
2460 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2461 j5 = sqlite3VdbeAddOp0(v, OP_Goto);
2462 sqlite3VdbeJumpHere(v, j3);
2463 sqlite3VdbeJumpHere(v, j4);
2464 sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2465 }else{
2466 r2 = regFree2 = sqlite3GetTempReg(pParse);
2467
2468 /* Create a record and test for set membership. If the set contains
2469 ** the value, then jump to the end of the test code. The target
2470 ** register still contains the true (1) value written to it earlier.
2471 */
2472 sqlite3VdbeAddOp4(v, OP_MakeRecord, target, 1, r2, &affinity, 1);
2473 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2474 j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2);
2475
2476 /* If the set membership test fails, then the result of the
2477 ** "x IN (...)" expression must be either 0 or NULL. If the set
2478 ** contains no NULL values, then the result is 0. If the set
2479 ** contains one or more NULL values, then the result of the
2480 ** expression is also NULL.
2481 */
2482 if( rNotFound==0 ){
2483 /* This branch runs if it is known at compile time (now) that
2484 ** the set contains no NULL values. This happens as the result
2485 ** of a "NOT NULL" constraint in the database schema. No need
2486 ** to test the data structure at runtime in this case.
2487 */
2488 sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2489 }else{
2490 /* This block populates the rNotFound register with either NULL
2491 ** or 0 (an integer value). If the data structure contains one
2492 ** or more NULLs, then set rNotFound to NULL. Otherwise, set it
2493 ** to 0. If register rMayHaveNull is already set to some value
2494 ** other than NULL, then the test has already been run and
2495 ** rNotFound is already populated.
2496 */
2497 static const char nullRecord[] = { 0x02, 0x00 };
2498 j3 = sqlite3VdbeAddOp1(v, OP_NotNull, rMayHaveNull);
2499 sqlite3VdbeAddOp2(v, OP_Null, 0, rNotFound);
2500 sqlite3VdbeAddOp4(v, OP_Blob, 2, rMayHaveNull, 0,
2501 nullRecord, P4_STATIC);
2502 j4 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, rMayHaveNull);
2503 sqlite3VdbeAddOp2(v, OP_Integer, 0, rNotFound);
2504 sqlite3VdbeJumpHere(v, j4);
2505 sqlite3VdbeJumpHere(v, j3);
2506
2507 /* Copy the value of register rNotFound (which is either NULL or 0)
2508 ** into the target register. This will be the result of the
2509 ** expression.
2510 */
2511 sqlite3VdbeAddOp2(v, OP_Copy, rNotFound, target);
2512 }
2513 }
2514 sqlite3VdbeJumpHere(v, j2);
2515 sqlite3VdbeJumpHere(v, j5);
2516 sqlite3ExprCachePop(pParse, 1);
2517 VdbeComment((v, "end IN expr r%d", target));
2518 break;
2519 }
2520 #endif
2521 /*
2522 ** x BETWEEN y AND z
2523 **
2524 ** This is equivalent to
2525 **
2526 ** x>=y AND x<=z
2527 **
2528 ** X is stored in pExpr->pLeft.
2529 ** Y is stored in pExpr->pList->a[0].pExpr.
2530 ** Z is stored in pExpr->pList->a[1].pExpr.
2531 */
2532 case TK_BETWEEN: {
2533 Expr *pLeft = pExpr->pLeft;
2534 struct ExprList_item *pLItem = pExpr->x.pList->a;
2535 Expr *pRight = pLItem->pExpr;
2536
2537 codeCompareOperands(pParse, pLeft, &r1, &regFree1,
2538 pRight, &r2, &regFree2);
2539 testcase( regFree1==0 );
2540 testcase( regFree2==0 );
2541 r3 = sqlite3GetTempReg(pParse);
2542 r4 = sqlite3GetTempReg(pParse);
2543 codeCompare(pParse, pLeft, pRight, OP_Ge,
2544 r1, r2, r3, SQLITE_STOREP2);
2545 pLItem++;
2546 pRight = pLItem->pExpr;
2547 sqlite3ReleaseTempReg(pParse, regFree2);
2548 r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2549 testcase( regFree2==0 );
2550 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
2551 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
2552 sqlite3ReleaseTempReg(pParse, r3);
2553 sqlite3ReleaseTempReg(pParse, r4);
2554 break;
2555 }
2556 case TK_UPLUS: {
2557 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2558 break;
2559 }
2560
2561 case TK_TRIGGER: {
2562 /* If the opcode is TK_TRIGGER, then the expression is a reference
2563 ** to a column in the new.* or old.* pseudo-tables available to
2564 ** trigger programs. In this case Expr.iTable is set to 1 for the
2565 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
2566 ** is set to the column of the pseudo-table to read, or to -1 to
2567 ** read the rowid field.
2568 **
2569 ** The expression is implemented using an OP_Param opcode. The p1
2570 ** parameter is set to 0 for an old.rowid reference, or to (i+1)
2571 ** to reference another column of the old.* pseudo-table, where
2572 ** i is the index of the column. For a new.rowid reference, p1 is
2573 ** set to (n+1), where n is the number of columns in each pseudo-table.
2574 ** For a reference to any other column in the new.* pseudo-table, p1
2575 ** is set to (n+2+i), where n and i are as defined previously. For
2576 ** example, if the table on which triggers are being fired is
2577 ** declared as:
2578 **
2579 ** CREATE TABLE t1(a, b);
2580 **
2581 ** Then p1 is interpreted as follows:
2582 **
2583 ** p1==0 -> old.rowid p1==3 -> new.rowid
2584 ** p1==1 -> old.a p1==4 -> new.a
2585 ** p1==2 -> old.b p1==5 -> new.b
2586 */
2587 Table *pTab = pExpr->pTab;
2588 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
2589
2590 assert( pExpr->iTable==0 || pExpr->iTable==1 );
2591 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
2592 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
2593 assert( p1>=0 && p1<(pTab->nCol*2+2) );
2594
2595 sqlite3VdbeAddOp2(v, OP_Param, p1, target);
2596 VdbeComment((v, "%s.%s -> $%d",
2597 (pExpr->iTable ? "new" : "old"),
2598 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
2599 target
2600 ));
2601
2602 /* If the column has REAL affinity, it may currently be stored as an
2603 ** integer. Use OP_RealAffinity to make sure it is really real. */
2604 if( pExpr->iColumn>=0
2605 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
2606 ){
2607 sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
2608 }
2609 break;
2610 }
2611
2612
2613 /*
2614 ** Form A:
2615 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2616 **
2617 ** Form B:
2618 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2619 **
2620 ** Form A is can be transformed into the equivalent form B as follows:
2621 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
2622 ** WHEN x=eN THEN rN ELSE y END
2623 **
2624 ** X (if it exists) is in pExpr->pLeft.
2625 ** Y is in pExpr->pRight. The Y is also optional. If there is no
2626 ** ELSE clause and no other term matches, then the result of the
2627 ** exprssion is NULL.
2628 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
2629 **
2630 ** The result of the expression is the Ri for the first matching Ei,
2631 ** or if there is no matching Ei, the ELSE term Y, or if there is
2632 ** no ELSE term, NULL.
2633 */
2634 default: assert( op==TK_CASE ); {
2635 int endLabel; /* GOTO label for end of CASE stmt */
2636 int nextCase; /* GOTO label for next WHEN clause */
2637 int nExpr; /* 2x number of WHEN terms */
2638 int i; /* Loop counter */
2639 ExprList *pEList; /* List of WHEN terms */
2640 struct ExprList_item *aListelem; /* Array of WHEN terms */
2641 Expr opCompare; /* The X==Ei expression */
2642 Expr cacheX; /* Cached expression X */
2643 Expr *pX; /* The X expression */
2644 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */
2645 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
2646
2647 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
2648 assert((pExpr->x.pList->nExpr % 2) == 0);
2649 assert(pExpr->x.pList->nExpr > 0);
2650 pEList = pExpr->x.pList;
2651 aListelem = pEList->a;
2652 nExpr = pEList->nExpr;
2653 endLabel = sqlite3VdbeMakeLabel(v);
2654 if( (pX = pExpr->pLeft)!=0 ){
2655 cacheX = *pX;
2656 testcase( pX->op==TK_COLUMN );
2657 testcase( pX->op==TK_REGISTER );
2658 cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
2659 testcase( regFree1==0 );
2660 cacheX.op = TK_REGISTER;
2661 opCompare.op = TK_EQ;
2662 opCompare.pLeft = &cacheX;
2663 pTest = &opCompare;
2664 }
2665 for(i=0; i<nExpr; i=i+2){
2666 sqlite3ExprCachePush(pParse);
2667 if( pX ){
2668 assert( pTest!=0 );
2669 opCompare.pRight = aListelem[i].pExpr;
2670 }else{
2671 pTest = aListelem[i].pExpr;
2672 }
2673 nextCase = sqlite3VdbeMakeLabel(v);
2674 testcase( pTest->op==TK_COLUMN );
2675 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
2676 testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
2677 testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
2678 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
2679 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
2680 sqlite3ExprCachePop(pParse, 1);
2681 sqlite3VdbeResolveLabel(v, nextCase);
2682 }
2683 if( pExpr->pRight ){
2684 sqlite3ExprCachePush(pParse);
2685 sqlite3ExprCode(pParse, pExpr->pRight, target);
2686 sqlite3ExprCachePop(pParse, 1);
2687 }else{
2688 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2689 }
2690 assert( db->mallocFailed || pParse->nErr>0
2691 || pParse->iCacheLevel==iCacheLevel );
2692 sqlite3VdbeResolveLabel(v, endLabel);
2693 break;
2694 }
2695 #ifndef SQLITE_OMIT_TRIGGER
2696 case TK_RAISE: {
2697 assert( pExpr->affinity==OE_Rollback
2698 || pExpr->affinity==OE_Abort
2699 || pExpr->affinity==OE_Fail
2700 || pExpr->affinity==OE_Ignore
2701 );
2702 if( !pParse->pTriggerTab ){
2703 sqlite3ErrorMsg(pParse,
2704 "RAISE() may only be used within a trigger-program");
2705 return 0;
2706 }
2707 if( pExpr->affinity==OE_Abort ){
2708 sqlite3MayAbort(pParse);
2709 }
2710 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2711 if( pExpr->affinity==OE_Ignore ){
2712 sqlite3VdbeAddOp4(
2713 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
2714 }else{
2715 sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0);
2716 }
2717
2718 break;
2719 }
2720 #endif
2721 }
2722 sqlite3ReleaseTempReg(pParse, regFree1);
2723 sqlite3ReleaseTempReg(pParse, regFree2);
2724 return inReg;
2725 }
2726
2727 /*
2728 ** Generate code to evaluate an expression and store the results
2729 ** into a register. Return the register number where the results
2730 ** are stored.
2731 **
2732 ** If the register is a temporary register that can be deallocated,
2733 ** then write its number into *pReg. If the result register is not
2734 ** a temporary, then set *pReg to zero.
2735 */
2736 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
2737 int r1 = sqlite3GetTempReg(pParse);
2738 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
2739 if( r2==r1 ){
2740 *pReg = r1;
2741 }else{
2742 sqlite3ReleaseTempReg(pParse, r1);
2743 *pReg = 0;
2744 }
2745 return r2;
2746 }
2747
2748 /*
2749 ** Generate code that will evaluate expression pExpr and store the
2750 ** results in register target. The results are guaranteed to appear
2751 ** in register target.
2752 */
2753 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
2754 int inReg;
2755
2756 assert( target>0 && target<=pParse->nMem );
2757 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
2758 assert( pParse->pVdbe || pParse->db->mallocFailed );
2759 if( inReg!=target && pParse->pVdbe ){
2760 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
2761 }
2762 return target;
2763 }
2764
2765 /*
2766 ** Generate code that evalutes the given expression and puts the result
2767 ** in register target.
2768 **
2769 ** Also make a copy of the expression results into another "cache" register
2770 ** and modify the expression so that the next time it is evaluated,
2771 ** the result is a copy of the cache register.
2772 **
2773 ** This routine is used for expressions that are used multiple
2774 ** times. They are evaluated once and the results of the expression
2775 ** are reused.
2776 */
2777 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
2778 Vdbe *v = pParse->pVdbe;
2779 int inReg;
2780 inReg = sqlite3ExprCode(pParse, pExpr, target);
2781 assert( target>0 );
2782 /* This routine is called for terms to INSERT or UPDATE. And the only
2783 ** other place where expressions can be converted into TK_REGISTER is
2784 ** in WHERE clause processing. So as currently implemented, there is
2785 ** no way for a TK_REGISTER to exist here. But it seems prudent to
2786 ** keep the ALWAYS() in case the conditions above change with future
2787 ** modifications or enhancements. */
2788 if( ALWAYS(pExpr->op!=TK_REGISTER) ){
2789 int iMem;
2790 iMem = ++pParse->nMem;
2791 sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
2792 pExpr->iTable = iMem;
2793 pExpr->op = TK_REGISTER;
2794 }
2795 return inReg;
2796 }
2797
2798 /*
2799 ** Return TRUE if pExpr is an constant expression that is appropriate
2800 ** for factoring out of a loop. Appropriate expressions are:
2801 **
2802 ** * Any expression that evaluates to two or more opcodes.
2803 **
2804 ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
2805 ** or OP_Variable that does not need to be placed in a
2806 ** specific register.
2807 **
2808 ** There is no point in factoring out single-instruction constant
2809 ** expressions that need to be placed in a particular register.
2810 ** We could factor them out, but then we would end up adding an
2811 ** OP_SCopy instruction to move the value into the correct register
2812 ** later. We might as well just use the original instruction and
2813 ** avoid the OP_SCopy.
2814 */
2815 static int isAppropriateForFactoring(Expr *p){
2816 if( !sqlite3ExprIsConstantNotJoin(p) ){
2817 return 0; /* Only constant expressions are appropriate for factoring */
2818 }
2819 if( (p->flags & EP_FixedDest)==0 ){
2820 return 1; /* Any constant without a fixed destination is appropriate */
2821 }
2822 while( p->op==TK_UPLUS ) p = p->pLeft;
2823 switch( p->op ){
2824 #ifndef SQLITE_OMIT_BLOB_LITERAL
2825 case TK_BLOB:
2826 #endif
2827 case TK_VARIABLE:
2828 case TK_INTEGER:
2829 case TK_FLOAT:
2830 case TK_NULL:
2831 case TK_STRING: {
2832 testcase( p->op==TK_BLOB );
2833 testcase( p->op==TK_VARIABLE );
2834 testcase( p->op==TK_INTEGER );
2835 testcase( p->op==TK_FLOAT );
2836 testcase( p->op==TK_NULL );
2837 testcase( p->op==TK_STRING );
2838 /* Single-instruction constants with a fixed destination are
2839 ** better done in-line. If we factor them, they will just end
2840 ** up generating an OP_SCopy to move the value to the destination
2841 ** register. */
2842 return 0;
2843 }
2844 case TK_UMINUS: {
2845 if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
2846 return 0;
2847 }
2848 break;
2849 }
2850 default: {
2851 break;
2852 }
2853 }
2854 return 1;
2855 }
2856
2857 /*
2858 ** If pExpr is a constant expression that is appropriate for
2859 ** factoring out of a loop, then evaluate the expression
2860 ** into a register and convert the expression into a TK_REGISTER
2861 ** expression.
2862 */
2863 static int evalConstExpr(Walker *pWalker, Expr *pExpr){
2864 Parse *pParse = pWalker->pParse;
2865 switch( pExpr->op ){
2866 case TK_REGISTER: {
2867 return WRC_Prune;
2868 }
2869 case TK_FUNCTION:
2870 case TK_AGG_FUNCTION:
2871 case TK_CONST_FUNC: {
2872 /* The arguments to a function have a fixed destination.
2873 ** Mark them this way to avoid generated unneeded OP_SCopy
2874 ** instructions.
2875 */
2876 ExprList *pList = pExpr->x.pList;
2877 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2878 if( pList ){
2879 int i = pList->nExpr;
2880 struct ExprList_item *pItem = pList->a;
2881 for(; i>0; i--, pItem++){
2882 if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest;
2883 }
2884 }
2885 break;
2886 }
2887 }
2888 if( isAppropriateForFactoring(pExpr) ){
2889 int r1 = ++pParse->nMem;
2890 int r2;
2891 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
2892 if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1);
2893 pExpr->op2 = pExpr->op;
2894 pExpr->op = TK_REGISTER;
2895 pExpr->iTable = r2;
2896 return WRC_Prune;
2897 }
2898 return WRC_Continue;
2899 }
2900
2901 /*
2902 ** Preevaluate constant subexpressions within pExpr and store the
2903 ** results in registers. Modify pExpr so that the constant subexpresions
2904 ** are TK_REGISTER opcodes that refer to the precomputed values.
2905 */
2906 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
2907 Walker w;
2908 w.xExprCallback = evalConstExpr;
2909 w.xSelectCallback = 0;
2910 w.pParse = pParse;
2911 sqlite3WalkExpr(&w, pExpr);
2912 }
2913
2914
2915 /*
2916 ** Generate code that pushes the value of every element of the given
2917 ** expression list into a sequence of registers beginning at target.
2918 **
2919 ** Return the number of elements evaluated.
2920 */
2921 int sqlite3ExprCodeExprList(
2922 Parse *pParse, /* Parsing context */
2923 ExprList *pList, /* The expression list to be coded */
2924 int target, /* Where to write results */
2925 int doHardCopy /* Make a hard copy of every element */
2926 ){
2927 struct ExprList_item *pItem;
2928 int i, n;
2929 assert( pList!=0 );
2930 assert( target>0 );
2931 n = pList->nExpr;
2932 for(pItem=pList->a, i=0; i<n; i++, pItem++){
2933 if( pItem->iAlias ){
2934 int iReg = codeAlias(pParse, pItem->iAlias, pItem->pExpr, target+i);
2935 Vdbe *v = sqlite3GetVdbe(pParse);
2936 if( iReg!=target+i ){
2937 sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target+i);
2938 }
2939 }else{
2940 sqlite3ExprCode(pParse, pItem->pExpr, target+i);
2941 }
2942 if( doHardCopy && !pParse->db->mallocFailed ){
2943 sqlite3ExprHardCopy(pParse, target, n);
2944 }
2945 }
2946 return n;
2947 }
2948
2949 /*
2950 ** Generate code for a boolean expression such that a jump is made
2951 ** to the label "dest" if the expression is true but execution
2952 ** continues straight thru if the expression is false.
2953 **
2954 ** If the expression evaluates to NULL (neither true nor false), then
2955 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
2956 **
2957 ** This code depends on the fact that certain token values (ex: TK_EQ)
2958 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
2959 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
2960 ** the make process cause these values to align. Assert()s in the code
2961 ** below verify that the numbers are aligned correctly.
2962 */
2963 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
2964 Vdbe *v = pParse->pVdbe;
2965 int op = 0;
2966 int regFree1 = 0;
2967 int regFree2 = 0;
2968 int r1, r2;
2969
2970 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
2971 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */
2972 if( NEVER(pExpr==0) ) return; /* No way this can happen */
2973 op = pExpr->op;
2974 switch( op ){
2975 case TK_AND: {
2976 int d2 = sqlite3VdbeMakeLabel(v);
2977 testcase( jumpIfNull==0 );
2978 sqlite3ExprCachePush(pParse);
2979 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
2980 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
2981 sqlite3VdbeResolveLabel(v, d2);
2982 sqlite3ExprCachePop(pParse, 1);
2983 break;
2984 }
2985 case TK_OR: {
2986 testcase( jumpIfNull==0 );
2987 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
2988 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
2989 break;
2990 }
2991 case TK_NOT: {
2992 testcase( jumpIfNull==0 );
2993 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
2994 break;
2995 }
2996 case TK_LT:
2997 case TK_LE:
2998 case TK_GT:
2999 case TK_GE:
3000 case TK_NE:
3001 case TK_EQ: {
3002 assert( TK_LT==OP_Lt );
3003 assert( TK_LE==OP_Le );
3004 assert( TK_GT==OP_Gt );
3005 assert( TK_GE==OP_Ge );
3006 assert( TK_EQ==OP_Eq );
3007 assert( TK_NE==OP_Ne );
3008 testcase( op==TK_LT );
3009 testcase( op==TK_LE );
3010 testcase( op==TK_GT );
3011 testcase( op==TK_GE );
3012 testcase( op==TK_EQ );
3013 testcase( op==TK_NE );
3014 testcase( jumpIfNull==0 );
3015 codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
3016 pExpr->pRight, &r2, &regFree2);
3017 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3018 r1, r2, dest, jumpIfNull);
3019 testcase( regFree1==0 );
3020 testcase( regFree2==0 );
3021 break;
3022 }
3023 case TK_ISNULL:
3024 case TK_NOTNULL: {
3025 assert( TK_ISNULL==OP_IsNull );
3026 assert( TK_NOTNULL==OP_NotNull );
3027 testcase( op==TK_ISNULL );
3028 testcase( op==TK_NOTNULL );
3029 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3030 sqlite3VdbeAddOp2(v, op, r1, dest);
3031 testcase( regFree1==0 );
3032 break;
3033 }
3034 case TK_BETWEEN: {
3035 /* x BETWEEN y AND z
3036 **
3037 ** Is equivalent to
3038 **
3039 ** x>=y AND x<=z
3040 **
3041 ** Code it as such, taking care to do the common subexpression
3042 ** elementation of x.
3043 */
3044 Expr exprAnd;
3045 Expr compLeft;
3046 Expr compRight;
3047 Expr exprX;
3048
3049 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3050 exprX = *pExpr->pLeft;
3051 exprAnd.op = TK_AND;
3052 exprAnd.pLeft = &compLeft;
3053 exprAnd.pRight = &compRight;
3054 compLeft.op = TK_GE;
3055 compLeft.pLeft = &exprX;
3056 compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3057 compRight.op = TK_LE;
3058 compRight.pLeft = &exprX;
3059 compRight.pRight = pExpr->x.pList->a[1].pExpr;
3060 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
3061 testcase( regFree1==0 );
3062 exprX.op = TK_REGISTER;
3063 testcase( jumpIfNull==0 );
3064 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3065 break;
3066 }
3067 default: {
3068 r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3069 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3070 testcase( regFree1==0 );
3071 testcase( jumpIfNull==0 );
3072 break;
3073 }
3074 }
3075 sqlite3ReleaseTempReg(pParse, regFree1);
3076 sqlite3ReleaseTempReg(pParse, regFree2);
3077 }
3078
3079 /*
3080 ** Generate code for a boolean expression such that a jump is made
3081 ** to the label "dest" if the expression is false but execution
3082 ** continues straight thru if the expression is true.
3083 **
3084 ** If the expression evaluates to NULL (neither true nor false) then
3085 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3086 ** is 0.
3087 */
3088 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3089 Vdbe *v = pParse->pVdbe;
3090 int op = 0;
3091 int regFree1 = 0;
3092 int regFree2 = 0;
3093 int r1, r2;
3094
3095 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3096 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */
3097 if( pExpr==0 ) return;
3098
3099 /* The value of pExpr->op and op are related as follows:
3100 **
3101 ** pExpr->op op
3102 ** --------- ----------
3103 ** TK_ISNULL OP_NotNull
3104 ** TK_NOTNULL OP_IsNull
3105 ** TK_NE OP_Eq
3106 ** TK_EQ OP_Ne
3107 ** TK_GT OP_Le
3108 ** TK_LE OP_Gt
3109 ** TK_GE OP_Lt
3110 ** TK_LT OP_Ge
3111 **
3112 ** For other values of pExpr->op, op is undefined and unused.
3113 ** The value of TK_ and OP_ constants are arranged such that we
3114 ** can compute the mapping above using the following expression.
3115 ** Assert()s verify that the computation is correct.
3116 */
3117 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3118
3119 /* Verify correct alignment of TK_ and OP_ constants
3120 */
3121 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3122 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3123 assert( pExpr->op!=TK_NE || op==OP_Eq );
3124 assert( pExpr->op!=TK_EQ || op==OP_Ne );
3125 assert( pExpr->op!=TK_LT || op==OP_Ge );
3126 assert( pExpr->op!=TK_LE || op==OP_Gt );
3127 assert( pExpr->op!=TK_GT || op==OP_Le );
3128 assert( pExpr->op!=TK_GE || op==OP_Lt );
3129
3130 switch( pExpr->op ){
3131 case TK_AND: {
3132 testcase( jumpIfNull==0 );
3133 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3134 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3135 break;
3136 }
3137 case TK_OR: {
3138 int d2 = sqlite3VdbeMakeLabel(v);
3139 testcase( jumpIfNull==0 );
3140 sqlite3ExprCachePush(pParse);
3141 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3142 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3143 sqlite3VdbeResolveLabel(v, d2);
3144 sqlite3ExprCachePop(pParse, 1);
3145 break;
3146 }
3147 case TK_NOT: {
3148 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3149 break;
3150 }
3151 case TK_LT:
3152 case TK_LE:
3153 case TK_GT:
3154 case TK_GE:
3155 case TK_NE:
3156 case TK_EQ: {
3157 testcase( op==TK_LT );
3158 testcase( op==TK_LE );
3159 testcase( op==TK_GT );
3160 testcase( op==TK_GE );
3161 testcase( op==TK_EQ );
3162 testcase( op==TK_NE );
3163 testcase( jumpIfNull==0 );
3164 codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
3165 pExpr->pRight, &r2, &regFree2);
3166 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3167 r1, r2, dest, jumpIfNull);
3168 testcase( regFree1==0 );
3169 testcase( regFree2==0 );
3170 break;
3171 }
3172 case TK_ISNULL:
3173 case TK_NOTNULL: {
3174 testcase( op==TK_ISNULL );
3175 testcase( op==TK_NOTNULL );
3176 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3177 sqlite3VdbeAddOp2(v, op, r1, dest);
3178 testcase( regFree1==0 );
3179 break;
3180 }
3181 case TK_BETWEEN: {
3182 /* x BETWEEN y AND z
3183 **
3184 ** Is equivalent to
3185 **
3186 ** x>=y AND x<=z
3187 **
3188 ** Code it as such, taking care to do the common subexpression
3189 ** elementation of x.
3190 */
3191 Expr exprAnd;
3192 Expr compLeft;
3193 Expr compRight;
3194 Expr exprX;
3195
3196 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3197 exprX = *pExpr->pLeft;
3198 exprAnd.op = TK_AND;
3199 exprAnd.pLeft = &compLeft;
3200 exprAnd.pRight = &compRight;
3201 compLeft.op = TK_GE;
3202 compLeft.pLeft = &exprX;
3203 compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3204 compRight.op = TK_LE;
3205 compRight.pLeft = &exprX;
3206 compRight.pRight = pExpr->x.pList->a[1].pExpr;
3207 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
3208 testcase( regFree1==0 );
3209 exprX.op = TK_REGISTER;
3210 testcase( jumpIfNull==0 );
3211 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3212 break;
3213 }
3214 default: {
3215 r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3216 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3217 testcase( regFree1==0 );
3218 testcase( jumpIfNull==0 );
3219 break;
3220 }
3221 }
3222 sqlite3ReleaseTempReg(pParse, regFree1);
3223 sqlite3ReleaseTempReg(pParse, regFree2);
3224 }
3225
3226 /*
3227 ** Do a deep comparison of two expression trees. Return TRUE (non-zero)
3228 ** if they are identical and return FALSE if they differ in any way.
3229 **
3230 ** Sometimes this routine will return FALSE even if the two expressions
3231 ** really are equivalent. If we cannot prove that the expressions are
3232 ** identical, we return FALSE just to be safe. So if this routine
3233 ** returns false, then you do not really know for certain if the two
3234 ** expressions are the same. But if you get a TRUE return, then you
3235 ** can be sure the expressions are the same. In the places where
3236 ** this routine is used, it does not hurt to get an extra FALSE - that
3237 ** just might result in some slightly slower code. But returning
3238 ** an incorrect TRUE could lead to a malfunction.
3239 */
3240 int sqlite3ExprCompare(Expr *pA, Expr *pB){
3241 int i;
3242 if( pA==0||pB==0 ){
3243 return pB==pA;
3244 }
3245 assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) );
3246 assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) );
3247 if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){
3248 return 0;
3249 }
3250 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
3251 if( pA->op!=pB->op ) return 0;
3252 if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
3253 if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
3254
3255 if( pA->x.pList && pB->x.pList ){
3256 if( pA->x.pList->nExpr!=pB->x.pList->nExpr ) return 0;
3257 for(i=0; i<pA->x.pList->nExpr; i++){
3258 Expr *pExprA = pA->x.pList->a[i].pExpr;
3259 Expr *pExprB = pB->x.pList->a[i].pExpr;
3260 if( !sqlite3ExprCompare(pExprA, pExprB) ) return 0;
3261 }
3262 }else if( pA->x.pList || pB->x.pList ){
3263 return 0;
3264 }
3265
3266 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
3267 if( ExprHasProperty(pA, EP_IntValue) ){
3268 if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){
3269 return 0;
3270 }
3271 }else if( pA->op!=TK_COLUMN && pA->u.zToken ){
3272 if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 0;
3273 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ){
3274 return 0;
3275 }
3276 }
3277 return 1;
3278 }
3279
3280
3281 /*
3282 ** Add a new element to the pAggInfo->aCol[] array. Return the index of
3283 ** the new element. Return a negative number if malloc fails.
3284 */
3285 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
3286 int i;
3287 pInfo->aCol = sqlite3ArrayAllocate(
3288 db,
3289 pInfo->aCol,
3290 sizeof(pInfo->aCol[0]),
3291 3,
3292 &pInfo->nColumn,
3293 &pInfo->nColumnAlloc,
3294 &i
3295 );
3296 return i;
3297 }
3298
3299 /*
3300 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of
3301 ** the new element. Return a negative number if malloc fails.
3302 */
3303 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
3304 int i;
3305 pInfo->aFunc = sqlite3ArrayAllocate(
3306 db,
3307 pInfo->aFunc,
3308 sizeof(pInfo->aFunc[0]),
3309 3,
3310 &pInfo->nFunc,
3311 &pInfo->nFuncAlloc,
3312 &i
3313 );
3314 return i;
3315 }
3316
3317 /*
3318 ** This is the xExprCallback for a tree walker. It is used to
3319 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
3320 ** for additional information.
3321 */
3322 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
3323 int i;
3324 NameContext *pNC = pWalker->u.pNC;
3325 Parse *pParse = pNC->pParse;
3326 SrcList *pSrcList = pNC->pSrcList;
3327 AggInfo *pAggInfo = pNC->pAggInfo;
3328
3329 switch( pExpr->op ){
3330 case TK_AGG_COLUMN:
3331 case TK_COLUMN: {
3332 testcase( pExpr->op==TK_AGG_COLUMN );
3333 testcase( pExpr->op==TK_COLUMN );
3334 /* Check to see if the column is in one of the tables in the FROM
3335 ** clause of the aggregate query */
3336 if( ALWAYS(pSrcList!=0) ){
3337 struct SrcList_item *pItem = pSrcList->a;
3338 for(i=0; i<pSrcList->nSrc; i++, pItem++){
3339 struct AggInfo_col *pCol;
3340 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3341 if( pExpr->iTable==pItem->iCursor ){
3342 /* If we reach this point, it means that pExpr refers to a table
3343 ** that is in the FROM clause of the aggregate query.
3344 **
3345 ** Make an entry for the column in pAggInfo->aCol[] if there
3346 ** is not an entry there already.
3347 */
3348 int k;
3349 pCol = pAggInfo->aCol;
3350 for(k=0; k<pAggInfo->nColumn; k++, pCol++){
3351 if( pCol->iTable==pExpr->iTable &&
3352 pCol->iColumn==pExpr->iColumn ){
3353 break;
3354 }
3355 }
3356 if( (k>=pAggInfo->nColumn)
3357 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
3358 ){
3359 pCol = &pAggInfo->aCol[k];
3360 pCol->pTab = pExpr->pTab;
3361 pCol->iTable = pExpr->iTable;
3362 pCol->iColumn = pExpr->iColumn;
3363 pCol->iMem = ++pParse->nMem;
3364 pCol->iSorterColumn = -1;
3365 pCol->pExpr = pExpr;
3366 if( pAggInfo->pGroupBy ){
3367 int j, n;
3368 ExprList *pGB = pAggInfo->pGroupBy;
3369 struct ExprList_item *pTerm = pGB->a;
3370 n = pGB->nExpr;
3371 for(j=0; j<n; j++, pTerm++){
3372 Expr *pE = pTerm->pExpr;
3373 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
3374 pE->iColumn==pExpr->iColumn ){
3375 pCol->iSorterColumn = j;
3376 break;
3377 }
3378 }
3379 }
3380 if( pCol->iSorterColumn<0 ){
3381 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
3382 }
3383 }
3384 /* There is now an entry for pExpr in pAggInfo->aCol[] (either
3385 ** because it was there before or because we just created it).
3386 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
3387 ** pAggInfo->aCol[] entry.
3388 */
3389 ExprSetIrreducible(pExpr);
3390 pExpr->pAggInfo = pAggInfo;
3391 pExpr->op = TK_AGG_COLUMN;
3392 pExpr->iAgg = (i16)k;
3393 break;
3394 } /* endif pExpr->iTable==pItem->iCursor */
3395 } /* end loop over pSrcList */
3396 }
3397 return WRC_Prune;
3398 }
3399 case TK_AGG_FUNCTION: {
3400 /* The pNC->nDepth==0 test causes aggregate functions in subqueries
3401 ** to be ignored */
3402 if( pNC->nDepth==0 ){
3403 /* Check to see if pExpr is a duplicate of another aggregate
3404 ** function that is already in the pAggInfo structure
3405 */
3406 struct AggInfo_func *pItem = pAggInfo->aFunc;
3407 for(i=0; i<pAggInfo->nFunc; i++, pItem++){
3408 if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
3409 break;
3410 }
3411 }
3412 if( i>=pAggInfo->nFunc ){
3413 /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
3414 */
3415 u8 enc = ENC(pParse->db);
3416 i = addAggInfoFunc(pParse->db, pAggInfo);
3417 if( i>=0 ){
3418 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3419 pItem = &pAggInfo->aFunc[i];
3420 pItem->pExpr = pExpr;
3421 pItem->iMem = ++pParse->nMem;
3422 assert( !ExprHasProperty(pExpr, EP_IntValue) );
3423 pItem->pFunc = sqlite3FindFunction(pParse->db,
3424 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
3425 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
3426 if( pExpr->flags & EP_Distinct ){
3427 pItem->iDistinct = pParse->nTab++;
3428 }else{
3429 pItem->iDistinct = -1;
3430 }
3431 }
3432 }
3433 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
3434 */
3435 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3436 ExprSetIrreducible(pExpr);
3437 pExpr->iAgg = (i16)i;
3438 pExpr->pAggInfo = pAggInfo;
3439 return WRC_Prune;
3440 }
3441 }
3442 }
3443 return WRC_Continue;
3444 }
3445 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
3446 NameContext *pNC = pWalker->u.pNC;
3447 if( pNC->nDepth==0 ){
3448 pNC->nDepth++;
3449 sqlite3WalkSelect(pWalker, pSelect);
3450 pNC->nDepth--;
3451 return WRC_Prune;
3452 }else{
3453 return WRC_Continue;
3454 }
3455 }
3456
3457 /*
3458 ** Analyze the given expression looking for aggregate functions and
3459 ** for variables that need to be added to the pParse->aAgg[] array.
3460 ** Make additional entries to the pParse->aAgg[] array as necessary.
3461 **
3462 ** This routine should only be called after the expression has been
3463 ** analyzed by sqlite3ResolveExprNames().
3464 */
3465 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
3466 Walker w;
3467 w.xExprCallback = analyzeAggregate;
3468 w.xSelectCallback = analyzeAggregatesInSelect;
3469 w.u.pNC = pNC;
3470 assert( pNC->pSrcList!=0 );
3471 sqlite3WalkExpr(&w, pExpr);
3472 }
3473
3474 /*
3475 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
3476 ** expression list. Return the number of errors.
3477 **
3478 ** If an error is found, the analysis is cut short.
3479 */
3480 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
3481 struct ExprList_item *pItem;
3482 int i;
3483 if( pList ){
3484 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
3485 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
3486 }
3487 }
3488 }
3489
3490 /*
3491 ** Allocate a single new register for use to hold some intermediate result.
3492 */
3493 int sqlite3GetTempReg(Parse *pParse){
3494 if( pParse->nTempReg==0 ){
3495 return ++pParse->nMem;
3496 }
3497 return pParse->aTempReg[--pParse->nTempReg];
3498 }
3499
3500 /*
3501 ** Deallocate a register, making available for reuse for some other
3502 ** purpose.
3503 **
3504 ** If a register is currently being used by the column cache, then
3505 ** the dallocation is deferred until the column cache line that uses
3506 ** the register becomes stale.
3507 */
3508 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
3509 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
3510 int i;
3511 struct yColCache *p;
3512 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
3513 if( p->iReg==iReg ){
3514 p->tempReg = 1;
3515 return;
3516 }
3517 }
3518 pParse->aTempReg[pParse->nTempReg++] = iReg;
3519 }
3520 }
3521
3522 /*
3523 ** Allocate or deallocate a block of nReg consecutive registers
3524 */
3525 int sqlite3GetTempRange(Parse *pParse, int nReg){
3526 int i, n;
3527 i = pParse->iRangeReg;
3528 n = pParse->nRangeReg;
3529 if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){
3530 pParse->iRangeReg += nReg;
3531 pParse->nRangeReg -= nReg;
3532 }else{
3533 i = pParse->nMem+1;
3534 pParse->nMem += nReg;
3535 }
3536 return i;
3537 }
3538 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
3539 if( nReg>pParse->nRangeReg ){
3540 pParse->nRangeReg = nReg;
3541 pParse->iRangeReg = iReg;
3542 }
3543 }
OLDNEW
« no previous file with comments | « third_party/sqlite/src/delete.c ('k') | third_party/sqlite/src/fault.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698