| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 ** 2003 October 31 | |
| 3 ** | |
| 4 ** The author disclaims copyright to this source code. In place of | |
| 5 ** a legal notice, here is a blessing: | |
| 6 ** | |
| 7 ** May you do good and not evil. | |
| 8 ** May you find forgiveness for yourself and forgive others. | |
| 9 ** May you share freely, never taking more than you give. | |
| 10 ** | |
| 11 ************************************************************************* | |
| 12 ** This file contains the C functions that implement date and time | |
| 13 ** functions for SQLite. | |
| 14 ** | |
| 15 ** There is only one exported symbol in this file - the function | |
| 16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. | |
| 17 ** All other code has file scope. | |
| 18 ** | |
| 19 ** $Id: date.c,v 1.107 2009/05/03 20:23:53 drh Exp $ | |
| 20 ** | |
| 21 ** SQLite processes all times and dates as Julian Day numbers. The | |
| 22 ** dates and times are stored as the number of days since noon | |
| 23 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian | |
| 24 ** calendar system. | |
| 25 ** | |
| 26 ** 1970-01-01 00:00:00 is JD 2440587.5 | |
| 27 ** 2000-01-01 00:00:00 is JD 2451544.5 | |
| 28 ** | |
| 29 ** This implemention requires years to be expressed as a 4-digit number | |
| 30 ** which means that only dates between 0000-01-01 and 9999-12-31 can | |
| 31 ** be represented, even though julian day numbers allow a much wider | |
| 32 ** range of dates. | |
| 33 ** | |
| 34 ** The Gregorian calendar system is used for all dates and times, | |
| 35 ** even those that predate the Gregorian calendar. Historians usually | |
| 36 ** use the Julian calendar for dates prior to 1582-10-15 and for some | |
| 37 ** dates afterwards, depending on locale. Beware of this difference. | |
| 38 ** | |
| 39 ** The conversion algorithms are implemented based on descriptions | |
| 40 ** in the following text: | |
| 41 ** | |
| 42 ** Jean Meeus | |
| 43 ** Astronomical Algorithms, 2nd Edition, 1998 | |
| 44 ** ISBM 0-943396-61-1 | |
| 45 ** Willmann-Bell, Inc | |
| 46 ** Richmond, Virginia (USA) | |
| 47 */ | |
| 48 #include "sqliteInt.h" | |
| 49 #include <stdlib.h> | |
| 50 #include <assert.h> | |
| 51 #include <time.h> | |
| 52 | |
| 53 #ifndef SQLITE_OMIT_DATETIME_FUNCS | |
| 54 | |
| 55 /* | |
| 56 ** On recent Windows platforms, the localtime_s() function is available | |
| 57 ** as part of the "Secure CRT". It is essentially equivalent to | |
| 58 ** localtime_r() available under most POSIX platforms, except that the | |
| 59 ** order of the parameters is reversed. | |
| 60 ** | |
| 61 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx. | |
| 62 ** | |
| 63 ** If the user has not indicated to use localtime_r() or localtime_s() | |
| 64 ** already, check for an MSVC build environment that provides | |
| 65 ** localtime_s(). | |
| 66 */ | |
| 67 #if !defined(HAVE_LOCALTIME_R) && !defined(HAVE_LOCALTIME_S) && \ | |
| 68 defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE) | |
| 69 #define HAVE_LOCALTIME_S 1 | |
| 70 #endif | |
| 71 | |
| 72 /* | |
| 73 ** A structure for holding a single date and time. | |
| 74 */ | |
| 75 typedef struct DateTime DateTime; | |
| 76 struct DateTime { | |
| 77 sqlite3_int64 iJD; /* The julian day number times 86400000 */ | |
| 78 int Y, M, D; /* Year, month, and day */ | |
| 79 int h, m; /* Hour and minutes */ | |
| 80 int tz; /* Timezone offset in minutes */ | |
| 81 double s; /* Seconds */ | |
| 82 char validYMD; /* True (1) if Y,M,D are valid */ | |
| 83 char validHMS; /* True (1) if h,m,s are valid */ | |
| 84 char validJD; /* True (1) if iJD is valid */ | |
| 85 char validTZ; /* True (1) if tz is valid */ | |
| 86 }; | |
| 87 | |
| 88 | |
| 89 /* | |
| 90 ** Convert zDate into one or more integers. Additional arguments | |
| 91 ** come in groups of 5 as follows: | |
| 92 ** | |
| 93 ** N number of digits in the integer | |
| 94 ** min minimum allowed value of the integer | |
| 95 ** max maximum allowed value of the integer | |
| 96 ** nextC first character after the integer | |
| 97 ** pVal where to write the integers value. | |
| 98 ** | |
| 99 ** Conversions continue until one with nextC==0 is encountered. | |
| 100 ** The function returns the number of successful conversions. | |
| 101 */ | |
| 102 static int getDigits(const char *zDate, ...){ | |
| 103 va_list ap; | |
| 104 int val; | |
| 105 int N; | |
| 106 int min; | |
| 107 int max; | |
| 108 int nextC; | |
| 109 int *pVal; | |
| 110 int cnt = 0; | |
| 111 va_start(ap, zDate); | |
| 112 do{ | |
| 113 N = va_arg(ap, int); | |
| 114 min = va_arg(ap, int); | |
| 115 max = va_arg(ap, int); | |
| 116 nextC = va_arg(ap, int); | |
| 117 pVal = va_arg(ap, int*); | |
| 118 val = 0; | |
| 119 while( N-- ){ | |
| 120 if( !sqlite3Isdigit(*zDate) ){ | |
| 121 goto end_getDigits; | |
| 122 } | |
| 123 val = val*10 + *zDate - '0'; | |
| 124 zDate++; | |
| 125 } | |
| 126 if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){ | |
| 127 goto end_getDigits; | |
| 128 } | |
| 129 *pVal = val; | |
| 130 zDate++; | |
| 131 cnt++; | |
| 132 }while( nextC ); | |
| 133 end_getDigits: | |
| 134 va_end(ap); | |
| 135 return cnt; | |
| 136 } | |
| 137 | |
| 138 /* | |
| 139 ** Read text from z[] and convert into a floating point number. Return | |
| 140 ** the number of digits converted. | |
| 141 */ | |
| 142 #define getValue sqlite3AtoF | |
| 143 | |
| 144 /* | |
| 145 ** Parse a timezone extension on the end of a date-time. | |
| 146 ** The extension is of the form: | |
| 147 ** | |
| 148 ** (+/-)HH:MM | |
| 149 ** | |
| 150 ** Or the "zulu" notation: | |
| 151 ** | |
| 152 ** Z | |
| 153 ** | |
| 154 ** If the parse is successful, write the number of minutes | |
| 155 ** of change in p->tz and return 0. If a parser error occurs, | |
| 156 ** return non-zero. | |
| 157 ** | |
| 158 ** A missing specifier is not considered an error. | |
| 159 */ | |
| 160 static int parseTimezone(const char *zDate, DateTime *p){ | |
| 161 int sgn = 0; | |
| 162 int nHr, nMn; | |
| 163 int c; | |
| 164 while( sqlite3Isspace(*zDate) ){ zDate++; } | |
| 165 p->tz = 0; | |
| 166 c = *zDate; | |
| 167 if( c=='-' ){ | |
| 168 sgn = -1; | |
| 169 }else if( c=='+' ){ | |
| 170 sgn = +1; | |
| 171 }else if( c=='Z' || c=='z' ){ | |
| 172 zDate++; | |
| 173 goto zulu_time; | |
| 174 }else{ | |
| 175 return c!=0; | |
| 176 } | |
| 177 zDate++; | |
| 178 if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){ | |
| 179 return 1; | |
| 180 } | |
| 181 zDate += 5; | |
| 182 p->tz = sgn*(nMn + nHr*60); | |
| 183 zulu_time: | |
| 184 while( sqlite3Isspace(*zDate) ){ zDate++; } | |
| 185 return *zDate!=0; | |
| 186 } | |
| 187 | |
| 188 /* | |
| 189 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. | |
| 190 ** The HH, MM, and SS must each be exactly 2 digits. The | |
| 191 ** fractional seconds FFFF can be one or more digits. | |
| 192 ** | |
| 193 ** Return 1 if there is a parsing error and 0 on success. | |
| 194 */ | |
| 195 static int parseHhMmSs(const char *zDate, DateTime *p){ | |
| 196 int h, m, s; | |
| 197 double ms = 0.0; | |
| 198 if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){ | |
| 199 return 1; | |
| 200 } | |
| 201 zDate += 5; | |
| 202 if( *zDate==':' ){ | |
| 203 zDate++; | |
| 204 if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){ | |
| 205 return 1; | |
| 206 } | |
| 207 zDate += 2; | |
| 208 if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){ | |
| 209 double rScale = 1.0; | |
| 210 zDate++; | |
| 211 while( sqlite3Isdigit(*zDate) ){ | |
| 212 ms = ms*10.0 + *zDate - '0'; | |
| 213 rScale *= 10.0; | |
| 214 zDate++; | |
| 215 } | |
| 216 ms /= rScale; | |
| 217 } | |
| 218 }else{ | |
| 219 s = 0; | |
| 220 } | |
| 221 p->validJD = 0; | |
| 222 p->validHMS = 1; | |
| 223 p->h = h; | |
| 224 p->m = m; | |
| 225 p->s = s + ms; | |
| 226 if( parseTimezone(zDate, p) ) return 1; | |
| 227 p->validTZ = (p->tz!=0)?1:0; | |
| 228 return 0; | |
| 229 } | |
| 230 | |
| 231 /* | |
| 232 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume | |
| 233 ** that the YYYY-MM-DD is according to the Gregorian calendar. | |
| 234 ** | |
| 235 ** Reference: Meeus page 61 | |
| 236 */ | |
| 237 static void computeJD(DateTime *p){ | |
| 238 int Y, M, D, A, B, X1, X2; | |
| 239 | |
| 240 if( p->validJD ) return; | |
| 241 if( p->validYMD ){ | |
| 242 Y = p->Y; | |
| 243 M = p->M; | |
| 244 D = p->D; | |
| 245 }else{ | |
| 246 Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ | |
| 247 M = 1; | |
| 248 D = 1; | |
| 249 } | |
| 250 if( M<=2 ){ | |
| 251 Y--; | |
| 252 M += 12; | |
| 253 } | |
| 254 A = Y/100; | |
| 255 B = 2 - A + (A/4); | |
| 256 X1 = 36525*(Y+4716)/100; | |
| 257 X2 = 306001*(M+1)/10000; | |
| 258 p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000); | |
| 259 p->validJD = 1; | |
| 260 if( p->validHMS ){ | |
| 261 p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000); | |
| 262 if( p->validTZ ){ | |
| 263 p->iJD -= p->tz*60000; | |
| 264 p->validYMD = 0; | |
| 265 p->validHMS = 0; | |
| 266 p->validTZ = 0; | |
| 267 } | |
| 268 } | |
| 269 } | |
| 270 | |
| 271 /* | |
| 272 ** Parse dates of the form | |
| 273 ** | |
| 274 ** YYYY-MM-DD HH:MM:SS.FFF | |
| 275 ** YYYY-MM-DD HH:MM:SS | |
| 276 ** YYYY-MM-DD HH:MM | |
| 277 ** YYYY-MM-DD | |
| 278 ** | |
| 279 ** Write the result into the DateTime structure and return 0 | |
| 280 ** on success and 1 if the input string is not a well-formed | |
| 281 ** date. | |
| 282 */ | |
| 283 static int parseYyyyMmDd(const char *zDate, DateTime *p){ | |
| 284 int Y, M, D, neg; | |
| 285 | |
| 286 if( zDate[0]=='-' ){ | |
| 287 zDate++; | |
| 288 neg = 1; | |
| 289 }else{ | |
| 290 neg = 0; | |
| 291 } | |
| 292 if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){ | |
| 293 return 1; | |
| 294 } | |
| 295 zDate += 10; | |
| 296 while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; } | |
| 297 if( parseHhMmSs(zDate, p)==0 ){ | |
| 298 /* We got the time */ | |
| 299 }else if( *zDate==0 ){ | |
| 300 p->validHMS = 0; | |
| 301 }else{ | |
| 302 return 1; | |
| 303 } | |
| 304 p->validJD = 0; | |
| 305 p->validYMD = 1; | |
| 306 p->Y = neg ? -Y : Y; | |
| 307 p->M = M; | |
| 308 p->D = D; | |
| 309 if( p->validTZ ){ | |
| 310 computeJD(p); | |
| 311 } | |
| 312 return 0; | |
| 313 } | |
| 314 | |
| 315 /* | |
| 316 ** Set the time to the current time reported by the VFS | |
| 317 */ | |
| 318 static void setDateTimeToCurrent(sqlite3_context *context, DateTime *p){ | |
| 319 double r; | |
| 320 sqlite3 *db = sqlite3_context_db_handle(context); | |
| 321 sqlite3OsCurrentTime(db->pVfs, &r); | |
| 322 p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); | |
| 323 p->validJD = 1; | |
| 324 } | |
| 325 | |
| 326 /* | |
| 327 ** Attempt to parse the given string into a Julian Day Number. Return | |
| 328 ** the number of errors. | |
| 329 ** | |
| 330 ** The following are acceptable forms for the input string: | |
| 331 ** | |
| 332 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM | |
| 333 ** DDDD.DD | |
| 334 ** now | |
| 335 ** | |
| 336 ** In the first form, the +/-HH:MM is always optional. The fractional | |
| 337 ** seconds extension (the ".FFF") is optional. The seconds portion | |
| 338 ** (":SS.FFF") is option. The year and date can be omitted as long | |
| 339 ** as there is a time string. The time string can be omitted as long | |
| 340 ** as there is a year and date. | |
| 341 */ | |
| 342 static int parseDateOrTime( | |
| 343 sqlite3_context *context, | |
| 344 const char *zDate, | |
| 345 DateTime *p | |
| 346 ){ | |
| 347 int isRealNum; /* Return from sqlite3IsNumber(). Not used */ | |
| 348 if( parseYyyyMmDd(zDate,p)==0 ){ | |
| 349 return 0; | |
| 350 }else if( parseHhMmSs(zDate, p)==0 ){ | |
| 351 return 0; | |
| 352 }else if( sqlite3StrICmp(zDate,"now")==0){ | |
| 353 setDateTimeToCurrent(context, p); | |
| 354 return 0; | |
| 355 }else if( sqlite3IsNumber(zDate, &isRealNum, SQLITE_UTF8) ){ | |
| 356 double r; | |
| 357 getValue(zDate, &r); | |
| 358 p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); | |
| 359 p->validJD = 1; | |
| 360 return 0; | |
| 361 } | |
| 362 return 1; | |
| 363 } | |
| 364 | |
| 365 /* | |
| 366 ** Compute the Year, Month, and Day from the julian day number. | |
| 367 */ | |
| 368 static void computeYMD(DateTime *p){ | |
| 369 int Z, A, B, C, D, E, X1; | |
| 370 if( p->validYMD ) return; | |
| 371 if( !p->validJD ){ | |
| 372 p->Y = 2000; | |
| 373 p->M = 1; | |
| 374 p->D = 1; | |
| 375 }else{ | |
| 376 Z = (int)((p->iJD + 43200000)/86400000); | |
| 377 A = (int)((Z - 1867216.25)/36524.25); | |
| 378 A = Z + 1 + A - (A/4); | |
| 379 B = A + 1524; | |
| 380 C = (int)((B - 122.1)/365.25); | |
| 381 D = (36525*C)/100; | |
| 382 E = (int)((B-D)/30.6001); | |
| 383 X1 = (int)(30.6001*E); | |
| 384 p->D = B - D - X1; | |
| 385 p->M = E<14 ? E-1 : E-13; | |
| 386 p->Y = p->M>2 ? C - 4716 : C - 4715; | |
| 387 } | |
| 388 p->validYMD = 1; | |
| 389 } | |
| 390 | |
| 391 /* | |
| 392 ** Compute the Hour, Minute, and Seconds from the julian day number. | |
| 393 */ | |
| 394 static void computeHMS(DateTime *p){ | |
| 395 int s; | |
| 396 if( p->validHMS ) return; | |
| 397 computeJD(p); | |
| 398 s = (int)((p->iJD + 43200000) % 86400000); | |
| 399 p->s = s/1000.0; | |
| 400 s = (int)p->s; | |
| 401 p->s -= s; | |
| 402 p->h = s/3600; | |
| 403 s -= p->h*3600; | |
| 404 p->m = s/60; | |
| 405 p->s += s - p->m*60; | |
| 406 p->validHMS = 1; | |
| 407 } | |
| 408 | |
| 409 /* | |
| 410 ** Compute both YMD and HMS | |
| 411 */ | |
| 412 static void computeYMD_HMS(DateTime *p){ | |
| 413 computeYMD(p); | |
| 414 computeHMS(p); | |
| 415 } | |
| 416 | |
| 417 /* | |
| 418 ** Clear the YMD and HMS and the TZ | |
| 419 */ | |
| 420 static void clearYMD_HMS_TZ(DateTime *p){ | |
| 421 p->validYMD = 0; | |
| 422 p->validHMS = 0; | |
| 423 p->validTZ = 0; | |
| 424 } | |
| 425 | |
| 426 #ifndef SQLITE_OMIT_LOCALTIME | |
| 427 /* | |
| 428 ** Compute the difference (in milliseconds) | |
| 429 ** between localtime and UTC (a.k.a. GMT) | |
| 430 ** for the time value p where p is in UTC. | |
| 431 */ | |
| 432 static sqlite3_int64 localtimeOffset(DateTime *p){ | |
| 433 DateTime x, y; | |
| 434 time_t t; | |
| 435 x = *p; | |
| 436 computeYMD_HMS(&x); | |
| 437 if( x.Y<1971 || x.Y>=2038 ){ | |
| 438 x.Y = 2000; | |
| 439 x.M = 1; | |
| 440 x.D = 1; | |
| 441 x.h = 0; | |
| 442 x.m = 0; | |
| 443 x.s = 0.0; | |
| 444 } else { | |
| 445 int s = (int)(x.s + 0.5); | |
| 446 x.s = s; | |
| 447 } | |
| 448 x.tz = 0; | |
| 449 x.validJD = 0; | |
| 450 computeJD(&x); | |
| 451 t = (time_t)(x.iJD/1000 - 21086676*(i64)10000); | |
| 452 #ifdef HAVE_LOCALTIME_R | |
| 453 { | |
| 454 struct tm sLocal; | |
| 455 localtime_r(&t, &sLocal); | |
| 456 y.Y = sLocal.tm_year + 1900; | |
| 457 y.M = sLocal.tm_mon + 1; | |
| 458 y.D = sLocal.tm_mday; | |
| 459 y.h = sLocal.tm_hour; | |
| 460 y.m = sLocal.tm_min; | |
| 461 y.s = sLocal.tm_sec; | |
| 462 } | |
| 463 #elif defined(HAVE_LOCALTIME_S) | |
| 464 { | |
| 465 struct tm sLocal; | |
| 466 localtime_s(&sLocal, &t); | |
| 467 y.Y = sLocal.tm_year + 1900; | |
| 468 y.M = sLocal.tm_mon + 1; | |
| 469 y.D = sLocal.tm_mday; | |
| 470 y.h = sLocal.tm_hour; | |
| 471 y.m = sLocal.tm_min; | |
| 472 y.s = sLocal.tm_sec; | |
| 473 } | |
| 474 #else | |
| 475 { | |
| 476 struct tm *pTm; | |
| 477 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); | |
| 478 pTm = localtime(&t); | |
| 479 y.Y = pTm->tm_year + 1900; | |
| 480 y.M = pTm->tm_mon + 1; | |
| 481 y.D = pTm->tm_mday; | |
| 482 y.h = pTm->tm_hour; | |
| 483 y.m = pTm->tm_min; | |
| 484 y.s = pTm->tm_sec; | |
| 485 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); | |
| 486 } | |
| 487 #endif | |
| 488 y.validYMD = 1; | |
| 489 y.validHMS = 1; | |
| 490 y.validJD = 0; | |
| 491 y.validTZ = 0; | |
| 492 computeJD(&y); | |
| 493 return y.iJD - x.iJD; | |
| 494 } | |
| 495 #endif /* SQLITE_OMIT_LOCALTIME */ | |
| 496 | |
| 497 /* | |
| 498 ** Process a modifier to a date-time stamp. The modifiers are | |
| 499 ** as follows: | |
| 500 ** | |
| 501 ** NNN days | |
| 502 ** NNN hours | |
| 503 ** NNN minutes | |
| 504 ** NNN.NNNN seconds | |
| 505 ** NNN months | |
| 506 ** NNN years | |
| 507 ** start of month | |
| 508 ** start of year | |
| 509 ** start of week | |
| 510 ** start of day | |
| 511 ** weekday N | |
| 512 ** unixepoch | |
| 513 ** localtime | |
| 514 ** utc | |
| 515 ** | |
| 516 ** Return 0 on success and 1 if there is any kind of error. | |
| 517 */ | |
| 518 static int parseModifier(const char *zMod, DateTime *p){ | |
| 519 int rc = 1; | |
| 520 int n; | |
| 521 double r; | |
| 522 char *z, zBuf[30]; | |
| 523 z = zBuf; | |
| 524 for(n=0; n<ArraySize(zBuf)-1 && zMod[n]; n++){ | |
| 525 z[n] = (char)sqlite3UpperToLower[(u8)zMod[n]]; | |
| 526 } | |
| 527 z[n] = 0; | |
| 528 switch( z[0] ){ | |
| 529 #ifndef SQLITE_OMIT_LOCALTIME | |
| 530 case 'l': { | |
| 531 /* localtime | |
| 532 ** | |
| 533 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to | |
| 534 ** show local time. | |
| 535 */ | |
| 536 if( strcmp(z, "localtime")==0 ){ | |
| 537 computeJD(p); | |
| 538 p->iJD += localtimeOffset(p); | |
| 539 clearYMD_HMS_TZ(p); | |
| 540 rc = 0; | |
| 541 } | |
| 542 break; | |
| 543 } | |
| 544 #endif | |
| 545 case 'u': { | |
| 546 /* | |
| 547 ** unixepoch | |
| 548 ** | |
| 549 ** Treat the current value of p->iJD as the number of | |
| 550 ** seconds since 1970. Convert to a real julian day number. | |
| 551 */ | |
| 552 if( strcmp(z, "unixepoch")==0 && p->validJD ){ | |
| 553 p->iJD = (p->iJD + 43200)/86400 + 21086676*(i64)10000000; | |
| 554 clearYMD_HMS_TZ(p); | |
| 555 rc = 0; | |
| 556 } | |
| 557 #ifndef SQLITE_OMIT_LOCALTIME | |
| 558 else if( strcmp(z, "utc")==0 ){ | |
| 559 sqlite3_int64 c1; | |
| 560 computeJD(p); | |
| 561 c1 = localtimeOffset(p); | |
| 562 p->iJD -= c1; | |
| 563 clearYMD_HMS_TZ(p); | |
| 564 p->iJD += c1 - localtimeOffset(p); | |
| 565 rc = 0; | |
| 566 } | |
| 567 #endif | |
| 568 break; | |
| 569 } | |
| 570 case 'w': { | |
| 571 /* | |
| 572 ** weekday N | |
| 573 ** | |
| 574 ** Move the date to the same time on the next occurrence of | |
| 575 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the | |
| 576 ** date is already on the appropriate weekday, this is a no-op. | |
| 577 */ | |
| 578 if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0 | |
| 579 && (n=(int)r)==r && n>=0 && r<7 ){ | |
| 580 sqlite3_int64 Z; | |
| 581 computeYMD_HMS(p); | |
| 582 p->validTZ = 0; | |
| 583 p->validJD = 0; | |
| 584 computeJD(p); | |
| 585 Z = ((p->iJD + 129600000)/86400000) % 7; | |
| 586 if( Z>n ) Z -= 7; | |
| 587 p->iJD += (n - Z)*86400000; | |
| 588 clearYMD_HMS_TZ(p); | |
| 589 rc = 0; | |
| 590 } | |
| 591 break; | |
| 592 } | |
| 593 case 's': { | |
| 594 /* | |
| 595 ** start of TTTTT | |
| 596 ** | |
| 597 ** Move the date backwards to the beginning of the current day, | |
| 598 ** or month or year. | |
| 599 */ | |
| 600 if( strncmp(z, "start of ", 9)!=0 ) break; | |
| 601 z += 9; | |
| 602 computeYMD(p); | |
| 603 p->validHMS = 1; | |
| 604 p->h = p->m = 0; | |
| 605 p->s = 0.0; | |
| 606 p->validTZ = 0; | |
| 607 p->validJD = 0; | |
| 608 if( strcmp(z,"month")==0 ){ | |
| 609 p->D = 1; | |
| 610 rc = 0; | |
| 611 }else if( strcmp(z,"year")==0 ){ | |
| 612 computeYMD(p); | |
| 613 p->M = 1; | |
| 614 p->D = 1; | |
| 615 rc = 0; | |
| 616 }else if( strcmp(z,"day")==0 ){ | |
| 617 rc = 0; | |
| 618 } | |
| 619 break; | |
| 620 } | |
| 621 case '+': | |
| 622 case '-': | |
| 623 case '0': | |
| 624 case '1': | |
| 625 case '2': | |
| 626 case '3': | |
| 627 case '4': | |
| 628 case '5': | |
| 629 case '6': | |
| 630 case '7': | |
| 631 case '8': | |
| 632 case '9': { | |
| 633 double rRounder; | |
| 634 n = getValue(z, &r); | |
| 635 assert( n>=1 ); | |
| 636 if( z[n]==':' ){ | |
| 637 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the | |
| 638 ** specified number of hours, minutes, seconds, and fractional seconds | |
| 639 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be | |
| 640 ** omitted. | |
| 641 */ | |
| 642 const char *z2 = z; | |
| 643 DateTime tx; | |
| 644 sqlite3_int64 day; | |
| 645 if( !sqlite3Isdigit(*z2) ) z2++; | |
| 646 memset(&tx, 0, sizeof(tx)); | |
| 647 if( parseHhMmSs(z2, &tx) ) break; | |
| 648 computeJD(&tx); | |
| 649 tx.iJD -= 43200000; | |
| 650 day = tx.iJD/86400000; | |
| 651 tx.iJD -= day*86400000; | |
| 652 if( z[0]=='-' ) tx.iJD = -tx.iJD; | |
| 653 computeJD(p); | |
| 654 clearYMD_HMS_TZ(p); | |
| 655 p->iJD += tx.iJD; | |
| 656 rc = 0; | |
| 657 break; | |
| 658 } | |
| 659 z += n; | |
| 660 while( sqlite3Isspace(*z) ) z++; | |
| 661 n = sqlite3Strlen30(z); | |
| 662 if( n>10 || n<3 ) break; | |
| 663 if( z[n-1]=='s' ){ z[n-1] = 0; n--; } | |
| 664 computeJD(p); | |
| 665 rc = 0; | |
| 666 rRounder = r<0 ? -0.5 : +0.5; | |
| 667 if( n==3 && strcmp(z,"day")==0 ){ | |
| 668 p->iJD += (sqlite3_int64)(r*86400000.0 + rRounder); | |
| 669 }else if( n==4 && strcmp(z,"hour")==0 ){ | |
| 670 p->iJD += (sqlite3_int64)(r*(86400000.0/24.0) + rRounder); | |
| 671 }else if( n==6 && strcmp(z,"minute")==0 ){ | |
| 672 p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0)) + rRounder); | |
| 673 }else if( n==6 && strcmp(z,"second")==0 ){ | |
| 674 p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0*60.0)) + rRounder); | |
| 675 }else if( n==5 && strcmp(z,"month")==0 ){ | |
| 676 int x, y; | |
| 677 computeYMD_HMS(p); | |
| 678 p->M += (int)r; | |
| 679 x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; | |
| 680 p->Y += x; | |
| 681 p->M -= x*12; | |
| 682 p->validJD = 0; | |
| 683 computeJD(p); | |
| 684 y = (int)r; | |
| 685 if( y!=r ){ | |
| 686 p->iJD += (sqlite3_int64)((r - y)*30.0*86400000.0 + rRounder); | |
| 687 } | |
| 688 }else if( n==4 && strcmp(z,"year")==0 ){ | |
| 689 int y = (int)r; | |
| 690 computeYMD_HMS(p); | |
| 691 p->Y += y; | |
| 692 p->validJD = 0; | |
| 693 computeJD(p); | |
| 694 if( y!=r ){ | |
| 695 p->iJD += (sqlite3_int64)((r - y)*365.0*86400000.0 + rRounder); | |
| 696 } | |
| 697 }else{ | |
| 698 rc = 1; | |
| 699 } | |
| 700 clearYMD_HMS_TZ(p); | |
| 701 break; | |
| 702 } | |
| 703 default: { | |
| 704 break; | |
| 705 } | |
| 706 } | |
| 707 return rc; | |
| 708 } | |
| 709 | |
| 710 /* | |
| 711 ** Process time function arguments. argv[0] is a date-time stamp. | |
| 712 ** argv[1] and following are modifiers. Parse them all and write | |
| 713 ** the resulting time into the DateTime structure p. Return 0 | |
| 714 ** on success and 1 if there are any errors. | |
| 715 ** | |
| 716 ** If there are zero parameters (if even argv[0] is undefined) | |
| 717 ** then assume a default value of "now" for argv[0]. | |
| 718 */ | |
| 719 static int isDate( | |
| 720 sqlite3_context *context, | |
| 721 int argc, | |
| 722 sqlite3_value **argv, | |
| 723 DateTime *p | |
| 724 ){ | |
| 725 int i; | |
| 726 const unsigned char *z; | |
| 727 int eType; | |
| 728 memset(p, 0, sizeof(*p)); | |
| 729 if( argc==0 ){ | |
| 730 setDateTimeToCurrent(context, p); | |
| 731 }else if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT | |
| 732 || eType==SQLITE_INTEGER ){ | |
| 733 p->iJD = (sqlite3_int64)(sqlite3_value_double(argv[0])*86400000.0 + 0.5); | |
| 734 p->validJD = 1; | |
| 735 }else{ | |
| 736 z = sqlite3_value_text(argv[0]); | |
| 737 if( !z || parseDateOrTime(context, (char*)z, p) ){ | |
| 738 return 1; | |
| 739 } | |
| 740 } | |
| 741 for(i=1; i<argc; i++){ | |
| 742 if( (z = sqlite3_value_text(argv[i]))==0 || parseModifier((char*)z, p) ){ | |
| 743 return 1; | |
| 744 } | |
| 745 } | |
| 746 return 0; | |
| 747 } | |
| 748 | |
| 749 | |
| 750 /* | |
| 751 ** The following routines implement the various date and time functions | |
| 752 ** of SQLite. | |
| 753 */ | |
| 754 | |
| 755 /* | |
| 756 ** julianday( TIMESTRING, MOD, MOD, ...) | |
| 757 ** | |
| 758 ** Return the julian day number of the date specified in the arguments | |
| 759 */ | |
| 760 static void juliandayFunc( | |
| 761 sqlite3_context *context, | |
| 762 int argc, | |
| 763 sqlite3_value **argv | |
| 764 ){ | |
| 765 DateTime x; | |
| 766 if( isDate(context, argc, argv, &x)==0 ){ | |
| 767 computeJD(&x); | |
| 768 sqlite3_result_double(context, x.iJD/86400000.0); | |
| 769 } | |
| 770 } | |
| 771 | |
| 772 /* | |
| 773 ** datetime( TIMESTRING, MOD, MOD, ...) | |
| 774 ** | |
| 775 ** Return YYYY-MM-DD HH:MM:SS | |
| 776 */ | |
| 777 static void datetimeFunc( | |
| 778 sqlite3_context *context, | |
| 779 int argc, | |
| 780 sqlite3_value **argv | |
| 781 ){ | |
| 782 DateTime x; | |
| 783 if( isDate(context, argc, argv, &x)==0 ){ | |
| 784 char zBuf[100]; | |
| 785 computeYMD_HMS(&x); | |
| 786 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d", | |
| 787 x.Y, x.M, x.D, x.h, x.m, (int)(x.s)); | |
| 788 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); | |
| 789 } | |
| 790 } | |
| 791 | |
| 792 /* | |
| 793 ** time( TIMESTRING, MOD, MOD, ...) | |
| 794 ** | |
| 795 ** Return HH:MM:SS | |
| 796 */ | |
| 797 static void timeFunc( | |
| 798 sqlite3_context *context, | |
| 799 int argc, | |
| 800 sqlite3_value **argv | |
| 801 ){ | |
| 802 DateTime x; | |
| 803 if( isDate(context, argc, argv, &x)==0 ){ | |
| 804 char zBuf[100]; | |
| 805 computeHMS(&x); | |
| 806 sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s); | |
| 807 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); | |
| 808 } | |
| 809 } | |
| 810 | |
| 811 /* | |
| 812 ** date( TIMESTRING, MOD, MOD, ...) | |
| 813 ** | |
| 814 ** Return YYYY-MM-DD | |
| 815 */ | |
| 816 static void dateFunc( | |
| 817 sqlite3_context *context, | |
| 818 int argc, | |
| 819 sqlite3_value **argv | |
| 820 ){ | |
| 821 DateTime x; | |
| 822 if( isDate(context, argc, argv, &x)==0 ){ | |
| 823 char zBuf[100]; | |
| 824 computeYMD(&x); | |
| 825 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D); | |
| 826 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); | |
| 827 } | |
| 828 } | |
| 829 | |
| 830 /* | |
| 831 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...) | |
| 832 ** | |
| 833 ** Return a string described by FORMAT. Conversions as follows: | |
| 834 ** | |
| 835 ** %d day of month | |
| 836 ** %f ** fractional seconds SS.SSS | |
| 837 ** %H hour 00-24 | |
| 838 ** %j day of year 000-366 | |
| 839 ** %J ** Julian day number | |
| 840 ** %m month 01-12 | |
| 841 ** %M minute 00-59 | |
| 842 ** %s seconds since 1970-01-01 | |
| 843 ** %S seconds 00-59 | |
| 844 ** %w day of week 0-6 sunday==0 | |
| 845 ** %W week of year 00-53 | |
| 846 ** %Y year 0000-9999 | |
| 847 ** %% % | |
| 848 */ | |
| 849 static void strftimeFunc( | |
| 850 sqlite3_context *context, | |
| 851 int argc, | |
| 852 sqlite3_value **argv | |
| 853 ){ | |
| 854 DateTime x; | |
| 855 u64 n; | |
| 856 size_t i,j; | |
| 857 char *z; | |
| 858 sqlite3 *db; | |
| 859 const char *zFmt = (const char*)sqlite3_value_text(argv[0]); | |
| 860 char zBuf[100]; | |
| 861 if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return; | |
| 862 db = sqlite3_context_db_handle(context); | |
| 863 for(i=0, n=1; zFmt[i]; i++, n++){ | |
| 864 if( zFmt[i]=='%' ){ | |
| 865 switch( zFmt[i+1] ){ | |
| 866 case 'd': | |
| 867 case 'H': | |
| 868 case 'm': | |
| 869 case 'M': | |
| 870 case 'S': | |
| 871 case 'W': | |
| 872 n++; | |
| 873 /* fall thru */ | |
| 874 case 'w': | |
| 875 case '%': | |
| 876 break; | |
| 877 case 'f': | |
| 878 n += 8; | |
| 879 break; | |
| 880 case 'j': | |
| 881 n += 3; | |
| 882 break; | |
| 883 case 'Y': | |
| 884 n += 8; | |
| 885 break; | |
| 886 case 's': | |
| 887 case 'J': | |
| 888 n += 50; | |
| 889 break; | |
| 890 default: | |
| 891 return; /* ERROR. return a NULL */ | |
| 892 } | |
| 893 i++; | |
| 894 } | |
| 895 } | |
| 896 testcase( n==sizeof(zBuf)-1 ); | |
| 897 testcase( n==sizeof(zBuf) ); | |
| 898 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); | |
| 899 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ); | |
| 900 if( n<sizeof(zBuf) ){ | |
| 901 z = zBuf; | |
| 902 }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){ | |
| 903 sqlite3_result_error_toobig(context); | |
| 904 return; | |
| 905 }else{ | |
| 906 z = sqlite3DbMallocRaw(db, (int)n); | |
| 907 if( z==0 ){ | |
| 908 sqlite3_result_error_nomem(context); | |
| 909 return; | |
| 910 } | |
| 911 } | |
| 912 computeJD(&x); | |
| 913 computeYMD_HMS(&x); | |
| 914 for(i=j=0; zFmt[i]; i++){ | |
| 915 if( zFmt[i]!='%' ){ | |
| 916 z[j++] = zFmt[i]; | |
| 917 }else{ | |
| 918 i++; | |
| 919 switch( zFmt[i] ){ | |
| 920 case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break; | |
| 921 case 'f': { | |
| 922 double s = x.s; | |
| 923 if( s>59.999 ) s = 59.999; | |
| 924 sqlite3_snprintf(7, &z[j],"%06.3f", s); | |
| 925 j += sqlite3Strlen30(&z[j]); | |
| 926 break; | |
| 927 } | |
| 928 case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break; | |
| 929 case 'W': /* Fall thru */ | |
| 930 case 'j': { | |
| 931 int nDay; /* Number of days since 1st day of year */ | |
| 932 DateTime y = x; | |
| 933 y.validJD = 0; | |
| 934 y.M = 1; | |
| 935 y.D = 1; | |
| 936 computeJD(&y); | |
| 937 nDay = (int)((x.iJD-y.iJD+43200000)/86400000); | |
| 938 if( zFmt[i]=='W' ){ | |
| 939 int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */ | |
| 940 wd = (int)(((x.iJD+43200000)/86400000)%7); | |
| 941 sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7); | |
| 942 j += 2; | |
| 943 }else{ | |
| 944 sqlite3_snprintf(4, &z[j],"%03d",nDay+1); | |
| 945 j += 3; | |
| 946 } | |
| 947 break; | |
| 948 } | |
| 949 case 'J': { | |
| 950 sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0); | |
| 951 j+=sqlite3Strlen30(&z[j]); | |
| 952 break; | |
| 953 } | |
| 954 case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break; | |
| 955 case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break; | |
| 956 case 's': { | |
| 957 sqlite3_snprintf(30,&z[j],"%lld", | |
| 958 (i64)(x.iJD/1000 - 21086676*(i64)10000)); | |
| 959 j += sqlite3Strlen30(&z[j]); | |
| 960 break; | |
| 961 } | |
| 962 case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break; | |
| 963 case 'w': { | |
| 964 z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0'; | |
| 965 break; | |
| 966 } | |
| 967 case 'Y': { | |
| 968 sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]); | |
| 969 break; | |
| 970 } | |
| 971 default: z[j++] = '%'; break; | |
| 972 } | |
| 973 } | |
| 974 } | |
| 975 z[j] = 0; | |
| 976 sqlite3_result_text(context, z, -1, | |
| 977 z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC); | |
| 978 } | |
| 979 | |
| 980 /* | |
| 981 ** current_time() | |
| 982 ** | |
| 983 ** This function returns the same value as time('now'). | |
| 984 */ | |
| 985 static void ctimeFunc( | |
| 986 sqlite3_context *context, | |
| 987 int NotUsed, | |
| 988 sqlite3_value **NotUsed2 | |
| 989 ){ | |
| 990 UNUSED_PARAMETER2(NotUsed, NotUsed2); | |
| 991 timeFunc(context, 0, 0); | |
| 992 } | |
| 993 | |
| 994 /* | |
| 995 ** current_date() | |
| 996 ** | |
| 997 ** This function returns the same value as date('now'). | |
| 998 */ | |
| 999 static void cdateFunc( | |
| 1000 sqlite3_context *context, | |
| 1001 int NotUsed, | |
| 1002 sqlite3_value **NotUsed2 | |
| 1003 ){ | |
| 1004 UNUSED_PARAMETER2(NotUsed, NotUsed2); | |
| 1005 dateFunc(context, 0, 0); | |
| 1006 } | |
| 1007 | |
| 1008 /* | |
| 1009 ** current_timestamp() | |
| 1010 ** | |
| 1011 ** This function returns the same value as datetime('now'). | |
| 1012 */ | |
| 1013 static void ctimestampFunc( | |
| 1014 sqlite3_context *context, | |
| 1015 int NotUsed, | |
| 1016 sqlite3_value **NotUsed2 | |
| 1017 ){ | |
| 1018 UNUSED_PARAMETER2(NotUsed, NotUsed2); | |
| 1019 datetimeFunc(context, 0, 0); | |
| 1020 } | |
| 1021 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ | |
| 1022 | |
| 1023 #ifdef SQLITE_OMIT_DATETIME_FUNCS | |
| 1024 /* | |
| 1025 ** If the library is compiled to omit the full-scale date and time | |
| 1026 ** handling (to get a smaller binary), the following minimal version | |
| 1027 ** of the functions current_time(), current_date() and current_timestamp() | |
| 1028 ** are included instead. This is to support column declarations that | |
| 1029 ** include "DEFAULT CURRENT_TIME" etc. | |
| 1030 ** | |
| 1031 ** This function uses the C-library functions time(), gmtime() | |
| 1032 ** and strftime(). The format string to pass to strftime() is supplied | |
| 1033 ** as the user-data for the function. | |
| 1034 */ | |
| 1035 static void currentTimeFunc( | |
| 1036 sqlite3_context *context, | |
| 1037 int argc, | |
| 1038 sqlite3_value **argv | |
| 1039 ){ | |
| 1040 time_t t; | |
| 1041 char *zFormat = (char *)sqlite3_user_data(context); | |
| 1042 sqlite3 *db; | |
| 1043 double rT; | |
| 1044 char zBuf[20]; | |
| 1045 | |
| 1046 UNUSED_PARAMETER(argc); | |
| 1047 UNUSED_PARAMETER(argv); | |
| 1048 | |
| 1049 db = sqlite3_context_db_handle(context); | |
| 1050 sqlite3OsCurrentTime(db->pVfs, &rT); | |
| 1051 #ifndef SQLITE_OMIT_FLOATING_POINT | |
| 1052 t = 86400.0*(rT - 2440587.5) + 0.5; | |
| 1053 #else | |
| 1054 /* without floating point support, rT will have | |
| 1055 ** already lost fractional day precision. | |
| 1056 */ | |
| 1057 t = 86400 * (rT - 2440587) - 43200; | |
| 1058 #endif | |
| 1059 #ifdef HAVE_GMTIME_R | |
| 1060 { | |
| 1061 struct tm sNow; | |
| 1062 gmtime_r(&t, &sNow); | |
| 1063 strftime(zBuf, 20, zFormat, &sNow); | |
| 1064 } | |
| 1065 #else | |
| 1066 { | |
| 1067 struct tm *pTm; | |
| 1068 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); | |
| 1069 pTm = gmtime(&t); | |
| 1070 strftime(zBuf, 20, zFormat, pTm); | |
| 1071 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); | |
| 1072 } | |
| 1073 #endif | |
| 1074 | |
| 1075 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); | |
| 1076 } | |
| 1077 #endif | |
| 1078 | |
| 1079 /* | |
| 1080 ** This function registered all of the above C functions as SQL | |
| 1081 ** functions. This should be the only routine in this file with | |
| 1082 ** external linkage. | |
| 1083 */ | |
| 1084 void sqlite3RegisterDateTimeFunctions(void){ | |
| 1085 static SQLITE_WSD FuncDef aDateTimeFuncs[] = { | |
| 1086 #ifndef SQLITE_OMIT_DATETIME_FUNCS | |
| 1087 FUNCTION(julianday, -1, 0, 0, juliandayFunc ), | |
| 1088 FUNCTION(date, -1, 0, 0, dateFunc ), | |
| 1089 FUNCTION(time, -1, 0, 0, timeFunc ), | |
| 1090 FUNCTION(datetime, -1, 0, 0, datetimeFunc ), | |
| 1091 FUNCTION(strftime, -1, 0, 0, strftimeFunc ), | |
| 1092 FUNCTION(current_time, 0, 0, 0, ctimeFunc ), | |
| 1093 FUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc), | |
| 1094 FUNCTION(current_date, 0, 0, 0, cdateFunc ), | |
| 1095 #else | |
| 1096 STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc), | |
| 1097 STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d", 0, currentTimeFunc), | |
| 1098 STR_FUNCTION(current_date, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc), | |
| 1099 #endif | |
| 1100 }; | |
| 1101 int i; | |
| 1102 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); | |
| 1103 FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aDateTimeFuncs); | |
| 1104 | |
| 1105 for(i=0; i<ArraySize(aDateTimeFuncs); i++){ | |
| 1106 sqlite3FuncDefInsert(pHash, &aFunc[i]); | |
| 1107 } | |
| 1108 } | |
| OLD | NEW |