Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(67)

Side by Side Diff: third_party/sqlite/src/date.c

Issue 3108030: Move bundled copy of sqlite one level deeper to better separate it... (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src/
Patch Set: Created 10 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « third_party/sqlite/src/configure.ac ('k') | third_party/sqlite/src/delete.c » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /*
2 ** 2003 October 31
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains the C functions that implement date and time
13 ** functions for SQLite.
14 **
15 ** There is only one exported symbol in this file - the function
16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
17 ** All other code has file scope.
18 **
19 ** $Id: date.c,v 1.107 2009/05/03 20:23:53 drh Exp $
20 **
21 ** SQLite processes all times and dates as Julian Day numbers. The
22 ** dates and times are stored as the number of days since noon
23 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian
24 ** calendar system.
25 **
26 ** 1970-01-01 00:00:00 is JD 2440587.5
27 ** 2000-01-01 00:00:00 is JD 2451544.5
28 **
29 ** This implemention requires years to be expressed as a 4-digit number
30 ** which means that only dates between 0000-01-01 and 9999-12-31 can
31 ** be represented, even though julian day numbers allow a much wider
32 ** range of dates.
33 **
34 ** The Gregorian calendar system is used for all dates and times,
35 ** even those that predate the Gregorian calendar. Historians usually
36 ** use the Julian calendar for dates prior to 1582-10-15 and for some
37 ** dates afterwards, depending on locale. Beware of this difference.
38 **
39 ** The conversion algorithms are implemented based on descriptions
40 ** in the following text:
41 **
42 ** Jean Meeus
43 ** Astronomical Algorithms, 2nd Edition, 1998
44 ** ISBM 0-943396-61-1
45 ** Willmann-Bell, Inc
46 ** Richmond, Virginia (USA)
47 */
48 #include "sqliteInt.h"
49 #include <stdlib.h>
50 #include <assert.h>
51 #include <time.h>
52
53 #ifndef SQLITE_OMIT_DATETIME_FUNCS
54
55 /*
56 ** On recent Windows platforms, the localtime_s() function is available
57 ** as part of the "Secure CRT". It is essentially equivalent to
58 ** localtime_r() available under most POSIX platforms, except that the
59 ** order of the parameters is reversed.
60 **
61 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx.
62 **
63 ** If the user has not indicated to use localtime_r() or localtime_s()
64 ** already, check for an MSVC build environment that provides
65 ** localtime_s().
66 */
67 #if !defined(HAVE_LOCALTIME_R) && !defined(HAVE_LOCALTIME_S) && \
68 defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE)
69 #define HAVE_LOCALTIME_S 1
70 #endif
71
72 /*
73 ** A structure for holding a single date and time.
74 */
75 typedef struct DateTime DateTime;
76 struct DateTime {
77 sqlite3_int64 iJD; /* The julian day number times 86400000 */
78 int Y, M, D; /* Year, month, and day */
79 int h, m; /* Hour and minutes */
80 int tz; /* Timezone offset in minutes */
81 double s; /* Seconds */
82 char validYMD; /* True (1) if Y,M,D are valid */
83 char validHMS; /* True (1) if h,m,s are valid */
84 char validJD; /* True (1) if iJD is valid */
85 char validTZ; /* True (1) if tz is valid */
86 };
87
88
89 /*
90 ** Convert zDate into one or more integers. Additional arguments
91 ** come in groups of 5 as follows:
92 **
93 ** N number of digits in the integer
94 ** min minimum allowed value of the integer
95 ** max maximum allowed value of the integer
96 ** nextC first character after the integer
97 ** pVal where to write the integers value.
98 **
99 ** Conversions continue until one with nextC==0 is encountered.
100 ** The function returns the number of successful conversions.
101 */
102 static int getDigits(const char *zDate, ...){
103 va_list ap;
104 int val;
105 int N;
106 int min;
107 int max;
108 int nextC;
109 int *pVal;
110 int cnt = 0;
111 va_start(ap, zDate);
112 do{
113 N = va_arg(ap, int);
114 min = va_arg(ap, int);
115 max = va_arg(ap, int);
116 nextC = va_arg(ap, int);
117 pVal = va_arg(ap, int*);
118 val = 0;
119 while( N-- ){
120 if( !sqlite3Isdigit(*zDate) ){
121 goto end_getDigits;
122 }
123 val = val*10 + *zDate - '0';
124 zDate++;
125 }
126 if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){
127 goto end_getDigits;
128 }
129 *pVal = val;
130 zDate++;
131 cnt++;
132 }while( nextC );
133 end_getDigits:
134 va_end(ap);
135 return cnt;
136 }
137
138 /*
139 ** Read text from z[] and convert into a floating point number. Return
140 ** the number of digits converted.
141 */
142 #define getValue sqlite3AtoF
143
144 /*
145 ** Parse a timezone extension on the end of a date-time.
146 ** The extension is of the form:
147 **
148 ** (+/-)HH:MM
149 **
150 ** Or the "zulu" notation:
151 **
152 ** Z
153 **
154 ** If the parse is successful, write the number of minutes
155 ** of change in p->tz and return 0. If a parser error occurs,
156 ** return non-zero.
157 **
158 ** A missing specifier is not considered an error.
159 */
160 static int parseTimezone(const char *zDate, DateTime *p){
161 int sgn = 0;
162 int nHr, nMn;
163 int c;
164 while( sqlite3Isspace(*zDate) ){ zDate++; }
165 p->tz = 0;
166 c = *zDate;
167 if( c=='-' ){
168 sgn = -1;
169 }else if( c=='+' ){
170 sgn = +1;
171 }else if( c=='Z' || c=='z' ){
172 zDate++;
173 goto zulu_time;
174 }else{
175 return c!=0;
176 }
177 zDate++;
178 if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
179 return 1;
180 }
181 zDate += 5;
182 p->tz = sgn*(nMn + nHr*60);
183 zulu_time:
184 while( sqlite3Isspace(*zDate) ){ zDate++; }
185 return *zDate!=0;
186 }
187
188 /*
189 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
190 ** The HH, MM, and SS must each be exactly 2 digits. The
191 ** fractional seconds FFFF can be one or more digits.
192 **
193 ** Return 1 if there is a parsing error and 0 on success.
194 */
195 static int parseHhMmSs(const char *zDate, DateTime *p){
196 int h, m, s;
197 double ms = 0.0;
198 if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){
199 return 1;
200 }
201 zDate += 5;
202 if( *zDate==':' ){
203 zDate++;
204 if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){
205 return 1;
206 }
207 zDate += 2;
208 if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){
209 double rScale = 1.0;
210 zDate++;
211 while( sqlite3Isdigit(*zDate) ){
212 ms = ms*10.0 + *zDate - '0';
213 rScale *= 10.0;
214 zDate++;
215 }
216 ms /= rScale;
217 }
218 }else{
219 s = 0;
220 }
221 p->validJD = 0;
222 p->validHMS = 1;
223 p->h = h;
224 p->m = m;
225 p->s = s + ms;
226 if( parseTimezone(zDate, p) ) return 1;
227 p->validTZ = (p->tz!=0)?1:0;
228 return 0;
229 }
230
231 /*
232 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume
233 ** that the YYYY-MM-DD is according to the Gregorian calendar.
234 **
235 ** Reference: Meeus page 61
236 */
237 static void computeJD(DateTime *p){
238 int Y, M, D, A, B, X1, X2;
239
240 if( p->validJD ) return;
241 if( p->validYMD ){
242 Y = p->Y;
243 M = p->M;
244 D = p->D;
245 }else{
246 Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */
247 M = 1;
248 D = 1;
249 }
250 if( M<=2 ){
251 Y--;
252 M += 12;
253 }
254 A = Y/100;
255 B = 2 - A + (A/4);
256 X1 = 36525*(Y+4716)/100;
257 X2 = 306001*(M+1)/10000;
258 p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000);
259 p->validJD = 1;
260 if( p->validHMS ){
261 p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000);
262 if( p->validTZ ){
263 p->iJD -= p->tz*60000;
264 p->validYMD = 0;
265 p->validHMS = 0;
266 p->validTZ = 0;
267 }
268 }
269 }
270
271 /*
272 ** Parse dates of the form
273 **
274 ** YYYY-MM-DD HH:MM:SS.FFF
275 ** YYYY-MM-DD HH:MM:SS
276 ** YYYY-MM-DD HH:MM
277 ** YYYY-MM-DD
278 **
279 ** Write the result into the DateTime structure and return 0
280 ** on success and 1 if the input string is not a well-formed
281 ** date.
282 */
283 static int parseYyyyMmDd(const char *zDate, DateTime *p){
284 int Y, M, D, neg;
285
286 if( zDate[0]=='-' ){
287 zDate++;
288 neg = 1;
289 }else{
290 neg = 0;
291 }
292 if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){
293 return 1;
294 }
295 zDate += 10;
296 while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; }
297 if( parseHhMmSs(zDate, p)==0 ){
298 /* We got the time */
299 }else if( *zDate==0 ){
300 p->validHMS = 0;
301 }else{
302 return 1;
303 }
304 p->validJD = 0;
305 p->validYMD = 1;
306 p->Y = neg ? -Y : Y;
307 p->M = M;
308 p->D = D;
309 if( p->validTZ ){
310 computeJD(p);
311 }
312 return 0;
313 }
314
315 /*
316 ** Set the time to the current time reported by the VFS
317 */
318 static void setDateTimeToCurrent(sqlite3_context *context, DateTime *p){
319 double r;
320 sqlite3 *db = sqlite3_context_db_handle(context);
321 sqlite3OsCurrentTime(db->pVfs, &r);
322 p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5);
323 p->validJD = 1;
324 }
325
326 /*
327 ** Attempt to parse the given string into a Julian Day Number. Return
328 ** the number of errors.
329 **
330 ** The following are acceptable forms for the input string:
331 **
332 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM
333 ** DDDD.DD
334 ** now
335 **
336 ** In the first form, the +/-HH:MM is always optional. The fractional
337 ** seconds extension (the ".FFF") is optional. The seconds portion
338 ** (":SS.FFF") is option. The year and date can be omitted as long
339 ** as there is a time string. The time string can be omitted as long
340 ** as there is a year and date.
341 */
342 static int parseDateOrTime(
343 sqlite3_context *context,
344 const char *zDate,
345 DateTime *p
346 ){
347 int isRealNum; /* Return from sqlite3IsNumber(). Not used */
348 if( parseYyyyMmDd(zDate,p)==0 ){
349 return 0;
350 }else if( parseHhMmSs(zDate, p)==0 ){
351 return 0;
352 }else if( sqlite3StrICmp(zDate,"now")==0){
353 setDateTimeToCurrent(context, p);
354 return 0;
355 }else if( sqlite3IsNumber(zDate, &isRealNum, SQLITE_UTF8) ){
356 double r;
357 getValue(zDate, &r);
358 p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5);
359 p->validJD = 1;
360 return 0;
361 }
362 return 1;
363 }
364
365 /*
366 ** Compute the Year, Month, and Day from the julian day number.
367 */
368 static void computeYMD(DateTime *p){
369 int Z, A, B, C, D, E, X1;
370 if( p->validYMD ) return;
371 if( !p->validJD ){
372 p->Y = 2000;
373 p->M = 1;
374 p->D = 1;
375 }else{
376 Z = (int)((p->iJD + 43200000)/86400000);
377 A = (int)((Z - 1867216.25)/36524.25);
378 A = Z + 1 + A - (A/4);
379 B = A + 1524;
380 C = (int)((B - 122.1)/365.25);
381 D = (36525*C)/100;
382 E = (int)((B-D)/30.6001);
383 X1 = (int)(30.6001*E);
384 p->D = B - D - X1;
385 p->M = E<14 ? E-1 : E-13;
386 p->Y = p->M>2 ? C - 4716 : C - 4715;
387 }
388 p->validYMD = 1;
389 }
390
391 /*
392 ** Compute the Hour, Minute, and Seconds from the julian day number.
393 */
394 static void computeHMS(DateTime *p){
395 int s;
396 if( p->validHMS ) return;
397 computeJD(p);
398 s = (int)((p->iJD + 43200000) % 86400000);
399 p->s = s/1000.0;
400 s = (int)p->s;
401 p->s -= s;
402 p->h = s/3600;
403 s -= p->h*3600;
404 p->m = s/60;
405 p->s += s - p->m*60;
406 p->validHMS = 1;
407 }
408
409 /*
410 ** Compute both YMD and HMS
411 */
412 static void computeYMD_HMS(DateTime *p){
413 computeYMD(p);
414 computeHMS(p);
415 }
416
417 /*
418 ** Clear the YMD and HMS and the TZ
419 */
420 static void clearYMD_HMS_TZ(DateTime *p){
421 p->validYMD = 0;
422 p->validHMS = 0;
423 p->validTZ = 0;
424 }
425
426 #ifndef SQLITE_OMIT_LOCALTIME
427 /*
428 ** Compute the difference (in milliseconds)
429 ** between localtime and UTC (a.k.a. GMT)
430 ** for the time value p where p is in UTC.
431 */
432 static sqlite3_int64 localtimeOffset(DateTime *p){
433 DateTime x, y;
434 time_t t;
435 x = *p;
436 computeYMD_HMS(&x);
437 if( x.Y<1971 || x.Y>=2038 ){
438 x.Y = 2000;
439 x.M = 1;
440 x.D = 1;
441 x.h = 0;
442 x.m = 0;
443 x.s = 0.0;
444 } else {
445 int s = (int)(x.s + 0.5);
446 x.s = s;
447 }
448 x.tz = 0;
449 x.validJD = 0;
450 computeJD(&x);
451 t = (time_t)(x.iJD/1000 - 21086676*(i64)10000);
452 #ifdef HAVE_LOCALTIME_R
453 {
454 struct tm sLocal;
455 localtime_r(&t, &sLocal);
456 y.Y = sLocal.tm_year + 1900;
457 y.M = sLocal.tm_mon + 1;
458 y.D = sLocal.tm_mday;
459 y.h = sLocal.tm_hour;
460 y.m = sLocal.tm_min;
461 y.s = sLocal.tm_sec;
462 }
463 #elif defined(HAVE_LOCALTIME_S)
464 {
465 struct tm sLocal;
466 localtime_s(&sLocal, &t);
467 y.Y = sLocal.tm_year + 1900;
468 y.M = sLocal.tm_mon + 1;
469 y.D = sLocal.tm_mday;
470 y.h = sLocal.tm_hour;
471 y.m = sLocal.tm_min;
472 y.s = sLocal.tm_sec;
473 }
474 #else
475 {
476 struct tm *pTm;
477 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
478 pTm = localtime(&t);
479 y.Y = pTm->tm_year + 1900;
480 y.M = pTm->tm_mon + 1;
481 y.D = pTm->tm_mday;
482 y.h = pTm->tm_hour;
483 y.m = pTm->tm_min;
484 y.s = pTm->tm_sec;
485 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
486 }
487 #endif
488 y.validYMD = 1;
489 y.validHMS = 1;
490 y.validJD = 0;
491 y.validTZ = 0;
492 computeJD(&y);
493 return y.iJD - x.iJD;
494 }
495 #endif /* SQLITE_OMIT_LOCALTIME */
496
497 /*
498 ** Process a modifier to a date-time stamp. The modifiers are
499 ** as follows:
500 **
501 ** NNN days
502 ** NNN hours
503 ** NNN minutes
504 ** NNN.NNNN seconds
505 ** NNN months
506 ** NNN years
507 ** start of month
508 ** start of year
509 ** start of week
510 ** start of day
511 ** weekday N
512 ** unixepoch
513 ** localtime
514 ** utc
515 **
516 ** Return 0 on success and 1 if there is any kind of error.
517 */
518 static int parseModifier(const char *zMod, DateTime *p){
519 int rc = 1;
520 int n;
521 double r;
522 char *z, zBuf[30];
523 z = zBuf;
524 for(n=0; n<ArraySize(zBuf)-1 && zMod[n]; n++){
525 z[n] = (char)sqlite3UpperToLower[(u8)zMod[n]];
526 }
527 z[n] = 0;
528 switch( z[0] ){
529 #ifndef SQLITE_OMIT_LOCALTIME
530 case 'l': {
531 /* localtime
532 **
533 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
534 ** show local time.
535 */
536 if( strcmp(z, "localtime")==0 ){
537 computeJD(p);
538 p->iJD += localtimeOffset(p);
539 clearYMD_HMS_TZ(p);
540 rc = 0;
541 }
542 break;
543 }
544 #endif
545 case 'u': {
546 /*
547 ** unixepoch
548 **
549 ** Treat the current value of p->iJD as the number of
550 ** seconds since 1970. Convert to a real julian day number.
551 */
552 if( strcmp(z, "unixepoch")==0 && p->validJD ){
553 p->iJD = (p->iJD + 43200)/86400 + 21086676*(i64)10000000;
554 clearYMD_HMS_TZ(p);
555 rc = 0;
556 }
557 #ifndef SQLITE_OMIT_LOCALTIME
558 else if( strcmp(z, "utc")==0 ){
559 sqlite3_int64 c1;
560 computeJD(p);
561 c1 = localtimeOffset(p);
562 p->iJD -= c1;
563 clearYMD_HMS_TZ(p);
564 p->iJD += c1 - localtimeOffset(p);
565 rc = 0;
566 }
567 #endif
568 break;
569 }
570 case 'w': {
571 /*
572 ** weekday N
573 **
574 ** Move the date to the same time on the next occurrence of
575 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the
576 ** date is already on the appropriate weekday, this is a no-op.
577 */
578 if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0
579 && (n=(int)r)==r && n>=0 && r<7 ){
580 sqlite3_int64 Z;
581 computeYMD_HMS(p);
582 p->validTZ = 0;
583 p->validJD = 0;
584 computeJD(p);
585 Z = ((p->iJD + 129600000)/86400000) % 7;
586 if( Z>n ) Z -= 7;
587 p->iJD += (n - Z)*86400000;
588 clearYMD_HMS_TZ(p);
589 rc = 0;
590 }
591 break;
592 }
593 case 's': {
594 /*
595 ** start of TTTTT
596 **
597 ** Move the date backwards to the beginning of the current day,
598 ** or month or year.
599 */
600 if( strncmp(z, "start of ", 9)!=0 ) break;
601 z += 9;
602 computeYMD(p);
603 p->validHMS = 1;
604 p->h = p->m = 0;
605 p->s = 0.0;
606 p->validTZ = 0;
607 p->validJD = 0;
608 if( strcmp(z,"month")==0 ){
609 p->D = 1;
610 rc = 0;
611 }else if( strcmp(z,"year")==0 ){
612 computeYMD(p);
613 p->M = 1;
614 p->D = 1;
615 rc = 0;
616 }else if( strcmp(z,"day")==0 ){
617 rc = 0;
618 }
619 break;
620 }
621 case '+':
622 case '-':
623 case '0':
624 case '1':
625 case '2':
626 case '3':
627 case '4':
628 case '5':
629 case '6':
630 case '7':
631 case '8':
632 case '9': {
633 double rRounder;
634 n = getValue(z, &r);
635 assert( n>=1 );
636 if( z[n]==':' ){
637 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
638 ** specified number of hours, minutes, seconds, and fractional seconds
639 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be
640 ** omitted.
641 */
642 const char *z2 = z;
643 DateTime tx;
644 sqlite3_int64 day;
645 if( !sqlite3Isdigit(*z2) ) z2++;
646 memset(&tx, 0, sizeof(tx));
647 if( parseHhMmSs(z2, &tx) ) break;
648 computeJD(&tx);
649 tx.iJD -= 43200000;
650 day = tx.iJD/86400000;
651 tx.iJD -= day*86400000;
652 if( z[0]=='-' ) tx.iJD = -tx.iJD;
653 computeJD(p);
654 clearYMD_HMS_TZ(p);
655 p->iJD += tx.iJD;
656 rc = 0;
657 break;
658 }
659 z += n;
660 while( sqlite3Isspace(*z) ) z++;
661 n = sqlite3Strlen30(z);
662 if( n>10 || n<3 ) break;
663 if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
664 computeJD(p);
665 rc = 0;
666 rRounder = r<0 ? -0.5 : +0.5;
667 if( n==3 && strcmp(z,"day")==0 ){
668 p->iJD += (sqlite3_int64)(r*86400000.0 + rRounder);
669 }else if( n==4 && strcmp(z,"hour")==0 ){
670 p->iJD += (sqlite3_int64)(r*(86400000.0/24.0) + rRounder);
671 }else if( n==6 && strcmp(z,"minute")==0 ){
672 p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0)) + rRounder);
673 }else if( n==6 && strcmp(z,"second")==0 ){
674 p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0*60.0)) + rRounder);
675 }else if( n==5 && strcmp(z,"month")==0 ){
676 int x, y;
677 computeYMD_HMS(p);
678 p->M += (int)r;
679 x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
680 p->Y += x;
681 p->M -= x*12;
682 p->validJD = 0;
683 computeJD(p);
684 y = (int)r;
685 if( y!=r ){
686 p->iJD += (sqlite3_int64)((r - y)*30.0*86400000.0 + rRounder);
687 }
688 }else if( n==4 && strcmp(z,"year")==0 ){
689 int y = (int)r;
690 computeYMD_HMS(p);
691 p->Y += y;
692 p->validJD = 0;
693 computeJD(p);
694 if( y!=r ){
695 p->iJD += (sqlite3_int64)((r - y)*365.0*86400000.0 + rRounder);
696 }
697 }else{
698 rc = 1;
699 }
700 clearYMD_HMS_TZ(p);
701 break;
702 }
703 default: {
704 break;
705 }
706 }
707 return rc;
708 }
709
710 /*
711 ** Process time function arguments. argv[0] is a date-time stamp.
712 ** argv[1] and following are modifiers. Parse them all and write
713 ** the resulting time into the DateTime structure p. Return 0
714 ** on success and 1 if there are any errors.
715 **
716 ** If there are zero parameters (if even argv[0] is undefined)
717 ** then assume a default value of "now" for argv[0].
718 */
719 static int isDate(
720 sqlite3_context *context,
721 int argc,
722 sqlite3_value **argv,
723 DateTime *p
724 ){
725 int i;
726 const unsigned char *z;
727 int eType;
728 memset(p, 0, sizeof(*p));
729 if( argc==0 ){
730 setDateTimeToCurrent(context, p);
731 }else if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT
732 || eType==SQLITE_INTEGER ){
733 p->iJD = (sqlite3_int64)(sqlite3_value_double(argv[0])*86400000.0 + 0.5);
734 p->validJD = 1;
735 }else{
736 z = sqlite3_value_text(argv[0]);
737 if( !z || parseDateOrTime(context, (char*)z, p) ){
738 return 1;
739 }
740 }
741 for(i=1; i<argc; i++){
742 if( (z = sqlite3_value_text(argv[i]))==0 || parseModifier((char*)z, p) ){
743 return 1;
744 }
745 }
746 return 0;
747 }
748
749
750 /*
751 ** The following routines implement the various date and time functions
752 ** of SQLite.
753 */
754
755 /*
756 ** julianday( TIMESTRING, MOD, MOD, ...)
757 **
758 ** Return the julian day number of the date specified in the arguments
759 */
760 static void juliandayFunc(
761 sqlite3_context *context,
762 int argc,
763 sqlite3_value **argv
764 ){
765 DateTime x;
766 if( isDate(context, argc, argv, &x)==0 ){
767 computeJD(&x);
768 sqlite3_result_double(context, x.iJD/86400000.0);
769 }
770 }
771
772 /*
773 ** datetime( TIMESTRING, MOD, MOD, ...)
774 **
775 ** Return YYYY-MM-DD HH:MM:SS
776 */
777 static void datetimeFunc(
778 sqlite3_context *context,
779 int argc,
780 sqlite3_value **argv
781 ){
782 DateTime x;
783 if( isDate(context, argc, argv, &x)==0 ){
784 char zBuf[100];
785 computeYMD_HMS(&x);
786 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d",
787 x.Y, x.M, x.D, x.h, x.m, (int)(x.s));
788 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
789 }
790 }
791
792 /*
793 ** time( TIMESTRING, MOD, MOD, ...)
794 **
795 ** Return HH:MM:SS
796 */
797 static void timeFunc(
798 sqlite3_context *context,
799 int argc,
800 sqlite3_value **argv
801 ){
802 DateTime x;
803 if( isDate(context, argc, argv, &x)==0 ){
804 char zBuf[100];
805 computeHMS(&x);
806 sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
807 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
808 }
809 }
810
811 /*
812 ** date( TIMESTRING, MOD, MOD, ...)
813 **
814 ** Return YYYY-MM-DD
815 */
816 static void dateFunc(
817 sqlite3_context *context,
818 int argc,
819 sqlite3_value **argv
820 ){
821 DateTime x;
822 if( isDate(context, argc, argv, &x)==0 ){
823 char zBuf[100];
824 computeYMD(&x);
825 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
826 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
827 }
828 }
829
830 /*
831 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
832 **
833 ** Return a string described by FORMAT. Conversions as follows:
834 **
835 ** %d day of month
836 ** %f ** fractional seconds SS.SSS
837 ** %H hour 00-24
838 ** %j day of year 000-366
839 ** %J ** Julian day number
840 ** %m month 01-12
841 ** %M minute 00-59
842 ** %s seconds since 1970-01-01
843 ** %S seconds 00-59
844 ** %w day of week 0-6 sunday==0
845 ** %W week of year 00-53
846 ** %Y year 0000-9999
847 ** %% %
848 */
849 static void strftimeFunc(
850 sqlite3_context *context,
851 int argc,
852 sqlite3_value **argv
853 ){
854 DateTime x;
855 u64 n;
856 size_t i,j;
857 char *z;
858 sqlite3 *db;
859 const char *zFmt = (const char*)sqlite3_value_text(argv[0]);
860 char zBuf[100];
861 if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return;
862 db = sqlite3_context_db_handle(context);
863 for(i=0, n=1; zFmt[i]; i++, n++){
864 if( zFmt[i]=='%' ){
865 switch( zFmt[i+1] ){
866 case 'd':
867 case 'H':
868 case 'm':
869 case 'M':
870 case 'S':
871 case 'W':
872 n++;
873 /* fall thru */
874 case 'w':
875 case '%':
876 break;
877 case 'f':
878 n += 8;
879 break;
880 case 'j':
881 n += 3;
882 break;
883 case 'Y':
884 n += 8;
885 break;
886 case 's':
887 case 'J':
888 n += 50;
889 break;
890 default:
891 return; /* ERROR. return a NULL */
892 }
893 i++;
894 }
895 }
896 testcase( n==sizeof(zBuf)-1 );
897 testcase( n==sizeof(zBuf) );
898 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
899 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] );
900 if( n<sizeof(zBuf) ){
901 z = zBuf;
902 }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){
903 sqlite3_result_error_toobig(context);
904 return;
905 }else{
906 z = sqlite3DbMallocRaw(db, (int)n);
907 if( z==0 ){
908 sqlite3_result_error_nomem(context);
909 return;
910 }
911 }
912 computeJD(&x);
913 computeYMD_HMS(&x);
914 for(i=j=0; zFmt[i]; i++){
915 if( zFmt[i]!='%' ){
916 z[j++] = zFmt[i];
917 }else{
918 i++;
919 switch( zFmt[i] ){
920 case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break;
921 case 'f': {
922 double s = x.s;
923 if( s>59.999 ) s = 59.999;
924 sqlite3_snprintf(7, &z[j],"%06.3f", s);
925 j += sqlite3Strlen30(&z[j]);
926 break;
927 }
928 case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break;
929 case 'W': /* Fall thru */
930 case 'j': {
931 int nDay; /* Number of days since 1st day of year */
932 DateTime y = x;
933 y.validJD = 0;
934 y.M = 1;
935 y.D = 1;
936 computeJD(&y);
937 nDay = (int)((x.iJD-y.iJD+43200000)/86400000);
938 if( zFmt[i]=='W' ){
939 int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */
940 wd = (int)(((x.iJD+43200000)/86400000)%7);
941 sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7);
942 j += 2;
943 }else{
944 sqlite3_snprintf(4, &z[j],"%03d",nDay+1);
945 j += 3;
946 }
947 break;
948 }
949 case 'J': {
950 sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0);
951 j+=sqlite3Strlen30(&z[j]);
952 break;
953 }
954 case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break;
955 case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break;
956 case 's': {
957 sqlite3_snprintf(30,&z[j],"%lld",
958 (i64)(x.iJD/1000 - 21086676*(i64)10000));
959 j += sqlite3Strlen30(&z[j]);
960 break;
961 }
962 case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break;
963 case 'w': {
964 z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0';
965 break;
966 }
967 case 'Y': {
968 sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]);
969 break;
970 }
971 default: z[j++] = '%'; break;
972 }
973 }
974 }
975 z[j] = 0;
976 sqlite3_result_text(context, z, -1,
977 z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC);
978 }
979
980 /*
981 ** current_time()
982 **
983 ** This function returns the same value as time('now').
984 */
985 static void ctimeFunc(
986 sqlite3_context *context,
987 int NotUsed,
988 sqlite3_value **NotUsed2
989 ){
990 UNUSED_PARAMETER2(NotUsed, NotUsed2);
991 timeFunc(context, 0, 0);
992 }
993
994 /*
995 ** current_date()
996 **
997 ** This function returns the same value as date('now').
998 */
999 static void cdateFunc(
1000 sqlite3_context *context,
1001 int NotUsed,
1002 sqlite3_value **NotUsed2
1003 ){
1004 UNUSED_PARAMETER2(NotUsed, NotUsed2);
1005 dateFunc(context, 0, 0);
1006 }
1007
1008 /*
1009 ** current_timestamp()
1010 **
1011 ** This function returns the same value as datetime('now').
1012 */
1013 static void ctimestampFunc(
1014 sqlite3_context *context,
1015 int NotUsed,
1016 sqlite3_value **NotUsed2
1017 ){
1018 UNUSED_PARAMETER2(NotUsed, NotUsed2);
1019 datetimeFunc(context, 0, 0);
1020 }
1021 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
1022
1023 #ifdef SQLITE_OMIT_DATETIME_FUNCS
1024 /*
1025 ** If the library is compiled to omit the full-scale date and time
1026 ** handling (to get a smaller binary), the following minimal version
1027 ** of the functions current_time(), current_date() and current_timestamp()
1028 ** are included instead. This is to support column declarations that
1029 ** include "DEFAULT CURRENT_TIME" etc.
1030 **
1031 ** This function uses the C-library functions time(), gmtime()
1032 ** and strftime(). The format string to pass to strftime() is supplied
1033 ** as the user-data for the function.
1034 */
1035 static void currentTimeFunc(
1036 sqlite3_context *context,
1037 int argc,
1038 sqlite3_value **argv
1039 ){
1040 time_t t;
1041 char *zFormat = (char *)sqlite3_user_data(context);
1042 sqlite3 *db;
1043 double rT;
1044 char zBuf[20];
1045
1046 UNUSED_PARAMETER(argc);
1047 UNUSED_PARAMETER(argv);
1048
1049 db = sqlite3_context_db_handle(context);
1050 sqlite3OsCurrentTime(db->pVfs, &rT);
1051 #ifndef SQLITE_OMIT_FLOATING_POINT
1052 t = 86400.0*(rT - 2440587.5) + 0.5;
1053 #else
1054 /* without floating point support, rT will have
1055 ** already lost fractional day precision.
1056 */
1057 t = 86400 * (rT - 2440587) - 43200;
1058 #endif
1059 #ifdef HAVE_GMTIME_R
1060 {
1061 struct tm sNow;
1062 gmtime_r(&t, &sNow);
1063 strftime(zBuf, 20, zFormat, &sNow);
1064 }
1065 #else
1066 {
1067 struct tm *pTm;
1068 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
1069 pTm = gmtime(&t);
1070 strftime(zBuf, 20, zFormat, pTm);
1071 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
1072 }
1073 #endif
1074
1075 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
1076 }
1077 #endif
1078
1079 /*
1080 ** This function registered all of the above C functions as SQL
1081 ** functions. This should be the only routine in this file with
1082 ** external linkage.
1083 */
1084 void sqlite3RegisterDateTimeFunctions(void){
1085 static SQLITE_WSD FuncDef aDateTimeFuncs[] = {
1086 #ifndef SQLITE_OMIT_DATETIME_FUNCS
1087 FUNCTION(julianday, -1, 0, 0, juliandayFunc ),
1088 FUNCTION(date, -1, 0, 0, dateFunc ),
1089 FUNCTION(time, -1, 0, 0, timeFunc ),
1090 FUNCTION(datetime, -1, 0, 0, datetimeFunc ),
1091 FUNCTION(strftime, -1, 0, 0, strftimeFunc ),
1092 FUNCTION(current_time, 0, 0, 0, ctimeFunc ),
1093 FUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc),
1094 FUNCTION(current_date, 0, 0, 0, cdateFunc ),
1095 #else
1096 STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc),
1097 STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d", 0, currentTimeFunc),
1098 STR_FUNCTION(current_date, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc),
1099 #endif
1100 };
1101 int i;
1102 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
1103 FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aDateTimeFuncs);
1104
1105 for(i=0; i<ArraySize(aDateTimeFuncs); i++){
1106 sqlite3FuncDefInsert(pHash, &aFunc[i]);
1107 }
1108 }
OLDNEW
« no previous file with comments | « third_party/sqlite/src/configure.ac ('k') | third_party/sqlite/src/delete.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698