| OLD | NEW | 
 | (Empty) | 
|     1 /* fts2 has a design flaw which can lead to database corruption (see |  | 
|     2 ** below).  It is recommended not to use it any longer, instead use |  | 
|     3 ** fts3 (or higher).  If you believe that your use of fts2 is safe, |  | 
|     4 ** add -DSQLITE_ENABLE_BROKEN_FTS2=1 to your CFLAGS. |  | 
|     5 */ |  | 
|     6 #if (!defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)) \ |  | 
|     7         && !defined(SQLITE_ENABLE_BROKEN_FTS2) |  | 
|     8 #error fts2 has a design flaw and has been deprecated. |  | 
|     9 #endif |  | 
|    10 /* The flaw is that fts2 uses the content table's unaliased rowid as |  | 
|    11 ** the unique docid.  fts2 embeds the rowid in the index it builds, |  | 
|    12 ** and expects the rowid to not change.  The SQLite VACUUM operation |  | 
|    13 ** will renumber such rowids, thereby breaking fts2.  If you are using |  | 
|    14 ** fts2 in a system which has disabled VACUUM, then you can continue |  | 
|    15 ** to use it safely.  Note that PRAGMA auto_vacuum does NOT disable |  | 
|    16 ** VACUUM, though systems using auto_vacuum are unlikely to invoke |  | 
|    17 ** VACUUM. |  | 
|    18 ** |  | 
|    19 ** Unlike fts1, which is safe across VACUUM if you never delete |  | 
|    20 ** documents, fts2 has a second exposure to this flaw, in the segments |  | 
|    21 ** table.  So fts2 should be considered unsafe across VACUUM in all |  | 
|    22 ** cases. |  | 
|    23 */ |  | 
|    24  |  | 
|    25 /* |  | 
|    26 ** 2006 Oct 10 |  | 
|    27 ** |  | 
|    28 ** The author disclaims copyright to this source code.  In place of |  | 
|    29 ** a legal notice, here is a blessing: |  | 
|    30 ** |  | 
|    31 **    May you do good and not evil. |  | 
|    32 **    May you find forgiveness for yourself and forgive others. |  | 
|    33 **    May you share freely, never taking more than you give. |  | 
|    34 ** |  | 
|    35 ****************************************************************************** |  | 
|    36 ** |  | 
|    37 ** This is an SQLite module implementing full-text search. |  | 
|    38 */ |  | 
|    39  |  | 
|    40 /* TODO(shess): To make it easier to spot changes without groveling |  | 
|    41 ** through changelogs, I've defined GEARS_FTS2_CHANGES to call them |  | 
|    42 ** out, and I will document them here.  On imports, these changes |  | 
|    43 ** should be reviewed to make sure they are still present, or are |  | 
|    44 ** dropped as appropriate. |  | 
|    45 ** |  | 
|    46 ** SQLite core adds the custom function fts2_tokenizer() to be used |  | 
|    47 ** for defining new tokenizers.  The second parameter is a vtable |  | 
|    48 ** pointer encoded as a blob.  Obviously this cannot be exposed to |  | 
|    49 ** Gears callers for security reasons.  It could be suppressed in the |  | 
|    50 ** authorizer, but for now I have simply commented the definition out. |  | 
|    51 */ |  | 
|    52 #define GEARS_FTS2_CHANGES 1 |  | 
|    53  |  | 
|    54 /* |  | 
|    55 ** The code in this file is only compiled if: |  | 
|    56 ** |  | 
|    57 **     * The FTS2 module is being built as an extension |  | 
|    58 **       (in which case SQLITE_CORE is not defined), or |  | 
|    59 ** |  | 
|    60 **     * The FTS2 module is being built into the core of |  | 
|    61 **       SQLite (in which case SQLITE_ENABLE_FTS2 is defined). |  | 
|    62 */ |  | 
|    63  |  | 
|    64 /* TODO(shess) Consider exporting this comment to an HTML file or the |  | 
|    65 ** wiki. |  | 
|    66 */ |  | 
|    67 /* The full-text index is stored in a series of b+tree (-like) |  | 
|    68 ** structures called segments which map terms to doclists.  The |  | 
|    69 ** structures are like b+trees in layout, but are constructed from the |  | 
|    70 ** bottom up in optimal fashion and are not updatable.  Since trees |  | 
|    71 ** are built from the bottom up, things will be described from the |  | 
|    72 ** bottom up. |  | 
|    73 ** |  | 
|    74 ** |  | 
|    75 **** Varints **** |  | 
|    76 ** The basic unit of encoding is a variable-length integer called a |  | 
|    77 ** varint.  We encode variable-length integers in little-endian order |  | 
|    78 ** using seven bits * per byte as follows: |  | 
|    79 ** |  | 
|    80 ** KEY: |  | 
|    81 **         A = 0xxxxxxx    7 bits of data and one flag bit |  | 
|    82 **         B = 1xxxxxxx    7 bits of data and one flag bit |  | 
|    83 ** |  | 
|    84 **  7 bits - A |  | 
|    85 ** 14 bits - BA |  | 
|    86 ** 21 bits - BBA |  | 
|    87 ** and so on. |  | 
|    88 ** |  | 
|    89 ** This is identical to how sqlite encodes varints (see util.c). |  | 
|    90 ** |  | 
|    91 ** |  | 
|    92 **** Document lists **** |  | 
|    93 ** A doclist (document list) holds a docid-sorted list of hits for a |  | 
|    94 ** given term.  Doclists hold docids, and can optionally associate |  | 
|    95 ** token positions and offsets with docids. |  | 
|    96 ** |  | 
|    97 ** A DL_POSITIONS_OFFSETS doclist is stored like this: |  | 
|    98 ** |  | 
|    99 ** array { |  | 
|   100 **   varint docid; |  | 
|   101 **   array {                (position list for column 0) |  | 
|   102 **     varint position;     (delta from previous position plus POS_BASE) |  | 
|   103 **     varint startOffset;  (delta from previous startOffset) |  | 
|   104 **     varint endOffset;    (delta from startOffset) |  | 
|   105 **   } |  | 
|   106 **   array { |  | 
|   107 **     varint POS_COLUMN;   (marks start of position list for new column) |  | 
|   108 **     varint column;       (index of new column) |  | 
|   109 **     array { |  | 
|   110 **       varint position;   (delta from previous position plus POS_BASE) |  | 
|   111 **       varint startOffset;(delta from previous startOffset) |  | 
|   112 **       varint endOffset;  (delta from startOffset) |  | 
|   113 **     } |  | 
|   114 **   } |  | 
|   115 **   varint POS_END;        (marks end of positions for this document. |  | 
|   116 ** } |  | 
|   117 ** |  | 
|   118 ** Here, array { X } means zero or more occurrences of X, adjacent in |  | 
|   119 ** memory.  A "position" is an index of a token in the token stream |  | 
|   120 ** generated by the tokenizer, while an "offset" is a byte offset, |  | 
|   121 ** both based at 0.  Note that POS_END and POS_COLUMN occur in the |  | 
|   122 ** same logical place as the position element, and act as sentinals |  | 
|   123 ** ending a position list array. |  | 
|   124 ** |  | 
|   125 ** A DL_POSITIONS doclist omits the startOffset and endOffset |  | 
|   126 ** information.  A DL_DOCIDS doclist omits both the position and |  | 
|   127 ** offset information, becoming an array of varint-encoded docids. |  | 
|   128 ** |  | 
|   129 ** On-disk data is stored as type DL_DEFAULT, so we don't serialize |  | 
|   130 ** the type.  Due to how deletion is implemented in the segmentation |  | 
|   131 ** system, on-disk doclists MUST store at least positions. |  | 
|   132 ** |  | 
|   133 ** |  | 
|   134 **** Segment leaf nodes **** |  | 
|   135 ** Segment leaf nodes store terms and doclists, ordered by term.  Leaf |  | 
|   136 ** nodes are written using LeafWriter, and read using LeafReader (to |  | 
|   137 ** iterate through a single leaf node's data) and LeavesReader (to |  | 
|   138 ** iterate through a segment's entire leaf layer).  Leaf nodes have |  | 
|   139 ** the format: |  | 
|   140 ** |  | 
|   141 ** varint iHeight;             (height from leaf level, always 0) |  | 
|   142 ** varint nTerm;               (length of first term) |  | 
|   143 ** char pTerm[nTerm];          (content of first term) |  | 
|   144 ** varint nDoclist;            (length of term's associated doclist) |  | 
|   145 ** char pDoclist[nDoclist];    (content of doclist) |  | 
|   146 ** array { |  | 
|   147 **                             (further terms are delta-encoded) |  | 
|   148 **   varint nPrefix;           (length of prefix shared with previous term) |  | 
|   149 **   varint nSuffix;           (length of unshared suffix) |  | 
|   150 **   char pTermSuffix[nSuffix];(unshared suffix of next term) |  | 
|   151 **   varint nDoclist;          (length of term's associated doclist) |  | 
|   152 **   char pDoclist[nDoclist];  (content of doclist) |  | 
|   153 ** } |  | 
|   154 ** |  | 
|   155 ** Here, array { X } means zero or more occurrences of X, adjacent in |  | 
|   156 ** memory. |  | 
|   157 ** |  | 
|   158 ** Leaf nodes are broken into blocks which are stored contiguously in |  | 
|   159 ** the %_segments table in sorted order.  This means that when the end |  | 
|   160 ** of a node is reached, the next term is in the node with the next |  | 
|   161 ** greater node id. |  | 
|   162 ** |  | 
|   163 ** New data is spilled to a new leaf node when the current node |  | 
|   164 ** exceeds LEAF_MAX bytes (default 2048).  New data which itself is |  | 
|   165 ** larger than STANDALONE_MIN (default 1024) is placed in a standalone |  | 
|   166 ** node (a leaf node with a single term and doclist).  The goal of |  | 
|   167 ** these settings is to pack together groups of small doclists while |  | 
|   168 ** making it efficient to directly access large doclists.  The |  | 
|   169 ** assumption is that large doclists represent terms which are more |  | 
|   170 ** likely to be query targets. |  | 
|   171 ** |  | 
|   172 ** TODO(shess) It may be useful for blocking decisions to be more |  | 
|   173 ** dynamic.  For instance, it may make more sense to have a 2.5k leaf |  | 
|   174 ** node rather than splitting into 2k and .5k nodes.  My intuition is |  | 
|   175 ** that this might extend through 2x or 4x the pagesize. |  | 
|   176 ** |  | 
|   177 ** |  | 
|   178 **** Segment interior nodes **** |  | 
|   179 ** Segment interior nodes store blockids for subtree nodes and terms |  | 
|   180 ** to describe what data is stored by the each subtree.  Interior |  | 
|   181 ** nodes are written using InteriorWriter, and read using |  | 
|   182 ** InteriorReader.  InteriorWriters are created as needed when |  | 
|   183 ** SegmentWriter creates new leaf nodes, or when an interior node |  | 
|   184 ** itself grows too big and must be split.  The format of interior |  | 
|   185 ** nodes: |  | 
|   186 ** |  | 
|   187 ** varint iHeight;           (height from leaf level, always >0) |  | 
|   188 ** varint iBlockid;          (block id of node's leftmost subtree) |  | 
|   189 ** optional { |  | 
|   190 **   varint nTerm;           (length of first term) |  | 
|   191 **   char pTerm[nTerm];      (content of first term) |  | 
|   192 **   array { |  | 
|   193 **                                (further terms are delta-encoded) |  | 
|   194 **     varint nPrefix;            (length of shared prefix with previous term) |  | 
|   195 **     varint nSuffix;            (length of unshared suffix) |  | 
|   196 **     char pTermSuffix[nSuffix]; (unshared suffix of next term) |  | 
|   197 **   } |  | 
|   198 ** } |  | 
|   199 ** |  | 
|   200 ** Here, optional { X } means an optional element, while array { X } |  | 
|   201 ** means zero or more occurrences of X, adjacent in memory. |  | 
|   202 ** |  | 
|   203 ** An interior node encodes n terms separating n+1 subtrees.  The |  | 
|   204 ** subtree blocks are contiguous, so only the first subtree's blockid |  | 
|   205 ** is encoded.  The subtree at iBlockid will contain all terms less |  | 
|   206 ** than the first term encoded (or all terms if no term is encoded). |  | 
|   207 ** Otherwise, for terms greater than or equal to pTerm[i] but less |  | 
|   208 ** than pTerm[i+1], the subtree for that term will be rooted at |  | 
|   209 ** iBlockid+i.  Interior nodes only store enough term data to |  | 
|   210 ** distinguish adjacent children (if the rightmost term of the left |  | 
|   211 ** child is "something", and the leftmost term of the right child is |  | 
|   212 ** "wicked", only "w" is stored). |  | 
|   213 ** |  | 
|   214 ** New data is spilled to a new interior node at the same height when |  | 
|   215 ** the current node exceeds INTERIOR_MAX bytes (default 2048). |  | 
|   216 ** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing |  | 
|   217 ** interior nodes and making the tree too skinny.  The interior nodes |  | 
|   218 ** at a given height are naturally tracked by interior nodes at |  | 
|   219 ** height+1, and so on. |  | 
|   220 ** |  | 
|   221 ** |  | 
|   222 **** Segment directory **** |  | 
|   223 ** The segment directory in table %_segdir stores meta-information for |  | 
|   224 ** merging and deleting segments, and also the root node of the |  | 
|   225 ** segment's tree. |  | 
|   226 ** |  | 
|   227 ** The root node is the top node of the segment's tree after encoding |  | 
|   228 ** the entire segment, restricted to ROOT_MAX bytes (default 1024). |  | 
|   229 ** This could be either a leaf node or an interior node.  If the top |  | 
|   230 ** node requires more than ROOT_MAX bytes, it is flushed to %_segments |  | 
|   231 ** and a new root interior node is generated (which should always fit |  | 
|   232 ** within ROOT_MAX because it only needs space for 2 varints, the |  | 
|   233 ** height and the blockid of the previous root). |  | 
|   234 ** |  | 
|   235 ** The meta-information in the segment directory is: |  | 
|   236 **   level               - segment level (see below) |  | 
|   237 **   idx                 - index within level |  | 
|   238 **                       - (level,idx uniquely identify a segment) |  | 
|   239 **   start_block         - first leaf node |  | 
|   240 **   leaves_end_block    - last leaf node |  | 
|   241 **   end_block           - last block (including interior nodes) |  | 
|   242 **   root                - contents of root node |  | 
|   243 ** |  | 
|   244 ** If the root node is a leaf node, then start_block, |  | 
|   245 ** leaves_end_block, and end_block are all 0. |  | 
|   246 ** |  | 
|   247 ** |  | 
|   248 **** Segment merging **** |  | 
|   249 ** To amortize update costs, segments are groups into levels and |  | 
|   250 ** merged in matches.  Each increase in level represents exponentially |  | 
|   251 ** more documents. |  | 
|   252 ** |  | 
|   253 ** New documents (actually, document updates) are tokenized and |  | 
|   254 ** written individually (using LeafWriter) to a level 0 segment, with |  | 
|   255 ** incrementing idx.  When idx reaches MERGE_COUNT (default 16), all |  | 
|   256 ** level 0 segments are merged into a single level 1 segment.  Level 1 |  | 
|   257 ** is populated like level 0, and eventually MERGE_COUNT level 1 |  | 
|   258 ** segments are merged to a single level 2 segment (representing |  | 
|   259 ** MERGE_COUNT^2 updates), and so on. |  | 
|   260 ** |  | 
|   261 ** A segment merge traverses all segments at a given level in |  | 
|   262 ** parallel, performing a straightforward sorted merge.  Since segment |  | 
|   263 ** leaf nodes are written in to the %_segments table in order, this |  | 
|   264 ** merge traverses the underlying sqlite disk structures efficiently. |  | 
|   265 ** After the merge, all segment blocks from the merged level are |  | 
|   266 ** deleted. |  | 
|   267 ** |  | 
|   268 ** MERGE_COUNT controls how often we merge segments.  16 seems to be |  | 
|   269 ** somewhat of a sweet spot for insertion performance.  32 and 64 show |  | 
|   270 ** very similar performance numbers to 16 on insertion, though they're |  | 
|   271 ** a tiny bit slower (perhaps due to more overhead in merge-time |  | 
|   272 ** sorting).  8 is about 20% slower than 16, 4 about 50% slower than |  | 
|   273 ** 16, 2 about 66% slower than 16. |  | 
|   274 ** |  | 
|   275 ** At query time, high MERGE_COUNT increases the number of segments |  | 
|   276 ** which need to be scanned and merged.  For instance, with 100k docs |  | 
|   277 ** inserted: |  | 
|   278 ** |  | 
|   279 **    MERGE_COUNT   segments |  | 
|   280 **       16           25 |  | 
|   281 **        8           12 |  | 
|   282 **        4           10 |  | 
|   283 **        2            6 |  | 
|   284 ** |  | 
|   285 ** This appears to have only a moderate impact on queries for very |  | 
|   286 ** frequent terms (which are somewhat dominated by segment merge |  | 
|   287 ** costs), and infrequent and non-existent terms still seem to be fast |  | 
|   288 ** even with many segments. |  | 
|   289 ** |  | 
|   290 ** TODO(shess) That said, it would be nice to have a better query-side |  | 
|   291 ** argument for MERGE_COUNT of 16.  Also, it is possible/likely that |  | 
|   292 ** optimizations to things like doclist merging will swing the sweet |  | 
|   293 ** spot around. |  | 
|   294 ** |  | 
|   295 ** |  | 
|   296 ** |  | 
|   297 **** Handling of deletions and updates **** |  | 
|   298 ** Since we're using a segmented structure, with no docid-oriented |  | 
|   299 ** index into the term index, we clearly cannot simply update the term |  | 
|   300 ** index when a document is deleted or updated.  For deletions, we |  | 
|   301 ** write an empty doclist (varint(docid) varint(POS_END)), for updates |  | 
|   302 ** we simply write the new doclist.  Segment merges overwrite older |  | 
|   303 ** data for a particular docid with newer data, so deletes or updates |  | 
|   304 ** will eventually overtake the earlier data and knock it out.  The |  | 
|   305 ** query logic likewise merges doclists so that newer data knocks out |  | 
|   306 ** older data. |  | 
|   307 ** |  | 
|   308 ** TODO(shess) Provide a VACUUM type operation to clear out all |  | 
|   309 ** deletions and duplications.  This would basically be a forced merge |  | 
|   310 ** into a single segment. |  | 
|   311 */ |  | 
|   312  |  | 
|   313 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) |  | 
|   314  |  | 
|   315 #if defined(SQLITE_ENABLE_FTS2) && !defined(SQLITE_CORE) |  | 
|   316 # define SQLITE_CORE 1 |  | 
|   317 #endif |  | 
|   318  |  | 
|   319 #include <assert.h> |  | 
|   320 #include <stdlib.h> |  | 
|   321 #include <stdio.h> |  | 
|   322 #include <string.h> |  | 
|   323 #include <ctype.h> |  | 
|   324  |  | 
|   325 #include "fts2.h" |  | 
|   326 #include "fts2_hash.h" |  | 
|   327 #include "fts2_tokenizer.h" |  | 
|   328 #include "sqlite3.h" |  | 
|   329 #include "sqlite3ext.h" |  | 
|   330 SQLITE_EXTENSION_INIT1 |  | 
|   331  |  | 
|   332  |  | 
|   333 /* TODO(shess) MAN, this thing needs some refactoring.  At minimum, it |  | 
|   334 ** would be nice to order the file better, perhaps something along the |  | 
|   335 ** lines of: |  | 
|   336 ** |  | 
|   337 **  - utility functions |  | 
|   338 **  - table setup functions |  | 
|   339 **  - table update functions |  | 
|   340 **  - table query functions |  | 
|   341 ** |  | 
|   342 ** Put the query functions last because they're likely to reference |  | 
|   343 ** typedefs or functions from the table update section. |  | 
|   344 */ |  | 
|   345  |  | 
|   346 #if 0 |  | 
|   347 # define TRACE(A)  printf A; fflush(stdout) |  | 
|   348 #else |  | 
|   349 # define TRACE(A) |  | 
|   350 #endif |  | 
|   351  |  | 
|   352 #if 0 |  | 
|   353 /* Useful to set breakpoints.  See main.c sqlite3Corrupt(). */ |  | 
|   354 static int fts2Corrupt(void){ |  | 
|   355   return SQLITE_CORRUPT; |  | 
|   356 } |  | 
|   357 # define SQLITE_CORRUPT_BKPT fts2Corrupt() |  | 
|   358 #else |  | 
|   359 # define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT |  | 
|   360 #endif |  | 
|   361  |  | 
|   362 /* It is not safe to call isspace(), tolower(), or isalnum() on |  | 
|   363 ** hi-bit-set characters.  This is the same solution used in the |  | 
|   364 ** tokenizer. |  | 
|   365 */ |  | 
|   366 /* TODO(shess) The snippet-generation code should be using the |  | 
|   367 ** tokenizer-generated tokens rather than doing its own local |  | 
|   368 ** tokenization. |  | 
|   369 */ |  | 
|   370 /* TODO(shess) Is __isascii() a portable version of (c&0x80)==0? */ |  | 
|   371 static int safe_isspace(char c){ |  | 
|   372   return (c&0x80)==0 ? isspace(c) : 0; |  | 
|   373 } |  | 
|   374 static int safe_tolower(char c){ |  | 
|   375   return (c>='A' && c<='Z') ? (c-'A'+'a') : c; |  | 
|   376 } |  | 
|   377 static int safe_isalnum(char c){ |  | 
|   378   return (c&0x80)==0 ? isalnum(c) : 0; |  | 
|   379 } |  | 
|   380  |  | 
|   381 typedef enum DocListType { |  | 
|   382   DL_DOCIDS,              /* docids only */ |  | 
|   383   DL_POSITIONS,           /* docids + positions */ |  | 
|   384   DL_POSITIONS_OFFSETS    /* docids + positions + offsets */ |  | 
|   385 } DocListType; |  | 
|   386  |  | 
|   387 /* |  | 
|   388 ** By default, only positions and not offsets are stored in the doclists. |  | 
|   389 ** To change this so that offsets are stored too, compile with |  | 
|   390 ** |  | 
|   391 **          -DDL_DEFAULT=DL_POSITIONS_OFFSETS |  | 
|   392 ** |  | 
|   393 ** If DL_DEFAULT is set to DL_DOCIDS, your table can only be inserted |  | 
|   394 ** into (no deletes or updates). |  | 
|   395 */ |  | 
|   396 #ifndef DL_DEFAULT |  | 
|   397 # define DL_DEFAULT DL_POSITIONS |  | 
|   398 #endif |  | 
|   399  |  | 
|   400 enum { |  | 
|   401   POS_END = 0,        /* end of this position list */ |  | 
|   402   POS_COLUMN,         /* followed by new column number */ |  | 
|   403   POS_BASE |  | 
|   404 }; |  | 
|   405  |  | 
|   406 /* MERGE_COUNT controls how often we merge segments (see comment at |  | 
|   407 ** top of file). |  | 
|   408 */ |  | 
|   409 #define MERGE_COUNT 16 |  | 
|   410  |  | 
|   411 /* utility functions */ |  | 
|   412  |  | 
|   413 /* CLEAR() and SCRAMBLE() abstract memset() on a pointer to a single |  | 
|   414 ** record to prevent errors of the form: |  | 
|   415 ** |  | 
|   416 ** my_function(SomeType *b){ |  | 
|   417 **   memset(b, '\0', sizeof(b));  // sizeof(b)!=sizeof(*b) |  | 
|   418 ** } |  | 
|   419 */ |  | 
|   420 /* TODO(shess) Obvious candidates for a header file. */ |  | 
|   421 #define CLEAR(b) memset(b, '\0', sizeof(*(b))) |  | 
|   422  |  | 
|   423 #ifndef NDEBUG |  | 
|   424 #  define SCRAMBLE(b) memset(b, 0x55, sizeof(*(b))) |  | 
|   425 #else |  | 
|   426 #  define SCRAMBLE(b) |  | 
|   427 #endif |  | 
|   428  |  | 
|   429 /* We may need up to VARINT_MAX bytes to store an encoded 64-bit integer. */ |  | 
|   430 #define VARINT_MAX 10 |  | 
|   431  |  | 
|   432 /* Write a 64-bit variable-length integer to memory starting at p[0]. |  | 
|   433  * The length of data written will be between 1 and VARINT_MAX bytes. |  | 
|   434  * The number of bytes written is returned. */ |  | 
|   435 static int putVarint(char *p, sqlite_int64 v){ |  | 
|   436   unsigned char *q = (unsigned char *) p; |  | 
|   437   sqlite_uint64 vu = v; |  | 
|   438   do{ |  | 
|   439     *q++ = (unsigned char) ((vu & 0x7f) | 0x80); |  | 
|   440     vu >>= 7; |  | 
|   441   }while( vu!=0 ); |  | 
|   442   q[-1] &= 0x7f;  /* turn off high bit in final byte */ |  | 
|   443   assert( q - (unsigned char *)p <= VARINT_MAX ); |  | 
|   444   return (int) (q - (unsigned char *)p); |  | 
|   445 } |  | 
|   446  |  | 
|   447 /* Read a 64-bit variable-length integer from memory starting at p[0]. |  | 
|   448  * Return the number of bytes read, or 0 on error. |  | 
|   449  * The value is stored in *v. */ |  | 
|   450 static int getVarintSafe(const char *p, sqlite_int64 *v, int max){ |  | 
|   451   const unsigned char *q = (const unsigned char *) p; |  | 
|   452   sqlite_uint64 x = 0, y = 1; |  | 
|   453   if( max>VARINT_MAX ) max = VARINT_MAX; |  | 
|   454   while( max && (*q & 0x80) == 0x80 ){ |  | 
|   455     max--; |  | 
|   456     x += y * (*q++ & 0x7f); |  | 
|   457     y <<= 7; |  | 
|   458   } |  | 
|   459   if ( !max ){ |  | 
|   460     assert( 0 ); |  | 
|   461     return 0;  /* tried to read too much; bad data */ |  | 
|   462   } |  | 
|   463   x += y * (*q++); |  | 
|   464   *v = (sqlite_int64) x; |  | 
|   465   return (int) (q - (unsigned char *)p); |  | 
|   466 } |  | 
|   467  |  | 
|   468 static int getVarint(const char *p, sqlite_int64 *v){ |  | 
|   469   return getVarintSafe(p, v, VARINT_MAX); |  | 
|   470 } |  | 
|   471  |  | 
|   472 static int getVarint32Safe(const char *p, int *pi, int max){ |  | 
|   473  sqlite_int64 i; |  | 
|   474  int ret = getVarintSafe(p, &i, max); |  | 
|   475  if( !ret ) return ret; |  | 
|   476  *pi = (int) i; |  | 
|   477  assert( *pi==i ); |  | 
|   478  return ret; |  | 
|   479 } |  | 
|   480  |  | 
|   481 static int getVarint32(const char* p, int *pi){ |  | 
|   482   return getVarint32Safe(p, pi, VARINT_MAX); |  | 
|   483 } |  | 
|   484  |  | 
|   485 /*******************************************************************/ |  | 
|   486 /* DataBuffer is used to collect data into a buffer in piecemeal |  | 
|   487 ** fashion.  It implements the usual distinction between amount of |  | 
|   488 ** data currently stored (nData) and buffer capacity (nCapacity). |  | 
|   489 ** |  | 
|   490 ** dataBufferInit - create a buffer with given initial capacity. |  | 
|   491 ** dataBufferReset - forget buffer's data, retaining capacity. |  | 
|   492 ** dataBufferDestroy - free buffer's data. |  | 
|   493 ** dataBufferSwap - swap contents of two buffers. |  | 
|   494 ** dataBufferExpand - expand capacity without adding data. |  | 
|   495 ** dataBufferAppend - append data. |  | 
|   496 ** dataBufferAppend2 - append two pieces of data at once. |  | 
|   497 ** dataBufferReplace - replace buffer's data. |  | 
|   498 */ |  | 
|   499 typedef struct DataBuffer { |  | 
|   500   char *pData;          /* Pointer to malloc'ed buffer. */ |  | 
|   501   int nCapacity;        /* Size of pData buffer. */ |  | 
|   502   int nData;            /* End of data loaded into pData. */ |  | 
|   503 } DataBuffer; |  | 
|   504  |  | 
|   505 static void dataBufferInit(DataBuffer *pBuffer, int nCapacity){ |  | 
|   506   assert( nCapacity>=0 ); |  | 
|   507   pBuffer->nData = 0; |  | 
|   508   pBuffer->nCapacity = nCapacity; |  | 
|   509   pBuffer->pData = nCapacity==0 ? NULL : sqlite3_malloc(nCapacity); |  | 
|   510 } |  | 
|   511 static void dataBufferReset(DataBuffer *pBuffer){ |  | 
|   512   pBuffer->nData = 0; |  | 
|   513 } |  | 
|   514 static void dataBufferDestroy(DataBuffer *pBuffer){ |  | 
|   515   if( pBuffer->pData!=NULL ) sqlite3_free(pBuffer->pData); |  | 
|   516   SCRAMBLE(pBuffer); |  | 
|   517 } |  | 
|   518 static void dataBufferSwap(DataBuffer *pBuffer1, DataBuffer *pBuffer2){ |  | 
|   519   DataBuffer tmp = *pBuffer1; |  | 
|   520   *pBuffer1 = *pBuffer2; |  | 
|   521   *pBuffer2 = tmp; |  | 
|   522 } |  | 
|   523 static void dataBufferExpand(DataBuffer *pBuffer, int nAddCapacity){ |  | 
|   524   assert( nAddCapacity>0 ); |  | 
|   525   /* TODO(shess) Consider expanding more aggressively.  Note that the |  | 
|   526   ** underlying malloc implementation may take care of such things for |  | 
|   527   ** us already. |  | 
|   528   */ |  | 
|   529   if( pBuffer->nData+nAddCapacity>pBuffer->nCapacity ){ |  | 
|   530     pBuffer->nCapacity = pBuffer->nData+nAddCapacity; |  | 
|   531     pBuffer->pData = sqlite3_realloc(pBuffer->pData, pBuffer->nCapacity); |  | 
|   532   } |  | 
|   533 } |  | 
|   534 static void dataBufferAppend(DataBuffer *pBuffer, |  | 
|   535                              const char *pSource, int nSource){ |  | 
|   536   assert( nSource>0 && pSource!=NULL ); |  | 
|   537   dataBufferExpand(pBuffer, nSource); |  | 
|   538   memcpy(pBuffer->pData+pBuffer->nData, pSource, nSource); |  | 
|   539   pBuffer->nData += nSource; |  | 
|   540 } |  | 
|   541 static void dataBufferAppend2(DataBuffer *pBuffer, |  | 
|   542                               const char *pSource1, int nSource1, |  | 
|   543                               const char *pSource2, int nSource2){ |  | 
|   544   assert( nSource1>0 && pSource1!=NULL ); |  | 
|   545   assert( nSource2>0 && pSource2!=NULL ); |  | 
|   546   dataBufferExpand(pBuffer, nSource1+nSource2); |  | 
|   547   memcpy(pBuffer->pData+pBuffer->nData, pSource1, nSource1); |  | 
|   548   memcpy(pBuffer->pData+pBuffer->nData+nSource1, pSource2, nSource2); |  | 
|   549   pBuffer->nData += nSource1+nSource2; |  | 
|   550 } |  | 
|   551 static void dataBufferReplace(DataBuffer *pBuffer, |  | 
|   552                               const char *pSource, int nSource){ |  | 
|   553   dataBufferReset(pBuffer); |  | 
|   554   dataBufferAppend(pBuffer, pSource, nSource); |  | 
|   555 } |  | 
|   556  |  | 
|   557 /* StringBuffer is a null-terminated version of DataBuffer. */ |  | 
|   558 typedef struct StringBuffer { |  | 
|   559   DataBuffer b;            /* Includes null terminator. */ |  | 
|   560 } StringBuffer; |  | 
|   561  |  | 
|   562 static void initStringBuffer(StringBuffer *sb){ |  | 
|   563   dataBufferInit(&sb->b, 100); |  | 
|   564   dataBufferReplace(&sb->b, "", 1); |  | 
|   565 } |  | 
|   566 static int stringBufferLength(StringBuffer *sb){ |  | 
|   567   return sb->b.nData-1; |  | 
|   568 } |  | 
|   569 static char *stringBufferData(StringBuffer *sb){ |  | 
|   570   return sb->b.pData; |  | 
|   571 } |  | 
|   572 static void stringBufferDestroy(StringBuffer *sb){ |  | 
|   573   dataBufferDestroy(&sb->b); |  | 
|   574 } |  | 
|   575  |  | 
|   576 static void nappend(StringBuffer *sb, const char *zFrom, int nFrom){ |  | 
|   577   assert( sb->b.nData>0 ); |  | 
|   578   if( nFrom>0 ){ |  | 
|   579     sb->b.nData--; |  | 
|   580     dataBufferAppend2(&sb->b, zFrom, nFrom, "", 1); |  | 
|   581   } |  | 
|   582 } |  | 
|   583 static void append(StringBuffer *sb, const char *zFrom){ |  | 
|   584   nappend(sb, zFrom, strlen(zFrom)); |  | 
|   585 } |  | 
|   586  |  | 
|   587 /* Append a list of strings separated by commas. */ |  | 
|   588 static void appendList(StringBuffer *sb, int nString, char **azString){ |  | 
|   589   int i; |  | 
|   590   for(i=0; i<nString; ++i){ |  | 
|   591     if( i>0 ) append(sb, ", "); |  | 
|   592     append(sb, azString[i]); |  | 
|   593   } |  | 
|   594 } |  | 
|   595  |  | 
|   596 static int endsInWhiteSpace(StringBuffer *p){ |  | 
|   597   return stringBufferLength(p)>0 && |  | 
|   598     safe_isspace(stringBufferData(p)[stringBufferLength(p)-1]); |  | 
|   599 } |  | 
|   600  |  | 
|   601 /* If the StringBuffer ends in something other than white space, add a |  | 
|   602 ** single space character to the end. |  | 
|   603 */ |  | 
|   604 static void appendWhiteSpace(StringBuffer *p){ |  | 
|   605   if( stringBufferLength(p)==0 ) return; |  | 
|   606   if( !endsInWhiteSpace(p) ) append(p, " "); |  | 
|   607 } |  | 
|   608  |  | 
|   609 /* Remove white space from the end of the StringBuffer */ |  | 
|   610 static void trimWhiteSpace(StringBuffer *p){ |  | 
|   611   while( endsInWhiteSpace(p) ){ |  | 
|   612     p->b.pData[--p->b.nData-1] = '\0'; |  | 
|   613   } |  | 
|   614 } |  | 
|   615  |  | 
|   616 /*******************************************************************/ |  | 
|   617 /* DLReader is used to read document elements from a doclist.  The |  | 
|   618 ** current docid is cached, so dlrDocid() is fast.  DLReader does not |  | 
|   619 ** own the doclist buffer. |  | 
|   620 ** |  | 
|   621 ** dlrAtEnd - true if there's no more data to read. |  | 
|   622 ** dlrDocid - docid of current document. |  | 
|   623 ** dlrDocData - doclist data for current document (including docid). |  | 
|   624 ** dlrDocDataBytes - length of same. |  | 
|   625 ** dlrAllDataBytes - length of all remaining data. |  | 
|   626 ** dlrPosData - position data for current document. |  | 
|   627 ** dlrPosDataLen - length of pos data for current document (incl POS_END). |  | 
|   628 ** dlrStep - step to current document. |  | 
|   629 ** dlrInit - initial for doclist of given type against given data. |  | 
|   630 ** dlrDestroy - clean up. |  | 
|   631 ** |  | 
|   632 ** Expected usage is something like: |  | 
|   633 ** |  | 
|   634 **   DLReader reader; |  | 
|   635 **   dlrInit(&reader, pData, nData); |  | 
|   636 **   while( !dlrAtEnd(&reader) ){ |  | 
|   637 **     // calls to dlrDocid() and kin. |  | 
|   638 **     dlrStep(&reader); |  | 
|   639 **   } |  | 
|   640 **   dlrDestroy(&reader); |  | 
|   641 */ |  | 
|   642 typedef struct DLReader { |  | 
|   643   DocListType iType; |  | 
|   644   const char *pData; |  | 
|   645   int nData; |  | 
|   646  |  | 
|   647   sqlite_int64 iDocid; |  | 
|   648   int nElement; |  | 
|   649 } DLReader; |  | 
|   650  |  | 
|   651 static int dlrAtEnd(DLReader *pReader){ |  | 
|   652   assert( pReader->nData>=0 ); |  | 
|   653   return pReader->nData<=0; |  | 
|   654 } |  | 
|   655 static sqlite_int64 dlrDocid(DLReader *pReader){ |  | 
|   656   assert( !dlrAtEnd(pReader) ); |  | 
|   657   return pReader->iDocid; |  | 
|   658 } |  | 
|   659 static const char *dlrDocData(DLReader *pReader){ |  | 
|   660   assert( !dlrAtEnd(pReader) ); |  | 
|   661   return pReader->pData; |  | 
|   662 } |  | 
|   663 static int dlrDocDataBytes(DLReader *pReader){ |  | 
|   664   assert( !dlrAtEnd(pReader) ); |  | 
|   665   return pReader->nElement; |  | 
|   666 } |  | 
|   667 static int dlrAllDataBytes(DLReader *pReader){ |  | 
|   668   assert( !dlrAtEnd(pReader) ); |  | 
|   669   return pReader->nData; |  | 
|   670 } |  | 
|   671 /* TODO(shess) Consider adding a field to track iDocid varint length |  | 
|   672 ** to make these two functions faster.  This might matter (a tiny bit) |  | 
|   673 ** for queries. |  | 
|   674 */ |  | 
|   675 static const char *dlrPosData(DLReader *pReader){ |  | 
|   676   sqlite_int64 iDummy; |  | 
|   677   int n = getVarintSafe(pReader->pData, &iDummy, pReader->nElement); |  | 
|   678   if( !n ) return NULL; |  | 
|   679   assert( !dlrAtEnd(pReader) ); |  | 
|   680   return pReader->pData+n; |  | 
|   681 } |  | 
|   682 static int dlrPosDataLen(DLReader *pReader){ |  | 
|   683   sqlite_int64 iDummy; |  | 
|   684   int n = getVarint(pReader->pData, &iDummy); |  | 
|   685   assert( !dlrAtEnd(pReader) ); |  | 
|   686   return pReader->nElement-n; |  | 
|   687 } |  | 
|   688 static int dlrStep(DLReader *pReader){ |  | 
|   689   assert( !dlrAtEnd(pReader) ); |  | 
|   690  |  | 
|   691   /* Skip past current doclist element. */ |  | 
|   692   assert( pReader->nElement<=pReader->nData ); |  | 
|   693   pReader->pData += pReader->nElement; |  | 
|   694   pReader->nData -= pReader->nElement; |  | 
|   695  |  | 
|   696   /* If there is more data, read the next doclist element. */ |  | 
|   697   if( pReader->nData>0 ){ |  | 
|   698     sqlite_int64 iDocidDelta; |  | 
|   699     int nTotal = 0; |  | 
|   700     int iDummy, n = getVarintSafe(pReader->pData, &iDocidDelta, pReader->nData); |  | 
|   701     if( !n ) return SQLITE_CORRUPT_BKPT; |  | 
|   702     nTotal += n; |  | 
|   703     pReader->iDocid += iDocidDelta; |  | 
|   704     if( pReader->iType>=DL_POSITIONS ){ |  | 
|   705       while( 1 ){ |  | 
|   706         n = getVarint32Safe(pReader->pData+nTotal, &iDummy, |  | 
|   707                             pReader->nData-nTotal); |  | 
|   708         if( !n ) return SQLITE_CORRUPT_BKPT; |  | 
|   709         nTotal += n; |  | 
|   710         if( iDummy==POS_END ) break; |  | 
|   711         if( iDummy==POS_COLUMN ){ |  | 
|   712           n = getVarint32Safe(pReader->pData+nTotal, &iDummy, |  | 
|   713                               pReader->nData-nTotal); |  | 
|   714           if( !n ) return SQLITE_CORRUPT_BKPT; |  | 
|   715           nTotal += n; |  | 
|   716         }else if( pReader->iType==DL_POSITIONS_OFFSETS ){ |  | 
|   717           n = getVarint32Safe(pReader->pData+nTotal, &iDummy, |  | 
|   718                               pReader->nData-nTotal); |  | 
|   719           if( !n ) return SQLITE_CORRUPT_BKPT; |  | 
|   720           nTotal += n; |  | 
|   721           n = getVarint32Safe(pReader->pData+nTotal, &iDummy, |  | 
|   722                               pReader->nData-nTotal); |  | 
|   723           if( !n ) return SQLITE_CORRUPT_BKPT; |  | 
|   724           nTotal += n; |  | 
|   725         } |  | 
|   726       } |  | 
|   727     } |  | 
|   728     pReader->nElement = nTotal; |  | 
|   729     assert( pReader->nElement<=pReader->nData ); |  | 
|   730   } |  | 
|   731   return SQLITE_OK; |  | 
|   732 } |  | 
|   733 static void dlrDestroy(DLReader *pReader){ |  | 
|   734   SCRAMBLE(pReader); |  | 
|   735 } |  | 
|   736 static int dlrInit(DLReader *pReader, DocListType iType, |  | 
|   737                    const char *pData, int nData){ |  | 
|   738   int rc; |  | 
|   739   assert( pData!=NULL && nData!=0 ); |  | 
|   740   pReader->iType = iType; |  | 
|   741   pReader->pData = pData; |  | 
|   742   pReader->nData = nData; |  | 
|   743   pReader->nElement = 0; |  | 
|   744   pReader->iDocid = 0; |  | 
|   745  |  | 
|   746   /* Load the first element's data.  There must be a first element. */ |  | 
|   747   rc = dlrStep(pReader); |  | 
|   748   if( rc!=SQLITE_OK ) dlrDestroy(pReader); |  | 
|   749   return rc; |  | 
|   750 } |  | 
|   751  |  | 
|   752 #ifndef NDEBUG |  | 
|   753 /* Verify that the doclist can be validly decoded.  Also returns the |  | 
|   754 ** last docid found because it is convenient in other assertions for |  | 
|   755 ** DLWriter. |  | 
|   756 */ |  | 
|   757 static void docListValidate(DocListType iType, const char *pData, int nData, |  | 
|   758                             sqlite_int64 *pLastDocid){ |  | 
|   759   sqlite_int64 iPrevDocid = 0; |  | 
|   760   assert( nData>0 ); |  | 
|   761   assert( pData!=0 ); |  | 
|   762   assert( pData+nData>pData ); |  | 
|   763   while( nData!=0 ){ |  | 
|   764     sqlite_int64 iDocidDelta; |  | 
|   765     int n = getVarint(pData, &iDocidDelta); |  | 
|   766     iPrevDocid += iDocidDelta; |  | 
|   767     if( iType>DL_DOCIDS ){ |  | 
|   768       int iDummy; |  | 
|   769       while( 1 ){ |  | 
|   770         n += getVarint32(pData+n, &iDummy); |  | 
|   771         if( iDummy==POS_END ) break; |  | 
|   772         if( iDummy==POS_COLUMN ){ |  | 
|   773           n += getVarint32(pData+n, &iDummy); |  | 
|   774         }else if( iType>DL_POSITIONS ){ |  | 
|   775           n += getVarint32(pData+n, &iDummy); |  | 
|   776           n += getVarint32(pData+n, &iDummy); |  | 
|   777         } |  | 
|   778         assert( n<=nData ); |  | 
|   779       } |  | 
|   780     } |  | 
|   781     assert( n<=nData ); |  | 
|   782     pData += n; |  | 
|   783     nData -= n; |  | 
|   784   } |  | 
|   785   if( pLastDocid ) *pLastDocid = iPrevDocid; |  | 
|   786 } |  | 
|   787 #define ASSERT_VALID_DOCLIST(i, p, n, o) docListValidate(i, p, n, o) |  | 
|   788 #else |  | 
|   789 #define ASSERT_VALID_DOCLIST(i, p, n, o) assert( 1 ) |  | 
|   790 #endif |  | 
|   791  |  | 
|   792 /*******************************************************************/ |  | 
|   793 /* DLWriter is used to write doclist data to a DataBuffer.  DLWriter |  | 
|   794 ** always appends to the buffer and does not own it. |  | 
|   795 ** |  | 
|   796 ** dlwInit - initialize to write a given type doclistto a buffer. |  | 
|   797 ** dlwDestroy - clear the writer's memory.  Does not free buffer. |  | 
|   798 ** dlwAppend - append raw doclist data to buffer. |  | 
|   799 ** dlwCopy - copy next doclist from reader to writer. |  | 
|   800 ** dlwAdd - construct doclist element and append to buffer. |  | 
|   801 **    Only apply dlwAdd() to DL_DOCIDS doclists (else use PLWriter). |  | 
|   802 */ |  | 
|   803 typedef struct DLWriter { |  | 
|   804   DocListType iType; |  | 
|   805   DataBuffer *b; |  | 
|   806   sqlite_int64 iPrevDocid; |  | 
|   807 #ifndef NDEBUG |  | 
|   808   int has_iPrevDocid; |  | 
|   809 #endif |  | 
|   810 } DLWriter; |  | 
|   811  |  | 
|   812 static void dlwInit(DLWriter *pWriter, DocListType iType, DataBuffer *b){ |  | 
|   813   pWriter->b = b; |  | 
|   814   pWriter->iType = iType; |  | 
|   815   pWriter->iPrevDocid = 0; |  | 
|   816 #ifndef NDEBUG |  | 
|   817   pWriter->has_iPrevDocid = 0; |  | 
|   818 #endif |  | 
|   819 } |  | 
|   820 static void dlwDestroy(DLWriter *pWriter){ |  | 
|   821   SCRAMBLE(pWriter); |  | 
|   822 } |  | 
|   823 /* iFirstDocid is the first docid in the doclist in pData.  It is |  | 
|   824 ** needed because pData may point within a larger doclist, in which |  | 
|   825 ** case the first item would be delta-encoded. |  | 
|   826 ** |  | 
|   827 ** iLastDocid is the final docid in the doclist in pData.  It is |  | 
|   828 ** needed to create the new iPrevDocid for future delta-encoding.  The |  | 
|   829 ** code could decode the passed doclist to recreate iLastDocid, but |  | 
|   830 ** the only current user (docListMerge) already has decoded this |  | 
|   831 ** information. |  | 
|   832 */ |  | 
|   833 /* TODO(shess) This has become just a helper for docListMerge. |  | 
|   834 ** Consider a refactor to make this cleaner. |  | 
|   835 */ |  | 
|   836 static int dlwAppend(DLWriter *pWriter, |  | 
|   837                      const char *pData, int nData, |  | 
|   838                      sqlite_int64 iFirstDocid, sqlite_int64 iLastDocid){ |  | 
|   839   sqlite_int64 iDocid = 0; |  | 
|   840   char c[VARINT_MAX]; |  | 
|   841   int nFirstOld, nFirstNew;     /* Old and new varint len of first docid. */ |  | 
|   842 #ifndef NDEBUG |  | 
|   843   sqlite_int64 iLastDocidDelta; |  | 
|   844 #endif |  | 
|   845  |  | 
|   846   /* Recode the initial docid as delta from iPrevDocid. */ |  | 
|   847   nFirstOld = getVarintSafe(pData, &iDocid, nData); |  | 
|   848   if( !nFirstOld ) return SQLITE_CORRUPT_BKPT; |  | 
|   849   assert( nFirstOld<nData || (nFirstOld==nData && pWriter->iType==DL_DOCIDS) ); |  | 
|   850   nFirstNew = putVarint(c, iFirstDocid-pWriter->iPrevDocid); |  | 
|   851  |  | 
|   852   /* Verify that the incoming doclist is valid AND that it ends with |  | 
|   853   ** the expected docid.  This is essential because we'll trust this |  | 
|   854   ** docid in future delta-encoding. |  | 
|   855   */ |  | 
|   856   ASSERT_VALID_DOCLIST(pWriter->iType, pData, nData, &iLastDocidDelta); |  | 
|   857   assert( iLastDocid==iFirstDocid-iDocid+iLastDocidDelta ); |  | 
|   858  |  | 
|   859   /* Append recoded initial docid and everything else.  Rest of docids |  | 
|   860   ** should have been delta-encoded from previous initial docid. |  | 
|   861   */ |  | 
|   862   if( nFirstOld<nData ){ |  | 
|   863     dataBufferAppend2(pWriter->b, c, nFirstNew, |  | 
|   864                       pData+nFirstOld, nData-nFirstOld); |  | 
|   865   }else{ |  | 
|   866     dataBufferAppend(pWriter->b, c, nFirstNew); |  | 
|   867   } |  | 
|   868   pWriter->iPrevDocid = iLastDocid; |  | 
|   869   return SQLITE_OK; |  | 
|   870 } |  | 
|   871 static int dlwCopy(DLWriter *pWriter, DLReader *pReader){ |  | 
|   872   return dlwAppend(pWriter, dlrDocData(pReader), dlrDocDataBytes(pReader), |  | 
|   873                    dlrDocid(pReader), dlrDocid(pReader)); |  | 
|   874 } |  | 
|   875 static void dlwAdd(DLWriter *pWriter, sqlite_int64 iDocid){ |  | 
|   876   char c[VARINT_MAX]; |  | 
|   877   int n = putVarint(c, iDocid-pWriter->iPrevDocid); |  | 
|   878  |  | 
|   879   /* Docids must ascend. */ |  | 
|   880   assert( !pWriter->has_iPrevDocid || iDocid>pWriter->iPrevDocid ); |  | 
|   881   assert( pWriter->iType==DL_DOCIDS ); |  | 
|   882  |  | 
|   883   dataBufferAppend(pWriter->b, c, n); |  | 
|   884   pWriter->iPrevDocid = iDocid; |  | 
|   885 #ifndef NDEBUG |  | 
|   886   pWriter->has_iPrevDocid = 1; |  | 
|   887 #endif |  | 
|   888 } |  | 
|   889  |  | 
|   890 /*******************************************************************/ |  | 
|   891 /* PLReader is used to read data from a document's position list.  As |  | 
|   892 ** the caller steps through the list, data is cached so that varints |  | 
|   893 ** only need to be decoded once. |  | 
|   894 ** |  | 
|   895 ** plrInit, plrDestroy - create/destroy a reader. |  | 
|   896 ** plrColumn, plrPosition, plrStartOffset, plrEndOffset - accessors |  | 
|   897 ** plrAtEnd - at end of stream, only call plrDestroy once true. |  | 
|   898 ** plrStep - step to the next element. |  | 
|   899 */ |  | 
|   900 typedef struct PLReader { |  | 
|   901   /* These refer to the next position's data.  nData will reach 0 when |  | 
|   902   ** reading the last position, so plrStep() signals EOF by setting |  | 
|   903   ** pData to NULL. |  | 
|   904   */ |  | 
|   905   const char *pData; |  | 
|   906   int nData; |  | 
|   907  |  | 
|   908   DocListType iType; |  | 
|   909   int iColumn;         /* the last column read */ |  | 
|   910   int iPosition;       /* the last position read */ |  | 
|   911   int iStartOffset;    /* the last start offset read */ |  | 
|   912   int iEndOffset;      /* the last end offset read */ |  | 
|   913 } PLReader; |  | 
|   914  |  | 
|   915 static int plrAtEnd(PLReader *pReader){ |  | 
|   916   return pReader->pData==NULL; |  | 
|   917 } |  | 
|   918 static int plrColumn(PLReader *pReader){ |  | 
|   919   assert( !plrAtEnd(pReader) ); |  | 
|   920   return pReader->iColumn; |  | 
|   921 } |  | 
|   922 static int plrPosition(PLReader *pReader){ |  | 
|   923   assert( !plrAtEnd(pReader) ); |  | 
|   924   return pReader->iPosition; |  | 
|   925 } |  | 
|   926 static int plrStartOffset(PLReader *pReader){ |  | 
|   927   assert( !plrAtEnd(pReader) ); |  | 
|   928   return pReader->iStartOffset; |  | 
|   929 } |  | 
|   930 static int plrEndOffset(PLReader *pReader){ |  | 
|   931   assert( !plrAtEnd(pReader) ); |  | 
|   932   return pReader->iEndOffset; |  | 
|   933 } |  | 
|   934 static int plrStep(PLReader *pReader){ |  | 
|   935   int i, n, nTotal = 0; |  | 
|   936  |  | 
|   937   assert( !plrAtEnd(pReader) ); |  | 
|   938  |  | 
|   939   if( pReader->nData<=0 ){ |  | 
|   940     pReader->pData = NULL; |  | 
|   941     return SQLITE_OK; |  | 
|   942   } |  | 
|   943  |  | 
|   944   n = getVarint32Safe(pReader->pData, &i, pReader->nData); |  | 
|   945   if( !n ) return SQLITE_CORRUPT_BKPT; |  | 
|   946   nTotal += n; |  | 
|   947   if( i==POS_COLUMN ){ |  | 
|   948     n = getVarint32Safe(pReader->pData+nTotal, &pReader->iColumn, |  | 
|   949                         pReader->nData-nTotal); |  | 
|   950     if( !n ) return SQLITE_CORRUPT_BKPT; |  | 
|   951     nTotal += n; |  | 
|   952     pReader->iPosition = 0; |  | 
|   953     pReader->iStartOffset = 0; |  | 
|   954     n = getVarint32Safe(pReader->pData+nTotal, &i, pReader->nData-nTotal); |  | 
|   955     if( !n ) return SQLITE_CORRUPT_BKPT; |  | 
|   956     nTotal += n; |  | 
|   957   } |  | 
|   958   /* Should never see adjacent column changes. */ |  | 
|   959   assert( i!=POS_COLUMN ); |  | 
|   960  |  | 
|   961   if( i==POS_END ){ |  | 
|   962     assert( nTotal<=pReader->nData ); |  | 
|   963     pReader->nData = 0; |  | 
|   964     pReader->pData = NULL; |  | 
|   965     return SQLITE_OK; |  | 
|   966   } |  | 
|   967  |  | 
|   968   pReader->iPosition += i-POS_BASE; |  | 
|   969   if( pReader->iType==DL_POSITIONS_OFFSETS ){ |  | 
|   970     n = getVarint32Safe(pReader->pData+nTotal, &i, pReader->nData-nTotal); |  | 
|   971     if( !n ) return SQLITE_CORRUPT_BKPT; |  | 
|   972     nTotal += n; |  | 
|   973     pReader->iStartOffset += i; |  | 
|   974     n = getVarint32Safe(pReader->pData+nTotal, &i, pReader->nData-nTotal); |  | 
|   975     if( !n ) return SQLITE_CORRUPT_BKPT; |  | 
|   976     nTotal += n; |  | 
|   977     pReader->iEndOffset = pReader->iStartOffset+i; |  | 
|   978   } |  | 
|   979   assert( nTotal<=pReader->nData ); |  | 
|   980   pReader->pData += nTotal; |  | 
|   981   pReader->nData -= nTotal; |  | 
|   982   return SQLITE_OK; |  | 
|   983 } |  | 
|   984  |  | 
|   985 static void plrDestroy(PLReader *pReader){ |  | 
|   986   SCRAMBLE(pReader); |  | 
|   987 } |  | 
|   988  |  | 
|   989 static int plrInit(PLReader *pReader, DLReader *pDLReader){ |  | 
|   990   int rc; |  | 
|   991   pReader->pData = dlrPosData(pDLReader); |  | 
|   992   pReader->nData = dlrPosDataLen(pDLReader); |  | 
|   993   pReader->iType = pDLReader->iType; |  | 
|   994   pReader->iColumn = 0; |  | 
|   995   pReader->iPosition = 0; |  | 
|   996   pReader->iStartOffset = 0; |  | 
|   997   pReader->iEndOffset = 0; |  | 
|   998   rc = plrStep(pReader); |  | 
|   999   if( rc!=SQLITE_OK ) plrDestroy(pReader); |  | 
|  1000   return rc; |  | 
|  1001 } |  | 
|  1002  |  | 
|  1003 /*******************************************************************/ |  | 
|  1004 /* PLWriter is used in constructing a document's position list.  As a |  | 
|  1005 ** convenience, if iType is DL_DOCIDS, PLWriter becomes a no-op. |  | 
|  1006 ** PLWriter writes to the associated DLWriter's buffer. |  | 
|  1007 ** |  | 
|  1008 ** plwInit - init for writing a document's poslist. |  | 
|  1009 ** plwDestroy - clear a writer. |  | 
|  1010 ** plwAdd - append position and offset information. |  | 
|  1011 ** plwCopy - copy next position's data from reader to writer. |  | 
|  1012 ** plwTerminate - add any necessary doclist terminator. |  | 
|  1013 ** |  | 
|  1014 ** Calling plwAdd() after plwTerminate() may result in a corrupt |  | 
|  1015 ** doclist. |  | 
|  1016 */ |  | 
|  1017 /* TODO(shess) Until we've written the second item, we can cache the |  | 
|  1018 ** first item's information.  Then we'd have three states: |  | 
|  1019 ** |  | 
|  1020 ** - initialized with docid, no positions. |  | 
|  1021 ** - docid and one position. |  | 
|  1022 ** - docid and multiple positions. |  | 
|  1023 ** |  | 
|  1024 ** Only the last state needs to actually write to dlw->b, which would |  | 
|  1025 ** be an improvement in the DLCollector case. |  | 
|  1026 */ |  | 
|  1027 typedef struct PLWriter { |  | 
|  1028   DLWriter *dlw; |  | 
|  1029  |  | 
|  1030   int iColumn;    /* the last column written */ |  | 
|  1031   int iPos;       /* the last position written */ |  | 
|  1032   int iOffset;    /* the last start offset written */ |  | 
|  1033 } PLWriter; |  | 
|  1034  |  | 
|  1035 /* TODO(shess) In the case where the parent is reading these values |  | 
|  1036 ** from a PLReader, we could optimize to a copy if that PLReader has |  | 
|  1037 ** the same type as pWriter. |  | 
|  1038 */ |  | 
|  1039 static void plwAdd(PLWriter *pWriter, int iColumn, int iPos, |  | 
|  1040                    int iStartOffset, int iEndOffset){ |  | 
|  1041   /* Worst-case space for POS_COLUMN, iColumn, iPosDelta, |  | 
|  1042   ** iStartOffsetDelta, and iEndOffsetDelta. |  | 
|  1043   */ |  | 
|  1044   char c[5*VARINT_MAX]; |  | 
|  1045   int n = 0; |  | 
|  1046  |  | 
|  1047   /* Ban plwAdd() after plwTerminate(). */ |  | 
|  1048   assert( pWriter->iPos!=-1 ); |  | 
|  1049  |  | 
|  1050   if( pWriter->dlw->iType==DL_DOCIDS ) return; |  | 
|  1051  |  | 
|  1052   if( iColumn!=pWriter->iColumn ){ |  | 
|  1053     n += putVarint(c+n, POS_COLUMN); |  | 
|  1054     n += putVarint(c+n, iColumn); |  | 
|  1055     pWriter->iColumn = iColumn; |  | 
|  1056     pWriter->iPos = 0; |  | 
|  1057     pWriter->iOffset = 0; |  | 
|  1058   } |  | 
|  1059   assert( iPos>=pWriter->iPos ); |  | 
|  1060   n += putVarint(c+n, POS_BASE+(iPos-pWriter->iPos)); |  | 
|  1061   pWriter->iPos = iPos; |  | 
|  1062   if( pWriter->dlw->iType==DL_POSITIONS_OFFSETS ){ |  | 
|  1063     assert( iStartOffset>=pWriter->iOffset ); |  | 
|  1064     n += putVarint(c+n, iStartOffset-pWriter->iOffset); |  | 
|  1065     pWriter->iOffset = iStartOffset; |  | 
|  1066     assert( iEndOffset>=iStartOffset ); |  | 
|  1067     n += putVarint(c+n, iEndOffset-iStartOffset); |  | 
|  1068   } |  | 
|  1069   dataBufferAppend(pWriter->dlw->b, c, n); |  | 
|  1070 } |  | 
|  1071 static void plwCopy(PLWriter *pWriter, PLReader *pReader){ |  | 
|  1072   plwAdd(pWriter, plrColumn(pReader), plrPosition(pReader), |  | 
|  1073          plrStartOffset(pReader), plrEndOffset(pReader)); |  | 
|  1074 } |  | 
|  1075 static void plwInit(PLWriter *pWriter, DLWriter *dlw, sqlite_int64 iDocid){ |  | 
|  1076   char c[VARINT_MAX]; |  | 
|  1077   int n; |  | 
|  1078  |  | 
|  1079   pWriter->dlw = dlw; |  | 
|  1080  |  | 
|  1081   /* Docids must ascend. */ |  | 
|  1082   assert( !pWriter->dlw->has_iPrevDocid || iDocid>pWriter->dlw->iPrevDocid ); |  | 
|  1083   n = putVarint(c, iDocid-pWriter->dlw->iPrevDocid); |  | 
|  1084   dataBufferAppend(pWriter->dlw->b, c, n); |  | 
|  1085   pWriter->dlw->iPrevDocid = iDocid; |  | 
|  1086 #ifndef NDEBUG |  | 
|  1087   pWriter->dlw->has_iPrevDocid = 1; |  | 
|  1088 #endif |  | 
|  1089  |  | 
|  1090   pWriter->iColumn = 0; |  | 
|  1091   pWriter->iPos = 0; |  | 
|  1092   pWriter->iOffset = 0; |  | 
|  1093 } |  | 
|  1094 /* TODO(shess) Should plwDestroy() also terminate the doclist?  But |  | 
|  1095 ** then plwDestroy() would no longer be just a destructor, it would |  | 
|  1096 ** also be doing work, which isn't consistent with the overall idiom. |  | 
|  1097 ** Another option would be for plwAdd() to always append any necessary |  | 
|  1098 ** terminator, so that the output is always correct.  But that would |  | 
|  1099 ** add incremental work to the common case with the only benefit being |  | 
|  1100 ** API elegance.  Punt for now. |  | 
|  1101 */ |  | 
|  1102 static void plwTerminate(PLWriter *pWriter){ |  | 
|  1103   if( pWriter->dlw->iType>DL_DOCIDS ){ |  | 
|  1104     char c[VARINT_MAX]; |  | 
|  1105     int n = putVarint(c, POS_END); |  | 
|  1106     dataBufferAppend(pWriter->dlw->b, c, n); |  | 
|  1107   } |  | 
|  1108 #ifndef NDEBUG |  | 
|  1109   /* Mark as terminated for assert in plwAdd(). */ |  | 
|  1110   pWriter->iPos = -1; |  | 
|  1111 #endif |  | 
|  1112 } |  | 
|  1113 static void plwDestroy(PLWriter *pWriter){ |  | 
|  1114   SCRAMBLE(pWriter); |  | 
|  1115 } |  | 
|  1116  |  | 
|  1117 /*******************************************************************/ |  | 
|  1118 /* DLCollector wraps PLWriter and DLWriter to provide a |  | 
|  1119 ** dynamically-allocated doclist area to use during tokenization. |  | 
|  1120 ** |  | 
|  1121 ** dlcNew - malloc up and initialize a collector. |  | 
|  1122 ** dlcDelete - destroy a collector and all contained items. |  | 
|  1123 ** dlcAddPos - append position and offset information. |  | 
|  1124 ** dlcAddDoclist - add the collected doclist to the given buffer. |  | 
|  1125 ** dlcNext - terminate the current document and open another. |  | 
|  1126 */ |  | 
|  1127 typedef struct DLCollector { |  | 
|  1128   DataBuffer b; |  | 
|  1129   DLWriter dlw; |  | 
|  1130   PLWriter plw; |  | 
|  1131 } DLCollector; |  | 
|  1132  |  | 
|  1133 /* TODO(shess) This could also be done by calling plwTerminate() and |  | 
|  1134 ** dataBufferAppend().  I tried that, expecting nominal performance |  | 
|  1135 ** differences, but it seemed to pretty reliably be worth 1% to code |  | 
|  1136 ** it this way.  I suspect it is the incremental malloc overhead (some |  | 
|  1137 ** percentage of the plwTerminate() calls will cause a realloc), so |  | 
|  1138 ** this might be worth revisiting if the DataBuffer implementation |  | 
|  1139 ** changes. |  | 
|  1140 */ |  | 
|  1141 static void dlcAddDoclist(DLCollector *pCollector, DataBuffer *b){ |  | 
|  1142   if( pCollector->dlw.iType>DL_DOCIDS ){ |  | 
|  1143     char c[VARINT_MAX]; |  | 
|  1144     int n = putVarint(c, POS_END); |  | 
|  1145     dataBufferAppend2(b, pCollector->b.pData, pCollector->b.nData, c, n); |  | 
|  1146   }else{ |  | 
|  1147     dataBufferAppend(b, pCollector->b.pData, pCollector->b.nData); |  | 
|  1148   } |  | 
|  1149 } |  | 
|  1150 static void dlcNext(DLCollector *pCollector, sqlite_int64 iDocid){ |  | 
|  1151   plwTerminate(&pCollector->plw); |  | 
|  1152   plwDestroy(&pCollector->plw); |  | 
|  1153   plwInit(&pCollector->plw, &pCollector->dlw, iDocid); |  | 
|  1154 } |  | 
|  1155 static void dlcAddPos(DLCollector *pCollector, int iColumn, int iPos, |  | 
|  1156                       int iStartOffset, int iEndOffset){ |  | 
|  1157   plwAdd(&pCollector->plw, iColumn, iPos, iStartOffset, iEndOffset); |  | 
|  1158 } |  | 
|  1159  |  | 
|  1160 static DLCollector *dlcNew(sqlite_int64 iDocid, DocListType iType){ |  | 
|  1161   DLCollector *pCollector = sqlite3_malloc(sizeof(DLCollector)); |  | 
|  1162   dataBufferInit(&pCollector->b, 0); |  | 
|  1163   dlwInit(&pCollector->dlw, iType, &pCollector->b); |  | 
|  1164   plwInit(&pCollector->plw, &pCollector->dlw, iDocid); |  | 
|  1165   return pCollector; |  | 
|  1166 } |  | 
|  1167 static void dlcDelete(DLCollector *pCollector){ |  | 
|  1168   plwDestroy(&pCollector->plw); |  | 
|  1169   dlwDestroy(&pCollector->dlw); |  | 
|  1170   dataBufferDestroy(&pCollector->b); |  | 
|  1171   SCRAMBLE(pCollector); |  | 
|  1172   sqlite3_free(pCollector); |  | 
|  1173 } |  | 
|  1174  |  | 
|  1175  |  | 
|  1176 /* Copy the doclist data of iType in pData/nData into *out, trimming |  | 
|  1177 ** unnecessary data as we go.  Only columns matching iColumn are |  | 
|  1178 ** copied, all columns copied if iColumn is -1.  Elements with no |  | 
|  1179 ** matching columns are dropped.  The output is an iOutType doclist. |  | 
|  1180 */ |  | 
|  1181 /* NOTE(shess) This code is only valid after all doclists are merged. |  | 
|  1182 ** If this is run before merges, then doclist items which represent |  | 
|  1183 ** deletion will be trimmed, and will thus not effect a deletion |  | 
|  1184 ** during the merge. |  | 
|  1185 */ |  | 
|  1186 static int docListTrim(DocListType iType, const char *pData, int nData, |  | 
|  1187                        int iColumn, DocListType iOutType, DataBuffer *out){ |  | 
|  1188   DLReader dlReader; |  | 
|  1189   DLWriter dlWriter; |  | 
|  1190   int rc; |  | 
|  1191  |  | 
|  1192   assert( iOutType<=iType ); |  | 
|  1193  |  | 
|  1194   rc = dlrInit(&dlReader, iType, pData, nData); |  | 
|  1195   if( rc!=SQLITE_OK ) return rc; |  | 
|  1196   dlwInit(&dlWriter, iOutType, out); |  | 
|  1197  |  | 
|  1198   while( !dlrAtEnd(&dlReader) ){ |  | 
|  1199     PLReader plReader; |  | 
|  1200     PLWriter plWriter; |  | 
|  1201     int match = 0; |  | 
|  1202  |  | 
|  1203     rc = plrInit(&plReader, &dlReader); |  | 
|  1204     if( rc!=SQLITE_OK ) break; |  | 
|  1205  |  | 
|  1206     while( !plrAtEnd(&plReader) ){ |  | 
|  1207       if( iColumn==-1 || plrColumn(&plReader)==iColumn ){ |  | 
|  1208         if( !match ){ |  | 
|  1209           plwInit(&plWriter, &dlWriter, dlrDocid(&dlReader)); |  | 
|  1210           match = 1; |  | 
|  1211         } |  | 
|  1212         plwAdd(&plWriter, plrColumn(&plReader), plrPosition(&plReader), |  | 
|  1213                plrStartOffset(&plReader), plrEndOffset(&plReader)); |  | 
|  1214       } |  | 
|  1215       rc = plrStep(&plReader); |  | 
|  1216       if( rc!=SQLITE_OK ){ |  | 
|  1217         plrDestroy(&plReader); |  | 
|  1218         goto err; |  | 
|  1219       } |  | 
|  1220     } |  | 
|  1221     if( match ){ |  | 
|  1222       plwTerminate(&plWriter); |  | 
|  1223       plwDestroy(&plWriter); |  | 
|  1224     } |  | 
|  1225  |  | 
|  1226     plrDestroy(&plReader); |  | 
|  1227     rc = dlrStep(&dlReader); |  | 
|  1228     if( rc!=SQLITE_OK ) break; |  | 
|  1229   } |  | 
|  1230 err: |  | 
|  1231   dlwDestroy(&dlWriter); |  | 
|  1232   dlrDestroy(&dlReader); |  | 
|  1233   return rc; |  | 
|  1234 } |  | 
|  1235  |  | 
|  1236 /* Used by docListMerge() to keep doclists in the ascending order by |  | 
|  1237 ** docid, then ascending order by age (so the newest comes first). |  | 
|  1238 */ |  | 
|  1239 typedef struct OrderedDLReader { |  | 
|  1240   DLReader *pReader; |  | 
|  1241  |  | 
|  1242   /* TODO(shess) If we assume that docListMerge pReaders is ordered by |  | 
|  1243   ** age (which we do), then we could use pReader comparisons to break |  | 
|  1244   ** ties. |  | 
|  1245   */ |  | 
|  1246   int idx; |  | 
|  1247 } OrderedDLReader; |  | 
|  1248  |  | 
|  1249 /* Order eof to end, then by docid asc, idx desc. */ |  | 
|  1250 static int orderedDLReaderCmp(OrderedDLReader *r1, OrderedDLReader *r2){ |  | 
|  1251   if( dlrAtEnd(r1->pReader) ){ |  | 
|  1252     if( dlrAtEnd(r2->pReader) ) return 0;  /* Both atEnd(). */ |  | 
|  1253     return 1;                              /* Only r1 atEnd(). */ |  | 
|  1254   } |  | 
|  1255   if( dlrAtEnd(r2->pReader) ) return -1;   /* Only r2 atEnd(). */ |  | 
|  1256  |  | 
|  1257   if( dlrDocid(r1->pReader)<dlrDocid(r2->pReader) ) return -1; |  | 
|  1258   if( dlrDocid(r1->pReader)>dlrDocid(r2->pReader) ) return 1; |  | 
|  1259  |  | 
|  1260   /* Descending on idx. */ |  | 
|  1261   return r2->idx-r1->idx; |  | 
|  1262 } |  | 
|  1263  |  | 
|  1264 /* Bubble p[0] to appropriate place in p[1..n-1].  Assumes that |  | 
|  1265 ** p[1..n-1] is already sorted. |  | 
|  1266 */ |  | 
|  1267 /* TODO(shess) Is this frequent enough to warrant a binary search? |  | 
|  1268 ** Before implementing that, instrument the code to check.  In most |  | 
|  1269 ** current usage, I expect that p[0] will be less than p[1] a very |  | 
|  1270 ** high proportion of the time. |  | 
|  1271 */ |  | 
|  1272 static void orderedDLReaderReorder(OrderedDLReader *p, int n){ |  | 
|  1273   while( n>1 && orderedDLReaderCmp(p, p+1)>0 ){ |  | 
|  1274     OrderedDLReader tmp = p[0]; |  | 
|  1275     p[0] = p[1]; |  | 
|  1276     p[1] = tmp; |  | 
|  1277     n--; |  | 
|  1278     p++; |  | 
|  1279   } |  | 
|  1280 } |  | 
|  1281  |  | 
|  1282 /* Given an array of doclist readers, merge their doclist elements |  | 
|  1283 ** into out in sorted order (by docid), dropping elements from older |  | 
|  1284 ** readers when there is a duplicate docid.  pReaders is assumed to be |  | 
|  1285 ** ordered by age, oldest first. |  | 
|  1286 */ |  | 
|  1287 /* TODO(shess) nReaders must be <= MERGE_COUNT.  This should probably |  | 
|  1288 ** be fixed. |  | 
|  1289 */ |  | 
|  1290 static int docListMerge(DataBuffer *out, |  | 
|  1291                         DLReader *pReaders, int nReaders){ |  | 
|  1292   OrderedDLReader readers[MERGE_COUNT]; |  | 
|  1293   DLWriter writer; |  | 
|  1294   int i, n; |  | 
|  1295   const char *pStart = 0; |  | 
|  1296   int nStart = 0; |  | 
|  1297   sqlite_int64 iFirstDocid = 0, iLastDocid = 0; |  | 
|  1298   int rc = SQLITE_OK; |  | 
|  1299  |  | 
|  1300   assert( nReaders>0 ); |  | 
|  1301   if( nReaders==1 ){ |  | 
|  1302     dataBufferAppend(out, dlrDocData(pReaders), dlrAllDataBytes(pReaders)); |  | 
|  1303     return SQLITE_OK; |  | 
|  1304   } |  | 
|  1305  |  | 
|  1306   assert( nReaders<=MERGE_COUNT ); |  | 
|  1307   n = 0; |  | 
|  1308   for(i=0; i<nReaders; i++){ |  | 
|  1309     assert( pReaders[i].iType==pReaders[0].iType ); |  | 
|  1310     readers[i].pReader = pReaders+i; |  | 
|  1311     readers[i].idx = i; |  | 
|  1312     n += dlrAllDataBytes(&pReaders[i]); |  | 
|  1313   } |  | 
|  1314   /* Conservatively size output to sum of inputs.  Output should end |  | 
|  1315   ** up strictly smaller than input. |  | 
|  1316   */ |  | 
|  1317   dataBufferExpand(out, n); |  | 
|  1318  |  | 
|  1319   /* Get the readers into sorted order. */ |  | 
|  1320   while( i-->0 ){ |  | 
|  1321     orderedDLReaderReorder(readers+i, nReaders-i); |  | 
|  1322   } |  | 
|  1323  |  | 
|  1324   dlwInit(&writer, pReaders[0].iType, out); |  | 
|  1325   while( !dlrAtEnd(readers[0].pReader) ){ |  | 
|  1326     sqlite_int64 iDocid = dlrDocid(readers[0].pReader); |  | 
|  1327  |  | 
|  1328     /* If this is a continuation of the current buffer to copy, extend |  | 
|  1329     ** that buffer.  memcpy() seems to be more efficient if it has a |  | 
|  1330     ** lots of data to copy. |  | 
|  1331     */ |  | 
|  1332     if( dlrDocData(readers[0].pReader)==pStart+nStart ){ |  | 
|  1333       nStart += dlrDocDataBytes(readers[0].pReader); |  | 
|  1334     }else{ |  | 
|  1335       if( pStart!=0 ){ |  | 
|  1336         rc = dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid); |  | 
|  1337         if( rc!=SQLITE_OK ) goto err; |  | 
|  1338       } |  | 
|  1339       pStart = dlrDocData(readers[0].pReader); |  | 
|  1340       nStart = dlrDocDataBytes(readers[0].pReader); |  | 
|  1341       iFirstDocid = iDocid; |  | 
|  1342     } |  | 
|  1343     iLastDocid = iDocid; |  | 
|  1344     rc = dlrStep(readers[0].pReader); |  | 
|  1345     if( rc!=SQLITE_OK ) goto err; |  | 
|  1346  |  | 
|  1347     /* Drop all of the older elements with the same docid. */ |  | 
|  1348     for(i=1; i<nReaders && |  | 
|  1349              !dlrAtEnd(readers[i].pReader) && |  | 
|  1350              dlrDocid(readers[i].pReader)==iDocid; i++){ |  | 
|  1351       rc = dlrStep(readers[i].pReader); |  | 
|  1352       if( rc!=SQLITE_OK ) goto err; |  | 
|  1353     } |  | 
|  1354  |  | 
|  1355     /* Get the readers back into order. */ |  | 
|  1356     while( i-->0 ){ |  | 
|  1357       orderedDLReaderReorder(readers+i, nReaders-i); |  | 
|  1358     } |  | 
|  1359   } |  | 
|  1360  |  | 
|  1361   /* Copy over any remaining elements. */ |  | 
|  1362   if( nStart>0 ) |  | 
|  1363     rc = dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid); |  | 
|  1364 err: |  | 
|  1365   dlwDestroy(&writer); |  | 
|  1366   return rc; |  | 
|  1367 } |  | 
|  1368  |  | 
|  1369 /* Helper function for posListUnion().  Compares the current position |  | 
|  1370 ** between left and right, returning as standard C idiom of <0 if |  | 
|  1371 ** left<right, >0 if left>right, and 0 if left==right.  "End" always |  | 
|  1372 ** compares greater. |  | 
|  1373 */ |  | 
|  1374 static int posListCmp(PLReader *pLeft, PLReader *pRight){ |  | 
|  1375   assert( pLeft->iType==pRight->iType ); |  | 
|  1376   if( pLeft->iType==DL_DOCIDS ) return 0; |  | 
|  1377  |  | 
|  1378   if( plrAtEnd(pLeft) ) return plrAtEnd(pRight) ? 0 : 1; |  | 
|  1379   if( plrAtEnd(pRight) ) return -1; |  | 
|  1380  |  | 
|  1381   if( plrColumn(pLeft)<plrColumn(pRight) ) return -1; |  | 
|  1382   if( plrColumn(pLeft)>plrColumn(pRight) ) return 1; |  | 
|  1383  |  | 
|  1384   if( plrPosition(pLeft)<plrPosition(pRight) ) return -1; |  | 
|  1385   if( plrPosition(pLeft)>plrPosition(pRight) ) return 1; |  | 
|  1386   if( pLeft->iType==DL_POSITIONS ) return 0; |  | 
|  1387  |  | 
|  1388   if( plrStartOffset(pLeft)<plrStartOffset(pRight) ) return -1; |  | 
|  1389   if( plrStartOffset(pLeft)>plrStartOffset(pRight) ) return 1; |  | 
|  1390  |  | 
|  1391   if( plrEndOffset(pLeft)<plrEndOffset(pRight) ) return -1; |  | 
|  1392   if( plrEndOffset(pLeft)>plrEndOffset(pRight) ) return 1; |  | 
|  1393  |  | 
|  1394   return 0; |  | 
|  1395 } |  | 
|  1396  |  | 
|  1397 /* Write the union of position lists in pLeft and pRight to pOut. |  | 
|  1398 ** "Union" in this case meaning "All unique position tuples".  Should |  | 
|  1399 ** work with any doclist type, though both inputs and the output |  | 
|  1400 ** should be the same type. |  | 
|  1401 */ |  | 
|  1402 static int posListUnion(DLReader *pLeft, DLReader *pRight, DLWriter *pOut){ |  | 
|  1403   PLReader left, right; |  | 
|  1404   PLWriter writer; |  | 
|  1405   int rc; |  | 
|  1406  |  | 
|  1407   assert( dlrDocid(pLeft)==dlrDocid(pRight) ); |  | 
|  1408   assert( pLeft->iType==pRight->iType ); |  | 
|  1409   assert( pLeft->iType==pOut->iType ); |  | 
|  1410  |  | 
|  1411   rc = plrInit(&left, pLeft); |  | 
|  1412   if( rc != SQLITE_OK ) return rc; |  | 
|  1413   rc = plrInit(&right, pRight); |  | 
|  1414   if( rc != SQLITE_OK ){ |  | 
|  1415     plrDestroy(&left); |  | 
|  1416     return rc; |  | 
|  1417   } |  | 
|  1418   plwInit(&writer, pOut, dlrDocid(pLeft)); |  | 
|  1419  |  | 
|  1420   while( !plrAtEnd(&left) || !plrAtEnd(&right) ){ |  | 
|  1421     int c = posListCmp(&left, &right); |  | 
|  1422     if( c<0 ){ |  | 
|  1423       plwCopy(&writer, &left); |  | 
|  1424       rc = plrStep(&left); |  | 
|  1425       if( rc != SQLITE_OK ) break; |  | 
|  1426     }else if( c>0 ){ |  | 
|  1427       plwCopy(&writer, &right); |  | 
|  1428       rc = plrStep(&right); |  | 
|  1429       if( rc != SQLITE_OK ) break; |  | 
|  1430     }else{ |  | 
|  1431       plwCopy(&writer, &left); |  | 
|  1432       rc = plrStep(&left); |  | 
|  1433       if( rc != SQLITE_OK ) break; |  | 
|  1434       rc = plrStep(&right); |  | 
|  1435       if( rc != SQLITE_OK ) break; |  | 
|  1436     } |  | 
|  1437   } |  | 
|  1438  |  | 
|  1439   plwTerminate(&writer); |  | 
|  1440   plwDestroy(&writer); |  | 
|  1441   plrDestroy(&left); |  | 
|  1442   plrDestroy(&right); |  | 
|  1443   return rc; |  | 
|  1444 } |  | 
|  1445  |  | 
|  1446 /* Write the union of doclists in pLeft and pRight to pOut.  For |  | 
|  1447 ** docids in common between the inputs, the union of the position |  | 
|  1448 ** lists is written.  Inputs and outputs are always type DL_DEFAULT. |  | 
|  1449 */ |  | 
|  1450 static int docListUnion( |  | 
|  1451   const char *pLeft, int nLeft, |  | 
|  1452   const char *pRight, int nRight, |  | 
|  1453   DataBuffer *pOut      /* Write the combined doclist here */ |  | 
|  1454 ){ |  | 
|  1455   DLReader left, right; |  | 
|  1456   DLWriter writer; |  | 
|  1457   int rc; |  | 
|  1458  |  | 
|  1459   if( nLeft==0 ){ |  | 
|  1460     if( nRight!=0) dataBufferAppend(pOut, pRight, nRight); |  | 
|  1461     return SQLITE_OK; |  | 
|  1462   } |  | 
|  1463   if( nRight==0 ){ |  | 
|  1464     dataBufferAppend(pOut, pLeft, nLeft); |  | 
|  1465     return SQLITE_OK; |  | 
|  1466   } |  | 
|  1467  |  | 
|  1468   rc = dlrInit(&left, DL_DEFAULT, pLeft, nLeft); |  | 
|  1469   if( rc!=SQLITE_OK ) return rc; |  | 
|  1470   rc = dlrInit(&right, DL_DEFAULT, pRight, nRight); |  | 
|  1471   if( rc!=SQLITE_OK ){ |  | 
|  1472     dlrDestroy(&left); |  | 
|  1473     return rc; |  | 
|  1474   } |  | 
|  1475   dlwInit(&writer, DL_DEFAULT, pOut); |  | 
|  1476  |  | 
|  1477   while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){ |  | 
|  1478     if( dlrAtEnd(&right) ){ |  | 
|  1479       rc = dlwCopy(&writer, &left); |  | 
|  1480       if( rc!=SQLITE_OK ) break; |  | 
|  1481       rc = dlrStep(&left); |  | 
|  1482       if( rc!=SQLITE_OK ) break; |  | 
|  1483     }else if( dlrAtEnd(&left) ){ |  | 
|  1484       rc = dlwCopy(&writer, &right); |  | 
|  1485       if( rc!=SQLITE_OK ) break; |  | 
|  1486       rc = dlrStep(&right); |  | 
|  1487       if( rc!=SQLITE_OK ) break; |  | 
|  1488     }else if( dlrDocid(&left)<dlrDocid(&right) ){ |  | 
|  1489       rc = dlwCopy(&writer, &left); |  | 
|  1490       if( rc!=SQLITE_OK ) break; |  | 
|  1491       rc = dlrStep(&left); |  | 
|  1492       if( rc!=SQLITE_OK ) break; |  | 
|  1493     }else if( dlrDocid(&left)>dlrDocid(&right) ){ |  | 
|  1494       rc = dlwCopy(&writer, &right); |  | 
|  1495       if( rc!=SQLITE_OK ) break; |  | 
|  1496       rc = dlrStep(&right); |  | 
|  1497       if( rc!=SQLITE_OK ) break; |  | 
|  1498     }else{ |  | 
|  1499       rc = posListUnion(&left, &right, &writer); |  | 
|  1500       if( rc!=SQLITE_OK ) break; |  | 
|  1501       rc = dlrStep(&left); |  | 
|  1502       if( rc!=SQLITE_OK ) break; |  | 
|  1503       rc = dlrStep(&right); |  | 
|  1504       if( rc!=SQLITE_OK ) break; |  | 
|  1505     } |  | 
|  1506   } |  | 
|  1507  |  | 
|  1508   dlrDestroy(&left); |  | 
|  1509   dlrDestroy(&right); |  | 
|  1510   dlwDestroy(&writer); |  | 
|  1511   return rc; |  | 
|  1512 } |  | 
|  1513  |  | 
|  1514 /* pLeft and pRight are DLReaders positioned to the same docid. |  | 
|  1515 ** |  | 
|  1516 ** If there are no instances in pLeft or pRight where the position |  | 
|  1517 ** of pLeft is one less than the position of pRight, then this |  | 
|  1518 ** routine adds nothing to pOut. |  | 
|  1519 ** |  | 
|  1520 ** If there are one or more instances where positions from pLeft |  | 
|  1521 ** are exactly one less than positions from pRight, then add a new |  | 
|  1522 ** document record to pOut.  If pOut wants to hold positions, then |  | 
|  1523 ** include the positions from pRight that are one more than a |  | 
|  1524 ** position in pLeft.  In other words:  pRight.iPos==pLeft.iPos+1. |  | 
|  1525 */ |  | 
|  1526 static int posListPhraseMerge(DLReader *pLeft, DLReader *pRight, |  | 
|  1527                               DLWriter *pOut){ |  | 
|  1528   PLReader left, right; |  | 
|  1529   PLWriter writer; |  | 
|  1530   int match = 0; |  | 
|  1531   int rc; |  | 
|  1532  |  | 
|  1533   assert( dlrDocid(pLeft)==dlrDocid(pRight) ); |  | 
|  1534   assert( pOut->iType!=DL_POSITIONS_OFFSETS ); |  | 
|  1535  |  | 
|  1536   rc = plrInit(&left, pLeft); |  | 
|  1537   if( rc!=SQLITE_OK ) return rc; |  | 
|  1538   rc = plrInit(&right, pRight); |  | 
|  1539   if( rc!=SQLITE_OK ){ |  | 
|  1540     plrDestroy(&left); |  | 
|  1541     return rc; |  | 
|  1542   } |  | 
|  1543  |  | 
|  1544   while( !plrAtEnd(&left) && !plrAtEnd(&right) ){ |  | 
|  1545     if( plrColumn(&left)<plrColumn(&right) ){ |  | 
|  1546       rc = plrStep(&left); |  | 
|  1547       if( rc!=SQLITE_OK ) break; |  | 
|  1548     }else if( plrColumn(&left)>plrColumn(&right) ){ |  | 
|  1549       rc = plrStep(&right); |  | 
|  1550       if( rc!=SQLITE_OK ) break; |  | 
|  1551     }else if( plrPosition(&left)+1<plrPosition(&right) ){ |  | 
|  1552       rc = plrStep(&left); |  | 
|  1553       if( rc!=SQLITE_OK ) break; |  | 
|  1554     }else if( plrPosition(&left)+1>plrPosition(&right) ){ |  | 
|  1555       rc = plrStep(&right); |  | 
|  1556       if( rc!=SQLITE_OK ) break; |  | 
|  1557     }else{ |  | 
|  1558       if( !match ){ |  | 
|  1559         plwInit(&writer, pOut, dlrDocid(pLeft)); |  | 
|  1560         match = 1; |  | 
|  1561       } |  | 
|  1562       plwAdd(&writer, plrColumn(&right), plrPosition(&right), 0, 0); |  | 
|  1563       rc = plrStep(&left); |  | 
|  1564       if( rc!=SQLITE_OK ) break; |  | 
|  1565       rc = plrStep(&right); |  | 
|  1566       if( rc!=SQLITE_OK ) break; |  | 
|  1567     } |  | 
|  1568   } |  | 
|  1569  |  | 
|  1570   if( match ){ |  | 
|  1571     plwTerminate(&writer); |  | 
|  1572     plwDestroy(&writer); |  | 
|  1573   } |  | 
|  1574  |  | 
|  1575   plrDestroy(&left); |  | 
|  1576   plrDestroy(&right); |  | 
|  1577   return rc; |  | 
|  1578 } |  | 
|  1579  |  | 
|  1580 /* We have two doclists with positions:  pLeft and pRight. |  | 
|  1581 ** Write the phrase intersection of these two doclists into pOut. |  | 
|  1582 ** |  | 
|  1583 ** A phrase intersection means that two documents only match |  | 
|  1584 ** if pLeft.iPos+1==pRight.iPos. |  | 
|  1585 ** |  | 
|  1586 ** iType controls the type of data written to pOut.  If iType is |  | 
|  1587 ** DL_POSITIONS, the positions are those from pRight. |  | 
|  1588 */ |  | 
|  1589 static int docListPhraseMerge( |  | 
|  1590   const char *pLeft, int nLeft, |  | 
|  1591   const char *pRight, int nRight, |  | 
|  1592   DocListType iType, |  | 
|  1593   DataBuffer *pOut      /* Write the combined doclist here */ |  | 
|  1594 ){ |  | 
|  1595   DLReader left, right; |  | 
|  1596   DLWriter writer; |  | 
|  1597   int rc; |  | 
|  1598  |  | 
|  1599   if( nLeft==0 || nRight==0 ) return SQLITE_OK; |  | 
|  1600  |  | 
|  1601   assert( iType!=DL_POSITIONS_OFFSETS ); |  | 
|  1602  |  | 
|  1603   rc = dlrInit(&left, DL_POSITIONS, pLeft, nLeft); |  | 
|  1604   if( rc!=SQLITE_OK ) return rc; |  | 
|  1605   rc = dlrInit(&right, DL_POSITIONS, pRight, nRight); |  | 
|  1606   if( rc!=SQLITE_OK ){ |  | 
|  1607     dlrDestroy(&left); |  | 
|  1608     return rc; |  | 
|  1609   } |  | 
|  1610   dlwInit(&writer, iType, pOut); |  | 
|  1611  |  | 
|  1612   while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){ |  | 
|  1613     if( dlrDocid(&left)<dlrDocid(&right) ){ |  | 
|  1614       rc = dlrStep(&left); |  | 
|  1615       if( rc!=SQLITE_OK ) break; |  | 
|  1616     }else if( dlrDocid(&right)<dlrDocid(&left) ){ |  | 
|  1617       rc = dlrStep(&right); |  | 
|  1618       if( rc!=SQLITE_OK ) break; |  | 
|  1619     }else{ |  | 
|  1620       rc = posListPhraseMerge(&left, &right, &writer); |  | 
|  1621       if( rc!=SQLITE_OK ) break; |  | 
|  1622       rc = dlrStep(&left); |  | 
|  1623       if( rc!=SQLITE_OK ) break; |  | 
|  1624       rc = dlrStep(&right); |  | 
|  1625       if( rc!=SQLITE_OK ) break; |  | 
|  1626     } |  | 
|  1627   } |  | 
|  1628  |  | 
|  1629   dlrDestroy(&left); |  | 
|  1630   dlrDestroy(&right); |  | 
|  1631   dlwDestroy(&writer); |  | 
|  1632   return rc; |  | 
|  1633 } |  | 
|  1634  |  | 
|  1635 /* We have two DL_DOCIDS doclists:  pLeft and pRight. |  | 
|  1636 ** Write the intersection of these two doclists into pOut as a |  | 
|  1637 ** DL_DOCIDS doclist. |  | 
|  1638 */ |  | 
|  1639 static int docListAndMerge( |  | 
|  1640   const char *pLeft, int nLeft, |  | 
|  1641   const char *pRight, int nRight, |  | 
|  1642   DataBuffer *pOut      /* Write the combined doclist here */ |  | 
|  1643 ){ |  | 
|  1644   DLReader left, right; |  | 
|  1645   DLWriter writer; |  | 
|  1646   int rc; |  | 
|  1647  |  | 
|  1648   if( nLeft==0 || nRight==0 ) return SQLITE_OK; |  | 
|  1649  |  | 
|  1650   rc = dlrInit(&left, DL_DOCIDS, pLeft, nLeft); |  | 
|  1651   if( rc!=SQLITE_OK ) return rc; |  | 
|  1652   rc = dlrInit(&right, DL_DOCIDS, pRight, nRight); |  | 
|  1653   if( rc!=SQLITE_OK ){ |  | 
|  1654     dlrDestroy(&left); |  | 
|  1655     return rc; |  | 
|  1656   } |  | 
|  1657   dlwInit(&writer, DL_DOCIDS, pOut); |  | 
|  1658  |  | 
|  1659   while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){ |  | 
|  1660     if( dlrDocid(&left)<dlrDocid(&right) ){ |  | 
|  1661       rc = dlrStep(&left); |  | 
|  1662       if( rc!=SQLITE_OK ) break; |  | 
|  1663     }else if( dlrDocid(&right)<dlrDocid(&left) ){ |  | 
|  1664       rc = dlrStep(&right); |  | 
|  1665       if( rc!=SQLITE_OK ) break; |  | 
|  1666     }else{ |  | 
|  1667       dlwAdd(&writer, dlrDocid(&left)); |  | 
|  1668       rc = dlrStep(&left); |  | 
|  1669       if( rc!=SQLITE_OK ) break; |  | 
|  1670       rc = dlrStep(&right); |  | 
|  1671       if( rc!=SQLITE_OK ) break; |  | 
|  1672     } |  | 
|  1673   } |  | 
|  1674  |  | 
|  1675   dlrDestroy(&left); |  | 
|  1676   dlrDestroy(&right); |  | 
|  1677   dlwDestroy(&writer); |  | 
|  1678   return rc; |  | 
|  1679 } |  | 
|  1680  |  | 
|  1681 /* We have two DL_DOCIDS doclists:  pLeft and pRight. |  | 
|  1682 ** Write the union of these two doclists into pOut as a |  | 
|  1683 ** DL_DOCIDS doclist. |  | 
|  1684 */ |  | 
|  1685 static int docListOrMerge( |  | 
|  1686   const char *pLeft, int nLeft, |  | 
|  1687   const char *pRight, int nRight, |  | 
|  1688   DataBuffer *pOut      /* Write the combined doclist here */ |  | 
|  1689 ){ |  | 
|  1690   DLReader left, right; |  | 
|  1691   DLWriter writer; |  | 
|  1692   int rc; |  | 
|  1693  |  | 
|  1694   if( nLeft==0 ){ |  | 
|  1695     if( nRight!=0 ) dataBufferAppend(pOut, pRight, nRight); |  | 
|  1696     return SQLITE_OK; |  | 
|  1697   } |  | 
|  1698   if( nRight==0 ){ |  | 
|  1699     dataBufferAppend(pOut, pLeft, nLeft); |  | 
|  1700     return SQLITE_OK; |  | 
|  1701   } |  | 
|  1702  |  | 
|  1703   rc = dlrInit(&left, DL_DOCIDS, pLeft, nLeft); |  | 
|  1704   if( rc!=SQLITE_OK ) return rc; |  | 
|  1705   rc = dlrInit(&right, DL_DOCIDS, pRight, nRight); |  | 
|  1706   if( rc!=SQLITE_OK ){ |  | 
|  1707     dlrDestroy(&left); |  | 
|  1708     return rc; |  | 
|  1709   } |  | 
|  1710   dlwInit(&writer, DL_DOCIDS, pOut); |  | 
|  1711  |  | 
|  1712   while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){ |  | 
|  1713     if( dlrAtEnd(&right) ){ |  | 
|  1714       dlwAdd(&writer, dlrDocid(&left)); |  | 
|  1715       rc = dlrStep(&left); |  | 
|  1716       if( rc!=SQLITE_OK ) break; |  | 
|  1717     }else if( dlrAtEnd(&left) ){ |  | 
|  1718       dlwAdd(&writer, dlrDocid(&right)); |  | 
|  1719       rc = dlrStep(&right); |  | 
|  1720       if( rc!=SQLITE_OK ) break; |  | 
|  1721     }else if( dlrDocid(&left)<dlrDocid(&right) ){ |  | 
|  1722       dlwAdd(&writer, dlrDocid(&left)); |  | 
|  1723       rc = dlrStep(&left); |  | 
|  1724       if( rc!=SQLITE_OK ) break; |  | 
|  1725     }else if( dlrDocid(&right)<dlrDocid(&left) ){ |  | 
|  1726       dlwAdd(&writer, dlrDocid(&right)); |  | 
|  1727       rc = dlrStep(&right); |  | 
|  1728       if( rc!=SQLITE_OK ) break; |  | 
|  1729     }else{ |  | 
|  1730       dlwAdd(&writer, dlrDocid(&left)); |  | 
|  1731       rc = dlrStep(&left); |  | 
|  1732       if( rc!=SQLITE_OK ) break; |  | 
|  1733       rc = dlrStep(&right); |  | 
|  1734       if( rc!=SQLITE_OK ) break; |  | 
|  1735     } |  | 
|  1736   } |  | 
|  1737  |  | 
|  1738   dlrDestroy(&left); |  | 
|  1739   dlrDestroy(&right); |  | 
|  1740   dlwDestroy(&writer); |  | 
|  1741   return rc; |  | 
|  1742 } |  | 
|  1743  |  | 
|  1744 /* We have two DL_DOCIDS doclists:  pLeft and pRight. |  | 
|  1745 ** Write into pOut as DL_DOCIDS doclist containing all documents that |  | 
|  1746 ** occur in pLeft but not in pRight. |  | 
|  1747 */ |  | 
|  1748 static int docListExceptMerge( |  | 
|  1749   const char *pLeft, int nLeft, |  | 
|  1750   const char *pRight, int nRight, |  | 
|  1751   DataBuffer *pOut      /* Write the combined doclist here */ |  | 
|  1752 ){ |  | 
|  1753   DLReader left, right; |  | 
|  1754   DLWriter writer; |  | 
|  1755   int rc; |  | 
|  1756  |  | 
|  1757   if( nLeft==0 ) return SQLITE_OK; |  | 
|  1758   if( nRight==0 ){ |  | 
|  1759     dataBufferAppend(pOut, pLeft, nLeft); |  | 
|  1760     return SQLITE_OK; |  | 
|  1761   } |  | 
|  1762  |  | 
|  1763   rc = dlrInit(&left, DL_DOCIDS, pLeft, nLeft); |  | 
|  1764   if( rc!=SQLITE_OK ) return rc; |  | 
|  1765   rc = dlrInit(&right, DL_DOCIDS, pRight, nRight); |  | 
|  1766   if( rc!=SQLITE_OK ){ |  | 
|  1767     dlrDestroy(&left); |  | 
|  1768     return rc; |  | 
|  1769   } |  | 
|  1770   dlwInit(&writer, DL_DOCIDS, pOut); |  | 
|  1771  |  | 
|  1772   while( !dlrAtEnd(&left) ){ |  | 
|  1773     while( !dlrAtEnd(&right) && dlrDocid(&right)<dlrDocid(&left) ){ |  | 
|  1774       rc = dlrStep(&right); |  | 
|  1775       if( rc!=SQLITE_OK ) goto err; |  | 
|  1776     } |  | 
|  1777     if( dlrAtEnd(&right) || dlrDocid(&left)<dlrDocid(&right) ){ |  | 
|  1778       dlwAdd(&writer, dlrDocid(&left)); |  | 
|  1779     } |  | 
|  1780     rc = dlrStep(&left); |  | 
|  1781     if( rc!=SQLITE_OK ) break; |  | 
|  1782   } |  | 
|  1783  |  | 
|  1784 err: |  | 
|  1785   dlrDestroy(&left); |  | 
|  1786   dlrDestroy(&right); |  | 
|  1787   dlwDestroy(&writer); |  | 
|  1788   return rc; |  | 
|  1789 } |  | 
|  1790  |  | 
|  1791 static char *string_dup_n(const char *s, int n){ |  | 
|  1792   char *str = sqlite3_malloc(n + 1); |  | 
|  1793   memcpy(str, s, n); |  | 
|  1794   str[n] = '\0'; |  | 
|  1795   return str; |  | 
|  1796 } |  | 
|  1797  |  | 
|  1798 /* Duplicate a string; the caller must free() the returned string. |  | 
|  1799  * (We don't use strdup() since it is not part of the standard C library and |  | 
|  1800  * may not be available everywhere.) */ |  | 
|  1801 static char *string_dup(const char *s){ |  | 
|  1802   return string_dup_n(s, strlen(s)); |  | 
|  1803 } |  | 
|  1804  |  | 
|  1805 /* Format a string, replacing each occurrence of the % character with |  | 
|  1806  * zDb.zName.  This may be more convenient than sqlite_mprintf() |  | 
|  1807  * when one string is used repeatedly in a format string. |  | 
|  1808  * The caller must free() the returned string. */ |  | 
|  1809 static char *string_format(const char *zFormat, |  | 
|  1810                            const char *zDb, const char *zName){ |  | 
|  1811   const char *p; |  | 
|  1812   size_t len = 0; |  | 
|  1813   size_t nDb = strlen(zDb); |  | 
|  1814   size_t nName = strlen(zName); |  | 
|  1815   size_t nFullTableName = nDb+1+nName; |  | 
|  1816   char *result; |  | 
|  1817   char *r; |  | 
|  1818  |  | 
|  1819   /* first compute length needed */ |  | 
|  1820   for(p = zFormat ; *p ; ++p){ |  | 
|  1821     len += (*p=='%' ? nFullTableName : 1); |  | 
|  1822   } |  | 
|  1823   len += 1;  /* for null terminator */ |  | 
|  1824  |  | 
|  1825   r = result = sqlite3_malloc(len); |  | 
|  1826   for(p = zFormat; *p; ++p){ |  | 
|  1827     if( *p=='%' ){ |  | 
|  1828       memcpy(r, zDb, nDb); |  | 
|  1829       r += nDb; |  | 
|  1830       *r++ = '.'; |  | 
|  1831       memcpy(r, zName, nName); |  | 
|  1832       r += nName; |  | 
|  1833     } else { |  | 
|  1834       *r++ = *p; |  | 
|  1835     } |  | 
|  1836   } |  | 
|  1837   *r++ = '\0'; |  | 
|  1838   assert( r == result + len ); |  | 
|  1839   return result; |  | 
|  1840 } |  | 
|  1841  |  | 
|  1842 static int sql_exec(sqlite3 *db, const char *zDb, const char *zName, |  | 
|  1843                     const char *zFormat){ |  | 
|  1844   char *zCommand = string_format(zFormat, zDb, zName); |  | 
|  1845   int rc; |  | 
|  1846   TRACE(("FTS2 sql: %s\n", zCommand)); |  | 
|  1847   rc = sqlite3_exec(db, zCommand, NULL, 0, NULL); |  | 
|  1848   sqlite3_free(zCommand); |  | 
|  1849   return rc; |  | 
|  1850 } |  | 
|  1851  |  | 
|  1852 static int sql_prepare(sqlite3 *db, const char *zDb, const char *zName, |  | 
|  1853                        sqlite3_stmt **ppStmt, const char *zFormat){ |  | 
|  1854   char *zCommand = string_format(zFormat, zDb, zName); |  | 
|  1855   int rc; |  | 
|  1856   TRACE(("FTS2 prepare: %s\n", zCommand)); |  | 
|  1857   rc = sqlite3_prepare_v2(db, zCommand, -1, ppStmt, NULL); |  | 
|  1858   sqlite3_free(zCommand); |  | 
|  1859   return rc; |  | 
|  1860 } |  | 
|  1861  |  | 
|  1862 /* end utility functions */ |  | 
|  1863  |  | 
|  1864 /* Forward reference */ |  | 
|  1865 typedef struct fulltext_vtab fulltext_vtab; |  | 
|  1866  |  | 
|  1867 /* A single term in a query is represented by an instances of |  | 
|  1868 ** the following structure. |  | 
|  1869 */ |  | 
|  1870 typedef struct QueryTerm { |  | 
|  1871   short int nPhrase; /* How many following terms are part of the same phrase */ |  | 
|  1872   short int iPhrase; /* This is the i-th term of a phrase. */ |  | 
|  1873   short int iColumn; /* Column of the index that must match this term */ |  | 
|  1874   signed char isOr;  /* this term is preceded by "OR" */ |  | 
|  1875   signed char isNot; /* this term is preceded by "-" */ |  | 
|  1876   signed char isPrefix; /* this term is followed by "*" */ |  | 
|  1877   char *pTerm;       /* text of the term.  '\000' terminated.  malloced */ |  | 
|  1878   int nTerm;         /* Number of bytes in pTerm[] */ |  | 
|  1879 } QueryTerm; |  | 
|  1880  |  | 
|  1881  |  | 
|  1882 /* A query string is parsed into a Query structure. |  | 
|  1883  * |  | 
|  1884  * We could, in theory, allow query strings to be complicated |  | 
|  1885  * nested expressions with precedence determined by parentheses. |  | 
|  1886  * But none of the major search engines do this.  (Perhaps the |  | 
|  1887  * feeling is that an parenthesized expression is two complex of |  | 
|  1888  * an idea for the average user to grasp.)  Taking our lead from |  | 
|  1889  * the major search engines, we will allow queries to be a list |  | 
|  1890  * of terms (with an implied AND operator) or phrases in double-quotes, |  | 
|  1891  * with a single optional "-" before each non-phrase term to designate |  | 
|  1892  * negation and an optional OR connector. |  | 
|  1893  * |  | 
|  1894  * OR binds more tightly than the implied AND, which is what the |  | 
|  1895  * major search engines seem to do.  So, for example: |  | 
|  1896  *  |  | 
|  1897  *    [one two OR three]     ==>    one AND (two OR three) |  | 
|  1898  *    [one OR two three]     ==>    (one OR two) AND three |  | 
|  1899  * |  | 
|  1900  * A "-" before a term matches all entries that lack that term. |  | 
|  1901  * The "-" must occur immediately before the term with in intervening |  | 
|  1902  * space.  This is how the search engines do it. |  | 
|  1903  * |  | 
|  1904  * A NOT term cannot be the right-hand operand of an OR.  If this |  | 
|  1905  * occurs in the query string, the NOT is ignored: |  | 
|  1906  * |  | 
|  1907  *    [one OR -two]          ==>    one OR two |  | 
|  1908  * |  | 
|  1909  */ |  | 
|  1910 typedef struct Query { |  | 
|  1911   fulltext_vtab *pFts;  /* The full text index */ |  | 
|  1912   int nTerms;           /* Number of terms in the query */ |  | 
|  1913   QueryTerm *pTerms;    /* Array of terms.  Space obtained from malloc() */ |  | 
|  1914   int nextIsOr;         /* Set the isOr flag on the next inserted term */ |  | 
|  1915   int nextColumn;       /* Next word parsed must be in this column */ |  | 
|  1916   int dfltColumn;       /* The default column */ |  | 
|  1917 } Query; |  | 
|  1918  |  | 
|  1919  |  | 
|  1920 /* |  | 
|  1921 ** An instance of the following structure keeps track of generated |  | 
|  1922 ** matching-word offset information and snippets. |  | 
|  1923 */ |  | 
|  1924 typedef struct Snippet { |  | 
|  1925   int nMatch;     /* Total number of matches */ |  | 
|  1926   int nAlloc;     /* Space allocated for aMatch[] */ |  | 
|  1927   struct snippetMatch { /* One entry for each matching term */ |  | 
|  1928     char snStatus;       /* Status flag for use while constructing snippets */ |  | 
|  1929     short int iCol;      /* The column that contains the match */ |  | 
|  1930     short int iTerm;     /* The index in Query.pTerms[] of the matching term */ |  | 
|  1931     short int nByte;     /* Number of bytes in the term */ |  | 
|  1932     int iStart;          /* The offset to the first character of the term */ |  | 
|  1933   } *aMatch;      /* Points to space obtained from malloc */ |  | 
|  1934   char *zOffset;  /* Text rendering of aMatch[] */ |  | 
|  1935   int nOffset;    /* strlen(zOffset) */ |  | 
|  1936   char *zSnippet; /* Snippet text */ |  | 
|  1937   int nSnippet;   /* strlen(zSnippet) */ |  | 
|  1938 } Snippet; |  | 
|  1939  |  | 
|  1940  |  | 
|  1941 typedef enum QueryType { |  | 
|  1942   QUERY_GENERIC,   /* table scan */ |  | 
|  1943   QUERY_ROWID,     /* lookup by rowid */ |  | 
|  1944   QUERY_FULLTEXT   /* QUERY_FULLTEXT + [i] is a full-text search for column i*/ |  | 
|  1945 } QueryType; |  | 
|  1946  |  | 
|  1947 typedef enum fulltext_statement { |  | 
|  1948   CONTENT_INSERT_STMT, |  | 
|  1949   CONTENT_SELECT_STMT, |  | 
|  1950   CONTENT_UPDATE_STMT, |  | 
|  1951   CONTENT_DELETE_STMT, |  | 
|  1952   CONTENT_EXISTS_STMT, |  | 
|  1953  |  | 
|  1954   BLOCK_INSERT_STMT, |  | 
|  1955   BLOCK_SELECT_STMT, |  | 
|  1956   BLOCK_DELETE_STMT, |  | 
|  1957   BLOCK_DELETE_ALL_STMT, |  | 
|  1958  |  | 
|  1959   SEGDIR_MAX_INDEX_STMT, |  | 
|  1960   SEGDIR_SET_STMT, |  | 
|  1961   SEGDIR_SELECT_LEVEL_STMT, |  | 
|  1962   SEGDIR_SPAN_STMT, |  | 
|  1963   SEGDIR_DELETE_STMT, |  | 
|  1964   SEGDIR_SELECT_SEGMENT_STMT, |  | 
|  1965   SEGDIR_SELECT_ALL_STMT, |  | 
|  1966   SEGDIR_DELETE_ALL_STMT, |  | 
|  1967   SEGDIR_COUNT_STMT, |  | 
|  1968  |  | 
|  1969   MAX_STMT                     /* Always at end! */ |  | 
|  1970 } fulltext_statement; |  | 
|  1971  |  | 
|  1972 /* These must exactly match the enum above. */ |  | 
|  1973 /* TODO(shess): Is there some risk that a statement will be used in two |  | 
|  1974 ** cursors at once, e.g.  if a query joins a virtual table to itself? |  | 
|  1975 ** If so perhaps we should move some of these to the cursor object. |  | 
|  1976 */ |  | 
|  1977 static const char *const fulltext_zStatement[MAX_STMT] = { |  | 
|  1978   /* CONTENT_INSERT */ NULL,  /* generated in contentInsertStatement() */ |  | 
|  1979   /* CONTENT_SELECT */ "select * from %_content where rowid = ?", |  | 
|  1980   /* CONTENT_UPDATE */ NULL,  /* generated in contentUpdateStatement() */ |  | 
|  1981   /* CONTENT_DELETE */ "delete from %_content where rowid = ?", |  | 
|  1982   /* CONTENT_EXISTS */ "select rowid from %_content limit 1", |  | 
|  1983  |  | 
|  1984   /* BLOCK_INSERT */ "insert into %_segments values (?)", |  | 
|  1985   /* BLOCK_SELECT */ "select block from %_segments where rowid = ?", |  | 
|  1986   /* BLOCK_DELETE */ "delete from %_segments where rowid between ? and ?", |  | 
|  1987   /* BLOCK_DELETE_ALL */ "delete from %_segments", |  | 
|  1988  |  | 
|  1989   /* SEGDIR_MAX_INDEX */ "select max(idx) from %_segdir where level = ?", |  | 
|  1990   /* SEGDIR_SET */ "insert into %_segdir values (?, ?, ?, ?, ?, ?)", |  | 
|  1991   /* SEGDIR_SELECT_LEVEL */ |  | 
|  1992   "select start_block, leaves_end_block, root, idx from %_segdir " |  | 
|  1993   " where level = ? order by idx", |  | 
|  1994   /* SEGDIR_SPAN */ |  | 
|  1995   "select min(start_block), max(end_block) from %_segdir " |  | 
|  1996   " where level = ? and start_block <> 0", |  | 
|  1997   /* SEGDIR_DELETE */ "delete from %_segdir where level = ?", |  | 
|  1998  |  | 
|  1999   /* NOTE(shess): The first three results of the following two |  | 
|  2000   ** statements must match. |  | 
|  2001   */ |  | 
|  2002   /* SEGDIR_SELECT_SEGMENT */ |  | 
|  2003   "select start_block, leaves_end_block, root from %_segdir " |  | 
|  2004   " where level = ? and idx = ?", |  | 
|  2005   /* SEGDIR_SELECT_ALL */ |  | 
|  2006   "select start_block, leaves_end_block, root from %_segdir " |  | 
|  2007   " order by level desc, idx asc", |  | 
|  2008   /* SEGDIR_DELETE_ALL */ "delete from %_segdir", |  | 
|  2009   /* SEGDIR_COUNT */ "select count(*), ifnull(max(level),0) from %_segdir", |  | 
|  2010 }; |  | 
|  2011  |  | 
|  2012 /* |  | 
|  2013 ** A connection to a fulltext index is an instance of the following |  | 
|  2014 ** structure.  The xCreate and xConnect methods create an instance |  | 
|  2015 ** of this structure and xDestroy and xDisconnect free that instance. |  | 
|  2016 ** All other methods receive a pointer to the structure as one of their |  | 
|  2017 ** arguments. |  | 
|  2018 */ |  | 
|  2019 struct fulltext_vtab { |  | 
|  2020   sqlite3_vtab base;               /* Base class used by SQLite core */ |  | 
|  2021   sqlite3 *db;                     /* The database connection */ |  | 
|  2022   const char *zDb;                 /* logical database name */ |  | 
|  2023   const char *zName;               /* virtual table name */ |  | 
|  2024   int nColumn;                     /* number of columns in virtual table */ |  | 
|  2025   char **azColumn;                 /* column names.  malloced */ |  | 
|  2026   char **azContentColumn;          /* column names in content table; malloced */ |  | 
|  2027   sqlite3_tokenizer *pTokenizer;   /* tokenizer for inserts and queries */ |  | 
|  2028  |  | 
|  2029   /* Precompiled statements which we keep as long as the table is |  | 
|  2030   ** open. |  | 
|  2031   */ |  | 
|  2032   sqlite3_stmt *pFulltextStatements[MAX_STMT]; |  | 
|  2033  |  | 
|  2034   /* Precompiled statements used for segment merges.  We run a |  | 
|  2035   ** separate select across the leaf level of each tree being merged. |  | 
|  2036   */ |  | 
|  2037   sqlite3_stmt *pLeafSelectStmts[MERGE_COUNT]; |  | 
|  2038   /* The statement used to prepare pLeafSelectStmts. */ |  | 
|  2039 #define LEAF_SELECT \ |  | 
|  2040   "select block from %_segments where rowid between ? and ? order by rowid" |  | 
|  2041  |  | 
|  2042   /* These buffer pending index updates during transactions. |  | 
|  2043   ** nPendingData estimates the memory size of the pending data.  It |  | 
|  2044   ** doesn't include the hash-bucket overhead, nor any malloc |  | 
|  2045   ** overhead.  When nPendingData exceeds kPendingThreshold, the |  | 
|  2046   ** buffer is flushed even before the transaction closes. |  | 
|  2047   ** pendingTerms stores the data, and is only valid when nPendingData |  | 
|  2048   ** is >=0 (nPendingData<0 means pendingTerms has not been |  | 
|  2049   ** initialized).  iPrevDocid is the last docid written, used to make |  | 
|  2050   ** certain we're inserting in sorted order. |  | 
|  2051   */ |  | 
|  2052   int nPendingData; |  | 
|  2053 #define kPendingThreshold (1*1024*1024) |  | 
|  2054   sqlite_int64 iPrevDocid; |  | 
|  2055   fts2Hash pendingTerms; |  | 
|  2056 }; |  | 
|  2057  |  | 
|  2058 /* |  | 
|  2059 ** When the core wants to do a query, it create a cursor using a |  | 
|  2060 ** call to xOpen.  This structure is an instance of a cursor.  It |  | 
|  2061 ** is destroyed by xClose. |  | 
|  2062 */ |  | 
|  2063 typedef struct fulltext_cursor { |  | 
|  2064   sqlite3_vtab_cursor base;        /* Base class used by SQLite core */ |  | 
|  2065   QueryType iCursorType;           /* Copy of sqlite3_index_info.idxNum */ |  | 
|  2066   sqlite3_stmt *pStmt;             /* Prepared statement in use by the cursor */ |  | 
|  2067   int eof;                         /* True if at End Of Results */ |  | 
|  2068   Query q;                         /* Parsed query string */ |  | 
|  2069   Snippet snippet;                 /* Cached snippet for the current row */ |  | 
|  2070   int iColumn;                     /* Column being searched */ |  | 
|  2071   DataBuffer result;               /* Doclist results from fulltextQuery */ |  | 
|  2072   DLReader reader;                 /* Result reader if result not empty */ |  | 
|  2073 } fulltext_cursor; |  | 
|  2074  |  | 
|  2075 static struct fulltext_vtab *cursor_vtab(fulltext_cursor *c){ |  | 
|  2076   return (fulltext_vtab *) c->base.pVtab; |  | 
|  2077 } |  | 
|  2078  |  | 
|  2079 static const sqlite3_module fts2Module;   /* forward declaration */ |  | 
|  2080  |  | 
|  2081 /* Return a dynamically generated statement of the form |  | 
|  2082  *   insert into %_content (rowid, ...) values (?, ...) |  | 
|  2083  */ |  | 
|  2084 static const char *contentInsertStatement(fulltext_vtab *v){ |  | 
|  2085   StringBuffer sb; |  | 
|  2086   int i; |  | 
|  2087  |  | 
|  2088   initStringBuffer(&sb); |  | 
|  2089   append(&sb, "insert into %_content (rowid, "); |  | 
|  2090   appendList(&sb, v->nColumn, v->azContentColumn); |  | 
|  2091   append(&sb, ") values (?"); |  | 
|  2092   for(i=0; i<v->nColumn; ++i) |  | 
|  2093     append(&sb, ", ?"); |  | 
|  2094   append(&sb, ")"); |  | 
|  2095   return stringBufferData(&sb); |  | 
|  2096 } |  | 
|  2097  |  | 
|  2098 /* Return a dynamically generated statement of the form |  | 
|  2099  *   update %_content set [col_0] = ?, [col_1] = ?, ... |  | 
|  2100  *                    where rowid = ? |  | 
|  2101  */ |  | 
|  2102 static const char *contentUpdateStatement(fulltext_vtab *v){ |  | 
|  2103   StringBuffer sb; |  | 
|  2104   int i; |  | 
|  2105  |  | 
|  2106   initStringBuffer(&sb); |  | 
|  2107   append(&sb, "update %_content set "); |  | 
|  2108   for(i=0; i<v->nColumn; ++i) { |  | 
|  2109     if( i>0 ){ |  | 
|  2110       append(&sb, ", "); |  | 
|  2111     } |  | 
|  2112     append(&sb, v->azContentColumn[i]); |  | 
|  2113     append(&sb, " = ?"); |  | 
|  2114   } |  | 
|  2115   append(&sb, " where rowid = ?"); |  | 
|  2116   return stringBufferData(&sb); |  | 
|  2117 } |  | 
|  2118  |  | 
|  2119 /* Puts a freshly-prepared statement determined by iStmt in *ppStmt. |  | 
|  2120 ** If the indicated statement has never been prepared, it is prepared |  | 
|  2121 ** and cached, otherwise the cached version is reset. |  | 
|  2122 */ |  | 
|  2123 static int sql_get_statement(fulltext_vtab *v, fulltext_statement iStmt, |  | 
|  2124                              sqlite3_stmt **ppStmt){ |  | 
|  2125   assert( iStmt<MAX_STMT ); |  | 
|  2126   if( v->pFulltextStatements[iStmt]==NULL ){ |  | 
|  2127     const char *zStmt; |  | 
|  2128     int rc; |  | 
|  2129     switch( iStmt ){ |  | 
|  2130       case CONTENT_INSERT_STMT: |  | 
|  2131         zStmt = contentInsertStatement(v); break; |  | 
|  2132       case CONTENT_UPDATE_STMT: |  | 
|  2133         zStmt = contentUpdateStatement(v); break; |  | 
|  2134       default: |  | 
|  2135         zStmt = fulltext_zStatement[iStmt]; |  | 
|  2136     } |  | 
|  2137     rc = sql_prepare(v->db, v->zDb, v->zName, &v->pFulltextStatements[iStmt], |  | 
|  2138                          zStmt); |  | 
|  2139     if( zStmt != fulltext_zStatement[iStmt]) sqlite3_free((void *) zStmt); |  | 
|  2140     if( rc!=SQLITE_OK ) return rc; |  | 
|  2141   } else { |  | 
|  2142     int rc = sqlite3_reset(v->pFulltextStatements[iStmt]); |  | 
|  2143     if( rc!=SQLITE_OK ) return rc; |  | 
|  2144   } |  | 
|  2145  |  | 
|  2146   *ppStmt = v->pFulltextStatements[iStmt]; |  | 
|  2147   return SQLITE_OK; |  | 
|  2148 } |  | 
|  2149  |  | 
|  2150 /* Like sqlite3_step(), but convert SQLITE_DONE to SQLITE_OK and |  | 
|  2151 ** SQLITE_ROW to SQLITE_ERROR.  Useful for statements like UPDATE, |  | 
|  2152 ** where we expect no results. |  | 
|  2153 */ |  | 
|  2154 static int sql_single_step(sqlite3_stmt *s){ |  | 
|  2155   int rc = sqlite3_step(s); |  | 
|  2156   return (rc==SQLITE_DONE) ? SQLITE_OK : rc; |  | 
|  2157 } |  | 
|  2158  |  | 
|  2159 /* Like sql_get_statement(), but for special replicated LEAF_SELECT |  | 
|  2160 ** statements.  idx -1 is a special case for an uncached version of |  | 
|  2161 ** the statement (used in the optimize implementation). |  | 
|  2162 */ |  | 
|  2163 /* TODO(shess) Write version for generic statements and then share |  | 
|  2164 ** that between the cached-statement functions. |  | 
|  2165 */ |  | 
|  2166 static int sql_get_leaf_statement(fulltext_vtab *v, int idx, |  | 
|  2167                                   sqlite3_stmt **ppStmt){ |  | 
|  2168   assert( idx>=-1 && idx<MERGE_COUNT ); |  | 
|  2169   if( idx==-1 ){ |  | 
|  2170     return sql_prepare(v->db, v->zDb, v->zName, ppStmt, LEAF_SELECT); |  | 
|  2171   }else if( v->pLeafSelectStmts[idx]==NULL ){ |  | 
|  2172     int rc = sql_prepare(v->db, v->zDb, v->zName, &v->pLeafSelectStmts[idx], |  | 
|  2173                          LEAF_SELECT); |  | 
|  2174     if( rc!=SQLITE_OK ) return rc; |  | 
|  2175   }else{ |  | 
|  2176     int rc = sqlite3_reset(v->pLeafSelectStmts[idx]); |  | 
|  2177     if( rc!=SQLITE_OK ) return rc; |  | 
|  2178   } |  | 
|  2179  |  | 
|  2180   *ppStmt = v->pLeafSelectStmts[idx]; |  | 
|  2181   return SQLITE_OK; |  | 
|  2182 } |  | 
|  2183  |  | 
|  2184 /* insert into %_content (rowid, ...) values ([rowid], [pValues]) */ |  | 
|  2185 static int content_insert(fulltext_vtab *v, sqlite3_value *rowid, |  | 
|  2186                           sqlite3_value **pValues){ |  | 
|  2187   sqlite3_stmt *s; |  | 
|  2188   int i; |  | 
|  2189   int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s); |  | 
|  2190   if( rc!=SQLITE_OK ) return rc; |  | 
|  2191  |  | 
|  2192   rc = sqlite3_bind_value(s, 1, rowid); |  | 
|  2193   if( rc!=SQLITE_OK ) return rc; |  | 
|  2194  |  | 
|  2195   for(i=0; i<v->nColumn; ++i){ |  | 
|  2196     rc = sqlite3_bind_value(s, 2+i, pValues[i]); |  | 
|  2197     if( rc!=SQLITE_OK ) return rc; |  | 
|  2198   } |  | 
|  2199  |  | 
|  2200   return sql_single_step(s); |  | 
|  2201 } |  | 
|  2202  |  | 
|  2203 /* update %_content set col0 = pValues[0], col1 = pValues[1], ... |  | 
|  2204  *                  where rowid = [iRowid] */ |  | 
|  2205 static int content_update(fulltext_vtab *v, sqlite3_value **pValues, |  | 
|  2206                           sqlite_int64 iRowid){ |  | 
|  2207   sqlite3_stmt *s; |  | 
|  2208   int i; |  | 
|  2209   int rc = sql_get_statement(v, CONTENT_UPDATE_STMT, &s); |  | 
|  2210   if( rc!=SQLITE_OK ) return rc; |  | 
|  2211  |  | 
|  2212   for(i=0; i<v->nColumn; ++i){ |  | 
|  2213     rc = sqlite3_bind_value(s, 1+i, pValues[i]); |  | 
|  2214     if( rc!=SQLITE_OK ) return rc; |  | 
|  2215   } |  | 
|  2216  |  | 
|  2217   rc = sqlite3_bind_int64(s, 1+v->nColumn, iRowid); |  | 
|  2218   if( rc!=SQLITE_OK ) return rc; |  | 
|  2219  |  | 
|  2220   return sql_single_step(s); |  | 
|  2221 } |  | 
|  2222  |  | 
|  2223 static void freeStringArray(int nString, const char **pString){ |  | 
|  2224   int i; |  | 
|  2225  |  | 
|  2226   for (i=0 ; i < nString ; ++i) { |  | 
|  2227     if( pString[i]!=NULL ) sqlite3_free((void *) pString[i]); |  | 
|  2228   } |  | 
|  2229   sqlite3_free((void *) pString); |  | 
|  2230 } |  | 
|  2231  |  | 
|  2232 /* select * from %_content where rowid = [iRow] |  | 
|  2233  * The caller must delete the returned array and all strings in it. |  | 
|  2234  * null fields will be NULL in the returned array. |  | 
|  2235  * |  | 
|  2236  * TODO: Perhaps we should return pointer/length strings here for consistency |  | 
|  2237  * with other code which uses pointer/length. */ |  | 
|  2238 static int content_select(fulltext_vtab *v, sqlite_int64 iRow, |  | 
|  2239                           const char ***pValues){ |  | 
|  2240   sqlite3_stmt *s; |  | 
|  2241   const char **values; |  | 
|  2242   int i; |  | 
|  2243   int rc; |  | 
|  2244  |  | 
|  2245   *pValues = NULL; |  | 
|  2246  |  | 
|  2247   rc = sql_get_statement(v, CONTENT_SELECT_STMT, &s); |  | 
|  2248   if( rc!=SQLITE_OK ) return rc; |  | 
|  2249  |  | 
|  2250   rc = sqlite3_bind_int64(s, 1, iRow); |  | 
|  2251   if( rc!=SQLITE_OK ) return rc; |  | 
|  2252  |  | 
|  2253   rc = sqlite3_step(s); |  | 
|  2254   if( rc!=SQLITE_ROW ) return rc; |  | 
|  2255  |  | 
|  2256   values = (const char **) sqlite3_malloc(v->nColumn * sizeof(const char *)); |  | 
|  2257   for(i=0; i<v->nColumn; ++i){ |  | 
|  2258     if( sqlite3_column_type(s, i)==SQLITE_NULL ){ |  | 
|  2259       values[i] = NULL; |  | 
|  2260     }else{ |  | 
|  2261       values[i] = string_dup((char*)sqlite3_column_text(s, i)); |  | 
|  2262     } |  | 
|  2263   } |  | 
|  2264  |  | 
|  2265   /* We expect only one row.  We must execute another sqlite3_step() |  | 
|  2266    * to complete the iteration; otherwise the table will remain locked. */ |  | 
|  2267   rc = sqlite3_step(s); |  | 
|  2268   if( rc==SQLITE_DONE ){ |  | 
|  2269     *pValues = values; |  | 
|  2270     return SQLITE_OK; |  | 
|  2271   } |  | 
|  2272  |  | 
|  2273   freeStringArray(v->nColumn, values); |  | 
|  2274   return rc; |  | 
|  2275 } |  | 
|  2276  |  | 
|  2277 /* delete from %_content where rowid = [iRow ] */ |  | 
|  2278 static int content_delete(fulltext_vtab *v, sqlite_int64 iRow){ |  | 
|  2279   sqlite3_stmt *s; |  | 
|  2280   int rc = sql_get_statement(v, CONTENT_DELETE_STMT, &s); |  | 
|  2281   if( rc!=SQLITE_OK ) return rc; |  | 
|  2282  |  | 
|  2283   rc = sqlite3_bind_int64(s, 1, iRow); |  | 
|  2284   if( rc!=SQLITE_OK ) return rc; |  | 
|  2285  |  | 
|  2286   return sql_single_step(s); |  | 
|  2287 } |  | 
|  2288  |  | 
|  2289 /* Returns SQLITE_ROW if any rows exist in %_content, SQLITE_DONE if |  | 
|  2290 ** no rows exist, and any error in case of failure. |  | 
|  2291 */ |  | 
|  2292 static int content_exists(fulltext_vtab *v){ |  | 
|  2293   sqlite3_stmt *s; |  | 
|  2294   int rc = sql_get_statement(v, CONTENT_EXISTS_STMT, &s); |  | 
|  2295   if( rc!=SQLITE_OK ) return rc; |  | 
|  2296  |  | 
|  2297   rc = sqlite3_step(s); |  | 
|  2298   if( rc!=SQLITE_ROW ) return rc; |  | 
|  2299  |  | 
|  2300   /* We expect only one row.  We must execute another sqlite3_step() |  | 
|  2301    * to complete the iteration; otherwise the table will remain locked. */ |  | 
|  2302   rc = sqlite3_step(s); |  | 
|  2303   if( rc==SQLITE_DONE ) return SQLITE_ROW; |  | 
|  2304   if( rc==SQLITE_ROW ) return SQLITE_ERROR; |  | 
|  2305   return rc; |  | 
|  2306 } |  | 
|  2307  |  | 
|  2308 /* insert into %_segments values ([pData]) |  | 
|  2309 **   returns assigned rowid in *piBlockid |  | 
|  2310 */ |  | 
|  2311 static int block_insert(fulltext_vtab *v, const char *pData, int nData, |  | 
|  2312                         sqlite_int64 *piBlockid){ |  | 
|  2313   sqlite3_stmt *s; |  | 
|  2314   int rc = sql_get_statement(v, BLOCK_INSERT_STMT, &s); |  | 
|  2315   if( rc!=SQLITE_OK ) return rc; |  | 
|  2316  |  | 
|  2317   rc = sqlite3_bind_blob(s, 1, pData, nData, SQLITE_STATIC); |  | 
|  2318   if( rc!=SQLITE_OK ) return rc; |  | 
|  2319  |  | 
|  2320   rc = sqlite3_step(s); |  | 
|  2321   if( rc==SQLITE_ROW ) return SQLITE_ERROR; |  | 
|  2322   if( rc!=SQLITE_DONE ) return rc; |  | 
|  2323  |  | 
|  2324   *piBlockid = sqlite3_last_insert_rowid(v->db); |  | 
|  2325   return SQLITE_OK; |  | 
|  2326 } |  | 
|  2327  |  | 
|  2328 /* delete from %_segments |  | 
|  2329 **   where rowid between [iStartBlockid] and [iEndBlockid] |  | 
|  2330 ** |  | 
|  2331 ** Deletes the range of blocks, inclusive, used to delete the blocks |  | 
|  2332 ** which form a segment. |  | 
|  2333 */ |  | 
|  2334 static int block_delete(fulltext_vtab *v, |  | 
|  2335                         sqlite_int64 iStartBlockid, sqlite_int64 iEndBlockid){ |  | 
|  2336   sqlite3_stmt *s; |  | 
|  2337   int rc = sql_get_statement(v, BLOCK_DELETE_STMT, &s); |  | 
|  2338   if( rc!=SQLITE_OK ) return rc; |  | 
|  2339  |  | 
|  2340   rc = sqlite3_bind_int64(s, 1, iStartBlockid); |  | 
|  2341   if( rc!=SQLITE_OK ) return rc; |  | 
|  2342  |  | 
|  2343   rc = sqlite3_bind_int64(s, 2, iEndBlockid); |  | 
|  2344   if( rc!=SQLITE_OK ) return rc; |  | 
|  2345  |  | 
|  2346   return sql_single_step(s); |  | 
|  2347 } |  | 
|  2348  |  | 
|  2349 /* Returns SQLITE_ROW with *pidx set to the maximum segment idx found |  | 
|  2350 ** at iLevel.  Returns SQLITE_DONE if there are no segments at |  | 
|  2351 ** iLevel.  Otherwise returns an error. |  | 
|  2352 */ |  | 
|  2353 static int segdir_max_index(fulltext_vtab *v, int iLevel, int *pidx){ |  | 
|  2354   sqlite3_stmt *s; |  | 
|  2355   int rc = sql_get_statement(v, SEGDIR_MAX_INDEX_STMT, &s); |  | 
|  2356   if( rc!=SQLITE_OK ) return rc; |  | 
|  2357  |  | 
|  2358   rc = sqlite3_bind_int(s, 1, iLevel); |  | 
|  2359   if( rc!=SQLITE_OK ) return rc; |  | 
|  2360  |  | 
|  2361   rc = sqlite3_step(s); |  | 
|  2362   /* Should always get at least one row due to how max() works. */ |  | 
|  2363   if( rc==SQLITE_DONE ) return SQLITE_DONE; |  | 
|  2364   if( rc!=SQLITE_ROW ) return rc; |  | 
|  2365  |  | 
|  2366   /* NULL means that there were no inputs to max(). */ |  | 
|  2367   if( SQLITE_NULL==sqlite3_column_type(s, 0) ){ |  | 
|  2368     rc = sqlite3_step(s); |  | 
|  2369     if( rc==SQLITE_ROW ) return SQLITE_ERROR; |  | 
|  2370     return rc; |  | 
|  2371   } |  | 
|  2372  |  | 
|  2373   *pidx = sqlite3_column_int(s, 0); |  | 
|  2374  |  | 
|  2375   /* We expect only one row.  We must execute another sqlite3_step() |  | 
|  2376    * to complete the iteration; otherwise the table will remain locked. */ |  | 
|  2377   rc = sqlite3_step(s); |  | 
|  2378   if( rc==SQLITE_ROW ) return SQLITE_ERROR; |  | 
|  2379   if( rc!=SQLITE_DONE ) return rc; |  | 
|  2380   return SQLITE_ROW; |  | 
|  2381 } |  | 
|  2382  |  | 
|  2383 /* insert into %_segdir values ( |  | 
|  2384 **   [iLevel], [idx], |  | 
|  2385 **   [iStartBlockid], [iLeavesEndBlockid], [iEndBlockid], |  | 
|  2386 **   [pRootData] |  | 
|  2387 ** ) |  | 
|  2388 */ |  | 
|  2389 static int segdir_set(fulltext_vtab *v, int iLevel, int idx, |  | 
|  2390                       sqlite_int64 iStartBlockid, |  | 
|  2391                       sqlite_int64 iLeavesEndBlockid, |  | 
|  2392                       sqlite_int64 iEndBlockid, |  | 
|  2393                       const char *pRootData, int nRootData){ |  | 
|  2394   sqlite3_stmt *s; |  | 
|  2395   int rc = sql_get_statement(v, SEGDIR_SET_STMT, &s); |  | 
|  2396   if( rc!=SQLITE_OK ) return rc; |  | 
|  2397  |  | 
|  2398   rc = sqlite3_bind_int(s, 1, iLevel); |  | 
|  2399   if( rc!=SQLITE_OK ) return rc; |  | 
|  2400  |  | 
|  2401   rc = sqlite3_bind_int(s, 2, idx); |  | 
|  2402   if( rc!=SQLITE_OK ) return rc; |  | 
|  2403  |  | 
|  2404   rc = sqlite3_bind_int64(s, 3, iStartBlockid); |  | 
|  2405   if( rc!=SQLITE_OK ) return rc; |  | 
|  2406  |  | 
|  2407   rc = sqlite3_bind_int64(s, 4, iLeavesEndBlockid); |  | 
|  2408   if( rc!=SQLITE_OK ) return rc; |  | 
|  2409  |  | 
|  2410   rc = sqlite3_bind_int64(s, 5, iEndBlockid); |  | 
|  2411   if( rc!=SQLITE_OK ) return rc; |  | 
|  2412  |  | 
|  2413   rc = sqlite3_bind_blob(s, 6, pRootData, nRootData, SQLITE_STATIC); |  | 
|  2414   if( rc!=SQLITE_OK ) return rc; |  | 
|  2415  |  | 
|  2416   return sql_single_step(s); |  | 
|  2417 } |  | 
|  2418  |  | 
|  2419 /* Queries %_segdir for the block span of the segments in level |  | 
|  2420 ** iLevel.  Returns SQLITE_DONE if there are no blocks for iLevel, |  | 
|  2421 ** SQLITE_ROW if there are blocks, else an error. |  | 
|  2422 */ |  | 
|  2423 static int segdir_span(fulltext_vtab *v, int iLevel, |  | 
|  2424                        sqlite_int64 *piStartBlockid, |  | 
|  2425                        sqlite_int64 *piEndBlockid){ |  | 
|  2426   sqlite3_stmt *s; |  | 
|  2427   int rc = sql_get_statement(v, SEGDIR_SPAN_STMT, &s); |  | 
|  2428   if( rc!=SQLITE_OK ) return rc; |  | 
|  2429  |  | 
|  2430   rc = sqlite3_bind_int(s, 1, iLevel); |  | 
|  2431   if( rc!=SQLITE_OK ) return rc; |  | 
|  2432  |  | 
|  2433   rc = sqlite3_step(s); |  | 
|  2434   if( rc==SQLITE_DONE ) return SQLITE_DONE;  /* Should never happen */ |  | 
|  2435   if( rc!=SQLITE_ROW ) return rc; |  | 
|  2436  |  | 
|  2437   /* This happens if all segments at this level are entirely inline. */ |  | 
|  2438   if( SQLITE_NULL==sqlite3_column_type(s, 0) ){ |  | 
|  2439     /* We expect only one row.  We must execute another sqlite3_step() |  | 
|  2440      * to complete the iteration; otherwise the table will remain locked. */ |  | 
|  2441     int rc2 = sqlite3_step(s); |  | 
|  2442     if( rc2==SQLITE_ROW ) return SQLITE_ERROR; |  | 
|  2443     return rc2; |  | 
|  2444   } |  | 
|  2445  |  | 
|  2446   *piStartBlockid = sqlite3_column_int64(s, 0); |  | 
|  2447   *piEndBlockid = sqlite3_column_int64(s, 1); |  | 
|  2448  |  | 
|  2449   /* We expect only one row.  We must execute another sqlite3_step() |  | 
|  2450    * to complete the iteration; otherwise the table will remain locked. */ |  | 
|  2451   rc = sqlite3_step(s); |  | 
|  2452   if( rc==SQLITE_ROW ) return SQLITE_ERROR; |  | 
|  2453   if( rc!=SQLITE_DONE ) return rc; |  | 
|  2454   return SQLITE_ROW; |  | 
|  2455 } |  | 
|  2456  |  | 
|  2457 /* Delete the segment blocks and segment directory records for all |  | 
|  2458 ** segments at iLevel. |  | 
|  2459 */ |  | 
|  2460 static int segdir_delete(fulltext_vtab *v, int iLevel){ |  | 
|  2461   sqlite3_stmt *s; |  | 
|  2462   sqlite_int64 iStartBlockid, iEndBlockid; |  | 
|  2463   int rc = segdir_span(v, iLevel, &iStartBlockid, &iEndBlockid); |  | 
|  2464   if( rc!=SQLITE_ROW && rc!=SQLITE_DONE ) return rc; |  | 
|  2465  |  | 
|  2466   if( rc==SQLITE_ROW ){ |  | 
|  2467     rc = block_delete(v, iStartBlockid, iEndBlockid); |  | 
|  2468     if( rc!=SQLITE_OK ) return rc; |  | 
|  2469   } |  | 
|  2470  |  | 
|  2471   /* Delete the segment directory itself. */ |  | 
|  2472   rc = sql_get_statement(v, SEGDIR_DELETE_STMT, &s); |  | 
|  2473   if( rc!=SQLITE_OK ) return rc; |  | 
|  2474  |  | 
|  2475   rc = sqlite3_bind_int64(s, 1, iLevel); |  | 
|  2476   if( rc!=SQLITE_OK ) return rc; |  | 
|  2477  |  | 
|  2478   return sql_single_step(s); |  | 
|  2479 } |  | 
|  2480  |  | 
|  2481 /* Delete entire fts index, SQLITE_OK on success, relevant error on |  | 
|  2482 ** failure. |  | 
|  2483 */ |  | 
|  2484 static int segdir_delete_all(fulltext_vtab *v){ |  | 
|  2485   sqlite3_stmt *s; |  | 
|  2486   int rc = sql_get_statement(v, SEGDIR_DELETE_ALL_STMT, &s); |  | 
|  2487   if( rc!=SQLITE_OK ) return rc; |  | 
|  2488  |  | 
|  2489   rc = sql_single_step(s); |  | 
|  2490   if( rc!=SQLITE_OK ) return rc; |  | 
|  2491  |  | 
|  2492   rc = sql_get_statement(v, BLOCK_DELETE_ALL_STMT, &s); |  | 
|  2493   if( rc!=SQLITE_OK ) return rc; |  | 
|  2494  |  | 
|  2495   return sql_single_step(s); |  | 
|  2496 } |  | 
|  2497  |  | 
|  2498 /* Returns SQLITE_OK with *pnSegments set to the number of entries in |  | 
|  2499 ** %_segdir and *piMaxLevel set to the highest level which has a |  | 
|  2500 ** segment.  Otherwise returns the SQLite error which caused failure. |  | 
|  2501 */ |  | 
|  2502 static int segdir_count(fulltext_vtab *v, int *pnSegments, int *piMaxLevel){ |  | 
|  2503   sqlite3_stmt *s; |  | 
|  2504   int rc = sql_get_statement(v, SEGDIR_COUNT_STMT, &s); |  | 
|  2505   if( rc!=SQLITE_OK ) return rc; |  | 
|  2506  |  | 
|  2507   rc = sqlite3_step(s); |  | 
|  2508   /* TODO(shess): This case should not be possible?  Should stronger |  | 
|  2509   ** measures be taken if it happens? |  | 
|  2510   */ |  | 
|  2511   if( rc==SQLITE_DONE ){ |  | 
|  2512     *pnSegments = 0; |  | 
|  2513     *piMaxLevel = 0; |  | 
|  2514     return SQLITE_OK; |  | 
|  2515   } |  | 
|  2516   if( rc!=SQLITE_ROW ) return rc; |  | 
|  2517  |  | 
|  2518   *pnSegments = sqlite3_column_int(s, 0); |  | 
|  2519   *piMaxLevel = sqlite3_column_int(s, 1); |  | 
|  2520  |  | 
|  2521   /* We expect only one row.  We must execute another sqlite3_step() |  | 
|  2522    * to complete the iteration; otherwise the table will remain locked. */ |  | 
|  2523   rc = sqlite3_step(s); |  | 
|  2524   if( rc==SQLITE_DONE ) return SQLITE_OK; |  | 
|  2525   if( rc==SQLITE_ROW ) return SQLITE_ERROR; |  | 
|  2526   return rc; |  | 
|  2527 } |  | 
|  2528  |  | 
|  2529 /* TODO(shess) clearPendingTerms() is far down the file because |  | 
|  2530 ** writeZeroSegment() is far down the file because LeafWriter is far |  | 
|  2531 ** down the file.  Consider refactoring the code to move the non-vtab |  | 
|  2532 ** code above the vtab code so that we don't need this forward |  | 
|  2533 ** reference. |  | 
|  2534 */ |  | 
|  2535 static int clearPendingTerms(fulltext_vtab *v); |  | 
|  2536  |  | 
|  2537 /* |  | 
|  2538 ** Free the memory used to contain a fulltext_vtab structure. |  | 
|  2539 */ |  | 
|  2540 static void fulltext_vtab_destroy(fulltext_vtab *v){ |  | 
|  2541   int iStmt, i; |  | 
|  2542  |  | 
|  2543   TRACE(("FTS2 Destroy %p\n", v)); |  | 
|  2544   for( iStmt=0; iStmt<MAX_STMT; iStmt++ ){ |  | 
|  2545     if( v->pFulltextStatements[iStmt]!=NULL ){ |  | 
|  2546       sqlite3_finalize(v->pFulltextStatements[iStmt]); |  | 
|  2547       v->pFulltextStatements[iStmt] = NULL; |  | 
|  2548     } |  | 
|  2549   } |  | 
|  2550  |  | 
|  2551   for( i=0; i<MERGE_COUNT; i++ ){ |  | 
|  2552     if( v->pLeafSelectStmts[i]!=NULL ){ |  | 
|  2553       sqlite3_finalize(v->pLeafSelectStmts[i]); |  | 
|  2554       v->pLeafSelectStmts[i] = NULL; |  | 
|  2555     } |  | 
|  2556   } |  | 
|  2557  |  | 
|  2558   if( v->pTokenizer!=NULL ){ |  | 
|  2559     v->pTokenizer->pModule->xDestroy(v->pTokenizer); |  | 
|  2560     v->pTokenizer = NULL; |  | 
|  2561   } |  | 
|  2562  |  | 
|  2563   clearPendingTerms(v); |  | 
|  2564  |  | 
|  2565   sqlite3_free(v->azColumn); |  | 
|  2566   for(i = 0; i < v->nColumn; ++i) { |  | 
|  2567     sqlite3_free(v->azContentColumn[i]); |  | 
|  2568   } |  | 
|  2569   sqlite3_free(v->azContentColumn); |  | 
|  2570   sqlite3_free(v); |  | 
|  2571 } |  | 
|  2572  |  | 
|  2573 /* |  | 
|  2574 ** Token types for parsing the arguments to xConnect or xCreate. |  | 
|  2575 */ |  | 
|  2576 #define TOKEN_EOF         0    /* End of file */ |  | 
|  2577 #define TOKEN_SPACE       1    /* Any kind of whitespace */ |  | 
|  2578 #define TOKEN_ID          2    /* An identifier */ |  | 
|  2579 #define TOKEN_STRING      3    /* A string literal */ |  | 
|  2580 #define TOKEN_PUNCT       4    /* A single punctuation character */ |  | 
|  2581  |  | 
|  2582 /* |  | 
|  2583 ** If X is a character that can be used in an identifier then |  | 
|  2584 ** IdChar(X) will be true.  Otherwise it is false. |  | 
|  2585 ** |  | 
|  2586 ** For ASCII, any character with the high-order bit set is |  | 
|  2587 ** allowed in an identifier.  For 7-bit characters,  |  | 
|  2588 ** sqlite3IsIdChar[X] must be 1. |  | 
|  2589 ** |  | 
|  2590 ** Ticket #1066.  the SQL standard does not allow '$' in the |  | 
|  2591 ** middle of identfiers.  But many SQL implementations do.  |  | 
|  2592 ** SQLite will allow '$' in identifiers for compatibility. |  | 
|  2593 ** But the feature is undocumented. |  | 
|  2594 */ |  | 
|  2595 static const char isIdChar[] = { |  | 
|  2596 /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */ |  | 
|  2597     0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  /* 2x */ |  | 
|  2598     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,  /* 3x */ |  | 
|  2599     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 4x */ |  | 
|  2600     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1,  /* 5x */ |  | 
|  2601     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 6x */ |  | 
|  2602     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,  /* 7x */ |  | 
|  2603 }; |  | 
|  2604 #define IdChar(C)  (((c=C)&0x80)!=0 || (c>0x1f && isIdChar[c-0x20])) |  | 
|  2605  |  | 
|  2606  |  | 
|  2607 /* |  | 
|  2608 ** Return the length of the token that begins at z[0].  |  | 
|  2609 ** Store the token type in *tokenType before returning. |  | 
|  2610 */ |  | 
|  2611 static int getToken(const char *z, int *tokenType){ |  | 
|  2612   int i, c; |  | 
|  2613   switch( *z ){ |  | 
|  2614     case 0: { |  | 
|  2615       *tokenType = TOKEN_EOF; |  | 
|  2616       return 0; |  | 
|  2617     } |  | 
|  2618     case ' ': case '\t': case '\n': case '\f': case '\r': { |  | 
|  2619       for(i=1; safe_isspace(z[i]); i++){} |  | 
|  2620       *tokenType = TOKEN_SPACE; |  | 
|  2621       return i; |  | 
|  2622     } |  | 
|  2623     case '`': |  | 
|  2624     case '\'': |  | 
|  2625     case '"': { |  | 
|  2626       int delim = z[0]; |  | 
|  2627       for(i=1; (c=z[i])!=0; i++){ |  | 
|  2628         if( c==delim ){ |  | 
|  2629           if( z[i+1]==delim ){ |  | 
|  2630             i++; |  | 
|  2631           }else{ |  | 
|  2632             break; |  | 
|  2633           } |  | 
|  2634         } |  | 
|  2635       } |  | 
|  2636       *tokenType = TOKEN_STRING; |  | 
|  2637       return i + (c!=0); |  | 
|  2638     } |  | 
|  2639     case '[': { |  | 
|  2640       for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){} |  | 
|  2641       *tokenType = TOKEN_ID; |  | 
|  2642       return i; |  | 
|  2643     } |  | 
|  2644     default: { |  | 
|  2645       if( !IdChar(*z) ){ |  | 
|  2646         break; |  | 
|  2647       } |  | 
|  2648       for(i=1; IdChar(z[i]); i++){} |  | 
|  2649       *tokenType = TOKEN_ID; |  | 
|  2650       return i; |  | 
|  2651     } |  | 
|  2652   } |  | 
|  2653   *tokenType = TOKEN_PUNCT; |  | 
|  2654   return 1; |  | 
|  2655 } |  | 
|  2656  |  | 
|  2657 /* |  | 
|  2658 ** A token extracted from a string is an instance of the following |  | 
|  2659 ** structure. |  | 
|  2660 */ |  | 
|  2661 typedef struct Token { |  | 
|  2662   const char *z;       /* Pointer to token text.  Not '\000' terminated */ |  | 
|  2663   short int n;         /* Length of the token text in bytes. */ |  | 
|  2664 } Token; |  | 
|  2665  |  | 
|  2666 /* |  | 
|  2667 ** Given a input string (which is really one of the argv[] parameters |  | 
|  2668 ** passed into xConnect or xCreate) split the string up into tokens. |  | 
|  2669 ** Return an array of pointers to '\000' terminated strings, one string |  | 
|  2670 ** for each non-whitespace token. |  | 
|  2671 ** |  | 
|  2672 ** The returned array is terminated by a single NULL pointer. |  | 
|  2673 ** |  | 
|  2674 ** Space to hold the returned array is obtained from a single |  | 
|  2675 ** malloc and should be freed by passing the return value to free(). |  | 
|  2676 ** The individual strings within the token list are all a part of |  | 
|  2677 ** the single memory allocation and will all be freed at once. |  | 
|  2678 */ |  | 
|  2679 static char **tokenizeString(const char *z, int *pnToken){ |  | 
|  2680   int nToken = 0; |  | 
|  2681   Token *aToken = sqlite3_malloc( strlen(z) * sizeof(aToken[0]) ); |  | 
|  2682   int n = 1; |  | 
|  2683   int e, i; |  | 
|  2684   int totalSize = 0; |  | 
|  2685   char **azToken; |  | 
|  2686   char *zCopy; |  | 
|  2687   while( n>0 ){ |  | 
|  2688     n = getToken(z, &e); |  | 
|  2689     if( e!=TOKEN_SPACE ){ |  | 
|  2690       aToken[nToken].z = z; |  | 
|  2691       aToken[nToken].n = n; |  | 
|  2692       nToken++; |  | 
|  2693       totalSize += n+1; |  | 
|  2694     } |  | 
|  2695     z += n; |  | 
|  2696   } |  | 
|  2697   azToken = (char**)sqlite3_malloc( nToken*sizeof(char*) + totalSize ); |  | 
|  2698   zCopy = (char*)&azToken[nToken]; |  | 
|  2699   nToken--; |  | 
|  2700   for(i=0; i<nToken; i++){ |  | 
|  2701     azToken[i] = zCopy; |  | 
|  2702     n = aToken[i].n; |  | 
|  2703     memcpy(zCopy, aToken[i].z, n); |  | 
|  2704     zCopy[n] = 0; |  | 
|  2705     zCopy += n+1; |  | 
|  2706   } |  | 
|  2707   azToken[nToken] = 0; |  | 
|  2708   sqlite3_free(aToken); |  | 
|  2709   *pnToken = nToken; |  | 
|  2710   return azToken; |  | 
|  2711 } |  | 
|  2712  |  | 
|  2713 /* |  | 
|  2714 ** Convert an SQL-style quoted string into a normal string by removing |  | 
|  2715 ** the quote characters.  The conversion is done in-place.  If the |  | 
|  2716 ** input does not begin with a quote character, then this routine |  | 
|  2717 ** is a no-op. |  | 
|  2718 ** |  | 
|  2719 ** Examples: |  | 
|  2720 ** |  | 
|  2721 **     "abc"   becomes   abc |  | 
|  2722 **     'xyz'   becomes   xyz |  | 
|  2723 **     [pqr]   becomes   pqr |  | 
|  2724 **     `mno`   becomes   mno |  | 
|  2725 */ |  | 
|  2726 static void dequoteString(char *z){ |  | 
|  2727   int quote; |  | 
|  2728   int i, j; |  | 
|  2729   if( z==0 ) return; |  | 
|  2730   quote = z[0]; |  | 
|  2731   switch( quote ){ |  | 
|  2732     case '\'':  break; |  | 
|  2733     case '"':   break; |  | 
|  2734     case '`':   break;                /* For MySQL compatibility */ |  | 
|  2735     case '[':   quote = ']';  break;  /* For MS SqlServer compatibility */ |  | 
|  2736     default:    return; |  | 
|  2737   } |  | 
|  2738   for(i=1, j=0; z[i]; i++){ |  | 
|  2739     if( z[i]==quote ){ |  | 
|  2740       if( z[i+1]==quote ){ |  | 
|  2741         z[j++] = quote; |  | 
|  2742         i++; |  | 
|  2743       }else{ |  | 
|  2744         z[j++] = 0; |  | 
|  2745         break; |  | 
|  2746       } |  | 
|  2747     }else{ |  | 
|  2748       z[j++] = z[i]; |  | 
|  2749     } |  | 
|  2750   } |  | 
|  2751 } |  | 
|  2752  |  | 
|  2753 /* |  | 
|  2754 ** The input azIn is a NULL-terminated list of tokens.  Remove the first |  | 
|  2755 ** token and all punctuation tokens.  Remove the quotes from |  | 
|  2756 ** around string literal tokens. |  | 
|  2757 ** |  | 
|  2758 ** Example: |  | 
|  2759 ** |  | 
|  2760 **     input:      tokenize chinese ( 'simplifed' , 'mixed' ) |  | 
|  2761 **     output:     chinese simplifed mixed |  | 
|  2762 ** |  | 
|  2763 ** Another example: |  | 
|  2764 ** |  | 
|  2765 **     input:      delimiters ( '[' , ']' , '...' ) |  | 
|  2766 **     output:     [ ] ... |  | 
|  2767 */ |  | 
|  2768 static void tokenListToIdList(char **azIn){ |  | 
|  2769   int i, j; |  | 
|  2770   if( azIn ){ |  | 
|  2771     for(i=0, j=-1; azIn[i]; i++){ |  | 
|  2772       if( safe_isalnum(azIn[i][0]) || azIn[i][1] ){ |  | 
|  2773         dequoteString(azIn[i]); |  | 
|  2774         if( j>=0 ){ |  | 
|  2775           azIn[j] = azIn[i]; |  | 
|  2776         } |  | 
|  2777         j++; |  | 
|  2778       } |  | 
|  2779     } |  | 
|  2780     azIn[j] = 0; |  | 
|  2781   } |  | 
|  2782 } |  | 
|  2783  |  | 
|  2784  |  | 
|  2785 /* |  | 
|  2786 ** Find the first alphanumeric token in the string zIn.  Null-terminate |  | 
|  2787 ** this token.  Remove any quotation marks.  And return a pointer to |  | 
|  2788 ** the result. |  | 
|  2789 */ |  | 
|  2790 static char *firstToken(char *zIn, char **pzTail){ |  | 
|  2791   int n, ttype; |  | 
|  2792   while(1){ |  | 
|  2793     n = getToken(zIn, &ttype); |  | 
|  2794     if( ttype==TOKEN_SPACE ){ |  | 
|  2795       zIn += n; |  | 
|  2796     }else if( ttype==TOKEN_EOF ){ |  | 
|  2797       *pzTail = zIn; |  | 
|  2798       return 0; |  | 
|  2799     }else{ |  | 
|  2800       zIn[n] = 0; |  | 
|  2801       *pzTail = &zIn[1]; |  | 
|  2802       dequoteString(zIn); |  | 
|  2803       return zIn; |  | 
|  2804     } |  | 
|  2805   } |  | 
|  2806   /*NOTREACHED*/ |  | 
|  2807 } |  | 
|  2808  |  | 
|  2809 /* Return true if... |  | 
|  2810 ** |  | 
|  2811 **   *  s begins with the string t, ignoring case |  | 
|  2812 **   *  s is longer than t |  | 
|  2813 **   *  The first character of s beyond t is not a alphanumeric |  | 
|  2814 **  |  | 
|  2815 ** Ignore leading space in *s. |  | 
|  2816 ** |  | 
|  2817 ** To put it another way, return true if the first token of |  | 
|  2818 ** s[] is t[]. |  | 
|  2819 */ |  | 
|  2820 static int startsWith(const char *s, const char *t){ |  | 
|  2821   while( safe_isspace(*s) ){ s++; } |  | 
|  2822   while( *t ){ |  | 
|  2823     if( safe_tolower(*s++)!=safe_tolower(*t++) ) return 0; |  | 
|  2824   } |  | 
|  2825   return *s!='_' && !safe_isalnum(*s); |  | 
|  2826 } |  | 
|  2827  |  | 
|  2828 /* |  | 
|  2829 ** An instance of this structure defines the "spec" of a |  | 
|  2830 ** full text index.  This structure is populated by parseSpec |  | 
|  2831 ** and use by fulltextConnect and fulltextCreate. |  | 
|  2832 */ |  | 
|  2833 typedef struct TableSpec { |  | 
|  2834   const char *zDb;         /* Logical database name */ |  | 
|  2835   const char *zName;       /* Name of the full-text index */ |  | 
|  2836   int nColumn;             /* Number of columns to be indexed */ |  | 
|  2837   char **azColumn;         /* Original names of columns to be indexed */ |  | 
|  2838   char **azContentColumn;  /* Column names for %_content */ |  | 
|  2839   char **azTokenizer;      /* Name of tokenizer and its arguments */ |  | 
|  2840 } TableSpec; |  | 
|  2841  |  | 
|  2842 /* |  | 
|  2843 ** Reclaim all of the memory used by a TableSpec |  | 
|  2844 */ |  | 
|  2845 static void clearTableSpec(TableSpec *p) { |  | 
|  2846   sqlite3_free(p->azColumn); |  | 
|  2847   sqlite3_free(p->azContentColumn); |  | 
|  2848   sqlite3_free(p->azTokenizer); |  | 
|  2849 } |  | 
|  2850  |  | 
|  2851 /* Parse a CREATE VIRTUAL TABLE statement, which looks like this: |  | 
|  2852  * |  | 
|  2853  * CREATE VIRTUAL TABLE email |  | 
|  2854  *        USING fts2(subject, body, tokenize mytokenizer(myarg)) |  | 
|  2855  * |  | 
|  2856  * We return parsed information in a TableSpec structure. |  | 
|  2857  *  |  | 
|  2858  */ |  | 
|  2859 static int parseSpec(TableSpec *pSpec, int argc, const char *const*argv, |  | 
|  2860                      char**pzErr){ |  | 
|  2861   int i, n; |  | 
|  2862   char *z, *zDummy; |  | 
|  2863   char **azArg; |  | 
|  2864   const char *zTokenizer = 0;    /* argv[] entry describing the tokenizer */ |  | 
|  2865  |  | 
|  2866   assert( argc>=3 ); |  | 
|  2867   /* Current interface: |  | 
|  2868   ** argv[0] - module name |  | 
|  2869   ** argv[1] - database name |  | 
|  2870   ** argv[2] - table name |  | 
|  2871   ** argv[3..] - columns, optionally followed by tokenizer specification |  | 
|  2872   **             and snippet delimiters specification. |  | 
|  2873   */ |  | 
|  2874  |  | 
|  2875   /* Make a copy of the complete argv[][] array in a single allocation. |  | 
|  2876   ** The argv[][] array is read-only and transient.  We can write to the |  | 
|  2877   ** copy in order to modify things and the copy is persistent. |  | 
|  2878   */ |  | 
|  2879   CLEAR(pSpec); |  | 
|  2880   for(i=n=0; i<argc; i++){ |  | 
|  2881     n += strlen(argv[i]) + 1; |  | 
|  2882   } |  | 
|  2883   azArg = sqlite3_malloc( sizeof(char*)*argc + n ); |  | 
|  2884   if( azArg==0 ){ |  | 
|  2885     return SQLITE_NOMEM; |  | 
|  2886   } |  | 
|  2887   z = (char*)&azArg[argc]; |  | 
|  2888   for(i=0; i<argc; i++){ |  | 
|  2889     azArg[i] = z; |  | 
|  2890     strcpy(z, argv[i]); |  | 
|  2891     z += strlen(z)+1; |  | 
|  2892   } |  | 
|  2893  |  | 
|  2894   /* Identify the column names and the tokenizer and delimiter arguments |  | 
|  2895   ** in the argv[][] array. |  | 
|  2896   */ |  | 
|  2897   pSpec->zDb = azArg[1]; |  | 
|  2898   pSpec->zName = azArg[2]; |  | 
|  2899   pSpec->nColumn = 0; |  | 
|  2900   pSpec->azColumn = azArg; |  | 
|  2901   zTokenizer = "tokenize simple"; |  | 
|  2902   for(i=3; i<argc; ++i){ |  | 
|  2903     if( startsWith(azArg[i],"tokenize") ){ |  | 
|  2904       zTokenizer = azArg[i]; |  | 
|  2905     }else{ |  | 
|  2906       z = azArg[pSpec->nColumn] = firstToken(azArg[i], &zDummy); |  | 
|  2907       pSpec->nColumn++; |  | 
|  2908     } |  | 
|  2909   } |  | 
|  2910   if( pSpec->nColumn==0 ){ |  | 
|  2911     azArg[0] = "content"; |  | 
|  2912     pSpec->nColumn = 1; |  | 
|  2913   } |  | 
|  2914  |  | 
|  2915   /* |  | 
|  2916   ** Construct the list of content column names. |  | 
|  2917   ** |  | 
|  2918   ** Each content column name will be of the form cNNAAAA |  | 
|  2919   ** where NN is the column number and AAAA is the sanitized |  | 
|  2920   ** column name.  "sanitized" means that special characters are |  | 
|  2921   ** converted to "_".  The cNN prefix guarantees that all column |  | 
|  2922   ** names are unique. |  | 
|  2923   ** |  | 
|  2924   ** The AAAA suffix is not strictly necessary.  It is included |  | 
|  2925   ** for the convenience of people who might examine the generated |  | 
|  2926   ** %_content table and wonder what the columns are used for. |  | 
|  2927   */ |  | 
|  2928   pSpec->azContentColumn = sqlite3_malloc( pSpec->nColumn * sizeof(char *) ); |  | 
|  2929   if( pSpec->azContentColumn==0 ){ |  | 
|  2930     clearTableSpec(pSpec); |  | 
|  2931     return SQLITE_NOMEM; |  | 
|  2932   } |  | 
|  2933   for(i=0; i<pSpec->nColumn; i++){ |  | 
|  2934     char *p; |  | 
|  2935     pSpec->azContentColumn[i] = sqlite3_mprintf("c%d%s", i, azArg[i]); |  | 
|  2936     for (p = pSpec->azContentColumn[i]; *p ; ++p) { |  | 
|  2937       if( !safe_isalnum(*p) ) *p = '_'; |  | 
|  2938     } |  | 
|  2939   } |  | 
|  2940  |  | 
|  2941   /* |  | 
|  2942   ** Parse the tokenizer specification string. |  | 
|  2943   */ |  | 
|  2944   pSpec->azTokenizer = tokenizeString(zTokenizer, &n); |  | 
|  2945   tokenListToIdList(pSpec->azTokenizer); |  | 
|  2946  |  | 
|  2947   return SQLITE_OK; |  | 
|  2948 } |  | 
|  2949  |  | 
|  2950 /* |  | 
|  2951 ** Generate a CREATE TABLE statement that describes the schema of |  | 
|  2952 ** the virtual table.  Return a pointer to this schema string. |  | 
|  2953 ** |  | 
|  2954 ** Space is obtained from sqlite3_mprintf() and should be freed |  | 
|  2955 ** using sqlite3_free(). |  | 
|  2956 */ |  | 
|  2957 static char *fulltextSchema( |  | 
|  2958   int nColumn,                  /* Number of columns */ |  | 
|  2959   const char *const* azColumn,  /* List of columns */ |  | 
|  2960   const char *zTableName        /* Name of the table */ |  | 
|  2961 ){ |  | 
|  2962   int i; |  | 
|  2963   char *zSchema, *zNext; |  | 
|  2964   const char *zSep = "("; |  | 
|  2965   zSchema = sqlite3_mprintf("CREATE TABLE x"); |  | 
|  2966   for(i=0; i<nColumn; i++){ |  | 
|  2967     zNext = sqlite3_mprintf("%s%s%Q", zSchema, zSep, azColumn[i]); |  | 
|  2968     sqlite3_free(zSchema); |  | 
|  2969     zSchema = zNext; |  | 
|  2970     zSep = ","; |  | 
|  2971   } |  | 
|  2972   zNext = sqlite3_mprintf("%s,%Q)", zSchema, zTableName); |  | 
|  2973   sqlite3_free(zSchema); |  | 
|  2974   return zNext; |  | 
|  2975 } |  | 
|  2976  |  | 
|  2977 /* |  | 
|  2978 ** Build a new sqlite3_vtab structure that will describe the |  | 
|  2979 ** fulltext index defined by spec. |  | 
|  2980 */ |  | 
|  2981 static int constructVtab( |  | 
|  2982   sqlite3 *db,              /* The SQLite database connection */ |  | 
|  2983   fts2Hash *pHash,          /* Hash table containing tokenizers */ |  | 
|  2984   TableSpec *spec,          /* Parsed spec information from parseSpec() */ |  | 
|  2985   sqlite3_vtab **ppVTab,    /* Write the resulting vtab structure here */ |  | 
|  2986   char **pzErr              /* Write any error message here */ |  | 
|  2987 ){ |  | 
|  2988   int rc; |  | 
|  2989   int n; |  | 
|  2990   fulltext_vtab *v = 0; |  | 
|  2991   const sqlite3_tokenizer_module *m = NULL; |  | 
|  2992   char *schema; |  | 
|  2993  |  | 
|  2994   char const *zTok;         /* Name of tokenizer to use for this fts table */ |  | 
|  2995   int nTok;                 /* Length of zTok, including nul terminator */ |  | 
|  2996  |  | 
|  2997   v = (fulltext_vtab *) sqlite3_malloc(sizeof(fulltext_vtab)); |  | 
|  2998   if( v==0 ) return SQLITE_NOMEM; |  | 
|  2999   CLEAR(v); |  | 
|  3000   /* sqlite will initialize v->base */ |  | 
|  3001   v->db = db; |  | 
|  3002   v->zDb = spec->zDb;       /* Freed when azColumn is freed */ |  | 
|  3003   v->zName = spec->zName;   /* Freed when azColumn is freed */ |  | 
|  3004   v->nColumn = spec->nColumn; |  | 
|  3005   v->azContentColumn = spec->azContentColumn; |  | 
|  3006   spec->azContentColumn = 0; |  | 
|  3007   v->azColumn = spec->azColumn; |  | 
|  3008   spec->azColumn = 0; |  | 
|  3009  |  | 
|  3010   if( spec->azTokenizer==0 ){ |  | 
|  3011     return SQLITE_NOMEM; |  | 
|  3012   } |  | 
|  3013  |  | 
|  3014   zTok = spec->azTokenizer[0];  |  | 
|  3015   if( !zTok ){ |  | 
|  3016     zTok = "simple"; |  | 
|  3017   } |  | 
|  3018   nTok = strlen(zTok)+1; |  | 
|  3019  |  | 
|  3020   m = (sqlite3_tokenizer_module *)sqlite3Fts2HashFind(pHash, zTok, nTok); |  | 
|  3021   if( !m ){ |  | 
|  3022     *pzErr = sqlite3_mprintf("unknown tokenizer: %s", spec->azTokenizer[0]); |  | 
|  3023     rc = SQLITE_ERROR; |  | 
|  3024     goto err; |  | 
|  3025   } |  | 
|  3026  |  | 
|  3027   for(n=0; spec->azTokenizer[n]; n++){} |  | 
|  3028   if( n ){ |  | 
|  3029     rc = m->xCreate(n-1, (const char*const*)&spec->azTokenizer[1], |  | 
|  3030                     &v->pTokenizer); |  | 
|  3031   }else{ |  | 
|  3032     rc = m->xCreate(0, 0, &v->pTokenizer); |  | 
|  3033   } |  | 
|  3034   if( rc!=SQLITE_OK ) goto err; |  | 
|  3035   v->pTokenizer->pModule = m; |  | 
|  3036  |  | 
|  3037   /* TODO: verify the existence of backing tables foo_content, foo_term */ |  | 
|  3038  |  | 
|  3039   schema = fulltextSchema(v->nColumn, (const char*const*)v->azColumn, |  | 
|  3040                           spec->zName); |  | 
|  3041   rc = sqlite3_declare_vtab(db, schema); |  | 
|  3042   sqlite3_free(schema); |  | 
|  3043   if( rc!=SQLITE_OK ) goto err; |  | 
|  3044  |  | 
|  3045   memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements)); |  | 
|  3046  |  | 
|  3047   /* Indicate that the buffer is not live. */ |  | 
|  3048   v->nPendingData = -1; |  | 
|  3049  |  | 
|  3050   *ppVTab = &v->base; |  | 
|  3051   TRACE(("FTS2 Connect %p\n", v)); |  | 
|  3052  |  | 
|  3053   return rc; |  | 
|  3054  |  | 
|  3055 err: |  | 
|  3056   fulltext_vtab_destroy(v); |  | 
|  3057   return rc; |  | 
|  3058 } |  | 
|  3059  |  | 
|  3060 static int fulltextConnect( |  | 
|  3061   sqlite3 *db, |  | 
|  3062   void *pAux, |  | 
|  3063   int argc, const char *const*argv, |  | 
|  3064   sqlite3_vtab **ppVTab, |  | 
|  3065   char **pzErr |  | 
|  3066 ){ |  | 
|  3067   TableSpec spec; |  | 
|  3068   int rc = parseSpec(&spec, argc, argv, pzErr); |  | 
|  3069   if( rc!=SQLITE_OK ) return rc; |  | 
|  3070  |  | 
|  3071   rc = constructVtab(db, (fts2Hash *)pAux, &spec, ppVTab, pzErr); |  | 
|  3072   clearTableSpec(&spec); |  | 
|  3073   return rc; |  | 
|  3074 } |  | 
|  3075  |  | 
|  3076 /* The %_content table holds the text of each document, with |  | 
|  3077 ** the rowid used as the docid. |  | 
|  3078 */ |  | 
|  3079 /* TODO(shess) This comment needs elaboration to match the updated |  | 
|  3080 ** code.  Work it into the top-of-file comment at that time. |  | 
|  3081 */ |  | 
|  3082 static int fulltextCreate(sqlite3 *db, void *pAux, |  | 
|  3083                           int argc, const char * const *argv, |  | 
|  3084                           sqlite3_vtab **ppVTab, char **pzErr){ |  | 
|  3085   int rc; |  | 
|  3086   TableSpec spec; |  | 
|  3087   StringBuffer schema; |  | 
|  3088   TRACE(("FTS2 Create\n")); |  | 
|  3089  |  | 
|  3090   rc = parseSpec(&spec, argc, argv, pzErr); |  | 
|  3091   if( rc!=SQLITE_OK ) return rc; |  | 
|  3092  |  | 
|  3093   initStringBuffer(&schema); |  | 
|  3094   append(&schema, "CREATE TABLE %_content("); |  | 
|  3095   appendList(&schema, spec.nColumn, spec.azContentColumn); |  | 
|  3096   append(&schema, ")"); |  | 
|  3097   rc = sql_exec(db, spec.zDb, spec.zName, stringBufferData(&schema)); |  | 
|  3098   stringBufferDestroy(&schema); |  | 
|  3099   if( rc!=SQLITE_OK ) goto out; |  | 
|  3100  |  | 
|  3101   rc = sql_exec(db, spec.zDb, spec.zName, |  | 
|  3102                 "create table %_segments(block blob);"); |  | 
|  3103   if( rc!=SQLITE_OK ) goto out; |  | 
|  3104  |  | 
|  3105   rc = sql_exec(db, spec.zDb, spec.zName, |  | 
|  3106                 "create table %_segdir(" |  | 
|  3107                 "  level integer," |  | 
|  3108                 "  idx integer," |  | 
|  3109                 "  start_block integer," |  | 
|  3110                 "  leaves_end_block integer," |  | 
|  3111                 "  end_block integer," |  | 
|  3112                 "  root blob," |  | 
|  3113                 "  primary key(level, idx)" |  | 
|  3114                 ");"); |  | 
|  3115   if( rc!=SQLITE_OK ) goto out; |  | 
|  3116  |  | 
|  3117   rc = constructVtab(db, (fts2Hash *)pAux, &spec, ppVTab, pzErr); |  | 
|  3118  |  | 
|  3119 out: |  | 
|  3120   clearTableSpec(&spec); |  | 
|  3121   return rc; |  | 
|  3122 } |  | 
|  3123  |  | 
|  3124 /* Decide how to handle an SQL query. */ |  | 
|  3125 static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){ |  | 
|  3126   int i; |  | 
|  3127   TRACE(("FTS2 BestIndex\n")); |  | 
|  3128  |  | 
|  3129   for(i=0; i<pInfo->nConstraint; ++i){ |  | 
|  3130     const struct sqlite3_index_constraint *pConstraint; |  | 
|  3131     pConstraint = &pInfo->aConstraint[i]; |  | 
|  3132     if( pConstraint->usable ) { |  | 
|  3133       if( pConstraint->iColumn==-1 && |  | 
|  3134           pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){ |  | 
|  3135         pInfo->idxNum = QUERY_ROWID;      /* lookup by rowid */ |  | 
|  3136         TRACE(("FTS2 QUERY_ROWID\n")); |  | 
|  3137       } else if( pConstraint->iColumn>=0 && |  | 
|  3138                  pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){ |  | 
|  3139         /* full-text search */ |  | 
|  3140         pInfo->idxNum = QUERY_FULLTEXT + pConstraint->iColumn; |  | 
|  3141         TRACE(("FTS2 QUERY_FULLTEXT %d\n", pConstraint->iColumn)); |  | 
|  3142       } else continue; |  | 
|  3143  |  | 
|  3144       pInfo->aConstraintUsage[i].argvIndex = 1; |  | 
|  3145       pInfo->aConstraintUsage[i].omit = 1; |  | 
|  3146  |  | 
|  3147       /* An arbitrary value for now. |  | 
|  3148        * TODO: Perhaps rowid matches should be considered cheaper than |  | 
|  3149        * full-text searches. */ |  | 
|  3150       pInfo->estimatedCost = 1.0;    |  | 
|  3151  |  | 
|  3152       return SQLITE_OK; |  | 
|  3153     } |  | 
|  3154   } |  | 
|  3155   pInfo->idxNum = QUERY_GENERIC; |  | 
|  3156   return SQLITE_OK; |  | 
|  3157 } |  | 
|  3158  |  | 
|  3159 static int fulltextDisconnect(sqlite3_vtab *pVTab){ |  | 
|  3160   TRACE(("FTS2 Disconnect %p\n", pVTab)); |  | 
|  3161   fulltext_vtab_destroy((fulltext_vtab *)pVTab); |  | 
|  3162   return SQLITE_OK; |  | 
|  3163 } |  | 
|  3164  |  | 
|  3165 static int fulltextDestroy(sqlite3_vtab *pVTab){ |  | 
|  3166   fulltext_vtab *v = (fulltext_vtab *)pVTab; |  | 
|  3167   int rc; |  | 
|  3168  |  | 
|  3169   TRACE(("FTS2 Destroy %p\n", pVTab)); |  | 
|  3170   rc = sql_exec(v->db, v->zDb, v->zName, |  | 
|  3171                 "drop table if exists %_content;" |  | 
|  3172                 "drop table if exists %_segments;" |  | 
|  3173                 "drop table if exists %_segdir;" |  | 
|  3174                 ); |  | 
|  3175   if( rc!=SQLITE_OK ) return rc; |  | 
|  3176  |  | 
|  3177   fulltext_vtab_destroy((fulltext_vtab *)pVTab); |  | 
|  3178   return SQLITE_OK; |  | 
|  3179 } |  | 
|  3180  |  | 
|  3181 static int fulltextOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ |  | 
|  3182   fulltext_cursor *c; |  | 
|  3183  |  | 
|  3184   c = (fulltext_cursor *) sqlite3_malloc(sizeof(fulltext_cursor)); |  | 
|  3185   if( c ){ |  | 
|  3186     memset(c, 0, sizeof(fulltext_cursor)); |  | 
|  3187     /* sqlite will initialize c->base */ |  | 
|  3188     *ppCursor = &c->base; |  | 
|  3189     TRACE(("FTS2 Open %p: %p\n", pVTab, c)); |  | 
|  3190     return SQLITE_OK; |  | 
|  3191   }else{ |  | 
|  3192     return SQLITE_NOMEM; |  | 
|  3193   } |  | 
|  3194 } |  | 
|  3195  |  | 
|  3196  |  | 
|  3197 /* Free all of the dynamically allocated memory held by *q |  | 
|  3198 */ |  | 
|  3199 static void queryClear(Query *q){ |  | 
|  3200   int i; |  | 
|  3201   for(i = 0; i < q->nTerms; ++i){ |  | 
|  3202     sqlite3_free(q->pTerms[i].pTerm); |  | 
|  3203   } |  | 
|  3204   sqlite3_free(q->pTerms); |  | 
|  3205   CLEAR(q); |  | 
|  3206 } |  | 
|  3207  |  | 
|  3208 /* Free all of the dynamically allocated memory held by the |  | 
|  3209 ** Snippet |  | 
|  3210 */ |  | 
|  3211 static void snippetClear(Snippet *p){ |  | 
|  3212   sqlite3_free(p->aMatch); |  | 
|  3213   sqlite3_free(p->zOffset); |  | 
|  3214   sqlite3_free(p->zSnippet); |  | 
|  3215   CLEAR(p); |  | 
|  3216 } |  | 
|  3217 /* |  | 
|  3218 ** Append a single entry to the p->aMatch[] log. |  | 
|  3219 */ |  | 
|  3220 static void snippetAppendMatch( |  | 
|  3221   Snippet *p,               /* Append the entry to this snippet */ |  | 
|  3222   int iCol, int iTerm,      /* The column and query term */ |  | 
|  3223   int iStart, int nByte     /* Offset and size of the match */ |  | 
|  3224 ){ |  | 
|  3225   int i; |  | 
|  3226   struct snippetMatch *pMatch; |  | 
|  3227   if( p->nMatch+1>=p->nAlloc ){ |  | 
|  3228     p->nAlloc = p->nAlloc*2 + 10; |  | 
|  3229     p->aMatch = sqlite3_realloc(p->aMatch, p->nAlloc*sizeof(p->aMatch[0]) ); |  | 
|  3230     if( p->aMatch==0 ){ |  | 
|  3231       p->nMatch = 0; |  | 
|  3232       p->nAlloc = 0; |  | 
|  3233       return; |  | 
|  3234     } |  | 
|  3235   } |  | 
|  3236   i = p->nMatch++; |  | 
|  3237   pMatch = &p->aMatch[i]; |  | 
|  3238   pMatch->iCol = iCol; |  | 
|  3239   pMatch->iTerm = iTerm; |  | 
|  3240   pMatch->iStart = iStart; |  | 
|  3241   pMatch->nByte = nByte; |  | 
|  3242 } |  | 
|  3243  |  | 
|  3244 /* |  | 
|  3245 ** Sizing information for the circular buffer used in snippetOffsetsOfColumn() |  | 
|  3246 */ |  | 
|  3247 #define FTS2_ROTOR_SZ   (32) |  | 
|  3248 #define FTS2_ROTOR_MASK (FTS2_ROTOR_SZ-1) |  | 
|  3249  |  | 
|  3250 /* |  | 
|  3251 ** Add entries to pSnippet->aMatch[] for every match that occurs against |  | 
|  3252 ** document zDoc[0..nDoc-1] which is stored in column iColumn. |  | 
|  3253 */ |  | 
|  3254 static void snippetOffsetsOfColumn( |  | 
|  3255   Query *pQuery, |  | 
|  3256   Snippet *pSnippet, |  | 
|  3257   int iColumn, |  | 
|  3258   const char *zDoc, |  | 
|  3259   int nDoc |  | 
|  3260 ){ |  | 
|  3261   const sqlite3_tokenizer_module *pTModule;  /* The tokenizer module */ |  | 
|  3262   sqlite3_tokenizer *pTokenizer;             /* The specific tokenizer */ |  | 
|  3263   sqlite3_tokenizer_cursor *pTCursor;        /* Tokenizer cursor */ |  | 
|  3264   fulltext_vtab *pVtab;                /* The full text index */ |  | 
|  3265   int nColumn;                         /* Number of columns in the index */ |  | 
|  3266   const QueryTerm *aTerm;              /* Query string terms */ |  | 
|  3267   int nTerm;                           /* Number of query string terms */   |  | 
|  3268   int i, j;                            /* Loop counters */ |  | 
|  3269   int rc;                              /* Return code */ |  | 
|  3270   unsigned int match, prevMatch;       /* Phrase search bitmasks */ |  | 
|  3271   const char *zToken;                  /* Next token from the tokenizer */ |  | 
|  3272   int nToken;                          /* Size of zToken */ |  | 
|  3273   int iBegin, iEnd, iPos;              /* Offsets of beginning and end */ |  | 
|  3274  |  | 
|  3275   /* The following variables keep a circular buffer of the last |  | 
|  3276   ** few tokens */ |  | 
|  3277   unsigned int iRotor = 0;             /* Index of current token */ |  | 
|  3278   int iRotorBegin[FTS2_ROTOR_SZ];      /* Beginning offset of token */ |  | 
|  3279   int iRotorLen[FTS2_ROTOR_SZ];        /* Length of token */ |  | 
|  3280  |  | 
|  3281   pVtab = pQuery->pFts; |  | 
|  3282   nColumn = pVtab->nColumn; |  | 
|  3283   pTokenizer = pVtab->pTokenizer; |  | 
|  3284   pTModule = pTokenizer->pModule; |  | 
|  3285   rc = pTModule->xOpen(pTokenizer, zDoc, nDoc, &pTCursor); |  | 
|  3286   if( rc ) return; |  | 
|  3287   pTCursor->pTokenizer = pTokenizer; |  | 
|  3288   aTerm = pQuery->pTerms; |  | 
|  3289   nTerm = pQuery->nTerms; |  | 
|  3290   if( nTerm>=FTS2_ROTOR_SZ ){ |  | 
|  3291     nTerm = FTS2_ROTOR_SZ - 1; |  | 
|  3292   } |  | 
|  3293   prevMatch = 0; |  | 
|  3294   while(1){ |  | 
|  3295     rc = pTModule->xNext(pTCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos); |  | 
|  3296     if( rc ) break; |  | 
|  3297     iRotorBegin[iRotor&FTS2_ROTOR_MASK] = iBegin; |  | 
|  3298     iRotorLen[iRotor&FTS2_ROTOR_MASK] = iEnd-iBegin; |  | 
|  3299     match = 0; |  | 
|  3300     for(i=0; i<nTerm; i++){ |  | 
|  3301       int iCol; |  | 
|  3302       iCol = aTerm[i].iColumn; |  | 
|  3303       if( iCol>=0 && iCol<nColumn && iCol!=iColumn ) continue; |  | 
|  3304       if( aTerm[i].nTerm>nToken ) continue; |  | 
|  3305       if( !aTerm[i].isPrefix && aTerm[i].nTerm<nToken ) continue; |  | 
|  3306       assert( aTerm[i].nTerm<=nToken ); |  | 
|  3307       if( memcmp(aTerm[i].pTerm, zToken, aTerm[i].nTerm) ) continue; |  | 
|  3308       if( aTerm[i].iPhrase>1 && (prevMatch & (1<<i))==0 ) continue; |  | 
|  3309       match |= 1<<i; |  | 
|  3310       if( i==nTerm-1 || aTerm[i+1].iPhrase==1 ){ |  | 
|  3311         for(j=aTerm[i].iPhrase-1; j>=0; j--){ |  | 
|  3312           int k = (iRotor-j) & FTS2_ROTOR_MASK; |  | 
|  3313           snippetAppendMatch(pSnippet, iColumn, i-j, |  | 
|  3314                 iRotorBegin[k], iRotorLen[k]); |  | 
|  3315         } |  | 
|  3316       } |  | 
|  3317     } |  | 
|  3318     prevMatch = match<<1; |  | 
|  3319     iRotor++; |  | 
|  3320   } |  | 
|  3321   pTModule->xClose(pTCursor);   |  | 
|  3322 } |  | 
|  3323  |  | 
|  3324  |  | 
|  3325 /* |  | 
|  3326 ** Compute all offsets for the current row of the query.   |  | 
|  3327 ** If the offsets have already been computed, this routine is a no-op. |  | 
|  3328 */ |  | 
|  3329 static void snippetAllOffsets(fulltext_cursor *p){ |  | 
|  3330   int nColumn; |  | 
|  3331   int iColumn, i; |  | 
|  3332   int iFirst, iLast; |  | 
|  3333   fulltext_vtab *pFts; |  | 
|  3334  |  | 
|  3335   if( p->snippet.nMatch ) return; |  | 
|  3336   if( p->q.nTerms==0 ) return; |  | 
|  3337   pFts = p->q.pFts; |  | 
|  3338   nColumn = pFts->nColumn; |  | 
|  3339   iColumn = (p->iCursorType - QUERY_FULLTEXT); |  | 
|  3340   if( iColumn<0 || iColumn>=nColumn ){ |  | 
|  3341     iFirst = 0; |  | 
|  3342     iLast = nColumn-1; |  | 
|  3343   }else{ |  | 
|  3344     iFirst = iColumn; |  | 
|  3345     iLast = iColumn; |  | 
|  3346   } |  | 
|  3347   for(i=iFirst; i<=iLast; i++){ |  | 
|  3348     const char *zDoc; |  | 
|  3349     int nDoc; |  | 
|  3350     zDoc = (const char*)sqlite3_column_text(p->pStmt, i+1); |  | 
|  3351     nDoc = sqlite3_column_bytes(p->pStmt, i+1); |  | 
|  3352     snippetOffsetsOfColumn(&p->q, &p->snippet, i, zDoc, nDoc); |  | 
|  3353   } |  | 
|  3354 } |  | 
|  3355  |  | 
|  3356 /* |  | 
|  3357 ** Convert the information in the aMatch[] array of the snippet |  | 
|  3358 ** into the string zOffset[0..nOffset-1]. |  | 
|  3359 */ |  | 
|  3360 static void snippetOffsetText(Snippet *p){ |  | 
|  3361   int i; |  | 
|  3362   int cnt = 0; |  | 
|  3363   StringBuffer sb; |  | 
|  3364   char zBuf[200]; |  | 
|  3365   if( p->zOffset ) return; |  | 
|  3366   initStringBuffer(&sb); |  | 
|  3367   for(i=0; i<p->nMatch; i++){ |  | 
|  3368     struct snippetMatch *pMatch = &p->aMatch[i]; |  | 
|  3369     zBuf[0] = ' '; |  | 
|  3370     sqlite3_snprintf(sizeof(zBuf)-1, &zBuf[cnt>0], "%d %d %d %d", |  | 
|  3371         pMatch->iCol, pMatch->iTerm, pMatch->iStart, pMatch->nByte); |  | 
|  3372     append(&sb, zBuf); |  | 
|  3373     cnt++; |  | 
|  3374   } |  | 
|  3375   p->zOffset = stringBufferData(&sb); |  | 
|  3376   p->nOffset = stringBufferLength(&sb); |  | 
|  3377 } |  | 
|  3378  |  | 
|  3379 /* |  | 
|  3380 ** zDoc[0..nDoc-1] is phrase of text.  aMatch[0..nMatch-1] are a set |  | 
|  3381 ** of matching words some of which might be in zDoc.  zDoc is column |  | 
|  3382 ** number iCol. |  | 
|  3383 ** |  | 
|  3384 ** iBreak is suggested spot in zDoc where we could begin or end an |  | 
|  3385 ** excerpt.  Return a value similar to iBreak but possibly adjusted |  | 
|  3386 ** to be a little left or right so that the break point is better. |  | 
|  3387 */ |  | 
|  3388 static int wordBoundary( |  | 
|  3389   int iBreak,                   /* The suggested break point */ |  | 
|  3390   const char *zDoc,             /* Document text */ |  | 
|  3391   int nDoc,                     /* Number of bytes in zDoc[] */ |  | 
|  3392   struct snippetMatch *aMatch,  /* Matching words */ |  | 
|  3393   int nMatch,                   /* Number of entries in aMatch[] */ |  | 
|  3394   int iCol                      /* The column number for zDoc[] */ |  | 
|  3395 ){ |  | 
|  3396   int i; |  | 
|  3397   if( iBreak<=10 ){ |  | 
|  3398     return 0; |  | 
|  3399   } |  | 
|  3400   if( iBreak>=nDoc-10 ){ |  | 
|  3401     return nDoc; |  | 
|  3402   } |  | 
|  3403   for(i=0; i<nMatch && aMatch[i].iCol<iCol; i++){} |  | 
|  3404   while( i<nMatch && aMatch[i].iStart+aMatch[i].nByte<iBreak ){ i++; } |  | 
|  3405   if( i<nMatch ){ |  | 
|  3406     if( aMatch[i].iStart<iBreak+10 ){ |  | 
|  3407       return aMatch[i].iStart; |  | 
|  3408     } |  | 
|  3409     if( i>0 && aMatch[i-1].iStart+aMatch[i-1].nByte>=iBreak ){ |  | 
|  3410       return aMatch[i-1].iStart; |  | 
|  3411     } |  | 
|  3412   } |  | 
|  3413   for(i=1; i<=10; i++){ |  | 
|  3414     if( safe_isspace(zDoc[iBreak-i]) ){ |  | 
|  3415       return iBreak - i + 1; |  | 
|  3416     } |  | 
|  3417     if( safe_isspace(zDoc[iBreak+i]) ){ |  | 
|  3418       return iBreak + i + 1; |  | 
|  3419     } |  | 
|  3420   } |  | 
|  3421   return iBreak; |  | 
|  3422 } |  | 
|  3423  |  | 
|  3424  |  | 
|  3425  |  | 
|  3426 /* |  | 
|  3427 ** Allowed values for Snippet.aMatch[].snStatus |  | 
|  3428 */ |  | 
|  3429 #define SNIPPET_IGNORE  0   /* It is ok to omit this match from the snippet */ |  | 
|  3430 #define SNIPPET_DESIRED 1   /* We want to include this match in the snippet */ |  | 
|  3431  |  | 
|  3432 /* |  | 
|  3433 ** Generate the text of a snippet. |  | 
|  3434 */ |  | 
|  3435 static void snippetText( |  | 
|  3436   fulltext_cursor *pCursor,   /* The cursor we need the snippet for */ |  | 
|  3437   const char *zStartMark,     /* Markup to appear before each match */ |  | 
|  3438   const char *zEndMark,       /* Markup to appear after each match */ |  | 
|  3439   const char *zEllipsis       /* Ellipsis mark */ |  | 
|  3440 ){ |  | 
|  3441   int i, j; |  | 
|  3442   struct snippetMatch *aMatch; |  | 
|  3443   int nMatch; |  | 
|  3444   int nDesired; |  | 
|  3445   StringBuffer sb; |  | 
|  3446   int tailCol; |  | 
|  3447   int tailOffset; |  | 
|  3448   int iCol; |  | 
|  3449   int nDoc; |  | 
|  3450   const char *zDoc; |  | 
|  3451   int iStart, iEnd; |  | 
|  3452   int tailEllipsis = 0; |  | 
|  3453   int iMatch; |  | 
|  3454    |  | 
|  3455  |  | 
|  3456   sqlite3_free(pCursor->snippet.zSnippet); |  | 
|  3457   pCursor->snippet.zSnippet = 0; |  | 
|  3458   aMatch = pCursor->snippet.aMatch; |  | 
|  3459   nMatch = pCursor->snippet.nMatch; |  | 
|  3460   initStringBuffer(&sb); |  | 
|  3461  |  | 
|  3462   for(i=0; i<nMatch; i++){ |  | 
|  3463     aMatch[i].snStatus = SNIPPET_IGNORE; |  | 
|  3464   } |  | 
|  3465   nDesired = 0; |  | 
|  3466   for(i=0; i<pCursor->q.nTerms; i++){ |  | 
|  3467     for(j=0; j<nMatch; j++){ |  | 
|  3468       if( aMatch[j].iTerm==i ){ |  | 
|  3469         aMatch[j].snStatus = SNIPPET_DESIRED; |  | 
|  3470         nDesired++; |  | 
|  3471         break; |  | 
|  3472       } |  | 
|  3473     } |  | 
|  3474   } |  | 
|  3475  |  | 
|  3476   iMatch = 0; |  | 
|  3477   tailCol = -1; |  | 
|  3478   tailOffset = 0; |  | 
|  3479   for(i=0; i<nMatch && nDesired>0; i++){ |  | 
|  3480     if( aMatch[i].snStatus!=SNIPPET_DESIRED ) continue; |  | 
|  3481     nDesired--; |  | 
|  3482     iCol = aMatch[i].iCol; |  | 
|  3483     zDoc = (const char*)sqlite3_column_text(pCursor->pStmt, iCol+1); |  | 
|  3484     nDoc = sqlite3_column_bytes(pCursor->pStmt, iCol+1); |  | 
|  3485     iStart = aMatch[i].iStart - 40; |  | 
|  3486     iStart = wordBoundary(iStart, zDoc, nDoc, aMatch, nMatch, iCol); |  | 
|  3487     if( iStart<=10 ){ |  | 
|  3488       iStart = 0; |  | 
|  3489     } |  | 
|  3490     if( iCol==tailCol && iStart<=tailOffset+20 ){ |  | 
|  3491       iStart = tailOffset; |  | 
|  3492     } |  | 
|  3493     if( (iCol!=tailCol && tailCol>=0) || iStart!=tailOffset ){ |  | 
|  3494       trimWhiteSpace(&sb); |  | 
|  3495       appendWhiteSpace(&sb); |  | 
|  3496       append(&sb, zEllipsis); |  | 
|  3497       appendWhiteSpace(&sb); |  | 
|  3498     } |  | 
|  3499     iEnd = aMatch[i].iStart + aMatch[i].nByte + 40; |  | 
|  3500     iEnd = wordBoundary(iEnd, zDoc, nDoc, aMatch, nMatch, iCol); |  | 
|  3501     if( iEnd>=nDoc-10 ){ |  | 
|  3502       iEnd = nDoc; |  | 
|  3503       tailEllipsis = 0; |  | 
|  3504     }else{ |  | 
|  3505       tailEllipsis = 1; |  | 
|  3506     } |  | 
|  3507     while( iMatch<nMatch && aMatch[iMatch].iCol<iCol ){ iMatch++; } |  | 
|  3508     while( iStart<iEnd ){ |  | 
|  3509       while( iMatch<nMatch && aMatch[iMatch].iStart<iStart |  | 
|  3510              && aMatch[iMatch].iCol<=iCol ){ |  | 
|  3511         iMatch++; |  | 
|  3512       } |  | 
|  3513       if( iMatch<nMatch && aMatch[iMatch].iStart<iEnd |  | 
|  3514              && aMatch[iMatch].iCol==iCol ){ |  | 
|  3515         nappend(&sb, &zDoc[iStart], aMatch[iMatch].iStart - iStart); |  | 
|  3516         iStart = aMatch[iMatch].iStart; |  | 
|  3517         append(&sb, zStartMark); |  | 
|  3518         nappend(&sb, &zDoc[iStart], aMatch[iMatch].nByte); |  | 
|  3519         append(&sb, zEndMark); |  | 
|  3520         iStart += aMatch[iMatch].nByte; |  | 
|  3521         for(j=iMatch+1; j<nMatch; j++){ |  | 
|  3522           if( aMatch[j].iTerm==aMatch[iMatch].iTerm |  | 
|  3523               && aMatch[j].snStatus==SNIPPET_DESIRED ){ |  | 
|  3524             nDesired--; |  | 
|  3525             aMatch[j].snStatus = SNIPPET_IGNORE; |  | 
|  3526           } |  | 
|  3527         } |  | 
|  3528       }else{ |  | 
|  3529         nappend(&sb, &zDoc[iStart], iEnd - iStart); |  | 
|  3530         iStart = iEnd; |  | 
|  3531       } |  | 
|  3532     } |  | 
|  3533     tailCol = iCol; |  | 
|  3534     tailOffset = iEnd; |  | 
|  3535   } |  | 
|  3536   trimWhiteSpace(&sb); |  | 
|  3537   if( tailEllipsis ){ |  | 
|  3538     appendWhiteSpace(&sb); |  | 
|  3539     append(&sb, zEllipsis); |  | 
|  3540   } |  | 
|  3541   pCursor->snippet.zSnippet = stringBufferData(&sb); |  | 
|  3542   pCursor->snippet.nSnippet = stringBufferLength(&sb); |  | 
|  3543 } |  | 
|  3544  |  | 
|  3545  |  | 
|  3546 /* |  | 
|  3547 ** Close the cursor.  For additional information see the documentation |  | 
|  3548 ** on the xClose method of the virtual table interface. |  | 
|  3549 */ |  | 
|  3550 static int fulltextClose(sqlite3_vtab_cursor *pCursor){ |  | 
|  3551   fulltext_cursor *c = (fulltext_cursor *) pCursor; |  | 
|  3552   TRACE(("FTS2 Close %p\n", c)); |  | 
|  3553   sqlite3_finalize(c->pStmt); |  | 
|  3554   queryClear(&c->q); |  | 
|  3555   snippetClear(&c->snippet); |  | 
|  3556   if( c->result.nData!=0 ) dlrDestroy(&c->reader); |  | 
|  3557   dataBufferDestroy(&c->result); |  | 
|  3558   sqlite3_free(c); |  | 
|  3559   return SQLITE_OK; |  | 
|  3560 } |  | 
|  3561  |  | 
|  3562 static int fulltextNext(sqlite3_vtab_cursor *pCursor){ |  | 
|  3563   fulltext_cursor *c = (fulltext_cursor *) pCursor; |  | 
|  3564   int rc; |  | 
|  3565  |  | 
|  3566   TRACE(("FTS2 Next %p\n", pCursor)); |  | 
|  3567   snippetClear(&c->snippet); |  | 
|  3568   if( c->iCursorType < QUERY_FULLTEXT ){ |  | 
|  3569     /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */ |  | 
|  3570     rc = sqlite3_step(c->pStmt); |  | 
|  3571     switch( rc ){ |  | 
|  3572       case SQLITE_ROW: |  | 
|  3573         c->eof = 0; |  | 
|  3574         return SQLITE_OK; |  | 
|  3575       case SQLITE_DONE: |  | 
|  3576         c->eof = 1; |  | 
|  3577         return SQLITE_OK; |  | 
|  3578       default: |  | 
|  3579         c->eof = 1; |  | 
|  3580         return rc; |  | 
|  3581     } |  | 
|  3582   } else {  /* full-text query */ |  | 
|  3583     rc = sqlite3_reset(c->pStmt); |  | 
|  3584     if( rc!=SQLITE_OK ) return rc; |  | 
|  3585  |  | 
|  3586     if( c->result.nData==0 || dlrAtEnd(&c->reader) ){ |  | 
|  3587       c->eof = 1; |  | 
|  3588       return SQLITE_OK; |  | 
|  3589     } |  | 
|  3590     rc = sqlite3_bind_int64(c->pStmt, 1, dlrDocid(&c->reader)); |  | 
|  3591     if( rc!=SQLITE_OK ) return rc; |  | 
|  3592     rc = dlrStep(&c->reader); |  | 
|  3593     if( rc!=SQLITE_OK ) return rc; |  | 
|  3594     /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */ |  | 
|  3595     rc = sqlite3_step(c->pStmt); |  | 
|  3596     if( rc==SQLITE_ROW ){   /* the case we expect */ |  | 
|  3597       c->eof = 0; |  | 
|  3598       return SQLITE_OK; |  | 
|  3599     } |  | 
|  3600  |  | 
|  3601     /* Corrupt if the index refers to missing document. */ |  | 
|  3602     if( rc==SQLITE_DONE ) return SQLITE_CORRUPT_BKPT; |  | 
|  3603  |  | 
|  3604     return rc; |  | 
|  3605   } |  | 
|  3606 } |  | 
|  3607  |  | 
|  3608  |  | 
|  3609 /* TODO(shess) If we pushed LeafReader to the top of the file, or to |  | 
|  3610 ** another file, term_select() could be pushed above |  | 
|  3611 ** docListOfTerm(). |  | 
|  3612 */ |  | 
|  3613 static int termSelect(fulltext_vtab *v, int iColumn, |  | 
|  3614                       const char *pTerm, int nTerm, int isPrefix, |  | 
|  3615                       DocListType iType, DataBuffer *out); |  | 
|  3616  |  | 
|  3617 /* Return a DocList corresponding to the query term *pTerm.  If *pTerm |  | 
|  3618 ** is the first term of a phrase query, go ahead and evaluate the phrase |  | 
|  3619 ** query and return the doclist for the entire phrase query. |  | 
|  3620 ** |  | 
|  3621 ** The resulting DL_DOCIDS doclist is stored in pResult, which is |  | 
|  3622 ** overwritten. |  | 
|  3623 */ |  | 
|  3624 static int docListOfTerm( |  | 
|  3625   fulltext_vtab *v,   /* The full text index */ |  | 
|  3626   int iColumn,        /* column to restrict to.  No restriction if >=nColumn */ |  | 
|  3627   QueryTerm *pQTerm,  /* Term we are looking for, or 1st term of a phrase */ |  | 
|  3628   DataBuffer *pResult /* Write the result here */ |  | 
|  3629 ){ |  | 
|  3630   DataBuffer left, right, new; |  | 
|  3631   int i, rc; |  | 
|  3632  |  | 
|  3633   /* No phrase search if no position info. */ |  | 
|  3634   assert( pQTerm->nPhrase==0 || DL_DEFAULT!=DL_DOCIDS ); |  | 
|  3635  |  | 
|  3636   /* This code should never be called with buffered updates. */ |  | 
|  3637   assert( v->nPendingData<0 ); |  | 
|  3638  |  | 
|  3639   dataBufferInit(&left, 0); |  | 
|  3640   rc = termSelect(v, iColumn, pQTerm->pTerm, pQTerm->nTerm, pQTerm->isPrefix, |  | 
|  3641                   0<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS, &left); |  | 
|  3642   if( rc ) return rc; |  | 
|  3643   for(i=1; i<=pQTerm->nPhrase && left.nData>0; i++){ |  | 
|  3644     dataBufferInit(&right, 0); |  | 
|  3645     rc = termSelect(v, iColumn, pQTerm[i].pTerm, pQTerm[i].nTerm, |  | 
|  3646                     pQTerm[i].isPrefix, DL_POSITIONS, &right); |  | 
|  3647     if( rc ){ |  | 
|  3648       dataBufferDestroy(&left); |  | 
|  3649       return rc; |  | 
|  3650     } |  | 
|  3651     dataBufferInit(&new, 0); |  | 
|  3652     rc = docListPhraseMerge(left.pData, left.nData, right.pData, right.nData, |  | 
|  3653                             i<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS, &new); |  | 
|  3654     dataBufferDestroy(&left); |  | 
|  3655     dataBufferDestroy(&right); |  | 
|  3656     if( rc!=SQLITE_OK ){ |  | 
|  3657       dataBufferDestroy(&new); |  | 
|  3658       return rc; |  | 
|  3659     } |  | 
|  3660     left = new; |  | 
|  3661   } |  | 
|  3662   *pResult = left; |  | 
|  3663   return rc; |  | 
|  3664 } |  | 
|  3665  |  | 
|  3666 /* Add a new term pTerm[0..nTerm-1] to the query *q. |  | 
|  3667 */ |  | 
|  3668 static void queryAdd(Query *q, const char *pTerm, int nTerm){ |  | 
|  3669   QueryTerm *t; |  | 
|  3670   ++q->nTerms; |  | 
|  3671   q->pTerms = sqlite3_realloc(q->pTerms, q->nTerms * sizeof(q->pTerms[0])); |  | 
|  3672   if( q->pTerms==0 ){ |  | 
|  3673     q->nTerms = 0; |  | 
|  3674     return; |  | 
|  3675   } |  | 
|  3676   t = &q->pTerms[q->nTerms - 1]; |  | 
|  3677   CLEAR(t); |  | 
|  3678   t->pTerm = sqlite3_malloc(nTerm+1); |  | 
|  3679   memcpy(t->pTerm, pTerm, nTerm); |  | 
|  3680   t->pTerm[nTerm] = 0; |  | 
|  3681   t->nTerm = nTerm; |  | 
|  3682   t->isOr = q->nextIsOr; |  | 
|  3683   t->isPrefix = 0; |  | 
|  3684   q->nextIsOr = 0; |  | 
|  3685   t->iColumn = q->nextColumn; |  | 
|  3686   q->nextColumn = q->dfltColumn; |  | 
|  3687 } |  | 
|  3688  |  | 
|  3689 /* |  | 
|  3690 ** Check to see if the string zToken[0...nToken-1] matches any |  | 
|  3691 ** column name in the virtual table.   If it does, |  | 
|  3692 ** return the zero-indexed column number.  If not, return -1. |  | 
|  3693 */ |  | 
|  3694 static int checkColumnSpecifier( |  | 
|  3695   fulltext_vtab *pVtab,    /* The virtual table */ |  | 
|  3696   const char *zToken,      /* Text of the token */ |  | 
|  3697   int nToken               /* Number of characters in the token */ |  | 
|  3698 ){ |  | 
|  3699   int i; |  | 
|  3700   for(i=0; i<pVtab->nColumn; i++){ |  | 
|  3701     if( memcmp(pVtab->azColumn[i], zToken, nToken)==0 |  | 
|  3702         && pVtab->azColumn[i][nToken]==0 ){ |  | 
|  3703       return i; |  | 
|  3704     } |  | 
|  3705   } |  | 
|  3706   return -1; |  | 
|  3707 } |  | 
|  3708  |  | 
|  3709 /* |  | 
|  3710 ** Parse the text at pSegment[0..nSegment-1].  Add additional terms |  | 
|  3711 ** to the query being assemblied in pQuery. |  | 
|  3712 ** |  | 
|  3713 ** inPhrase is true if pSegment[0..nSegement-1] is contained within |  | 
|  3714 ** double-quotes.  If inPhrase is true, then the first term |  | 
|  3715 ** is marked with the number of terms in the phrase less one and |  | 
|  3716 ** OR and "-" syntax is ignored.  If inPhrase is false, then every |  | 
|  3717 ** term found is marked with nPhrase=0 and OR and "-" syntax is significant. |  | 
|  3718 */ |  | 
|  3719 static int tokenizeSegment( |  | 
|  3720   sqlite3_tokenizer *pTokenizer,          /* The tokenizer to use */ |  | 
|  3721   const char *pSegment, int nSegment,     /* Query expression being parsed */ |  | 
|  3722   int inPhrase,                           /* True if within "..." */ |  | 
|  3723   Query *pQuery                           /* Append results here */ |  | 
|  3724 ){ |  | 
|  3725   const sqlite3_tokenizer_module *pModule = pTokenizer->pModule; |  | 
|  3726   sqlite3_tokenizer_cursor *pCursor; |  | 
|  3727   int firstIndex = pQuery->nTerms; |  | 
|  3728   int iCol; |  | 
|  3729   int nTerm = 1; |  | 
|  3730   int iEndLast = -1; |  | 
|  3731    |  | 
|  3732   int rc = pModule->xOpen(pTokenizer, pSegment, nSegment, &pCursor); |  | 
|  3733   if( rc!=SQLITE_OK ) return rc; |  | 
|  3734   pCursor->pTokenizer = pTokenizer; |  | 
|  3735  |  | 
|  3736   while( 1 ){ |  | 
|  3737     const char *pToken; |  | 
|  3738     int nToken, iBegin, iEnd, iPos; |  | 
|  3739  |  | 
|  3740     rc = pModule->xNext(pCursor, |  | 
|  3741                         &pToken, &nToken, |  | 
|  3742                         &iBegin, &iEnd, &iPos); |  | 
|  3743     if( rc!=SQLITE_OK ) break; |  | 
|  3744     if( !inPhrase && |  | 
|  3745         pSegment[iEnd]==':' && |  | 
|  3746          (iCol = checkColumnSpecifier(pQuery->pFts, pToken, nToken))>=0 ){ |  | 
|  3747       pQuery->nextColumn = iCol; |  | 
|  3748       continue; |  | 
|  3749     } |  | 
|  3750     if( !inPhrase && pQuery->nTerms>0 && nToken==2 |  | 
|  3751          && pSegment[iBegin]=='O' && pSegment[iBegin+1]=='R' ){ |  | 
|  3752       pQuery->nextIsOr = 1; |  | 
|  3753       continue; |  | 
|  3754     } |  | 
|  3755  |  | 
|  3756     /* |  | 
|  3757      * The ICU tokenizer considers '*' a break character, so the code below |  | 
|  3758      * sets isPrefix correctly, but since that code doesn't eat the '*', the |  | 
|  3759      * ICU tokenizer returns it as the next token.  So eat it here until a |  | 
|  3760      * better solution presents itself. |  | 
|  3761      */ |  | 
|  3762     if( pQuery->nTerms>0 && nToken==1 && pSegment[iBegin]=='*' && |  | 
|  3763         iEndLast==iBegin){ |  | 
|  3764       pQuery->pTerms[pQuery->nTerms-1].isPrefix = 1; |  | 
|  3765       continue; |  | 
|  3766     } |  | 
|  3767     iEndLast = iEnd; |  | 
|  3768      |  | 
|  3769     queryAdd(pQuery, pToken, nToken); |  | 
|  3770     if( !inPhrase && iBegin>0 && pSegment[iBegin-1]=='-' ){ |  | 
|  3771       pQuery->pTerms[pQuery->nTerms-1].isNot = 1; |  | 
|  3772     } |  | 
|  3773     if( iEnd<nSegment && pSegment[iEnd]=='*' ){ |  | 
|  3774       pQuery->pTerms[pQuery->nTerms-1].isPrefix = 1; |  | 
|  3775     } |  | 
|  3776     pQuery->pTerms[pQuery->nTerms-1].iPhrase = nTerm; |  | 
|  3777     if( inPhrase ){ |  | 
|  3778       nTerm++; |  | 
|  3779     } |  | 
|  3780   } |  | 
|  3781  |  | 
|  3782   if( inPhrase && pQuery->nTerms>firstIndex ){ |  | 
|  3783     pQuery->pTerms[firstIndex].nPhrase = pQuery->nTerms - firstIndex - 1; |  | 
|  3784   } |  | 
|  3785  |  | 
|  3786   return pModule->xClose(pCursor); |  | 
|  3787 } |  | 
|  3788  |  | 
|  3789 /* Parse a query string, yielding a Query object pQuery. |  | 
|  3790 ** |  | 
|  3791 ** The calling function will need to queryClear() to clean up |  | 
|  3792 ** the dynamically allocated memory held by pQuery. |  | 
|  3793 */ |  | 
|  3794 static int parseQuery( |  | 
|  3795   fulltext_vtab *v,        /* The fulltext index */ |  | 
|  3796   const char *zInput,      /* Input text of the query string */ |  | 
|  3797   int nInput,              /* Size of the input text */ |  | 
|  3798   int dfltColumn,          /* Default column of the index to match against */ |  | 
|  3799   Query *pQuery            /* Write the parse results here. */ |  | 
|  3800 ){ |  | 
|  3801   int iInput, inPhrase = 0; |  | 
|  3802  |  | 
|  3803   if( zInput==0 ) nInput = 0; |  | 
|  3804   if( nInput<0 ) nInput = strlen(zInput); |  | 
|  3805   pQuery->nTerms = 0; |  | 
|  3806   pQuery->pTerms = NULL; |  | 
|  3807   pQuery->nextIsOr = 0; |  | 
|  3808   pQuery->nextColumn = dfltColumn; |  | 
|  3809   pQuery->dfltColumn = dfltColumn; |  | 
|  3810   pQuery->pFts = v; |  | 
|  3811  |  | 
|  3812   for(iInput=0; iInput<nInput; ++iInput){ |  | 
|  3813     int i; |  | 
|  3814     for(i=iInput; i<nInput && zInput[i]!='"'; ++i){} |  | 
|  3815     if( i>iInput ){ |  | 
|  3816       tokenizeSegment(v->pTokenizer, zInput+iInput, i-iInput, inPhrase, |  | 
|  3817                        pQuery); |  | 
|  3818     } |  | 
|  3819     iInput = i; |  | 
|  3820     if( i<nInput ){ |  | 
|  3821       assert( zInput[i]=='"' ); |  | 
|  3822       inPhrase = !inPhrase; |  | 
|  3823     } |  | 
|  3824   } |  | 
|  3825  |  | 
|  3826   if( inPhrase ){ |  | 
|  3827     /* unmatched quote */ |  | 
|  3828     queryClear(pQuery); |  | 
|  3829     return SQLITE_ERROR; |  | 
|  3830   } |  | 
|  3831   return SQLITE_OK; |  | 
|  3832 } |  | 
|  3833  |  | 
|  3834 /* TODO(shess) Refactor the code to remove this forward decl. */ |  | 
|  3835 static int flushPendingTerms(fulltext_vtab *v); |  | 
|  3836  |  | 
|  3837 /* Perform a full-text query using the search expression in |  | 
|  3838 ** zInput[0..nInput-1].  Return a list of matching documents |  | 
|  3839 ** in pResult. |  | 
|  3840 ** |  | 
|  3841 ** Queries must match column iColumn.  Or if iColumn>=nColumn |  | 
|  3842 ** they are allowed to match against any column. |  | 
|  3843 */ |  | 
|  3844 static int fulltextQuery( |  | 
|  3845   fulltext_vtab *v,      /* The full text index */ |  | 
|  3846   int iColumn,           /* Match against this column by default */ |  | 
|  3847   const char *zInput,    /* The query string */ |  | 
|  3848   int nInput,            /* Number of bytes in zInput[] */ |  | 
|  3849   DataBuffer *pResult,   /* Write the result doclist here */ |  | 
|  3850   Query *pQuery          /* Put parsed query string here */ |  | 
|  3851 ){ |  | 
|  3852   int i, iNext, rc; |  | 
|  3853   DataBuffer left, right, or, new; |  | 
|  3854   int nNot = 0; |  | 
|  3855   QueryTerm *aTerm; |  | 
|  3856  |  | 
|  3857   /* TODO(shess) Instead of flushing pendingTerms, we could query for |  | 
|  3858   ** the relevant term and merge the doclist into what we receive from |  | 
|  3859   ** the database.  Wait and see if this is a common issue, first. |  | 
|  3860   ** |  | 
|  3861   ** A good reason not to flush is to not generate update-related |  | 
|  3862   ** error codes from here. |  | 
|  3863   */ |  | 
|  3864  |  | 
|  3865   /* Flush any buffered updates before executing the query. */ |  | 
|  3866   rc = flushPendingTerms(v); |  | 
|  3867   if( rc!=SQLITE_OK ) return rc; |  | 
|  3868  |  | 
|  3869   /* TODO(shess) I think that the queryClear() calls below are not |  | 
|  3870   ** necessary, because fulltextClose() already clears the query. |  | 
|  3871   */ |  | 
|  3872   rc = parseQuery(v, zInput, nInput, iColumn, pQuery); |  | 
|  3873   if( rc!=SQLITE_OK ) return rc; |  | 
|  3874  |  | 
|  3875   /* Empty or NULL queries return no results. */ |  | 
|  3876   if( pQuery->nTerms==0 ){ |  | 
|  3877     dataBufferInit(pResult, 0); |  | 
|  3878     return SQLITE_OK; |  | 
|  3879   } |  | 
|  3880  |  | 
|  3881   /* Merge AND terms. */ |  | 
|  3882   /* TODO(shess) I think we can early-exit if( i>nNot && left.nData==0 ). */ |  | 
|  3883   aTerm = pQuery->pTerms; |  | 
|  3884   for(i = 0; i<pQuery->nTerms; i=iNext){ |  | 
|  3885     if( aTerm[i].isNot ){ |  | 
|  3886       /* Handle all NOT terms in a separate pass */ |  | 
|  3887       nNot++; |  | 
|  3888       iNext = i + aTerm[i].nPhrase+1; |  | 
|  3889       continue; |  | 
|  3890     } |  | 
|  3891     iNext = i + aTerm[i].nPhrase + 1; |  | 
|  3892     rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right); |  | 
|  3893     if( rc ){ |  | 
|  3894       if( i!=nNot ) dataBufferDestroy(&left); |  | 
|  3895       queryClear(pQuery); |  | 
|  3896       return rc; |  | 
|  3897     } |  | 
|  3898     while( iNext<pQuery->nTerms && aTerm[iNext].isOr ){ |  | 
|  3899       rc = docListOfTerm(v, aTerm[iNext].iColumn, &aTerm[iNext], &or); |  | 
|  3900       iNext += aTerm[iNext].nPhrase + 1; |  | 
|  3901       if( rc ){ |  | 
|  3902         if( i!=nNot ) dataBufferDestroy(&left); |  | 
|  3903         dataBufferDestroy(&right); |  | 
|  3904         queryClear(pQuery); |  | 
|  3905         return rc; |  | 
|  3906       } |  | 
|  3907       dataBufferInit(&new, 0); |  | 
|  3908       rc = docListOrMerge(right.pData, right.nData, or.pData, or.nData, &new); |  | 
|  3909       dataBufferDestroy(&right); |  | 
|  3910       dataBufferDestroy(&or); |  | 
|  3911       if( rc!=SQLITE_OK ){ |  | 
|  3912         if( i!=nNot ) dataBufferDestroy(&left); |  | 
|  3913         queryClear(pQuery); |  | 
|  3914         dataBufferDestroy(&new); |  | 
|  3915         return rc; |  | 
|  3916       } |  | 
|  3917       right = new; |  | 
|  3918     } |  | 
|  3919     if( i==nNot ){           /* first term processed. */ |  | 
|  3920       left = right; |  | 
|  3921     }else{ |  | 
|  3922       dataBufferInit(&new, 0); |  | 
|  3923       rc = docListAndMerge(left.pData, left.nData, |  | 
|  3924                            right.pData, right.nData, &new); |  | 
|  3925       dataBufferDestroy(&right); |  | 
|  3926       dataBufferDestroy(&left); |  | 
|  3927       if( rc!=SQLITE_OK ){ |  | 
|  3928         queryClear(pQuery); |  | 
|  3929         dataBufferDestroy(&new); |  | 
|  3930         return rc; |  | 
|  3931       } |  | 
|  3932       left = new; |  | 
|  3933     } |  | 
|  3934   } |  | 
|  3935  |  | 
|  3936   if( nNot==pQuery->nTerms ){ |  | 
|  3937     /* We do not yet know how to handle a query of only NOT terms */ |  | 
|  3938     return SQLITE_ERROR; |  | 
|  3939   } |  | 
|  3940  |  | 
|  3941   /* Do the EXCEPT terms */ |  | 
|  3942   for(i=0; i<pQuery->nTerms;  i += aTerm[i].nPhrase + 1){ |  | 
|  3943     if( !aTerm[i].isNot ) continue; |  | 
|  3944     rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right); |  | 
|  3945     if( rc ){ |  | 
|  3946       queryClear(pQuery); |  | 
|  3947       dataBufferDestroy(&left); |  | 
|  3948       return rc; |  | 
|  3949     } |  | 
|  3950     dataBufferInit(&new, 0); |  | 
|  3951     rc = docListExceptMerge(left.pData, left.nData, |  | 
|  3952                             right.pData, right.nData, &new); |  | 
|  3953     dataBufferDestroy(&right); |  | 
|  3954     dataBufferDestroy(&left); |  | 
|  3955     if( rc!=SQLITE_OK ){ |  | 
|  3956       queryClear(pQuery); |  | 
|  3957       dataBufferDestroy(&new); |  | 
|  3958       return rc; |  | 
|  3959     } |  | 
|  3960     left = new; |  | 
|  3961   } |  | 
|  3962  |  | 
|  3963   *pResult = left; |  | 
|  3964   return rc; |  | 
|  3965 } |  | 
|  3966  |  | 
|  3967 /* |  | 
|  3968 ** This is the xFilter interface for the virtual table.  See |  | 
|  3969 ** the virtual table xFilter method documentation for additional |  | 
|  3970 ** information. |  | 
|  3971 ** |  | 
|  3972 ** If idxNum==QUERY_GENERIC then do a full table scan against |  | 
|  3973 ** the %_content table. |  | 
|  3974 ** |  | 
|  3975 ** If idxNum==QUERY_ROWID then do a rowid lookup for a single entry |  | 
|  3976 ** in the %_content table. |  | 
|  3977 ** |  | 
|  3978 ** If idxNum>=QUERY_FULLTEXT then use the full text index.  The |  | 
|  3979 ** column on the left-hand side of the MATCH operator is column |  | 
|  3980 ** number idxNum-QUERY_FULLTEXT, 0 indexed.  argv[0] is the right-hand |  | 
|  3981 ** side of the MATCH operator. |  | 
|  3982 */ |  | 
|  3983 /* TODO(shess) Upgrade the cursor initialization and destruction to |  | 
|  3984 ** account for fulltextFilter() being called multiple times on the |  | 
|  3985 ** same cursor.  The current solution is very fragile.  Apply fix to |  | 
|  3986 ** fts2 as appropriate. |  | 
|  3987 */ |  | 
|  3988 static int fulltextFilter( |  | 
|  3989   sqlite3_vtab_cursor *pCursor,     /* The cursor used for this query */ |  | 
|  3990   int idxNum, const char *idxStr,   /* Which indexing scheme to use */ |  | 
|  3991   int argc, sqlite3_value **argv    /* Arguments for the indexing scheme */ |  | 
|  3992 ){ |  | 
|  3993   fulltext_cursor *c = (fulltext_cursor *) pCursor; |  | 
|  3994   fulltext_vtab *v = cursor_vtab(c); |  | 
|  3995   int rc; |  | 
|  3996  |  | 
|  3997   TRACE(("FTS2 Filter %p\n",pCursor)); |  | 
|  3998  |  | 
|  3999   /* If the cursor has a statement that was not prepared according to |  | 
|  4000   ** idxNum, clear it.  I believe all calls to fulltextFilter with a |  | 
|  4001   ** given cursor will have the same idxNum , but in this case it's |  | 
|  4002   ** easy to be safe. |  | 
|  4003   */ |  | 
|  4004   if( c->pStmt && c->iCursorType!=idxNum ){ |  | 
|  4005     sqlite3_finalize(c->pStmt); |  | 
|  4006     c->pStmt = NULL; |  | 
|  4007   } |  | 
|  4008  |  | 
|  4009   /* Get a fresh statement appropriate to idxNum. */ |  | 
|  4010   /* TODO(shess): Add a prepared-statement cache in the vt structure. |  | 
|  4011   ** The cache must handle multiple open cursors.  Easier to cache the |  | 
|  4012   ** statement variants at the vt to reduce malloc/realloc/free here. |  | 
|  4013   ** Or we could have a StringBuffer variant which allowed stack |  | 
|  4014   ** construction for small values. |  | 
|  4015   */ |  | 
|  4016   if( !c->pStmt ){ |  | 
|  4017     char *zSql = sqlite3_mprintf("select rowid, * from %%_content %s", |  | 
|  4018                                  idxNum==QUERY_GENERIC ? "" : "where rowid=?"); |  | 
|  4019     rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt, zSql); |  | 
|  4020     sqlite3_free(zSql); |  | 
|  4021     if( rc!=SQLITE_OK ) return rc; |  | 
|  4022     c->iCursorType = idxNum; |  | 
|  4023   }else{ |  | 
|  4024     sqlite3_reset(c->pStmt); |  | 
|  4025     assert( c->iCursorType==idxNum ); |  | 
|  4026   } |  | 
|  4027  |  | 
|  4028   switch( idxNum ){ |  | 
|  4029     case QUERY_GENERIC: |  | 
|  4030       break; |  | 
|  4031  |  | 
|  4032     case QUERY_ROWID: |  | 
|  4033       rc = sqlite3_bind_int64(c->pStmt, 1, sqlite3_value_int64(argv[0])); |  | 
|  4034       if( rc!=SQLITE_OK ) return rc; |  | 
|  4035       break; |  | 
|  4036  |  | 
|  4037     default:   /* full-text search */ |  | 
|  4038     { |  | 
|  4039       const char *zQuery = (const char *)sqlite3_value_text(argv[0]); |  | 
|  4040       assert( idxNum<=QUERY_FULLTEXT+v->nColumn); |  | 
|  4041       assert( argc==1 ); |  | 
|  4042       queryClear(&c->q); |  | 
|  4043       if( c->result.nData!=0 ){ |  | 
|  4044         /* This case happens if the same cursor is used repeatedly. */ |  | 
|  4045         dlrDestroy(&c->reader); |  | 
|  4046         dataBufferReset(&c->result); |  | 
|  4047       }else{ |  | 
|  4048         dataBufferInit(&c->result, 0); |  | 
|  4049       } |  | 
|  4050       rc = fulltextQuery(v, idxNum-QUERY_FULLTEXT, zQuery, -1, &c->result, &c->q
      ); |  | 
|  4051       if( rc!=SQLITE_OK ) return rc; |  | 
|  4052       if( c->result.nData!=0 ){ |  | 
|  4053         rc = dlrInit(&c->reader, DL_DOCIDS, c->result.pData, c->result.nData); |  | 
|  4054         if( rc!=SQLITE_OK ) return rc; |  | 
|  4055       } |  | 
|  4056       break; |  | 
|  4057     } |  | 
|  4058   } |  | 
|  4059  |  | 
|  4060   return fulltextNext(pCursor); |  | 
|  4061 } |  | 
|  4062  |  | 
|  4063 /* This is the xEof method of the virtual table.  The SQLite core |  | 
|  4064 ** calls this routine to find out if it has reached the end of |  | 
|  4065 ** a query's results set. |  | 
|  4066 */ |  | 
|  4067 static int fulltextEof(sqlite3_vtab_cursor *pCursor){ |  | 
|  4068   fulltext_cursor *c = (fulltext_cursor *) pCursor; |  | 
|  4069   return c->eof; |  | 
|  4070 } |  | 
|  4071  |  | 
|  4072 /* This is the xColumn method of the virtual table.  The SQLite |  | 
|  4073 ** core calls this method during a query when it needs the value |  | 
|  4074 ** of a column from the virtual table.  This method needs to use |  | 
|  4075 ** one of the sqlite3_result_*() routines to store the requested |  | 
|  4076 ** value back in the pContext. |  | 
|  4077 */ |  | 
|  4078 static int fulltextColumn(sqlite3_vtab_cursor *pCursor, |  | 
|  4079                           sqlite3_context *pContext, int idxCol){ |  | 
|  4080   fulltext_cursor *c = (fulltext_cursor *) pCursor; |  | 
|  4081   fulltext_vtab *v = cursor_vtab(c); |  | 
|  4082  |  | 
|  4083   if( idxCol<v->nColumn ){ |  | 
|  4084     sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol+1); |  | 
|  4085     sqlite3_result_value(pContext, pVal); |  | 
|  4086   }else if( idxCol==v->nColumn ){ |  | 
|  4087     /* The extra column whose name is the same as the table. |  | 
|  4088     ** Return a blob which is a pointer to the cursor |  | 
|  4089     */ |  | 
|  4090     sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT); |  | 
|  4091   } |  | 
|  4092   return SQLITE_OK; |  | 
|  4093 } |  | 
|  4094  |  | 
|  4095 /* This is the xRowid method.  The SQLite core calls this routine to |  | 
|  4096 ** retrive the rowid for the current row of the result set.  The |  | 
|  4097 ** rowid should be written to *pRowid. |  | 
|  4098 */ |  | 
|  4099 static int fulltextRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){ |  | 
|  4100   fulltext_cursor *c = (fulltext_cursor *) pCursor; |  | 
|  4101  |  | 
|  4102   *pRowid = sqlite3_column_int64(c->pStmt, 0); |  | 
|  4103   return SQLITE_OK; |  | 
|  4104 } |  | 
|  4105  |  | 
|  4106 /* Add all terms in [zText] to pendingTerms table.  If [iColumn] > 0, |  | 
|  4107 ** we also store positions and offsets in the hash table using that |  | 
|  4108 ** column number. |  | 
|  4109 */ |  | 
|  4110 static int buildTerms(fulltext_vtab *v, sqlite_int64 iDocid, |  | 
|  4111                       const char *zText, int iColumn){ |  | 
|  4112   sqlite3_tokenizer *pTokenizer = v->pTokenizer; |  | 
|  4113   sqlite3_tokenizer_cursor *pCursor; |  | 
|  4114   const char *pToken; |  | 
|  4115   int nTokenBytes; |  | 
|  4116   int iStartOffset, iEndOffset, iPosition; |  | 
|  4117   int rc; |  | 
|  4118  |  | 
|  4119   rc = pTokenizer->pModule->xOpen(pTokenizer, zText, -1, &pCursor); |  | 
|  4120   if( rc!=SQLITE_OK ) return rc; |  | 
|  4121  |  | 
|  4122   pCursor->pTokenizer = pTokenizer; |  | 
|  4123   while( SQLITE_OK==(rc=pTokenizer->pModule->xNext(pCursor, |  | 
|  4124                                                    &pToken, &nTokenBytes, |  | 
|  4125                                                    &iStartOffset, &iEndOffset, |  | 
|  4126                                                    &iPosition)) ){ |  | 
|  4127     DLCollector *p; |  | 
|  4128     int nData;                   /* Size of doclist before our update. */ |  | 
|  4129  |  | 
|  4130     /* Positions can't be negative; we use -1 as a terminator |  | 
|  4131      * internally.  Token can't be NULL or empty. */ |  | 
|  4132     if( iPosition<0 || pToken == NULL || nTokenBytes == 0 ){ |  | 
|  4133       rc = SQLITE_ERROR; |  | 
|  4134       break; |  | 
|  4135     } |  | 
|  4136  |  | 
|  4137     p = fts2HashFind(&v->pendingTerms, pToken, nTokenBytes); |  | 
|  4138     if( p==NULL ){ |  | 
|  4139       nData = 0; |  | 
|  4140       p = dlcNew(iDocid, DL_DEFAULT); |  | 
|  4141       fts2HashInsert(&v->pendingTerms, pToken, nTokenBytes, p); |  | 
|  4142  |  | 
|  4143       /* Overhead for our hash table entry, the key, and the value. */ |  | 
|  4144       v->nPendingData += sizeof(struct fts2HashElem)+sizeof(*p)+nTokenBytes; |  | 
|  4145     }else{ |  | 
|  4146       nData = p->b.nData; |  | 
|  4147       if( p->dlw.iPrevDocid!=iDocid ) dlcNext(p, iDocid); |  | 
|  4148     } |  | 
|  4149     if( iColumn>=0 ){ |  | 
|  4150       dlcAddPos(p, iColumn, iPosition, iStartOffset, iEndOffset); |  | 
|  4151     } |  | 
|  4152  |  | 
|  4153     /* Accumulate data added by dlcNew or dlcNext, and dlcAddPos. */ |  | 
|  4154     v->nPendingData += p->b.nData-nData; |  | 
|  4155   } |  | 
|  4156  |  | 
|  4157   /* TODO(shess) Check return?  Should this be able to cause errors at |  | 
|  4158   ** this point?  Actually, same question about sqlite3_finalize(), |  | 
|  4159   ** though one could argue that failure there means that the data is |  | 
|  4160   ** not durable.  *ponder* |  | 
|  4161   */ |  | 
|  4162   pTokenizer->pModule->xClose(pCursor); |  | 
|  4163   if( SQLITE_DONE == rc ) return SQLITE_OK; |  | 
|  4164   return rc; |  | 
|  4165 } |  | 
|  4166  |  | 
|  4167 /* Add doclists for all terms in [pValues] to pendingTerms table. */ |  | 
|  4168 static int insertTerms(fulltext_vtab *v, sqlite_int64 iRowid, |  | 
|  4169                        sqlite3_value **pValues){ |  | 
|  4170   int i; |  | 
|  4171   for(i = 0; i < v->nColumn ; ++i){ |  | 
|  4172     char *zText = (char*)sqlite3_value_text(pValues[i]); |  | 
|  4173     int rc = buildTerms(v, iRowid, zText, i); |  | 
|  4174     if( rc!=SQLITE_OK ) return rc; |  | 
|  4175   } |  | 
|  4176   return SQLITE_OK; |  | 
|  4177 } |  | 
|  4178  |  | 
|  4179 /* Add empty doclists for all terms in the given row's content to |  | 
|  4180 ** pendingTerms. |  | 
|  4181 */ |  | 
|  4182 static int deleteTerms(fulltext_vtab *v, sqlite_int64 iRowid){ |  | 
|  4183   const char **pValues; |  | 
|  4184   int i, rc; |  | 
|  4185  |  | 
|  4186   /* TODO(shess) Should we allow such tables at all? */ |  | 
|  4187   if( DL_DEFAULT==DL_DOCIDS ) return SQLITE_ERROR; |  | 
|  4188  |  | 
|  4189   rc = content_select(v, iRowid, &pValues); |  | 
|  4190   if( rc!=SQLITE_OK ) return rc; |  | 
|  4191  |  | 
|  4192   for(i = 0 ; i < v->nColumn; ++i) { |  | 
|  4193     rc = buildTerms(v, iRowid, pValues[i], -1); |  | 
|  4194     if( rc!=SQLITE_OK ) break; |  | 
|  4195   } |  | 
|  4196  |  | 
|  4197   freeStringArray(v->nColumn, pValues); |  | 
|  4198   return SQLITE_OK; |  | 
|  4199 } |  | 
|  4200  |  | 
|  4201 /* TODO(shess) Refactor the code to remove this forward decl. */ |  | 
|  4202 static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid); |  | 
|  4203  |  | 
|  4204 /* Insert a row into the %_content table; set *piRowid to be the ID of the |  | 
|  4205 ** new row.  Add doclists for terms to pendingTerms. |  | 
|  4206 */ |  | 
|  4207 static int index_insert(fulltext_vtab *v, sqlite3_value *pRequestRowid, |  | 
|  4208                         sqlite3_value **pValues, sqlite_int64 *piRowid){ |  | 
|  4209   int rc; |  | 
|  4210  |  | 
|  4211   rc = content_insert(v, pRequestRowid, pValues);  /* execute an SQL INSERT */ |  | 
|  4212   if( rc!=SQLITE_OK ) return rc; |  | 
|  4213  |  | 
|  4214   *piRowid = sqlite3_last_insert_rowid(v->db); |  | 
|  4215   rc = initPendingTerms(v, *piRowid); |  | 
|  4216   if( rc!=SQLITE_OK ) return rc; |  | 
|  4217  |  | 
|  4218   return insertTerms(v, *piRowid, pValues); |  | 
|  4219 } |  | 
|  4220  |  | 
|  4221 /* Delete a row from the %_content table; add empty doclists for terms |  | 
|  4222 ** to pendingTerms. |  | 
|  4223 */ |  | 
|  4224 static int index_delete(fulltext_vtab *v, sqlite_int64 iRow){ |  | 
|  4225   int rc = initPendingTerms(v, iRow); |  | 
|  4226   if( rc!=SQLITE_OK ) return rc; |  | 
|  4227  |  | 
|  4228   rc = deleteTerms(v, iRow); |  | 
|  4229   if( rc!=SQLITE_OK ) return rc; |  | 
|  4230  |  | 
|  4231   return content_delete(v, iRow);  /* execute an SQL DELETE */ |  | 
|  4232 } |  | 
|  4233  |  | 
|  4234 /* Update a row in the %_content table; add delete doclists to |  | 
|  4235 ** pendingTerms for old terms not in the new data, add insert doclists |  | 
|  4236 ** to pendingTerms for terms in the new data. |  | 
|  4237 */ |  | 
|  4238 static int index_update(fulltext_vtab *v, sqlite_int64 iRow, |  | 
|  4239                         sqlite3_value **pValues){ |  | 
|  4240   int rc = initPendingTerms(v, iRow); |  | 
|  4241   if( rc!=SQLITE_OK ) return rc; |  | 
|  4242  |  | 
|  4243   /* Generate an empty doclist for each term that previously appeared in this |  | 
|  4244    * row. */ |  | 
|  4245   rc = deleteTerms(v, iRow); |  | 
|  4246   if( rc!=SQLITE_OK ) return rc; |  | 
|  4247  |  | 
|  4248   rc = content_update(v, pValues, iRow);  /* execute an SQL UPDATE */ |  | 
|  4249   if( rc!=SQLITE_OK ) return rc; |  | 
|  4250  |  | 
|  4251   /* Now add positions for terms which appear in the updated row. */ |  | 
|  4252   return insertTerms(v, iRow, pValues); |  | 
|  4253 } |  | 
|  4254  |  | 
|  4255 /*******************************************************************/ |  | 
|  4256 /* InteriorWriter is used to collect terms and block references into |  | 
|  4257 ** interior nodes in %_segments.  See commentary at top of file for |  | 
|  4258 ** format. |  | 
|  4259 */ |  | 
|  4260  |  | 
|  4261 /* How large interior nodes can grow. */ |  | 
|  4262 #define INTERIOR_MAX 2048 |  | 
|  4263  |  | 
|  4264 /* Minimum number of terms per interior node (except the root). This |  | 
|  4265 ** prevents large terms from making the tree too skinny - must be >0 |  | 
|  4266 ** so that the tree always makes progress.  Note that the min tree |  | 
|  4267 ** fanout will be INTERIOR_MIN_TERMS+1. |  | 
|  4268 */ |  | 
|  4269 #define INTERIOR_MIN_TERMS 7 |  | 
|  4270 #if INTERIOR_MIN_TERMS<1 |  | 
|  4271 # error INTERIOR_MIN_TERMS must be greater than 0. |  | 
|  4272 #endif |  | 
|  4273  |  | 
|  4274 /* ROOT_MAX controls how much data is stored inline in the segment |  | 
|  4275 ** directory. |  | 
|  4276 */ |  | 
|  4277 /* TODO(shess) Push ROOT_MAX down to whoever is writing things.  It's |  | 
|  4278 ** only here so that interiorWriterRootInfo() and leafWriterRootInfo() |  | 
|  4279 ** can both see it, but if the caller passed it in, we wouldn't even |  | 
|  4280 ** need a define. |  | 
|  4281 */ |  | 
|  4282 #define ROOT_MAX 1024 |  | 
|  4283 #if ROOT_MAX<VARINT_MAX*2 |  | 
|  4284 # error ROOT_MAX must have enough space for a header. |  | 
|  4285 #endif |  | 
|  4286  |  | 
|  4287 /* InteriorBlock stores a linked-list of interior blocks while a lower |  | 
|  4288 ** layer is being constructed. |  | 
|  4289 */ |  | 
|  4290 typedef struct InteriorBlock { |  | 
|  4291   DataBuffer term;           /* Leftmost term in block's subtree. */ |  | 
|  4292   DataBuffer data;           /* Accumulated data for the block. */ |  | 
|  4293   struct InteriorBlock *next; |  | 
|  4294 } InteriorBlock; |  | 
|  4295  |  | 
|  4296 static InteriorBlock *interiorBlockNew(int iHeight, sqlite_int64 iChildBlock, |  | 
|  4297                                        const char *pTerm, int nTerm){ |  | 
|  4298   InteriorBlock *block = sqlite3_malloc(sizeof(InteriorBlock)); |  | 
|  4299   char c[VARINT_MAX+VARINT_MAX]; |  | 
|  4300   int n; |  | 
|  4301  |  | 
|  4302   if( block ){ |  | 
|  4303     memset(block, 0, sizeof(*block)); |  | 
|  4304     dataBufferInit(&block->term, 0); |  | 
|  4305     dataBufferReplace(&block->term, pTerm, nTerm); |  | 
|  4306  |  | 
|  4307     n = putVarint(c, iHeight); |  | 
|  4308     n += putVarint(c+n, iChildBlock); |  | 
|  4309     dataBufferInit(&block->data, INTERIOR_MAX); |  | 
|  4310     dataBufferReplace(&block->data, c, n); |  | 
|  4311   } |  | 
|  4312   return block; |  | 
|  4313 } |  | 
|  4314  |  | 
|  4315 #ifndef NDEBUG |  | 
|  4316 /* Verify that the data is readable as an interior node. */ |  | 
|  4317 static void interiorBlockValidate(InteriorBlock *pBlock){ |  | 
|  4318   const char *pData = pBlock->data.pData; |  | 
|  4319   int nData = pBlock->data.nData; |  | 
|  4320   int n, iDummy; |  | 
|  4321   sqlite_int64 iBlockid; |  | 
|  4322  |  | 
|  4323   assert( nData>0 ); |  | 
|  4324   assert( pData!=0 ); |  | 
|  4325   assert( pData+nData>pData ); |  | 
|  4326  |  | 
|  4327   /* Must lead with height of node as a varint(n), n>0 */ |  | 
|  4328   n = getVarint32(pData, &iDummy); |  | 
|  4329   assert( n>0 ); |  | 
|  4330   assert( iDummy>0 ); |  | 
|  4331   assert( n<nData ); |  | 
|  4332   pData += n; |  | 
|  4333   nData -= n; |  | 
|  4334  |  | 
|  4335   /* Must contain iBlockid. */ |  | 
|  4336   n = getVarint(pData, &iBlockid); |  | 
|  4337   assert( n>0 ); |  | 
|  4338   assert( n<=nData ); |  | 
|  4339   pData += n; |  | 
|  4340   nData -= n; |  | 
|  4341  |  | 
|  4342   /* Zero or more terms of positive length */ |  | 
|  4343   if( nData!=0 ){ |  | 
|  4344     /* First term is not delta-encoded. */ |  | 
|  4345     n = getVarint32(pData, &iDummy); |  | 
|  4346     assert( n>0 ); |  | 
|  4347     assert( iDummy>0 ); |  | 
|  4348     assert( n+iDummy>0); |  | 
|  4349     assert( n+iDummy<=nData ); |  | 
|  4350     pData += n+iDummy; |  | 
|  4351     nData -= n+iDummy; |  | 
|  4352  |  | 
|  4353     /* Following terms delta-encoded. */ |  | 
|  4354     while( nData!=0 ){ |  | 
|  4355       /* Length of shared prefix. */ |  | 
|  4356       n = getVarint32(pData, &iDummy); |  | 
|  4357       assert( n>0 ); |  | 
|  4358       assert( iDummy>=0 ); |  | 
|  4359       assert( n<nData ); |  | 
|  4360       pData += n; |  | 
|  4361       nData -= n; |  | 
|  4362  |  | 
|  4363       /* Length and data of distinct suffix. */ |  | 
|  4364       n = getVarint32(pData, &iDummy); |  | 
|  4365       assert( n>0 ); |  | 
|  4366       assert( iDummy>0 ); |  | 
|  4367       assert( n+iDummy>0); |  | 
|  4368       assert( n+iDummy<=nData ); |  | 
|  4369       pData += n+iDummy; |  | 
|  4370       nData -= n+iDummy; |  | 
|  4371     } |  | 
|  4372   } |  | 
|  4373 } |  | 
|  4374 #define ASSERT_VALID_INTERIOR_BLOCK(x) interiorBlockValidate(x) |  | 
|  4375 #else |  | 
|  4376 #define ASSERT_VALID_INTERIOR_BLOCK(x) assert( 1 ) |  | 
|  4377 #endif |  | 
|  4378  |  | 
|  4379 typedef struct InteriorWriter { |  | 
|  4380   int iHeight;                   /* from 0 at leaves. */ |  | 
|  4381   InteriorBlock *first, *last; |  | 
|  4382   struct InteriorWriter *parentWriter; |  | 
|  4383  |  | 
|  4384   DataBuffer term;               /* Last term written to block "last". */ |  | 
|  4385   sqlite_int64 iOpeningChildBlock; /* First child block in block "last". */ |  | 
|  4386 #ifndef NDEBUG |  | 
|  4387   sqlite_int64 iLastChildBlock;  /* for consistency checks. */ |  | 
|  4388 #endif |  | 
|  4389 } InteriorWriter; |  | 
|  4390  |  | 
|  4391 /* Initialize an interior node where pTerm[nTerm] marks the leftmost |  | 
|  4392 ** term in the tree.  iChildBlock is the leftmost child block at the |  | 
|  4393 ** next level down the tree. |  | 
|  4394 */ |  | 
|  4395 static void interiorWriterInit(int iHeight, const char *pTerm, int nTerm, |  | 
|  4396                                sqlite_int64 iChildBlock, |  | 
|  4397                                InteriorWriter *pWriter){ |  | 
|  4398   InteriorBlock *block; |  | 
|  4399   assert( iHeight>0 ); |  | 
|  4400   CLEAR(pWriter); |  | 
|  4401  |  | 
|  4402   pWriter->iHeight = iHeight; |  | 
|  4403   pWriter->iOpeningChildBlock = iChildBlock; |  | 
|  4404 #ifndef NDEBUG |  | 
|  4405   pWriter->iLastChildBlock = iChildBlock; |  | 
|  4406 #endif |  | 
|  4407   block = interiorBlockNew(iHeight, iChildBlock, pTerm, nTerm); |  | 
|  4408   pWriter->last = pWriter->first = block; |  | 
|  4409   ASSERT_VALID_INTERIOR_BLOCK(pWriter->last); |  | 
|  4410   dataBufferInit(&pWriter->term, 0); |  | 
|  4411 } |  | 
|  4412  |  | 
|  4413 /* Append the child node rooted at iChildBlock to the interior node, |  | 
|  4414 ** with pTerm[nTerm] as the leftmost term in iChildBlock's subtree. |  | 
|  4415 */ |  | 
|  4416 static void interiorWriterAppend(InteriorWriter *pWriter, |  | 
|  4417                                  const char *pTerm, int nTerm, |  | 
|  4418                                  sqlite_int64 iChildBlock){ |  | 
|  4419   char c[VARINT_MAX+VARINT_MAX]; |  | 
|  4420   int n, nPrefix = 0; |  | 
|  4421  |  | 
|  4422   ASSERT_VALID_INTERIOR_BLOCK(pWriter->last); |  | 
|  4423  |  | 
|  4424   /* The first term written into an interior node is actually |  | 
|  4425   ** associated with the second child added (the first child was added |  | 
|  4426   ** in interiorWriterInit, or in the if clause at the bottom of this |  | 
|  4427   ** function).  That term gets encoded straight up, with nPrefix left |  | 
|  4428   ** at 0. |  | 
|  4429   */ |  | 
|  4430   if( pWriter->term.nData==0 ){ |  | 
|  4431     n = putVarint(c, nTerm); |  | 
|  4432   }else{ |  | 
|  4433     while( nPrefix<pWriter->term.nData && |  | 
|  4434            pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){ |  | 
|  4435       nPrefix++; |  | 
|  4436     } |  | 
|  4437  |  | 
|  4438     n = putVarint(c, nPrefix); |  | 
|  4439     n += putVarint(c+n, nTerm-nPrefix); |  | 
|  4440   } |  | 
|  4441  |  | 
|  4442 #ifndef NDEBUG |  | 
|  4443   pWriter->iLastChildBlock++; |  | 
|  4444 #endif |  | 
|  4445   assert( pWriter->iLastChildBlock==iChildBlock ); |  | 
|  4446  |  | 
|  4447   /* Overflow to a new block if the new term makes the current block |  | 
|  4448   ** too big, and the current block already has enough terms. |  | 
|  4449   */ |  | 
|  4450   if( pWriter->last->data.nData+n+nTerm-nPrefix>INTERIOR_MAX && |  | 
|  4451       iChildBlock-pWriter->iOpeningChildBlock>INTERIOR_MIN_TERMS ){ |  | 
|  4452     pWriter->last->next = interiorBlockNew(pWriter->iHeight, iChildBlock, |  | 
|  4453                                            pTerm, nTerm); |  | 
|  4454     pWriter->last = pWriter->last->next; |  | 
|  4455     pWriter->iOpeningChildBlock = iChildBlock; |  | 
|  4456     dataBufferReset(&pWriter->term); |  | 
|  4457   }else{ |  | 
|  4458     dataBufferAppend2(&pWriter->last->data, c, n, |  | 
|  4459                       pTerm+nPrefix, nTerm-nPrefix); |  | 
|  4460     dataBufferReplace(&pWriter->term, pTerm, nTerm); |  | 
|  4461   } |  | 
|  4462   ASSERT_VALID_INTERIOR_BLOCK(pWriter->last); |  | 
|  4463 } |  | 
|  4464  |  | 
|  4465 /* Free the space used by pWriter, including the linked-list of |  | 
|  4466 ** InteriorBlocks, and parentWriter, if present. |  | 
|  4467 */ |  | 
|  4468 static int interiorWriterDestroy(InteriorWriter *pWriter){ |  | 
|  4469   InteriorBlock *block = pWriter->first; |  | 
|  4470  |  | 
|  4471   while( block!=NULL ){ |  | 
|  4472     InteriorBlock *b = block; |  | 
|  4473     block = block->next; |  | 
|  4474     dataBufferDestroy(&b->term); |  | 
|  4475     dataBufferDestroy(&b->data); |  | 
|  4476     sqlite3_free(b); |  | 
|  4477   } |  | 
|  4478   if( pWriter->parentWriter!=NULL ){ |  | 
|  4479     interiorWriterDestroy(pWriter->parentWriter); |  | 
|  4480     sqlite3_free(pWriter->parentWriter); |  | 
|  4481   } |  | 
|  4482   dataBufferDestroy(&pWriter->term); |  | 
|  4483   SCRAMBLE(pWriter); |  | 
|  4484   return SQLITE_OK; |  | 
|  4485 } |  | 
|  4486  |  | 
|  4487 /* If pWriter can fit entirely in ROOT_MAX, return it as the root info |  | 
|  4488 ** directly, leaving *piEndBlockid unchanged.  Otherwise, flush |  | 
|  4489 ** pWriter to %_segments, building a new layer of interior nodes, and |  | 
|  4490 ** recursively ask for their root into. |  | 
|  4491 */ |  | 
|  4492 static int interiorWriterRootInfo(fulltext_vtab *v, InteriorWriter *pWriter, |  | 
|  4493                                   char **ppRootInfo, int *pnRootInfo, |  | 
|  4494                                   sqlite_int64 *piEndBlockid){ |  | 
|  4495   InteriorBlock *block = pWriter->first; |  | 
|  4496   sqlite_int64 iBlockid = 0; |  | 
|  4497   int rc; |  | 
|  4498  |  | 
|  4499   /* If we can fit the segment inline */ |  | 
|  4500   if( block==pWriter->last && block->data.nData<ROOT_MAX ){ |  | 
|  4501     *ppRootInfo = block->data.pData; |  | 
|  4502     *pnRootInfo = block->data.nData; |  | 
|  4503     return SQLITE_OK; |  | 
|  4504   } |  | 
|  4505  |  | 
|  4506   /* Flush the first block to %_segments, and create a new level of |  | 
|  4507   ** interior node. |  | 
|  4508   */ |  | 
|  4509   ASSERT_VALID_INTERIOR_BLOCK(block); |  | 
|  4510   rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid); |  | 
|  4511   if( rc!=SQLITE_OK ) return rc; |  | 
|  4512   *piEndBlockid = iBlockid; |  | 
|  4513  |  | 
|  4514   pWriter->parentWriter = sqlite3_malloc(sizeof(*pWriter->parentWriter)); |  | 
|  4515   interiorWriterInit(pWriter->iHeight+1, |  | 
|  4516                      block->term.pData, block->term.nData, |  | 
|  4517                      iBlockid, pWriter->parentWriter); |  | 
|  4518  |  | 
|  4519   /* Flush additional blocks and append to the higher interior |  | 
|  4520   ** node. |  | 
|  4521   */ |  | 
|  4522   for(block=block->next; block!=NULL; block=block->next){ |  | 
|  4523     ASSERT_VALID_INTERIOR_BLOCK(block); |  | 
|  4524     rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid); |  | 
|  4525     if( rc!=SQLITE_OK ) return rc; |  | 
|  4526     *piEndBlockid = iBlockid; |  | 
|  4527  |  | 
|  4528     interiorWriterAppend(pWriter->parentWriter, |  | 
|  4529                          block->term.pData, block->term.nData, iBlockid); |  | 
|  4530   } |  | 
|  4531  |  | 
|  4532   /* Parent node gets the chance to be the root. */ |  | 
|  4533   return interiorWriterRootInfo(v, pWriter->parentWriter, |  | 
|  4534                                 ppRootInfo, pnRootInfo, piEndBlockid); |  | 
|  4535 } |  | 
|  4536  |  | 
|  4537 /****************************************************************/ |  | 
|  4538 /* InteriorReader is used to read off the data from an interior node |  | 
|  4539 ** (see comment at top of file for the format). |  | 
|  4540 */ |  | 
|  4541 typedef struct InteriorReader { |  | 
|  4542   const char *pData; |  | 
|  4543   int nData; |  | 
|  4544  |  | 
|  4545   DataBuffer term;          /* previous term, for decoding term delta. */ |  | 
|  4546  |  | 
|  4547   sqlite_int64 iBlockid; |  | 
|  4548 } InteriorReader; |  | 
|  4549  |  | 
|  4550 static void interiorReaderDestroy(InteriorReader *pReader){ |  | 
|  4551   dataBufferDestroy(&pReader->term); |  | 
|  4552   SCRAMBLE(pReader); |  | 
|  4553 } |  | 
|  4554  |  | 
|  4555 static int interiorReaderInit(const char *pData, int nData, |  | 
|  4556                               InteriorReader *pReader){ |  | 
|  4557   int n, nTerm; |  | 
|  4558  |  | 
|  4559   /* These conditions are checked and met by the callers. */ |  | 
|  4560   assert( nData>0 ); |  | 
|  4561   assert( pData[0]!='\0' ); |  | 
|  4562  |  | 
|  4563   CLEAR(pReader); |  | 
|  4564  |  | 
|  4565   /* Decode the base blockid, and set the cursor to the first term. */ |  | 
|  4566   n = getVarintSafe(pData+1, &pReader->iBlockid, nData-1); |  | 
|  4567   if( !n ) return SQLITE_CORRUPT_BKPT; |  | 
|  4568   pReader->pData = pData+1+n; |  | 
|  4569   pReader->nData = nData-(1+n); |  | 
|  4570  |  | 
|  4571   /* A single-child interior node (such as when a leaf node was too |  | 
|  4572   ** large for the segment directory) won't have any terms. |  | 
|  4573   ** Otherwise, decode the first term. |  | 
|  4574   */ |  | 
|  4575   if( pReader->nData==0 ){ |  | 
|  4576     dataBufferInit(&pReader->term, 0); |  | 
|  4577   }else{ |  | 
|  4578     n = getVarint32Safe(pReader->pData, &nTerm, pReader->nData); |  | 
|  4579     if( !n || nTerm<0 || nTerm>pReader->nData-n) return SQLITE_CORRUPT_BKPT; |  | 
|  4580     dataBufferInit(&pReader->term, nTerm); |  | 
|  4581     dataBufferReplace(&pReader->term, pReader->pData+n, nTerm); |  | 
|  4582     pReader->pData += n+nTerm; |  | 
|  4583     pReader->nData -= n+nTerm; |  | 
|  4584   } |  | 
|  4585   return SQLITE_OK; |  | 
|  4586 } |  | 
|  4587  |  | 
|  4588 static int interiorReaderAtEnd(InteriorReader *pReader){ |  | 
|  4589   return pReader->term.nData<=0; |  | 
|  4590 } |  | 
|  4591  |  | 
|  4592 static sqlite_int64 interiorReaderCurrentBlockid(InteriorReader *pReader){ |  | 
|  4593   return pReader->iBlockid; |  | 
|  4594 } |  | 
|  4595  |  | 
|  4596 static int interiorReaderTermBytes(InteriorReader *pReader){ |  | 
|  4597   assert( !interiorReaderAtEnd(pReader) ); |  | 
|  4598   return pReader->term.nData; |  | 
|  4599 } |  | 
|  4600 static const char *interiorReaderTerm(InteriorReader *pReader){ |  | 
|  4601   assert( !interiorReaderAtEnd(pReader) ); |  | 
|  4602   return pReader->term.pData; |  | 
|  4603 } |  | 
|  4604  |  | 
|  4605 /* Step forward to the next term in the node. */ |  | 
|  4606 static int interiorReaderStep(InteriorReader *pReader){ |  | 
|  4607   assert( !interiorReaderAtEnd(pReader) ); |  | 
|  4608  |  | 
|  4609   /* If the last term has been read, signal eof, else construct the |  | 
|  4610   ** next term. |  | 
|  4611   */ |  | 
|  4612   if( pReader->nData==0 ){ |  | 
|  4613     dataBufferReset(&pReader->term); |  | 
|  4614   }else{ |  | 
|  4615     int n, nPrefix, nSuffix; |  | 
|  4616  |  | 
|  4617     n = getVarint32Safe(pReader->pData, &nPrefix, pReader->nData); |  | 
|  4618     if( !n ) return SQLITE_CORRUPT_BKPT; |  | 
|  4619     pReader->nData -= n; |  | 
|  4620     pReader->pData += n; |  | 
|  4621     n = getVarint32Safe(pReader->pData, &nSuffix, pReader->nData); |  | 
|  4622     if( !n ) return SQLITE_CORRUPT_BKPT; |  | 
|  4623     pReader->nData -= n; |  | 
|  4624     pReader->pData += n; |  | 
|  4625     if( nSuffix<0 || nSuffix>pReader->nData ) return SQLITE_CORRUPT_BKPT; |  | 
|  4626     if( nPrefix<0 || nPrefix>pReader->term.nData ) return SQLITE_CORRUPT_BKPT; |  | 
|  4627  |  | 
|  4628     /* Truncate the current term and append suffix data. */ |  | 
|  4629     pReader->term.nData = nPrefix; |  | 
|  4630     dataBufferAppend(&pReader->term, pReader->pData, nSuffix); |  | 
|  4631  |  | 
|  4632     pReader->pData += nSuffix; |  | 
|  4633     pReader->nData -= nSuffix; |  | 
|  4634   } |  | 
|  4635   pReader->iBlockid++; |  | 
|  4636   return SQLITE_OK; |  | 
|  4637 } |  | 
|  4638  |  | 
|  4639 /* Compare the current term to pTerm[nTerm], returning strcmp-style |  | 
|  4640 ** results.  If isPrefix, equality means equal through nTerm bytes. |  | 
|  4641 */ |  | 
|  4642 static int interiorReaderTermCmp(InteriorReader *pReader, |  | 
|  4643                                  const char *pTerm, int nTerm, int isPrefix){ |  | 
|  4644   const char *pReaderTerm = interiorReaderTerm(pReader); |  | 
|  4645   int nReaderTerm = interiorReaderTermBytes(pReader); |  | 
|  4646   int c, n = nReaderTerm<nTerm ? nReaderTerm : nTerm; |  | 
|  4647  |  | 
|  4648   if( n==0 ){ |  | 
|  4649     if( nReaderTerm>0 ) return -1; |  | 
|  4650     if( nTerm>0 ) return 1; |  | 
|  4651     return 0; |  | 
|  4652   } |  | 
|  4653  |  | 
|  4654   c = memcmp(pReaderTerm, pTerm, n); |  | 
|  4655   if( c!=0 ) return c; |  | 
|  4656   if( isPrefix && n==nTerm ) return 0; |  | 
|  4657   return nReaderTerm - nTerm; |  | 
|  4658 } |  | 
|  4659  |  | 
|  4660 /****************************************************************/ |  | 
|  4661 /* LeafWriter is used to collect terms and associated doclist data |  | 
|  4662 ** into leaf blocks in %_segments (see top of file for format info). |  | 
|  4663 ** Expected usage is: |  | 
|  4664 ** |  | 
|  4665 ** LeafWriter writer; |  | 
|  4666 ** leafWriterInit(0, 0, &writer); |  | 
|  4667 ** while( sorted_terms_left_to_process ){ |  | 
|  4668 **   // data is doclist data for that term. |  | 
|  4669 **   rc = leafWriterStep(v, &writer, pTerm, nTerm, pData, nData); |  | 
|  4670 **   if( rc!=SQLITE_OK ) goto err; |  | 
|  4671 ** } |  | 
|  4672 ** rc = leafWriterFinalize(v, &writer); |  | 
|  4673 **err: |  | 
|  4674 ** leafWriterDestroy(&writer); |  | 
|  4675 ** return rc; |  | 
|  4676 ** |  | 
|  4677 ** leafWriterStep() may write a collected leaf out to %_segments. |  | 
|  4678 ** leafWriterFinalize() finishes writing any buffered data and stores |  | 
|  4679 ** a root node in %_segdir.  leafWriterDestroy() frees all buffers and |  | 
|  4680 ** InteriorWriters allocated as part of writing this segment. |  | 
|  4681 ** |  | 
|  4682 ** TODO(shess) Document leafWriterStepMerge(). |  | 
|  4683 */ |  | 
|  4684  |  | 
|  4685 /* Put terms with data this big in their own block. */ |  | 
|  4686 #define STANDALONE_MIN 1024 |  | 
|  4687  |  | 
|  4688 /* Keep leaf blocks below this size. */ |  | 
|  4689 #define LEAF_MAX 2048 |  | 
|  4690  |  | 
|  4691 typedef struct LeafWriter { |  | 
|  4692   int iLevel; |  | 
|  4693   int idx; |  | 
|  4694   sqlite_int64 iStartBlockid;     /* needed to create the root info */ |  | 
|  4695   sqlite_int64 iEndBlockid;       /* when we're done writing. */ |  | 
|  4696  |  | 
|  4697   DataBuffer term;                /* previous encoded term */ |  | 
|  4698   DataBuffer data;                /* encoding buffer */ |  | 
|  4699  |  | 
|  4700   /* bytes of first term in the current node which distinguishes that |  | 
|  4701   ** term from the last term of the previous node. |  | 
|  4702   */ |  | 
|  4703   int nTermDistinct; |  | 
|  4704  |  | 
|  4705   InteriorWriter parentWriter;    /* if we overflow */ |  | 
|  4706   int has_parent; |  | 
|  4707 } LeafWriter; |  | 
|  4708  |  | 
|  4709 static void leafWriterInit(int iLevel, int idx, LeafWriter *pWriter){ |  | 
|  4710   CLEAR(pWriter); |  | 
|  4711   pWriter->iLevel = iLevel; |  | 
|  4712   pWriter->idx = idx; |  | 
|  4713  |  | 
|  4714   dataBufferInit(&pWriter->term, 32); |  | 
|  4715  |  | 
|  4716   /* Start out with a reasonably sized block, though it can grow. */ |  | 
|  4717   dataBufferInit(&pWriter->data, LEAF_MAX); |  | 
|  4718 } |  | 
|  4719  |  | 
|  4720 #ifndef NDEBUG |  | 
|  4721 /* Verify that the data is readable as a leaf node. */ |  | 
|  4722 static void leafNodeValidate(const char *pData, int nData){ |  | 
|  4723   int n, iDummy; |  | 
|  4724  |  | 
|  4725   if( nData==0 ) return; |  | 
|  4726   assert( nData>0 ); |  | 
|  4727   assert( pData!=0 ); |  | 
|  4728   assert( pData+nData>pData ); |  | 
|  4729  |  | 
|  4730   /* Must lead with a varint(0) */ |  | 
|  4731   n = getVarint32(pData, &iDummy); |  | 
|  4732   assert( iDummy==0 ); |  | 
|  4733   assert( n>0 ); |  | 
|  4734   assert( n<nData ); |  | 
|  4735   pData += n; |  | 
|  4736   nData -= n; |  | 
|  4737  |  | 
|  4738   /* Leading term length and data must fit in buffer. */ |  | 
|  4739   n = getVarint32(pData, &iDummy); |  | 
|  4740   assert( n>0 ); |  | 
|  4741   assert( iDummy>0 ); |  | 
|  4742   assert( n+iDummy>0 ); |  | 
|  4743   assert( n+iDummy<nData ); |  | 
|  4744   pData += n+iDummy; |  | 
|  4745   nData -= n+iDummy; |  | 
|  4746  |  | 
|  4747   /* Leading term's doclist length and data must fit. */ |  | 
|  4748   n = getVarint32(pData, &iDummy); |  | 
|  4749   assert( n>0 ); |  | 
|  4750   assert( iDummy>0 ); |  | 
|  4751   assert( n+iDummy>0 ); |  | 
|  4752   assert( n+iDummy<=nData ); |  | 
|  4753   ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL); |  | 
|  4754   pData += n+iDummy; |  | 
|  4755   nData -= n+iDummy; |  | 
|  4756  |  | 
|  4757   /* Verify that trailing terms and doclists also are readable. */ |  | 
|  4758   while( nData!=0 ){ |  | 
|  4759     n = getVarint32(pData, &iDummy); |  | 
|  4760     assert( n>0 ); |  | 
|  4761     assert( iDummy>=0 ); |  | 
|  4762     assert( n<nData ); |  | 
|  4763     pData += n; |  | 
|  4764     nData -= n; |  | 
|  4765     n = getVarint32(pData, &iDummy); |  | 
|  4766     assert( n>0 ); |  | 
|  4767     assert( iDummy>0 ); |  | 
|  4768     assert( n+iDummy>0 ); |  | 
|  4769     assert( n+iDummy<nData ); |  | 
|  4770     pData += n+iDummy; |  | 
|  4771     nData -= n+iDummy; |  | 
|  4772  |  | 
|  4773     n = getVarint32(pData, &iDummy); |  | 
|  4774     assert( n>0 ); |  | 
|  4775     assert( iDummy>0 ); |  | 
|  4776     assert( n+iDummy>0 ); |  | 
|  4777     assert( n+iDummy<=nData ); |  | 
|  4778     ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL); |  | 
|  4779     pData += n+iDummy; |  | 
|  4780     nData -= n+iDummy; |  | 
|  4781   } |  | 
|  4782 } |  | 
|  4783 #define ASSERT_VALID_LEAF_NODE(p, n) leafNodeValidate(p, n) |  | 
|  4784 #else |  | 
|  4785 #define ASSERT_VALID_LEAF_NODE(p, n) assert( 1 ) |  | 
|  4786 #endif |  | 
|  4787  |  | 
|  4788 /* Flush the current leaf node to %_segments, and adding the resulting |  | 
|  4789 ** blockid and the starting term to the interior node which will |  | 
|  4790 ** contain it. |  | 
|  4791 */ |  | 
|  4792 static int leafWriterInternalFlush(fulltext_vtab *v, LeafWriter *pWriter, |  | 
|  4793                                    int iData, int nData){ |  | 
|  4794   sqlite_int64 iBlockid = 0; |  | 
|  4795   const char *pStartingTerm; |  | 
|  4796   int nStartingTerm, rc, n; |  | 
|  4797  |  | 
|  4798   /* Must have the leading varint(0) flag, plus at least some |  | 
|  4799   ** valid-looking data. |  | 
|  4800   */ |  | 
|  4801   assert( nData>2 ); |  | 
|  4802   assert( iData>=0 ); |  | 
|  4803   assert( iData+nData<=pWriter->data.nData ); |  | 
|  4804   ASSERT_VALID_LEAF_NODE(pWriter->data.pData+iData, nData); |  | 
|  4805  |  | 
|  4806   rc = block_insert(v, pWriter->data.pData+iData, nData, &iBlockid); |  | 
|  4807   if( rc!=SQLITE_OK ) return rc; |  | 
|  4808   assert( iBlockid!=0 ); |  | 
|  4809  |  | 
|  4810   /* Reconstruct the first term in the leaf for purposes of building |  | 
|  4811   ** the interior node. |  | 
|  4812   */ |  | 
|  4813   n = getVarint32(pWriter->data.pData+iData+1, &nStartingTerm); |  | 
|  4814   pStartingTerm = pWriter->data.pData+iData+1+n; |  | 
|  4815   assert( pWriter->data.nData>iData+1+n+nStartingTerm ); |  | 
|  4816   assert( pWriter->nTermDistinct>0 ); |  | 
|  4817   assert( pWriter->nTermDistinct<=nStartingTerm ); |  | 
|  4818   nStartingTerm = pWriter->nTermDistinct; |  | 
|  4819  |  | 
|  4820   if( pWriter->has_parent ){ |  | 
|  4821     interiorWriterAppend(&pWriter->parentWriter, |  | 
|  4822                          pStartingTerm, nStartingTerm, iBlockid); |  | 
|  4823   }else{ |  | 
|  4824     interiorWriterInit(1, pStartingTerm, nStartingTerm, iBlockid, |  | 
|  4825                        &pWriter->parentWriter); |  | 
|  4826     pWriter->has_parent = 1; |  | 
|  4827   } |  | 
|  4828  |  | 
|  4829   /* Track the span of this segment's leaf nodes. */ |  | 
|  4830   if( pWriter->iEndBlockid==0 ){ |  | 
|  4831     pWriter->iEndBlockid = pWriter->iStartBlockid = iBlockid; |  | 
|  4832   }else{ |  | 
|  4833     pWriter->iEndBlockid++; |  | 
|  4834     assert( iBlockid==pWriter->iEndBlockid ); |  | 
|  4835   } |  | 
|  4836  |  | 
|  4837   return SQLITE_OK; |  | 
|  4838 } |  | 
|  4839 static int leafWriterFlush(fulltext_vtab *v, LeafWriter *pWriter){ |  | 
|  4840   int rc = leafWriterInternalFlush(v, pWriter, 0, pWriter->data.nData); |  | 
|  4841   if( rc!=SQLITE_OK ) return rc; |  | 
|  4842  |  | 
|  4843   /* Re-initialize the output buffer. */ |  | 
|  4844   dataBufferReset(&pWriter->data); |  | 
|  4845  |  | 
|  4846   return SQLITE_OK; |  | 
|  4847 } |  | 
|  4848  |  | 
|  4849 /* Fetch the root info for the segment.  If the entire leaf fits |  | 
|  4850 ** within ROOT_MAX, then it will be returned directly, otherwise it |  | 
|  4851 ** will be flushed and the root info will be returned from the |  | 
|  4852 ** interior node.  *piEndBlockid is set to the blockid of the last |  | 
|  4853 ** interior or leaf node written to disk (0 if none are written at |  | 
|  4854 ** all). |  | 
|  4855 */ |  | 
|  4856 static int leafWriterRootInfo(fulltext_vtab *v, LeafWriter *pWriter, |  | 
|  4857                               char **ppRootInfo, int *pnRootInfo, |  | 
|  4858                               sqlite_int64 *piEndBlockid){ |  | 
|  4859   /* we can fit the segment entirely inline */ |  | 
|  4860   if( !pWriter->has_parent && pWriter->data.nData<ROOT_MAX ){ |  | 
|  4861     *ppRootInfo = pWriter->data.pData; |  | 
|  4862     *pnRootInfo = pWriter->data.nData; |  | 
|  4863     *piEndBlockid = 0; |  | 
|  4864     return SQLITE_OK; |  | 
|  4865   } |  | 
|  4866  |  | 
|  4867   /* Flush remaining leaf data. */ |  | 
|  4868   if( pWriter->data.nData>0 ){ |  | 
|  4869     int rc = leafWriterFlush(v, pWriter); |  | 
|  4870     if( rc!=SQLITE_OK ) return rc; |  | 
|  4871   } |  | 
|  4872  |  | 
|  4873   /* We must have flushed a leaf at some point. */ |  | 
|  4874   assert( pWriter->has_parent ); |  | 
|  4875  |  | 
|  4876   /* Tenatively set the end leaf blockid as the end blockid.  If the |  | 
|  4877   ** interior node can be returned inline, this will be the final |  | 
|  4878   ** blockid, otherwise it will be overwritten by |  | 
|  4879   ** interiorWriterRootInfo(). |  | 
|  4880   */ |  | 
|  4881   *piEndBlockid = pWriter->iEndBlockid; |  | 
|  4882  |  | 
|  4883   return interiorWriterRootInfo(v, &pWriter->parentWriter, |  | 
|  4884                                 ppRootInfo, pnRootInfo, piEndBlockid); |  | 
|  4885 } |  | 
|  4886  |  | 
|  4887 /* Collect the rootInfo data and store it into the segment directory. |  | 
|  4888 ** This has the effect of flushing the segment's leaf data to |  | 
|  4889 ** %_segments, and also flushing any interior nodes to %_segments. |  | 
|  4890 */ |  | 
|  4891 static int leafWriterFinalize(fulltext_vtab *v, LeafWriter *pWriter){ |  | 
|  4892   sqlite_int64 iEndBlockid; |  | 
|  4893   char *pRootInfo; |  | 
|  4894   int rc, nRootInfo; |  | 
|  4895  |  | 
|  4896   rc = leafWriterRootInfo(v, pWriter, &pRootInfo, &nRootInfo, &iEndBlockid); |  | 
|  4897   if( rc!=SQLITE_OK ) return rc; |  | 
|  4898  |  | 
|  4899   /* Don't bother storing an entirely empty segment. */ |  | 
|  4900   if( iEndBlockid==0 && nRootInfo==0 ) return SQLITE_OK; |  | 
|  4901  |  | 
|  4902   return segdir_set(v, pWriter->iLevel, pWriter->idx, |  | 
|  4903                     pWriter->iStartBlockid, pWriter->iEndBlockid, |  | 
|  4904                     iEndBlockid, pRootInfo, nRootInfo); |  | 
|  4905 } |  | 
|  4906  |  | 
|  4907 static void leafWriterDestroy(LeafWriter *pWriter){ |  | 
|  4908   if( pWriter->has_parent ) interiorWriterDestroy(&pWriter->parentWriter); |  | 
|  4909   dataBufferDestroy(&pWriter->term); |  | 
|  4910   dataBufferDestroy(&pWriter->data); |  | 
|  4911 } |  | 
|  4912  |  | 
|  4913 /* Encode a term into the leafWriter, delta-encoding as appropriate. |  | 
|  4914 ** Returns the length of the new term which distinguishes it from the |  | 
|  4915 ** previous term, which can be used to set nTermDistinct when a node |  | 
|  4916 ** boundary is crossed. |  | 
|  4917 */ |  | 
|  4918 static int leafWriterEncodeTerm(LeafWriter *pWriter, |  | 
|  4919                                 const char *pTerm, int nTerm){ |  | 
|  4920   char c[VARINT_MAX+VARINT_MAX]; |  | 
|  4921   int n, nPrefix = 0; |  | 
|  4922  |  | 
|  4923   assert( nTerm>0 ); |  | 
|  4924   while( nPrefix<pWriter->term.nData && |  | 
|  4925          pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){ |  | 
|  4926     nPrefix++; |  | 
|  4927     /* Failing this implies that the terms weren't in order. */ |  | 
|  4928     assert( nPrefix<nTerm ); |  | 
|  4929   } |  | 
|  4930  |  | 
|  4931   if( pWriter->data.nData==0 ){ |  | 
|  4932     /* Encode the node header and leading term as: |  | 
|  4933     **  varint(0) |  | 
|  4934     **  varint(nTerm) |  | 
|  4935     **  char pTerm[nTerm] |  | 
|  4936     */ |  | 
|  4937     n = putVarint(c, '\0'); |  | 
|  4938     n += putVarint(c+n, nTerm); |  | 
|  4939     dataBufferAppend2(&pWriter->data, c, n, pTerm, nTerm); |  | 
|  4940   }else{ |  | 
|  4941     /* Delta-encode the term as: |  | 
|  4942     **  varint(nPrefix) |  | 
|  4943     **  varint(nSuffix) |  | 
|  4944     **  char pTermSuffix[nSuffix] |  | 
|  4945     */ |  | 
|  4946     n = putVarint(c, nPrefix); |  | 
|  4947     n += putVarint(c+n, nTerm-nPrefix); |  | 
|  4948     dataBufferAppend2(&pWriter->data, c, n, pTerm+nPrefix, nTerm-nPrefix); |  | 
|  4949   } |  | 
|  4950   dataBufferReplace(&pWriter->term, pTerm, nTerm); |  | 
|  4951  |  | 
|  4952   return nPrefix+1; |  | 
|  4953 } |  | 
|  4954  |  | 
|  4955 /* Used to avoid a memmove when a large amount of doclist data is in |  | 
|  4956 ** the buffer.  This constructs a node and term header before |  | 
|  4957 ** iDoclistData and flushes the resulting complete node using |  | 
|  4958 ** leafWriterInternalFlush(). |  | 
|  4959 */ |  | 
|  4960 static int leafWriterInlineFlush(fulltext_vtab *v, LeafWriter *pWriter, |  | 
|  4961                                  const char *pTerm, int nTerm, |  | 
|  4962                                  int iDoclistData){ |  | 
|  4963   char c[VARINT_MAX+VARINT_MAX]; |  | 
|  4964   int iData, n = putVarint(c, 0); |  | 
|  4965   n += putVarint(c+n, nTerm); |  | 
|  4966  |  | 
|  4967   /* There should always be room for the header.  Even if pTerm shared |  | 
|  4968   ** a substantial prefix with the previous term, the entire prefix |  | 
|  4969   ** could be constructed from earlier data in the doclist, so there |  | 
|  4970   ** should be room. |  | 
|  4971   */ |  | 
|  4972   assert( iDoclistData>=n+nTerm ); |  | 
|  4973  |  | 
|  4974   iData = iDoclistData-(n+nTerm); |  | 
|  4975   memcpy(pWriter->data.pData+iData, c, n); |  | 
|  4976   memcpy(pWriter->data.pData+iData+n, pTerm, nTerm); |  | 
|  4977  |  | 
|  4978   return leafWriterInternalFlush(v, pWriter, iData, pWriter->data.nData-iData); |  | 
|  4979 } |  | 
|  4980  |  | 
|  4981 /* Push pTerm[nTerm] along with the doclist data to the leaf layer of |  | 
|  4982 ** %_segments. |  | 
|  4983 */ |  | 
|  4984 static int leafWriterStepMerge(fulltext_vtab *v, LeafWriter *pWriter, |  | 
|  4985                                const char *pTerm, int nTerm, |  | 
|  4986                                DLReader *pReaders, int nReaders){ |  | 
|  4987   char c[VARINT_MAX+VARINT_MAX]; |  | 
|  4988   int iTermData = pWriter->data.nData, iDoclistData; |  | 
|  4989   int i, nData, n, nActualData, nActual, rc, nTermDistinct; |  | 
|  4990  |  | 
|  4991   ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData); |  | 
|  4992   nTermDistinct = leafWriterEncodeTerm(pWriter, pTerm, nTerm); |  | 
|  4993  |  | 
|  4994   /* Remember nTermDistinct if opening a new node. */ |  | 
|  4995   if( iTermData==0 ) pWriter->nTermDistinct = nTermDistinct; |  | 
|  4996  |  | 
|  4997   iDoclistData = pWriter->data.nData; |  | 
|  4998  |  | 
|  4999   /* Estimate the length of the merged doclist so we can leave space |  | 
|  5000   ** to encode it. |  | 
|  5001   */ |  | 
|  5002   for(i=0, nData=0; i<nReaders; i++){ |  | 
|  5003     nData += dlrAllDataBytes(&pReaders[i]); |  | 
|  5004   } |  | 
|  5005   n = putVarint(c, nData); |  | 
|  5006   dataBufferAppend(&pWriter->data, c, n); |  | 
|  5007  |  | 
|  5008   rc = docListMerge(&pWriter->data, pReaders, nReaders); |  | 
|  5009   if( rc!= SQLITE_OK ) return rc; |  | 
|  5010   ASSERT_VALID_DOCLIST(DL_DEFAULT, |  | 
|  5011                        pWriter->data.pData+iDoclistData+n, |  | 
|  5012                        pWriter->data.nData-iDoclistData-n, NULL); |  | 
|  5013  |  | 
|  5014   /* The actual amount of doclist data at this point could be smaller |  | 
|  5015   ** than the length we encoded.  Additionally, the space required to |  | 
|  5016   ** encode this length could be smaller.  For small doclists, this is |  | 
|  5017   ** not a big deal, we can just use memmove() to adjust things. |  | 
|  5018   */ |  | 
|  5019   nActualData = pWriter->data.nData-(iDoclistData+n); |  | 
|  5020   nActual = putVarint(c, nActualData); |  | 
|  5021   assert( nActualData<=nData ); |  | 
|  5022   assert( nActual<=n ); |  | 
|  5023  |  | 
|  5024   /* If the new doclist is big enough for force a standalone leaf |  | 
|  5025   ** node, we can immediately flush it inline without doing the |  | 
|  5026   ** memmove(). |  | 
|  5027   */ |  | 
|  5028   /* TODO(shess) This test matches leafWriterStep(), which does this |  | 
|  5029   ** test before it knows the cost to varint-encode the term and |  | 
|  5030   ** doclist lengths.  At some point, change to |  | 
|  5031   ** pWriter->data.nData-iTermData>STANDALONE_MIN. |  | 
|  5032   */ |  | 
|  5033   if( nTerm+nActualData>STANDALONE_MIN ){ |  | 
|  5034     /* Push leaf node from before this term. */ |  | 
|  5035     if( iTermData>0 ){ |  | 
|  5036       rc = leafWriterInternalFlush(v, pWriter, 0, iTermData); |  | 
|  5037       if( rc!=SQLITE_OK ) return rc; |  | 
|  5038  |  | 
|  5039       pWriter->nTermDistinct = nTermDistinct; |  | 
|  5040     } |  | 
|  5041  |  | 
|  5042     /* Fix the encoded doclist length. */ |  | 
|  5043     iDoclistData += n - nActual; |  | 
|  5044     memcpy(pWriter->data.pData+iDoclistData, c, nActual); |  | 
|  5045  |  | 
|  5046     /* Push the standalone leaf node. */ |  | 
|  5047     rc = leafWriterInlineFlush(v, pWriter, pTerm, nTerm, iDoclistData); |  | 
|  5048     if( rc!=SQLITE_OK ) return rc; |  | 
|  5049  |  | 
|  5050     /* Leave the node empty. */ |  | 
|  5051     dataBufferReset(&pWriter->data); |  | 
|  5052  |  | 
|  5053     return rc; |  | 
|  5054   } |  | 
|  5055  |  | 
|  5056   /* At this point, we know that the doclist was small, so do the |  | 
|  5057   ** memmove if indicated. |  | 
|  5058   */ |  | 
|  5059   if( nActual<n ){ |  | 
|  5060     memmove(pWriter->data.pData+iDoclistData+nActual, |  | 
|  5061             pWriter->data.pData+iDoclistData+n, |  | 
|  5062             pWriter->data.nData-(iDoclistData+n)); |  | 
|  5063     pWriter->data.nData -= n-nActual; |  | 
|  5064   } |  | 
|  5065  |  | 
|  5066   /* Replace written length with actual length. */ |  | 
|  5067   memcpy(pWriter->data.pData+iDoclistData, c, nActual); |  | 
|  5068  |  | 
|  5069   /* If the node is too large, break things up. */ |  | 
|  5070   /* TODO(shess) This test matches leafWriterStep(), which does this |  | 
|  5071   ** test before it knows the cost to varint-encode the term and |  | 
|  5072   ** doclist lengths.  At some point, change to |  | 
|  5073   ** pWriter->data.nData>LEAF_MAX. |  | 
|  5074   */ |  | 
|  5075   if( iTermData+nTerm+nActualData>LEAF_MAX ){ |  | 
|  5076     /* Flush out the leading data as a node */ |  | 
|  5077     rc = leafWriterInternalFlush(v, pWriter, 0, iTermData); |  | 
|  5078     if( rc!=SQLITE_OK ) return rc; |  | 
|  5079  |  | 
|  5080     pWriter->nTermDistinct = nTermDistinct; |  | 
|  5081  |  | 
|  5082     /* Rebuild header using the current term */ |  | 
|  5083     n = putVarint(pWriter->data.pData, 0); |  | 
|  5084     n += putVarint(pWriter->data.pData+n, nTerm); |  | 
|  5085     memcpy(pWriter->data.pData+n, pTerm, nTerm); |  | 
|  5086     n += nTerm; |  | 
|  5087  |  | 
|  5088     /* There should always be room, because the previous encoding |  | 
|  5089     ** included all data necessary to construct the term. |  | 
|  5090     */ |  | 
|  5091     assert( n<iDoclistData ); |  | 
|  5092     /* So long as STANDALONE_MIN is half or less of LEAF_MAX, the |  | 
|  5093     ** following memcpy() is safe (as opposed to needing a memmove). |  | 
|  5094     */ |  | 
|  5095     assert( 2*STANDALONE_MIN<=LEAF_MAX ); |  | 
|  5096     assert( n+pWriter->data.nData-iDoclistData<iDoclistData ); |  | 
|  5097     memcpy(pWriter->data.pData+n, |  | 
|  5098            pWriter->data.pData+iDoclistData, |  | 
|  5099            pWriter->data.nData-iDoclistData); |  | 
|  5100     pWriter->data.nData -= iDoclistData-n; |  | 
|  5101   } |  | 
|  5102   ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData); |  | 
|  5103  |  | 
|  5104   return SQLITE_OK; |  | 
|  5105 } |  | 
|  5106  |  | 
|  5107 /* Push pTerm[nTerm] along with the doclist data to the leaf layer of |  | 
|  5108 ** %_segments. |  | 
|  5109 */ |  | 
|  5110 /* TODO(shess) Revise writeZeroSegment() so that doclists are |  | 
|  5111 ** constructed directly in pWriter->data. |  | 
|  5112 */ |  | 
|  5113 static int leafWriterStep(fulltext_vtab *v, LeafWriter *pWriter, |  | 
|  5114                           const char *pTerm, int nTerm, |  | 
|  5115                           const char *pData, int nData){ |  | 
|  5116   int rc; |  | 
|  5117   DLReader reader; |  | 
|  5118  |  | 
|  5119   rc = dlrInit(&reader, DL_DEFAULT, pData, nData); |  | 
|  5120   if( rc!=SQLITE_OK ) return rc; |  | 
|  5121   rc = leafWriterStepMerge(v, pWriter, pTerm, nTerm, &reader, 1); |  | 
|  5122   dlrDestroy(&reader); |  | 
|  5123  |  | 
|  5124   return rc; |  | 
|  5125 } |  | 
|  5126  |  | 
|  5127  |  | 
|  5128 /****************************************************************/ |  | 
|  5129 /* LeafReader is used to iterate over an individual leaf node. */ |  | 
|  5130 typedef struct LeafReader { |  | 
|  5131   DataBuffer term;          /* copy of current term. */ |  | 
|  5132  |  | 
|  5133   const char *pData;        /* data for current term. */ |  | 
|  5134   int nData; |  | 
|  5135 } LeafReader; |  | 
|  5136  |  | 
|  5137 static void leafReaderDestroy(LeafReader *pReader){ |  | 
|  5138   dataBufferDestroy(&pReader->term); |  | 
|  5139   SCRAMBLE(pReader); |  | 
|  5140 } |  | 
|  5141  |  | 
|  5142 static int leafReaderAtEnd(LeafReader *pReader){ |  | 
|  5143   return pReader->nData<=0; |  | 
|  5144 } |  | 
|  5145  |  | 
|  5146 /* Access the current term. */ |  | 
|  5147 static int leafReaderTermBytes(LeafReader *pReader){ |  | 
|  5148   return pReader->term.nData; |  | 
|  5149 } |  | 
|  5150 static const char *leafReaderTerm(LeafReader *pReader){ |  | 
|  5151   assert( pReader->term.nData>0 ); |  | 
|  5152   return pReader->term.pData; |  | 
|  5153 } |  | 
|  5154  |  | 
|  5155 /* Access the doclist data for the current term. */ |  | 
|  5156 static int leafReaderDataBytes(LeafReader *pReader){ |  | 
|  5157   int nData; |  | 
|  5158   assert( pReader->term.nData>0 ); |  | 
|  5159   getVarint32(pReader->pData, &nData); |  | 
|  5160   return nData; |  | 
|  5161 } |  | 
|  5162 static const char *leafReaderData(LeafReader *pReader){ |  | 
|  5163   int n, nData; |  | 
|  5164   assert( pReader->term.nData>0 ); |  | 
|  5165   n = getVarint32Safe(pReader->pData, &nData, pReader->nData); |  | 
|  5166   if( !n || nData>pReader->nData-n ) return NULL; |  | 
|  5167   return pReader->pData+n; |  | 
|  5168 } |  | 
|  5169  |  | 
|  5170 static int leafReaderInit(const char *pData, int nData, LeafReader *pReader){ |  | 
|  5171   int nTerm, n; |  | 
|  5172  |  | 
|  5173   /* All callers check this precondition. */ |  | 
|  5174   assert( nData>0 ); |  | 
|  5175   assert( pData[0]=='\0' ); |  | 
|  5176  |  | 
|  5177   CLEAR(pReader); |  | 
|  5178  |  | 
|  5179   /* Read the first term, skipping the header byte. */ |  | 
|  5180   n = getVarint32Safe(pData+1, &nTerm, nData-1); |  | 
|  5181   if( !n || nTerm<0 || nTerm>nData-1-n ) return SQLITE_CORRUPT_BKPT; |  | 
|  5182   dataBufferInit(&pReader->term, nTerm); |  | 
|  5183   dataBufferReplace(&pReader->term, pData+1+n, nTerm); |  | 
|  5184  |  | 
|  5185   /* Position after the first term. */ |  | 
|  5186   pReader->pData = pData+1+n+nTerm; |  | 
|  5187   pReader->nData = nData-1-n-nTerm; |  | 
|  5188   return SQLITE_OK; |  | 
|  5189 } |  | 
|  5190  |  | 
|  5191 /* Step the reader forward to the next term. */ |  | 
|  5192 static int leafReaderStep(LeafReader *pReader){ |  | 
|  5193   int n, nData, nPrefix, nSuffix; |  | 
|  5194   assert( !leafReaderAtEnd(pReader) ); |  | 
|  5195  |  | 
|  5196   /* Skip previous entry's data block. */ |  | 
|  5197   n = getVarint32Safe(pReader->pData, &nData, pReader->nData); |  | 
|  5198   if( !n || nData<0 || nData>pReader->nData-n ) return SQLITE_CORRUPT_BKPT; |  | 
|  5199   pReader->pData += n+nData; |  | 
|  5200   pReader->nData -= n+nData; |  | 
|  5201  |  | 
|  5202   if( !leafReaderAtEnd(pReader) ){ |  | 
|  5203     /* Construct the new term using a prefix from the old term plus a |  | 
|  5204     ** suffix from the leaf data. |  | 
|  5205     */ |  | 
|  5206     n = getVarint32Safe(pReader->pData, &nPrefix, pReader->nData); |  | 
|  5207     if( !n ) return SQLITE_CORRUPT_BKPT; |  | 
|  5208     pReader->nData -= n; |  | 
|  5209     pReader->pData += n; |  | 
|  5210     n = getVarint32Safe(pReader->pData, &nSuffix, pReader->nData); |  | 
|  5211     if( !n ) return SQLITE_CORRUPT_BKPT; |  | 
|  5212     pReader->nData -= n; |  | 
|  5213     pReader->pData += n; |  | 
|  5214     if( nSuffix<0 || nSuffix>pReader->nData ) return SQLITE_CORRUPT_BKPT; |  | 
|  5215     if( nPrefix<0 || nPrefix>pReader->term.nData ) return SQLITE_CORRUPT_BKPT; |  | 
|  5216     pReader->term.nData = nPrefix; |  | 
|  5217     dataBufferAppend(&pReader->term, pReader->pData, nSuffix); |  | 
|  5218  |  | 
|  5219     pReader->pData += nSuffix; |  | 
|  5220     pReader->nData -= nSuffix; |  | 
|  5221   } |  | 
|  5222   return SQLITE_OK; |  | 
|  5223 } |  | 
|  5224  |  | 
|  5225 /* strcmp-style comparison of pReader's current term against pTerm. |  | 
|  5226 ** If isPrefix, equality means equal through nTerm bytes. |  | 
|  5227 */ |  | 
|  5228 static int leafReaderTermCmp(LeafReader *pReader, |  | 
|  5229                              const char *pTerm, int nTerm, int isPrefix){ |  | 
|  5230   int c, n = pReader->term.nData<nTerm ? pReader->term.nData : nTerm; |  | 
|  5231   if( n==0 ){ |  | 
|  5232     if( pReader->term.nData>0 ) return -1; |  | 
|  5233     if(nTerm>0 ) return 1; |  | 
|  5234     return 0; |  | 
|  5235   } |  | 
|  5236  |  | 
|  5237   c = memcmp(pReader->term.pData, pTerm, n); |  | 
|  5238   if( c!=0 ) return c; |  | 
|  5239   if( isPrefix && n==nTerm ) return 0; |  | 
|  5240   return pReader->term.nData - nTerm; |  | 
|  5241 } |  | 
|  5242  |  | 
|  5243  |  | 
|  5244 /****************************************************************/ |  | 
|  5245 /* LeavesReader wraps LeafReader to allow iterating over the entire |  | 
|  5246 ** leaf layer of the tree. |  | 
|  5247 */ |  | 
|  5248 typedef struct LeavesReader { |  | 
|  5249   int idx;                  /* Index within the segment. */ |  | 
|  5250  |  | 
|  5251   sqlite3_stmt *pStmt;      /* Statement we're streaming leaves from. */ |  | 
|  5252   int eof;                  /* we've seen SQLITE_DONE from pStmt. */ |  | 
|  5253  |  | 
|  5254   LeafReader leafReader;    /* reader for the current leaf. */ |  | 
|  5255   DataBuffer rootData;      /* root data for inline. */ |  | 
|  5256 } LeavesReader; |  | 
|  5257  |  | 
|  5258 /* Access the current term. */ |  | 
|  5259 static int leavesReaderTermBytes(LeavesReader *pReader){ |  | 
|  5260   assert( !pReader->eof ); |  | 
|  5261   return leafReaderTermBytes(&pReader->leafReader); |  | 
|  5262 } |  | 
|  5263 static const char *leavesReaderTerm(LeavesReader *pReader){ |  | 
|  5264   assert( !pReader->eof ); |  | 
|  5265   return leafReaderTerm(&pReader->leafReader); |  | 
|  5266 } |  | 
|  5267  |  | 
|  5268 /* Access the doclist data for the current term. */ |  | 
|  5269 static int leavesReaderDataBytes(LeavesReader *pReader){ |  | 
|  5270   assert( !pReader->eof ); |  | 
|  5271   return leafReaderDataBytes(&pReader->leafReader); |  | 
|  5272 } |  | 
|  5273 static const char *leavesReaderData(LeavesReader *pReader){ |  | 
|  5274   assert( !pReader->eof ); |  | 
|  5275   return leafReaderData(&pReader->leafReader); |  | 
|  5276 } |  | 
|  5277  |  | 
|  5278 static int leavesReaderAtEnd(LeavesReader *pReader){ |  | 
|  5279   return pReader->eof; |  | 
|  5280 } |  | 
|  5281  |  | 
|  5282 /* loadSegmentLeaves() may not read all the way to SQLITE_DONE, thus |  | 
|  5283 ** leaving the statement handle open, which locks the table. |  | 
|  5284 */ |  | 
|  5285 /* TODO(shess) This "solution" is not satisfactory.  Really, there |  | 
|  5286 ** should be check-in function for all statement handles which |  | 
|  5287 ** arranges to call sqlite3_reset().  This most likely will require |  | 
|  5288 ** modification to control flow all over the place, though, so for now |  | 
|  5289 ** just punt. |  | 
|  5290 ** |  | 
|  5291 ** Note the the current system assumes that segment merges will run to |  | 
|  5292 ** completion, which is why this particular probably hasn't arisen in |  | 
|  5293 ** this case.  Probably a brittle assumption. |  | 
|  5294 */ |  | 
|  5295 static int leavesReaderReset(LeavesReader *pReader){ |  | 
|  5296   return sqlite3_reset(pReader->pStmt); |  | 
|  5297 } |  | 
|  5298  |  | 
|  5299 static void leavesReaderDestroy(LeavesReader *pReader){ |  | 
|  5300   /* If idx is -1, that means we're using a non-cached statement |  | 
|  5301   ** handle in the optimize() case, so we need to release it. |  | 
|  5302   */ |  | 
|  5303   if( pReader->pStmt!=NULL && pReader->idx==-1 ){ |  | 
|  5304     sqlite3_finalize(pReader->pStmt); |  | 
|  5305   } |  | 
|  5306   leafReaderDestroy(&pReader->leafReader); |  | 
|  5307   dataBufferDestroy(&pReader->rootData); |  | 
|  5308   SCRAMBLE(pReader); |  | 
|  5309 } |  | 
|  5310  |  | 
|  5311 /* Initialize pReader with the given root data (if iStartBlockid==0 |  | 
|  5312 ** the leaf data was entirely contained in the root), or from the |  | 
|  5313 ** stream of blocks between iStartBlockid and iEndBlockid, inclusive. |  | 
|  5314 */ |  | 
|  5315 /* TODO(shess): Figure out a means of indicating how many leaves are |  | 
|  5316 ** expected, for purposes of detecting corruption. |  | 
|  5317 */ |  | 
|  5318 static int leavesReaderInit(fulltext_vtab *v, |  | 
|  5319                             int idx, |  | 
|  5320                             sqlite_int64 iStartBlockid, |  | 
|  5321                             sqlite_int64 iEndBlockid, |  | 
|  5322                             const char *pRootData, int nRootData, |  | 
|  5323                             LeavesReader *pReader){ |  | 
|  5324   CLEAR(pReader); |  | 
|  5325   pReader->idx = idx; |  | 
|  5326  |  | 
|  5327   dataBufferInit(&pReader->rootData, 0); |  | 
|  5328   if( iStartBlockid==0 ){ |  | 
|  5329     int rc; |  | 
|  5330     /* Corrupt if this can't be a leaf node. */ |  | 
|  5331     if( pRootData==NULL || nRootData<1 || pRootData[0]!='\0' ){ |  | 
|  5332       return SQLITE_CORRUPT_BKPT; |  | 
|  5333     } |  | 
|  5334     /* Entire leaf level fit in root data. */ |  | 
|  5335     dataBufferReplace(&pReader->rootData, pRootData, nRootData); |  | 
|  5336     rc = leafReaderInit(pReader->rootData.pData, pReader->rootData.nData, |  | 
|  5337                         &pReader->leafReader); |  | 
|  5338     if( rc!=SQLITE_OK ){ |  | 
|  5339       dataBufferDestroy(&pReader->rootData); |  | 
|  5340       return rc; |  | 
|  5341     } |  | 
|  5342   }else{ |  | 
|  5343     sqlite3_stmt *s; |  | 
|  5344     int rc = sql_get_leaf_statement(v, idx, &s); |  | 
|  5345     if( rc!=SQLITE_OK ) return rc; |  | 
|  5346  |  | 
|  5347     rc = sqlite3_bind_int64(s, 1, iStartBlockid); |  | 
|  5348     if( rc!=SQLITE_OK ) goto err; |  | 
|  5349  |  | 
|  5350     rc = sqlite3_bind_int64(s, 2, iEndBlockid); |  | 
|  5351     if( rc!=SQLITE_OK ) goto err; |  | 
|  5352  |  | 
|  5353     rc = sqlite3_step(s); |  | 
|  5354  |  | 
|  5355     /* Corrupt if interior node referenced missing leaf node. */ |  | 
|  5356     if( rc==SQLITE_DONE ){ |  | 
|  5357       rc = SQLITE_CORRUPT_BKPT; |  | 
|  5358       goto err; |  | 
|  5359     } |  | 
|  5360  |  | 
|  5361     if( rc!=SQLITE_ROW ) goto err; |  | 
|  5362     rc = SQLITE_OK; |  | 
|  5363  |  | 
|  5364     /* Corrupt if leaf data isn't a blob. */ |  | 
|  5365     if( sqlite3_column_type(s, 0)!=SQLITE_BLOB ){ |  | 
|  5366       rc = SQLITE_CORRUPT_BKPT; |  | 
|  5367     }else{ |  | 
|  5368       const char *pLeafData = sqlite3_column_blob(s, 0); |  | 
|  5369       int nLeafData = sqlite3_column_bytes(s, 0); |  | 
|  5370  |  | 
|  5371       /* Corrupt if this can't be a leaf node. */ |  | 
|  5372       if( pLeafData==NULL || nLeafData<1 || pLeafData[0]!='\0' ){ |  | 
|  5373         rc = SQLITE_CORRUPT_BKPT; |  | 
|  5374       }else{ |  | 
|  5375         rc = leafReaderInit(pLeafData, nLeafData, &pReader->leafReader); |  | 
|  5376       } |  | 
|  5377     } |  | 
|  5378  |  | 
|  5379  err: |  | 
|  5380     if( rc!=SQLITE_OK ){ |  | 
|  5381       if( idx==-1 ){ |  | 
|  5382         sqlite3_finalize(s); |  | 
|  5383       }else{ |  | 
|  5384         sqlite3_reset(s); |  | 
|  5385       } |  | 
|  5386       return rc; |  | 
|  5387     } |  | 
|  5388  |  | 
|  5389     pReader->pStmt = s; |  | 
|  5390   } |  | 
|  5391   return SQLITE_OK; |  | 
|  5392 } |  | 
|  5393  |  | 
|  5394 /* Step the current leaf forward to the next term.  If we reach the |  | 
|  5395 ** end of the current leaf, step forward to the next leaf block. |  | 
|  5396 */ |  | 
|  5397 static int leavesReaderStep(fulltext_vtab *v, LeavesReader *pReader){ |  | 
|  5398   int rc; |  | 
|  5399   assert( !leavesReaderAtEnd(pReader) ); |  | 
|  5400   rc = leafReaderStep(&pReader->leafReader); |  | 
|  5401   if( rc!=SQLITE_OK ) return rc; |  | 
|  5402  |  | 
|  5403   if( leafReaderAtEnd(&pReader->leafReader) ){ |  | 
|  5404     if( pReader->rootData.pData ){ |  | 
|  5405       pReader->eof = 1; |  | 
|  5406       return SQLITE_OK; |  | 
|  5407     } |  | 
|  5408     rc = sqlite3_step(pReader->pStmt); |  | 
|  5409     if( rc!=SQLITE_ROW ){ |  | 
|  5410       pReader->eof = 1; |  | 
|  5411       return rc==SQLITE_DONE ? SQLITE_OK : rc; |  | 
|  5412     } |  | 
|  5413  |  | 
|  5414     /* Corrupt if leaf data isn't a blob. */ |  | 
|  5415     if( sqlite3_column_type(pReader->pStmt, 0)!=SQLITE_BLOB ){ |  | 
|  5416       return SQLITE_CORRUPT_BKPT; |  | 
|  5417     }else{ |  | 
|  5418       LeafReader tmp; |  | 
|  5419       const char *pLeafData = sqlite3_column_blob(pReader->pStmt, 0); |  | 
|  5420       int nLeafData = sqlite3_column_bytes(pReader->pStmt, 0); |  | 
|  5421  |  | 
|  5422       /* Corrupt if this can't be a leaf node. */ |  | 
|  5423       if( pLeafData==NULL || nLeafData<1 || pLeafData[0]!='\0' ){ |  | 
|  5424         return SQLITE_CORRUPT_BKPT; |  | 
|  5425       } |  | 
|  5426  |  | 
|  5427       rc = leafReaderInit(pLeafData, nLeafData, &tmp); |  | 
|  5428       if( rc!=SQLITE_OK ) return rc; |  | 
|  5429       leafReaderDestroy(&pReader->leafReader); |  | 
|  5430       pReader->leafReader = tmp; |  | 
|  5431     } |  | 
|  5432   } |  | 
|  5433   return SQLITE_OK; |  | 
|  5434 } |  | 
|  5435  |  | 
|  5436 /* Order LeavesReaders by their term, ignoring idx.  Readers at eof |  | 
|  5437 ** always sort to the end. |  | 
|  5438 */ |  | 
|  5439 static int leavesReaderTermCmp(LeavesReader *lr1, LeavesReader *lr2){ |  | 
|  5440   if( leavesReaderAtEnd(lr1) ){ |  | 
|  5441     if( leavesReaderAtEnd(lr2) ) return 0; |  | 
|  5442     return 1; |  | 
|  5443   } |  | 
|  5444   if( leavesReaderAtEnd(lr2) ) return -1; |  | 
|  5445  |  | 
|  5446   return leafReaderTermCmp(&lr1->leafReader, |  | 
|  5447                            leavesReaderTerm(lr2), leavesReaderTermBytes(lr2), |  | 
|  5448                            0); |  | 
|  5449 } |  | 
|  5450  |  | 
|  5451 /* Similar to leavesReaderTermCmp(), with additional ordering by idx |  | 
|  5452 ** so that older segments sort before newer segments. |  | 
|  5453 */ |  | 
|  5454 static int leavesReaderCmp(LeavesReader *lr1, LeavesReader *lr2){ |  | 
|  5455   int c = leavesReaderTermCmp(lr1, lr2); |  | 
|  5456   if( c!=0 ) return c; |  | 
|  5457   return lr1->idx-lr2->idx; |  | 
|  5458 } |  | 
|  5459  |  | 
|  5460 /* Assume that pLr[1]..pLr[nLr] are sorted.  Bubble pLr[0] into its |  | 
|  5461 ** sorted position. |  | 
|  5462 */ |  | 
|  5463 static void leavesReaderReorder(LeavesReader *pLr, int nLr){ |  | 
|  5464   while( nLr>1 && leavesReaderCmp(pLr, pLr+1)>0 ){ |  | 
|  5465     LeavesReader tmp = pLr[0]; |  | 
|  5466     pLr[0] = pLr[1]; |  | 
|  5467     pLr[1] = tmp; |  | 
|  5468     nLr--; |  | 
|  5469     pLr++; |  | 
|  5470   } |  | 
|  5471 } |  | 
|  5472  |  | 
|  5473 /* Initializes pReaders with the segments from level iLevel, returning |  | 
|  5474 ** the number of segments in *piReaders.  Leaves pReaders in sorted |  | 
|  5475 ** order. |  | 
|  5476 */ |  | 
|  5477 static int leavesReadersInit(fulltext_vtab *v, int iLevel, |  | 
|  5478                              LeavesReader *pReaders, int *piReaders){ |  | 
|  5479   sqlite3_stmt *s; |  | 
|  5480   int i, rc = sql_get_statement(v, SEGDIR_SELECT_LEVEL_STMT, &s); |  | 
|  5481   if( rc!=SQLITE_OK ) return rc; |  | 
|  5482  |  | 
|  5483   rc = sqlite3_bind_int(s, 1, iLevel); |  | 
|  5484   if( rc!=SQLITE_OK ) return rc; |  | 
|  5485  |  | 
|  5486   i = 0; |  | 
|  5487   while( (rc = sqlite3_step(s))==SQLITE_ROW ){ |  | 
|  5488     sqlite_int64 iStart = sqlite3_column_int64(s, 0); |  | 
|  5489     sqlite_int64 iEnd = sqlite3_column_int64(s, 1); |  | 
|  5490     const char *pRootData = sqlite3_column_blob(s, 2); |  | 
|  5491     int nRootData = sqlite3_column_bytes(s, 2); |  | 
|  5492     sqlite_int64 iIndex = sqlite3_column_int64(s, 3); |  | 
|  5493  |  | 
|  5494     /* Corrupt if we get back different types than we stored. */ |  | 
|  5495     /* Also corrupt if the index is not sequential starting at 0. */ |  | 
|  5496     if( sqlite3_column_type(s, 0)!=SQLITE_INTEGER || |  | 
|  5497         sqlite3_column_type(s, 1)!=SQLITE_INTEGER || |  | 
|  5498         sqlite3_column_type(s, 2)!=SQLITE_BLOB || |  | 
|  5499         i!=iIndex || |  | 
|  5500         i>=MERGE_COUNT ){ |  | 
|  5501       rc = SQLITE_CORRUPT_BKPT; |  | 
|  5502       break; |  | 
|  5503     } |  | 
|  5504  |  | 
|  5505     rc = leavesReaderInit(v, i, iStart, iEnd, pRootData, nRootData, |  | 
|  5506                           &pReaders[i]); |  | 
|  5507     if( rc!=SQLITE_OK ) break; |  | 
|  5508  |  | 
|  5509     i++; |  | 
|  5510   } |  | 
|  5511   if( rc!=SQLITE_DONE ){ |  | 
|  5512     while( i-->0 ){ |  | 
|  5513       leavesReaderDestroy(&pReaders[i]); |  | 
|  5514     } |  | 
|  5515     sqlite3_reset(s);          /* So we don't leave a lock. */ |  | 
|  5516     return rc; |  | 
|  5517   } |  | 
|  5518  |  | 
|  5519   *piReaders = i; |  | 
|  5520  |  | 
|  5521   /* Leave our results sorted by term, then age. */ |  | 
|  5522   while( i-- ){ |  | 
|  5523     leavesReaderReorder(pReaders+i, *piReaders-i); |  | 
|  5524   } |  | 
|  5525   return SQLITE_OK; |  | 
|  5526 } |  | 
|  5527  |  | 
|  5528 /* Merge doclists from pReaders[nReaders] into a single doclist, which |  | 
|  5529 ** is written to pWriter.  Assumes pReaders is ordered oldest to |  | 
|  5530 ** newest. |  | 
|  5531 */ |  | 
|  5532 /* TODO(shess) Consider putting this inline in segmentMerge(). */ |  | 
|  5533 static int leavesReadersMerge(fulltext_vtab *v, |  | 
|  5534                               LeavesReader *pReaders, int nReaders, |  | 
|  5535                               LeafWriter *pWriter){ |  | 
|  5536   DLReader dlReaders[MERGE_COUNT]; |  | 
|  5537   const char *pTerm = leavesReaderTerm(pReaders); |  | 
|  5538   int i, nTerm = leavesReaderTermBytes(pReaders); |  | 
|  5539   int rc; |  | 
|  5540  |  | 
|  5541   assert( nReaders<=MERGE_COUNT ); |  | 
|  5542  |  | 
|  5543   for(i=0; i<nReaders; i++){ |  | 
|  5544     const char *pData = leavesReaderData(pReaders+i); |  | 
|  5545     if( pData==NULL ){ |  | 
|  5546       rc = SQLITE_CORRUPT_BKPT; |  | 
|  5547       break; |  | 
|  5548     } |  | 
|  5549     rc = dlrInit(&dlReaders[i], DL_DEFAULT, |  | 
|  5550                  pData, |  | 
|  5551                  leavesReaderDataBytes(pReaders+i)); |  | 
|  5552     if( rc!=SQLITE_OK ) break; |  | 
|  5553   } |  | 
|  5554   if( rc!=SQLITE_OK ){ |  | 
|  5555     while( i-->0 ){  |  | 
|  5556       dlrDestroy(&dlReaders[i]); |  | 
|  5557     } |  | 
|  5558     return rc; |  | 
|  5559   } |  | 
|  5560  |  | 
|  5561   return leafWriterStepMerge(v, pWriter, pTerm, nTerm, dlReaders, nReaders); |  | 
|  5562 } |  | 
|  5563  |  | 
|  5564 /* Forward ref due to mutual recursion with segdirNextIndex(). */ |  | 
|  5565 static int segmentMerge(fulltext_vtab *v, int iLevel); |  | 
|  5566  |  | 
|  5567 /* Put the next available index at iLevel into *pidx.  If iLevel |  | 
|  5568 ** already has MERGE_COUNT segments, they are merged to a higher |  | 
|  5569 ** level to make room. |  | 
|  5570 */ |  | 
|  5571 static int segdirNextIndex(fulltext_vtab *v, int iLevel, int *pidx){ |  | 
|  5572   int rc = segdir_max_index(v, iLevel, pidx); |  | 
|  5573   if( rc==SQLITE_DONE ){              /* No segments at iLevel. */ |  | 
|  5574     *pidx = 0; |  | 
|  5575   }else if( rc==SQLITE_ROW ){ |  | 
|  5576     if( *pidx==(MERGE_COUNT-1) ){ |  | 
|  5577       rc = segmentMerge(v, iLevel); |  | 
|  5578       if( rc!=SQLITE_OK ) return rc; |  | 
|  5579       *pidx = 0; |  | 
|  5580     }else{ |  | 
|  5581       (*pidx)++; |  | 
|  5582     } |  | 
|  5583   }else{ |  | 
|  5584     return rc; |  | 
|  5585   } |  | 
|  5586   return SQLITE_OK; |  | 
|  5587 } |  | 
|  5588  |  | 
|  5589 /* Merge MERGE_COUNT segments at iLevel into a new segment at |  | 
|  5590 ** iLevel+1.  If iLevel+1 is already full of segments, those will be |  | 
|  5591 ** merged to make room. |  | 
|  5592 */ |  | 
|  5593 static int segmentMerge(fulltext_vtab *v, int iLevel){ |  | 
|  5594   LeafWriter writer; |  | 
|  5595   LeavesReader lrs[MERGE_COUNT]; |  | 
|  5596   int i, rc, idx = 0; |  | 
|  5597  |  | 
|  5598   /* Determine the next available segment index at the next level, |  | 
|  5599   ** merging as necessary. |  | 
|  5600   */ |  | 
|  5601   rc = segdirNextIndex(v, iLevel+1, &idx); |  | 
|  5602   if( rc!=SQLITE_OK ) return rc; |  | 
|  5603  |  | 
|  5604   /* TODO(shess) This assumes that we'll always see exactly |  | 
|  5605   ** MERGE_COUNT segments to merge at a given level.  That will be |  | 
|  5606   ** broken if we allow the developer to request preemptive or |  | 
|  5607   ** deferred merging. |  | 
|  5608   */ |  | 
|  5609   memset(&lrs, '\0', sizeof(lrs)); |  | 
|  5610   rc = leavesReadersInit(v, iLevel, lrs, &i); |  | 
|  5611   if( rc!=SQLITE_OK ) return rc; |  | 
|  5612  |  | 
|  5613   leafWriterInit(iLevel+1, idx, &writer); |  | 
|  5614  |  | 
|  5615   if( i!=MERGE_COUNT ){ |  | 
|  5616     rc = SQLITE_CORRUPT_BKPT; |  | 
|  5617     goto err; |  | 
|  5618   } |  | 
|  5619  |  | 
|  5620   /* Since leavesReaderReorder() pushes readers at eof to the end, |  | 
|  5621   ** when the first reader is empty, all will be empty. |  | 
|  5622   */ |  | 
|  5623   while( !leavesReaderAtEnd(lrs) ){ |  | 
|  5624     /* Figure out how many readers share their next term. */ |  | 
|  5625     for(i=1; i<MERGE_COUNT && !leavesReaderAtEnd(lrs+i); i++){ |  | 
|  5626       if( 0!=leavesReaderTermCmp(lrs, lrs+i) ) break; |  | 
|  5627     } |  | 
|  5628  |  | 
|  5629     rc = leavesReadersMerge(v, lrs, i, &writer); |  | 
|  5630     if( rc!=SQLITE_OK ) goto err; |  | 
|  5631  |  | 
|  5632     /* Step forward those that were merged. */ |  | 
|  5633     while( i-->0 ){ |  | 
|  5634       rc = leavesReaderStep(v, lrs+i); |  | 
|  5635       if( rc!=SQLITE_OK ) goto err; |  | 
|  5636  |  | 
|  5637       /* Reorder by term, then by age. */ |  | 
|  5638       leavesReaderReorder(lrs+i, MERGE_COUNT-i); |  | 
|  5639     } |  | 
|  5640   } |  | 
|  5641  |  | 
|  5642   for(i=0; i<MERGE_COUNT; i++){ |  | 
|  5643     leavesReaderDestroy(&lrs[i]); |  | 
|  5644   } |  | 
|  5645  |  | 
|  5646   rc = leafWriterFinalize(v, &writer); |  | 
|  5647   leafWriterDestroy(&writer); |  | 
|  5648   if( rc!=SQLITE_OK ) return rc; |  | 
|  5649  |  | 
|  5650   /* Delete the merged segment data. */ |  | 
|  5651   return segdir_delete(v, iLevel); |  | 
|  5652  |  | 
|  5653  err: |  | 
|  5654   for(i=0; i<MERGE_COUNT; i++){ |  | 
|  5655     leavesReaderDestroy(&lrs[i]); |  | 
|  5656   } |  | 
|  5657   leafWriterDestroy(&writer); |  | 
|  5658   return rc; |  | 
|  5659 } |  | 
|  5660  |  | 
|  5661 /* Accumulate the union of *acc and *pData into *acc. */ |  | 
|  5662 static int docListAccumulateUnion(DataBuffer *acc, |  | 
|  5663                                   const char *pData, int nData) { |  | 
|  5664   DataBuffer tmp = *acc; |  | 
|  5665   int rc; |  | 
|  5666   dataBufferInit(acc, tmp.nData+nData); |  | 
|  5667   rc = docListUnion(tmp.pData, tmp.nData, pData, nData, acc); |  | 
|  5668   dataBufferDestroy(&tmp); |  | 
|  5669   return rc; |  | 
|  5670 } |  | 
|  5671  |  | 
|  5672 /* TODO(shess) It might be interesting to explore different merge |  | 
|  5673 ** strategies, here.  For instance, since this is a sorted merge, we |  | 
|  5674 ** could easily merge many doclists in parallel.  With some |  | 
|  5675 ** comprehension of the storage format, we could merge all of the |  | 
|  5676 ** doclists within a leaf node directly from the leaf node's storage. |  | 
|  5677 ** It may be worthwhile to merge smaller doclists before larger |  | 
|  5678 ** doclists, since they can be traversed more quickly - but the |  | 
|  5679 ** results may have less overlap, making them more expensive in a |  | 
|  5680 ** different way. |  | 
|  5681 */ |  | 
|  5682  |  | 
|  5683 /* Scan pReader for pTerm/nTerm, and merge the term's doclist over |  | 
|  5684 ** *out (any doclists with duplicate docids overwrite those in *out). |  | 
|  5685 ** Internal function for loadSegmentLeaf(). |  | 
|  5686 */ |  | 
|  5687 static int loadSegmentLeavesInt(fulltext_vtab *v, LeavesReader *pReader, |  | 
|  5688                                 const char *pTerm, int nTerm, int isPrefix, |  | 
|  5689                                 DataBuffer *out){ |  | 
|  5690   /* doclist data is accumulated into pBuffers similar to how one does |  | 
|  5691   ** increment in binary arithmetic.  If index 0 is empty, the data is |  | 
|  5692   ** stored there.  If there is data there, it is merged and the |  | 
|  5693   ** results carried into position 1, with further merge-and-carry |  | 
|  5694   ** until an empty position is found. |  | 
|  5695   */ |  | 
|  5696   DataBuffer *pBuffers = NULL; |  | 
|  5697   int nBuffers = 0, nMaxBuffers = 0, rc; |  | 
|  5698  |  | 
|  5699   assert( nTerm>0 ); |  | 
|  5700  |  | 
|  5701   for(rc=SQLITE_OK; rc==SQLITE_OK && !leavesReaderAtEnd(pReader); |  | 
|  5702       rc=leavesReaderStep(v, pReader)){ |  | 
|  5703     /* TODO(shess) Really want leavesReaderTermCmp(), but that name is |  | 
|  5704     ** already taken to compare the terms of two LeavesReaders.  Think |  | 
|  5705     ** on a better name.  [Meanwhile, break encapsulation rather than |  | 
|  5706     ** use a confusing name.] |  | 
|  5707     */ |  | 
|  5708     int c = leafReaderTermCmp(&pReader->leafReader, pTerm, nTerm, isPrefix); |  | 
|  5709     if( c>0 ) break;      /* Past any possible matches. */ |  | 
|  5710     if( c==0 ){ |  | 
|  5711       int iBuffer, nData; |  | 
|  5712       const char *pData = leavesReaderData(pReader); |  | 
|  5713       if( pData==NULL ){ |  | 
|  5714         rc = SQLITE_CORRUPT_BKPT; |  | 
|  5715         break; |  | 
|  5716       } |  | 
|  5717       nData = leavesReaderDataBytes(pReader); |  | 
|  5718  |  | 
|  5719       /* Find the first empty buffer. */ |  | 
|  5720       for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){ |  | 
|  5721         if( 0==pBuffers[iBuffer].nData ) break; |  | 
|  5722       } |  | 
|  5723  |  | 
|  5724       /* Out of buffers, add an empty one. */ |  | 
|  5725       if( iBuffer==nBuffers ){ |  | 
|  5726         if( nBuffers==nMaxBuffers ){ |  | 
|  5727           DataBuffer *p; |  | 
|  5728           nMaxBuffers += 20; |  | 
|  5729  |  | 
|  5730           /* Manual realloc so we can handle NULL appropriately. */ |  | 
|  5731           p = sqlite3_malloc(nMaxBuffers*sizeof(*pBuffers)); |  | 
|  5732           if( p==NULL ){ |  | 
|  5733             rc = SQLITE_NOMEM; |  | 
|  5734             break; |  | 
|  5735           } |  | 
|  5736  |  | 
|  5737           if( nBuffers>0 ){ |  | 
|  5738             assert(pBuffers!=NULL); |  | 
|  5739             memcpy(p, pBuffers, nBuffers*sizeof(*pBuffers)); |  | 
|  5740             sqlite3_free(pBuffers); |  | 
|  5741           } |  | 
|  5742           pBuffers = p; |  | 
|  5743         } |  | 
|  5744         dataBufferInit(&(pBuffers[nBuffers]), 0); |  | 
|  5745         nBuffers++; |  | 
|  5746       } |  | 
|  5747  |  | 
|  5748       /* At this point, must have an empty at iBuffer. */ |  | 
|  5749       assert(iBuffer<nBuffers && pBuffers[iBuffer].nData==0); |  | 
|  5750  |  | 
|  5751       /* If empty was first buffer, no need for merge logic. */ |  | 
|  5752       if( iBuffer==0 ){ |  | 
|  5753         dataBufferReplace(&(pBuffers[0]), pData, nData); |  | 
|  5754       }else{ |  | 
|  5755         /* pAcc is the empty buffer the merged data will end up in. */ |  | 
|  5756         DataBuffer *pAcc = &(pBuffers[iBuffer]); |  | 
|  5757         DataBuffer *p = &(pBuffers[0]); |  | 
|  5758  |  | 
|  5759         /* Handle position 0 specially to avoid need to prime pAcc |  | 
|  5760         ** with pData/nData. |  | 
|  5761         */ |  | 
|  5762         dataBufferSwap(p, pAcc); |  | 
|  5763         rc = docListAccumulateUnion(pAcc, pData, nData); |  | 
|  5764         if( rc!=SQLITE_OK ) goto err; |  | 
|  5765  |  | 
|  5766         /* Accumulate remaining doclists into pAcc. */ |  | 
|  5767         for(++p; p<pAcc; ++p){ |  | 
|  5768           rc = docListAccumulateUnion(pAcc, p->pData, p->nData); |  | 
|  5769           if( rc!=SQLITE_OK ) goto err; |  | 
|  5770  |  | 
|  5771           /* dataBufferReset() could allow a large doclist to blow up |  | 
|  5772           ** our memory requirements. |  | 
|  5773           */ |  | 
|  5774           if( p->nCapacity<1024 ){ |  | 
|  5775             dataBufferReset(p); |  | 
|  5776           }else{ |  | 
|  5777             dataBufferDestroy(p); |  | 
|  5778             dataBufferInit(p, 0); |  | 
|  5779           } |  | 
|  5780         } |  | 
|  5781       } |  | 
|  5782     } |  | 
|  5783   } |  | 
|  5784  |  | 
|  5785   /* Union all the doclists together into *out. */ |  | 
|  5786   /* TODO(shess) What if *out is big?  Sigh. */ |  | 
|  5787   if( rc==SQLITE_OK && nBuffers>0 ){ |  | 
|  5788     int iBuffer; |  | 
|  5789     for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){ |  | 
|  5790       if( pBuffers[iBuffer].nData>0 ){ |  | 
|  5791         if( out->nData==0 ){ |  | 
|  5792           dataBufferSwap(out, &(pBuffers[iBuffer])); |  | 
|  5793         }else{ |  | 
|  5794           rc = docListAccumulateUnion(out, pBuffers[iBuffer].pData, |  | 
|  5795                                       pBuffers[iBuffer].nData); |  | 
|  5796           if( rc!=SQLITE_OK ) break; |  | 
|  5797         } |  | 
|  5798       } |  | 
|  5799     } |  | 
|  5800   } |  | 
|  5801  |  | 
|  5802 err: |  | 
|  5803   while( nBuffers-- ){ |  | 
|  5804     dataBufferDestroy(&(pBuffers[nBuffers])); |  | 
|  5805   } |  | 
|  5806   if( pBuffers!=NULL ) sqlite3_free(pBuffers); |  | 
|  5807  |  | 
|  5808   return rc; |  | 
|  5809 } |  | 
|  5810  |  | 
|  5811 /* Call loadSegmentLeavesInt() with pData/nData as input. */ |  | 
|  5812 static int loadSegmentLeaf(fulltext_vtab *v, const char *pData, int nData, |  | 
|  5813                            const char *pTerm, int nTerm, int isPrefix, |  | 
|  5814                            DataBuffer *out){ |  | 
|  5815   LeavesReader reader; |  | 
|  5816   int rc; |  | 
|  5817  |  | 
|  5818   assert( nData>1 ); |  | 
|  5819   assert( *pData=='\0' ); |  | 
|  5820   rc = leavesReaderInit(v, 0, 0, 0, pData, nData, &reader); |  | 
|  5821   if( rc!=SQLITE_OK ) return rc; |  | 
|  5822  |  | 
|  5823   rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out); |  | 
|  5824   leavesReaderReset(&reader); |  | 
|  5825   leavesReaderDestroy(&reader); |  | 
|  5826   return rc; |  | 
|  5827 } |  | 
|  5828  |  | 
|  5829 /* Call loadSegmentLeavesInt() with the leaf nodes from iStartLeaf to |  | 
|  5830 ** iEndLeaf (inclusive) as input, and merge the resulting doclist into |  | 
|  5831 ** out. |  | 
|  5832 */ |  | 
|  5833 static int loadSegmentLeaves(fulltext_vtab *v, |  | 
|  5834                              sqlite_int64 iStartLeaf, sqlite_int64 iEndLeaf, |  | 
|  5835                              const char *pTerm, int nTerm, int isPrefix, |  | 
|  5836                              DataBuffer *out){ |  | 
|  5837   int rc; |  | 
|  5838   LeavesReader reader; |  | 
|  5839  |  | 
|  5840   assert( iStartLeaf<=iEndLeaf ); |  | 
|  5841   rc = leavesReaderInit(v, 0, iStartLeaf, iEndLeaf, NULL, 0, &reader); |  | 
|  5842   if( rc!=SQLITE_OK ) return rc; |  | 
|  5843  |  | 
|  5844   rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out); |  | 
|  5845   leavesReaderReset(&reader); |  | 
|  5846   leavesReaderDestroy(&reader); |  | 
|  5847   return rc; |  | 
|  5848 } |  | 
|  5849  |  | 
|  5850 /* Taking pData/nData as an interior node, find the sequence of child |  | 
|  5851 ** nodes which could include pTerm/nTerm/isPrefix.  Note that the |  | 
|  5852 ** interior node terms logically come between the blocks, so there is |  | 
|  5853 ** one more blockid than there are terms (that block contains terms >= |  | 
|  5854 ** the last interior-node term). |  | 
|  5855 */ |  | 
|  5856 /* TODO(shess) The calling code may already know that the end child is |  | 
|  5857 ** not worth calculating, because the end may be in a later sibling |  | 
|  5858 ** node.  Consider whether breaking symmetry is worthwhile.  I suspect |  | 
|  5859 ** it is not worthwhile. |  | 
|  5860 */ |  | 
|  5861 static int getChildrenContaining(const char *pData, int nData, |  | 
|  5862                                  const char *pTerm, int nTerm, int isPrefix, |  | 
|  5863                                  sqlite_int64 *piStartChild, |  | 
|  5864                                  sqlite_int64 *piEndChild){ |  | 
|  5865   InteriorReader reader; |  | 
|  5866   int rc; |  | 
|  5867  |  | 
|  5868   assert( nData>1 ); |  | 
|  5869   assert( *pData!='\0' ); |  | 
|  5870   rc = interiorReaderInit(pData, nData, &reader); |  | 
|  5871   if( rc!=SQLITE_OK ) return rc; |  | 
|  5872  |  | 
|  5873   /* Scan for the first child which could contain pTerm/nTerm. */ |  | 
|  5874   while( !interiorReaderAtEnd(&reader) ){ |  | 
|  5875     if( interiorReaderTermCmp(&reader, pTerm, nTerm, 0)>0 ) break; |  | 
|  5876     rc = interiorReaderStep(&reader); |  | 
|  5877     if( rc!=SQLITE_OK ){ |  | 
|  5878       interiorReaderDestroy(&reader); |  | 
|  5879       return rc; |  | 
|  5880     } |  | 
|  5881   } |  | 
|  5882   *piStartChild = interiorReaderCurrentBlockid(&reader); |  | 
|  5883  |  | 
|  5884   /* Keep scanning to find a term greater than our term, using prefix |  | 
|  5885   ** comparison if indicated.  If isPrefix is false, this will be the |  | 
|  5886   ** same blockid as the starting block. |  | 
|  5887   */ |  | 
|  5888   while( !interiorReaderAtEnd(&reader) ){ |  | 
|  5889     if( interiorReaderTermCmp(&reader, pTerm, nTerm, isPrefix)>0 ) break; |  | 
|  5890     rc = interiorReaderStep(&reader); |  | 
|  5891     if( rc!=SQLITE_OK ){ |  | 
|  5892       interiorReaderDestroy(&reader); |  | 
|  5893       return rc; |  | 
|  5894     } |  | 
|  5895   } |  | 
|  5896   *piEndChild = interiorReaderCurrentBlockid(&reader); |  | 
|  5897  |  | 
|  5898   interiorReaderDestroy(&reader); |  | 
|  5899  |  | 
|  5900   /* Children must ascend, and if !prefix, both must be the same. */ |  | 
|  5901   assert( *piEndChild>=*piStartChild ); |  | 
|  5902   assert( isPrefix || *piStartChild==*piEndChild ); |  | 
|  5903   return rc; |  | 
|  5904 } |  | 
|  5905  |  | 
|  5906 /* Read block at iBlockid and pass it with other params to |  | 
|  5907 ** getChildrenContaining(). |  | 
|  5908 */ |  | 
|  5909 static int loadAndGetChildrenContaining( |  | 
|  5910   fulltext_vtab *v, |  | 
|  5911   sqlite_int64 iBlockid, |  | 
|  5912   const char *pTerm, int nTerm, int isPrefix, |  | 
|  5913   sqlite_int64 *piStartChild, sqlite_int64 *piEndChild |  | 
|  5914 ){ |  | 
|  5915   sqlite3_stmt *s = NULL; |  | 
|  5916   int rc; |  | 
|  5917  |  | 
|  5918   assert( iBlockid!=0 ); |  | 
|  5919   assert( pTerm!=NULL ); |  | 
|  5920   assert( nTerm!=0 );        /* TODO(shess) Why not allow this? */ |  | 
|  5921   assert( piStartChild!=NULL ); |  | 
|  5922   assert( piEndChild!=NULL ); |  | 
|  5923  |  | 
|  5924   rc = sql_get_statement(v, BLOCK_SELECT_STMT, &s); |  | 
|  5925   if( rc!=SQLITE_OK ) return rc; |  | 
|  5926  |  | 
|  5927   rc = sqlite3_bind_int64(s, 1, iBlockid); |  | 
|  5928   if( rc!=SQLITE_OK ) return rc; |  | 
|  5929  |  | 
|  5930   rc = sqlite3_step(s); |  | 
|  5931   /* Corrupt if interior node references missing child node. */ |  | 
|  5932   if( rc==SQLITE_DONE ) return SQLITE_CORRUPT_BKPT; |  | 
|  5933   if( rc!=SQLITE_ROW ) return rc; |  | 
|  5934  |  | 
|  5935   /* Corrupt if child node isn't a blob. */ |  | 
|  5936   if( sqlite3_column_type(s, 0)!=SQLITE_BLOB ){ |  | 
|  5937     sqlite3_reset(s);         /* So we don't leave a lock. */ |  | 
|  5938     return SQLITE_CORRUPT_BKPT; |  | 
|  5939   }else{ |  | 
|  5940     const char *pData = sqlite3_column_blob(s, 0); |  | 
|  5941     int nData = sqlite3_column_bytes(s, 0); |  | 
|  5942  |  | 
|  5943     /* Corrupt if child is not a valid interior node. */ |  | 
|  5944     if( pData==NULL || nData<1 || pData[0]=='\0' ){ |  | 
|  5945       sqlite3_reset(s);         /* So we don't leave a lock. */ |  | 
|  5946       return SQLITE_CORRUPT_BKPT; |  | 
|  5947     } |  | 
|  5948  |  | 
|  5949     rc = getChildrenContaining(pData, nData, pTerm, nTerm, |  | 
|  5950                                isPrefix, piStartChild, piEndChild); |  | 
|  5951     if( rc!=SQLITE_OK ){ |  | 
|  5952       sqlite3_reset(s); |  | 
|  5953       return rc; |  | 
|  5954     } |  | 
|  5955   } |  | 
|  5956  |  | 
|  5957   /* We expect only one row.  We must execute another sqlite3_step() |  | 
|  5958    * to complete the iteration; otherwise the table will remain |  | 
|  5959    * locked. */ |  | 
|  5960   rc = sqlite3_step(s); |  | 
|  5961   if( rc==SQLITE_ROW ) return SQLITE_ERROR; |  | 
|  5962   if( rc!=SQLITE_DONE ) return rc; |  | 
|  5963  |  | 
|  5964   return SQLITE_OK; |  | 
|  5965 } |  | 
|  5966  |  | 
|  5967 /* Traverse the tree represented by pData[nData] looking for |  | 
|  5968 ** pTerm[nTerm], placing its doclist into *out.  This is internal to |  | 
|  5969 ** loadSegment() to make error-handling cleaner. |  | 
|  5970 */ |  | 
|  5971 static int loadSegmentInt(fulltext_vtab *v, const char *pData, int nData, |  | 
|  5972                           sqlite_int64 iLeavesEnd, |  | 
|  5973                           const char *pTerm, int nTerm, int isPrefix, |  | 
|  5974                           DataBuffer *out){ |  | 
|  5975   /* Special case where root is a leaf. */ |  | 
|  5976   if( *pData=='\0' ){ |  | 
|  5977     return loadSegmentLeaf(v, pData, nData, pTerm, nTerm, isPrefix, out); |  | 
|  5978   }else{ |  | 
|  5979     int rc; |  | 
|  5980     sqlite_int64 iStartChild, iEndChild; |  | 
|  5981  |  | 
|  5982     /* Process pData as an interior node, then loop down the tree |  | 
|  5983     ** until we find the set of leaf nodes to scan for the term. |  | 
|  5984     */ |  | 
|  5985     rc = getChildrenContaining(pData, nData, pTerm, nTerm, isPrefix, |  | 
|  5986                                &iStartChild, &iEndChild); |  | 
|  5987     if( rc!=SQLITE_OK ) return rc; |  | 
|  5988     while( iStartChild>iLeavesEnd ){ |  | 
|  5989       sqlite_int64 iNextStart, iNextEnd; |  | 
|  5990       rc = loadAndGetChildrenContaining(v, iStartChild, pTerm, nTerm, isPrefix, |  | 
|  5991                                         &iNextStart, &iNextEnd); |  | 
|  5992       if( rc!=SQLITE_OK ) return rc; |  | 
|  5993  |  | 
|  5994       /* If we've branched, follow the end branch, too. */ |  | 
|  5995       if( iStartChild!=iEndChild ){ |  | 
|  5996         sqlite_int64 iDummy; |  | 
|  5997         rc = loadAndGetChildrenContaining(v, iEndChild, pTerm, nTerm, isPrefix, |  | 
|  5998                                           &iDummy, &iNextEnd); |  | 
|  5999         if( rc!=SQLITE_OK ) return rc; |  | 
|  6000       } |  | 
|  6001  |  | 
|  6002       assert( iNextStart<=iNextEnd ); |  | 
|  6003       iStartChild = iNextStart; |  | 
|  6004       iEndChild = iNextEnd; |  | 
|  6005     } |  | 
|  6006     assert( iStartChild<=iLeavesEnd ); |  | 
|  6007     assert( iEndChild<=iLeavesEnd ); |  | 
|  6008  |  | 
|  6009     /* Scan through the leaf segments for doclists. */ |  | 
|  6010     return loadSegmentLeaves(v, iStartChild, iEndChild, |  | 
|  6011                              pTerm, nTerm, isPrefix, out); |  | 
|  6012   } |  | 
|  6013 } |  | 
|  6014  |  | 
|  6015 /* Call loadSegmentInt() to collect the doclist for pTerm/nTerm, then |  | 
|  6016 ** merge its doclist over *out (any duplicate doclists read from the |  | 
|  6017 ** segment rooted at pData will overwrite those in *out). |  | 
|  6018 */ |  | 
|  6019 /* TODO(shess) Consider changing this to determine the depth of the |  | 
|  6020 ** leaves using either the first characters of interior nodes (when |  | 
|  6021 ** ==1, we're one level above the leaves), or the first character of |  | 
|  6022 ** the root (which will describe the height of the tree directly). |  | 
|  6023 ** Either feels somewhat tricky to me. |  | 
|  6024 */ |  | 
|  6025 /* TODO(shess) The current merge is likely to be slow for large |  | 
|  6026 ** doclists (though it should process from newest/smallest to |  | 
|  6027 ** oldest/largest, so it may not be that bad).  It might be useful to |  | 
|  6028 ** modify things to allow for N-way merging.  This could either be |  | 
|  6029 ** within a segment, with pairwise merges across segments, or across |  | 
|  6030 ** all segments at once. |  | 
|  6031 */ |  | 
|  6032 static int loadSegment(fulltext_vtab *v, const char *pData, int nData, |  | 
|  6033                        sqlite_int64 iLeavesEnd, |  | 
|  6034                        const char *pTerm, int nTerm, int isPrefix, |  | 
|  6035                        DataBuffer *out){ |  | 
|  6036   DataBuffer result; |  | 
|  6037   int rc; |  | 
|  6038  |  | 
|  6039   /* Corrupt if segment root can't be valid. */ |  | 
|  6040   if( pData==NULL || nData<1 ) return SQLITE_CORRUPT_BKPT; |  | 
|  6041  |  | 
|  6042   /* This code should never be called with buffered updates. */ |  | 
|  6043   assert( v->nPendingData<0 ); |  | 
|  6044  |  | 
|  6045   dataBufferInit(&result, 0); |  | 
|  6046   rc = loadSegmentInt(v, pData, nData, iLeavesEnd, |  | 
|  6047                       pTerm, nTerm, isPrefix, &result); |  | 
|  6048   if( rc==SQLITE_OK && result.nData>0 ){ |  | 
|  6049     if( out->nData==0 ){ |  | 
|  6050       DataBuffer tmp = *out; |  | 
|  6051       *out = result; |  | 
|  6052       result = tmp; |  | 
|  6053     }else{ |  | 
|  6054       DataBuffer merged; |  | 
|  6055       DLReader readers[2]; |  | 
|  6056  |  | 
|  6057       rc = dlrInit(&readers[0], DL_DEFAULT, out->pData, out->nData); |  | 
|  6058       if( rc==SQLITE_OK ){ |  | 
|  6059         rc = dlrInit(&readers[1], DL_DEFAULT, result.pData, result.nData); |  | 
|  6060         if( rc==SQLITE_OK ){ |  | 
|  6061           dataBufferInit(&merged, out->nData+result.nData); |  | 
|  6062           rc = docListMerge(&merged, readers, 2); |  | 
|  6063           dataBufferDestroy(out); |  | 
|  6064           *out = merged; |  | 
|  6065           dlrDestroy(&readers[1]); |  | 
|  6066         } |  | 
|  6067         dlrDestroy(&readers[0]); |  | 
|  6068       } |  | 
|  6069     } |  | 
|  6070   } |  | 
|  6071  |  | 
|  6072   dataBufferDestroy(&result); |  | 
|  6073   return rc; |  | 
|  6074 } |  | 
|  6075  |  | 
|  6076 /* Scan the database and merge together the posting lists for the term |  | 
|  6077 ** into *out. |  | 
|  6078 */ |  | 
|  6079 static int termSelect(fulltext_vtab *v, int iColumn, |  | 
|  6080                       const char *pTerm, int nTerm, int isPrefix, |  | 
|  6081                       DocListType iType, DataBuffer *out){ |  | 
|  6082   DataBuffer doclist; |  | 
|  6083   sqlite3_stmt *s; |  | 
|  6084   int rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s); |  | 
|  6085   if( rc!=SQLITE_OK ) return rc; |  | 
|  6086  |  | 
|  6087   /* This code should never be called with buffered updates. */ |  | 
|  6088   assert( v->nPendingData<0 ); |  | 
|  6089  |  | 
|  6090   dataBufferInit(&doclist, 0); |  | 
|  6091  |  | 
|  6092   /* Traverse the segments from oldest to newest so that newer doclist |  | 
|  6093   ** elements for given docids overwrite older elements. |  | 
|  6094   */ |  | 
|  6095   while( (rc = sqlite3_step(s))==SQLITE_ROW ){ |  | 
|  6096     const char *pData = sqlite3_column_blob(s, 2); |  | 
|  6097     const int nData = sqlite3_column_bytes(s, 2); |  | 
|  6098     const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1); |  | 
|  6099  |  | 
|  6100     /* Corrupt if we get back different types than we stored. */ |  | 
|  6101     if( sqlite3_column_type(s, 1)!=SQLITE_INTEGER || |  | 
|  6102         sqlite3_column_type(s, 2)!=SQLITE_BLOB ){ |  | 
|  6103       rc = SQLITE_CORRUPT_BKPT; |  | 
|  6104       goto err; |  | 
|  6105     } |  | 
|  6106  |  | 
|  6107     rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, isPrefix, |  | 
|  6108                      &doclist); |  | 
|  6109     if( rc!=SQLITE_OK ) goto err; |  | 
|  6110   } |  | 
|  6111   if( rc==SQLITE_DONE ){ |  | 
|  6112     rc = SQLITE_OK; |  | 
|  6113     if( doclist.nData!=0 ){ |  | 
|  6114       /* TODO(shess) The old term_select_all() code applied the column |  | 
|  6115       ** restrict as we merged segments, leading to smaller buffers. |  | 
|  6116       ** This is probably worthwhile to bring back, once the new storage |  | 
|  6117       ** system is checked in. |  | 
|  6118       */ |  | 
|  6119       if( iColumn==v->nColumn) iColumn = -1; |  | 
|  6120       rc = docListTrim(DL_DEFAULT, doclist.pData, doclist.nData, |  | 
|  6121                        iColumn, iType, out); |  | 
|  6122     } |  | 
|  6123   } |  | 
|  6124  |  | 
|  6125  err: |  | 
|  6126   sqlite3_reset(s);         /* So we don't leave a lock. */ |  | 
|  6127   dataBufferDestroy(&doclist); |  | 
|  6128   return rc; |  | 
|  6129 } |  | 
|  6130  |  | 
|  6131 /****************************************************************/ |  | 
|  6132 /* Used to hold hashtable data for sorting. */ |  | 
|  6133 typedef struct TermData { |  | 
|  6134   const char *pTerm; |  | 
|  6135   int nTerm; |  | 
|  6136   DLCollector *pCollector; |  | 
|  6137 } TermData; |  | 
|  6138  |  | 
|  6139 /* Orders TermData elements in strcmp fashion ( <0 for less-than, 0 |  | 
|  6140 ** for equal, >0 for greater-than). |  | 
|  6141 */ |  | 
|  6142 static int termDataCmp(const void *av, const void *bv){ |  | 
|  6143   const TermData *a = (const TermData *)av; |  | 
|  6144   const TermData *b = (const TermData *)bv; |  | 
|  6145   int n = a->nTerm<b->nTerm ? a->nTerm : b->nTerm; |  | 
|  6146   int c = memcmp(a->pTerm, b->pTerm, n); |  | 
|  6147   if( c!=0 ) return c; |  | 
|  6148   return a->nTerm-b->nTerm; |  | 
|  6149 } |  | 
|  6150  |  | 
|  6151 /* Order pTerms data by term, then write a new level 0 segment using |  | 
|  6152 ** LeafWriter. |  | 
|  6153 */ |  | 
|  6154 static int writeZeroSegment(fulltext_vtab *v, fts2Hash *pTerms){ |  | 
|  6155   fts2HashElem *e; |  | 
|  6156   int idx, rc, i, n; |  | 
|  6157   TermData *pData; |  | 
|  6158   LeafWriter writer; |  | 
|  6159   DataBuffer dl; |  | 
|  6160  |  | 
|  6161   /* Determine the next index at level 0, merging as necessary. */ |  | 
|  6162   rc = segdirNextIndex(v, 0, &idx); |  | 
|  6163   if( rc!=SQLITE_OK ) return rc; |  | 
|  6164  |  | 
|  6165   n = fts2HashCount(pTerms); |  | 
|  6166   pData = sqlite3_malloc(n*sizeof(TermData)); |  | 
|  6167  |  | 
|  6168   for(i = 0, e = fts2HashFirst(pTerms); e; i++, e = fts2HashNext(e)){ |  | 
|  6169     assert( i<n ); |  | 
|  6170     pData[i].pTerm = fts2HashKey(e); |  | 
|  6171     pData[i].nTerm = fts2HashKeysize(e); |  | 
|  6172     pData[i].pCollector = fts2HashData(e); |  | 
|  6173   } |  | 
|  6174   assert( i==n ); |  | 
|  6175  |  | 
|  6176   /* TODO(shess) Should we allow user-defined collation sequences, |  | 
|  6177   ** here?  I think we only need that once we support prefix searches. |  | 
|  6178   */ |  | 
|  6179   if( n>1 ) qsort(pData, n, sizeof(*pData), termDataCmp); |  | 
|  6180  |  | 
|  6181   /* TODO(shess) Refactor so that we can write directly to the segment |  | 
|  6182   ** DataBuffer, as happens for segment merges. |  | 
|  6183   */ |  | 
|  6184   leafWriterInit(0, idx, &writer); |  | 
|  6185   dataBufferInit(&dl, 0); |  | 
|  6186   for(i=0; i<n; i++){ |  | 
|  6187     dataBufferReset(&dl); |  | 
|  6188     dlcAddDoclist(pData[i].pCollector, &dl); |  | 
|  6189     rc = leafWriterStep(v, &writer, |  | 
|  6190                         pData[i].pTerm, pData[i].nTerm, dl.pData, dl.nData); |  | 
|  6191     if( rc!=SQLITE_OK ) goto err; |  | 
|  6192   } |  | 
|  6193   rc = leafWriterFinalize(v, &writer); |  | 
|  6194  |  | 
|  6195  err: |  | 
|  6196   dataBufferDestroy(&dl); |  | 
|  6197   sqlite3_free(pData); |  | 
|  6198   leafWriterDestroy(&writer); |  | 
|  6199   return rc; |  | 
|  6200 } |  | 
|  6201  |  | 
|  6202 /* If pendingTerms has data, free it. */ |  | 
|  6203 static int clearPendingTerms(fulltext_vtab *v){ |  | 
|  6204   if( v->nPendingData>=0 ){ |  | 
|  6205     fts2HashElem *e; |  | 
|  6206     for(e=fts2HashFirst(&v->pendingTerms); e; e=fts2HashNext(e)){ |  | 
|  6207       dlcDelete(fts2HashData(e)); |  | 
|  6208     } |  | 
|  6209     fts2HashClear(&v->pendingTerms); |  | 
|  6210     v->nPendingData = -1; |  | 
|  6211   } |  | 
|  6212   return SQLITE_OK; |  | 
|  6213 } |  | 
|  6214  |  | 
|  6215 /* If pendingTerms has data, flush it to a level-zero segment, and |  | 
|  6216 ** free it. |  | 
|  6217 */ |  | 
|  6218 static int flushPendingTerms(fulltext_vtab *v){ |  | 
|  6219   if( v->nPendingData>=0 ){ |  | 
|  6220     int rc = writeZeroSegment(v, &v->pendingTerms); |  | 
|  6221     if( rc==SQLITE_OK ) clearPendingTerms(v); |  | 
|  6222     return rc; |  | 
|  6223   } |  | 
|  6224   return SQLITE_OK; |  | 
|  6225 } |  | 
|  6226  |  | 
|  6227 /* If pendingTerms is "too big", or docid is out of order, flush it. |  | 
|  6228 ** Regardless, be certain that pendingTerms is initialized for use. |  | 
|  6229 */ |  | 
|  6230 static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid){ |  | 
|  6231   /* TODO(shess) Explore whether partially flushing the buffer on |  | 
|  6232   ** forced-flush would provide better performance.  I suspect that if |  | 
|  6233   ** we ordered the doclists by size and flushed the largest until the |  | 
|  6234   ** buffer was half empty, that would let the less frequent terms |  | 
|  6235   ** generate longer doclists. |  | 
|  6236   */ |  | 
|  6237   if( iDocid<=v->iPrevDocid || v->nPendingData>kPendingThreshold ){ |  | 
|  6238     int rc = flushPendingTerms(v); |  | 
|  6239     if( rc!=SQLITE_OK ) return rc; |  | 
|  6240   } |  | 
|  6241   if( v->nPendingData<0 ){ |  | 
|  6242     fts2HashInit(&v->pendingTerms, FTS2_HASH_STRING, 1); |  | 
|  6243     v->nPendingData = 0; |  | 
|  6244   } |  | 
|  6245   v->iPrevDocid = iDocid; |  | 
|  6246   return SQLITE_OK; |  | 
|  6247 } |  | 
|  6248  |  | 
|  6249 /* This function implements the xUpdate callback; it is the top-level entry |  | 
|  6250  * point for inserting, deleting or updating a row in a full-text table. */ |  | 
|  6251 static int fulltextUpdate(sqlite3_vtab *pVtab, int nArg, sqlite3_value **ppArg, |  | 
|  6252                    sqlite_int64 *pRowid){ |  | 
|  6253   fulltext_vtab *v = (fulltext_vtab *) pVtab; |  | 
|  6254   int rc; |  | 
|  6255  |  | 
|  6256   TRACE(("FTS2 Update %p\n", pVtab)); |  | 
|  6257  |  | 
|  6258   if( nArg<2 ){ |  | 
|  6259     rc = index_delete(v, sqlite3_value_int64(ppArg[0])); |  | 
|  6260     if( rc==SQLITE_OK ){ |  | 
|  6261       /* If we just deleted the last row in the table, clear out the |  | 
|  6262       ** index data. |  | 
|  6263       */ |  | 
|  6264       rc = content_exists(v); |  | 
|  6265       if( rc==SQLITE_ROW ){ |  | 
|  6266         rc = SQLITE_OK; |  | 
|  6267       }else if( rc==SQLITE_DONE ){ |  | 
|  6268         /* Clear the pending terms so we don't flush a useless level-0 |  | 
|  6269         ** segment when the transaction closes. |  | 
|  6270         */ |  | 
|  6271         rc = clearPendingTerms(v); |  | 
|  6272         if( rc==SQLITE_OK ){ |  | 
|  6273           rc = segdir_delete_all(v); |  | 
|  6274         } |  | 
|  6275       } |  | 
|  6276     } |  | 
|  6277   } else if( sqlite3_value_type(ppArg[0]) != SQLITE_NULL ){ |  | 
|  6278     /* An update: |  | 
|  6279      * ppArg[0] = old rowid |  | 
|  6280      * ppArg[1] = new rowid |  | 
|  6281      * ppArg[2..2+v->nColumn-1] = values |  | 
|  6282      * ppArg[2+v->nColumn] = value for magic column (we ignore this) |  | 
|  6283      */ |  | 
|  6284     sqlite_int64 rowid = sqlite3_value_int64(ppArg[0]); |  | 
|  6285     if( sqlite3_value_type(ppArg[1]) != SQLITE_INTEGER || |  | 
|  6286       sqlite3_value_int64(ppArg[1]) != rowid ){ |  | 
|  6287       rc = SQLITE_ERROR;  /* we don't allow changing the rowid */ |  | 
|  6288     } else { |  | 
|  6289       assert( nArg==2+v->nColumn+1); |  | 
|  6290       rc = index_update(v, rowid, &ppArg[2]); |  | 
|  6291     } |  | 
|  6292   } else { |  | 
|  6293     /* An insert: |  | 
|  6294      * ppArg[1] = requested rowid |  | 
|  6295      * ppArg[2..2+v->nColumn-1] = values |  | 
|  6296      * ppArg[2+v->nColumn] = value for magic column (we ignore this) |  | 
|  6297      */ |  | 
|  6298     assert( nArg==2+v->nColumn+1); |  | 
|  6299     rc = index_insert(v, ppArg[1], &ppArg[2], pRowid); |  | 
|  6300   } |  | 
|  6301  |  | 
|  6302   return rc; |  | 
|  6303 } |  | 
|  6304  |  | 
|  6305 static int fulltextSync(sqlite3_vtab *pVtab){ |  | 
|  6306   TRACE(("FTS2 xSync()\n")); |  | 
|  6307   return flushPendingTerms((fulltext_vtab *)pVtab); |  | 
|  6308 } |  | 
|  6309  |  | 
|  6310 static int fulltextBegin(sqlite3_vtab *pVtab){ |  | 
|  6311   fulltext_vtab *v = (fulltext_vtab *) pVtab; |  | 
|  6312   TRACE(("FTS2 xBegin()\n")); |  | 
|  6313  |  | 
|  6314   /* Any buffered updates should have been cleared by the previous |  | 
|  6315   ** transaction. |  | 
|  6316   */ |  | 
|  6317   assert( v->nPendingData<0 ); |  | 
|  6318   return clearPendingTerms(v); |  | 
|  6319 } |  | 
|  6320  |  | 
|  6321 static int fulltextCommit(sqlite3_vtab *pVtab){ |  | 
|  6322   fulltext_vtab *v = (fulltext_vtab *) pVtab; |  | 
|  6323   TRACE(("FTS2 xCommit()\n")); |  | 
|  6324  |  | 
|  6325   /* Buffered updates should have been cleared by fulltextSync(). */ |  | 
|  6326   assert( v->nPendingData<0 ); |  | 
|  6327   return clearPendingTerms(v); |  | 
|  6328 } |  | 
|  6329  |  | 
|  6330 static int fulltextRollback(sqlite3_vtab *pVtab){ |  | 
|  6331   TRACE(("FTS2 xRollback()\n")); |  | 
|  6332   return clearPendingTerms((fulltext_vtab *)pVtab); |  | 
|  6333 } |  | 
|  6334  |  | 
|  6335 /* |  | 
|  6336 ** Implementation of the snippet() function for FTS2 |  | 
|  6337 */ |  | 
|  6338 static void snippetFunc( |  | 
|  6339   sqlite3_context *pContext, |  | 
|  6340   int argc, |  | 
|  6341   sqlite3_value **argv |  | 
|  6342 ){ |  | 
|  6343   fulltext_cursor *pCursor; |  | 
|  6344   if( argc<1 ) return; |  | 
|  6345   if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || |  | 
|  6346       sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ |  | 
|  6347     sqlite3_result_error(pContext, "illegal first argument to html_snippet",-1); |  | 
|  6348   }else{ |  | 
|  6349     const char *zStart = "<b>"; |  | 
|  6350     const char *zEnd = "</b>"; |  | 
|  6351     const char *zEllipsis = "<b>...</b>"; |  | 
|  6352     memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); |  | 
|  6353     if( argc>=2 ){ |  | 
|  6354       zStart = (const char*)sqlite3_value_text(argv[1]); |  | 
|  6355       if( argc>=3 ){ |  | 
|  6356         zEnd = (const char*)sqlite3_value_text(argv[2]); |  | 
|  6357         if( argc>=4 ){ |  | 
|  6358           zEllipsis = (const char*)sqlite3_value_text(argv[3]); |  | 
|  6359         } |  | 
|  6360       } |  | 
|  6361     } |  | 
|  6362     snippetAllOffsets(pCursor); |  | 
|  6363     snippetText(pCursor, zStart, zEnd, zEllipsis); |  | 
|  6364     sqlite3_result_text(pContext, pCursor->snippet.zSnippet, |  | 
|  6365                         pCursor->snippet.nSnippet, SQLITE_STATIC); |  | 
|  6366   } |  | 
|  6367 } |  | 
|  6368  |  | 
|  6369 /* |  | 
|  6370 ** Implementation of the offsets() function for FTS2 |  | 
|  6371 */ |  | 
|  6372 static void snippetOffsetsFunc( |  | 
|  6373   sqlite3_context *pContext, |  | 
|  6374   int argc, |  | 
|  6375   sqlite3_value **argv |  | 
|  6376 ){ |  | 
|  6377   fulltext_cursor *pCursor; |  | 
|  6378   if( argc<1 ) return; |  | 
|  6379   if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || |  | 
|  6380       sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ |  | 
|  6381     sqlite3_result_error(pContext, "illegal first argument to offsets",-1); |  | 
|  6382   }else{ |  | 
|  6383     memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); |  | 
|  6384     snippetAllOffsets(pCursor); |  | 
|  6385     snippetOffsetText(&pCursor->snippet); |  | 
|  6386     sqlite3_result_text(pContext, |  | 
|  6387                         pCursor->snippet.zOffset, pCursor->snippet.nOffset, |  | 
|  6388                         SQLITE_STATIC); |  | 
|  6389   } |  | 
|  6390 } |  | 
|  6391  |  | 
|  6392 /* OptLeavesReader is nearly identical to LeavesReader, except that |  | 
|  6393 ** where LeavesReader is geared towards the merging of complete |  | 
|  6394 ** segment levels (with exactly MERGE_COUNT segments), OptLeavesReader |  | 
|  6395 ** is geared towards implementation of the optimize() function, and |  | 
|  6396 ** can merge all segments simultaneously.  This version may be |  | 
|  6397 ** somewhat less efficient than LeavesReader because it merges into an |  | 
|  6398 ** accumulator rather than doing an N-way merge, but since segment |  | 
|  6399 ** size grows exponentially (so segment count logrithmically) this is |  | 
|  6400 ** probably not an immediate problem. |  | 
|  6401 */ |  | 
|  6402 /* TODO(shess): Prove that assertion, or extend the merge code to |  | 
|  6403 ** merge tree fashion (like the prefix-searching code does). |  | 
|  6404 */ |  | 
|  6405 /* TODO(shess): OptLeavesReader and LeavesReader could probably be |  | 
|  6406 ** merged with little or no loss of performance for LeavesReader.  The |  | 
|  6407 ** merged code would need to handle >MERGE_COUNT segments, and would |  | 
|  6408 ** also need to be able to optionally optimize away deletes. |  | 
|  6409 */ |  | 
|  6410 typedef struct OptLeavesReader { |  | 
|  6411   /* Segment number, to order readers by age. */ |  | 
|  6412   int segment; |  | 
|  6413   LeavesReader reader; |  | 
|  6414 } OptLeavesReader; |  | 
|  6415  |  | 
|  6416 static int optLeavesReaderAtEnd(OptLeavesReader *pReader){ |  | 
|  6417   return leavesReaderAtEnd(&pReader->reader); |  | 
|  6418 } |  | 
|  6419 static int optLeavesReaderTermBytes(OptLeavesReader *pReader){ |  | 
|  6420   return leavesReaderTermBytes(&pReader->reader); |  | 
|  6421 } |  | 
|  6422 static const char *optLeavesReaderData(OptLeavesReader *pReader){ |  | 
|  6423   return leavesReaderData(&pReader->reader); |  | 
|  6424 } |  | 
|  6425 static int optLeavesReaderDataBytes(OptLeavesReader *pReader){ |  | 
|  6426   return leavesReaderDataBytes(&pReader->reader); |  | 
|  6427 } |  | 
|  6428 static const char *optLeavesReaderTerm(OptLeavesReader *pReader){ |  | 
|  6429   return leavesReaderTerm(&pReader->reader); |  | 
|  6430 } |  | 
|  6431 static int optLeavesReaderStep(fulltext_vtab *v, OptLeavesReader *pReader){ |  | 
|  6432   return leavesReaderStep(v, &pReader->reader); |  | 
|  6433 } |  | 
|  6434 static int optLeavesReaderTermCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){ |  | 
|  6435   return leavesReaderTermCmp(&lr1->reader, &lr2->reader); |  | 
|  6436 } |  | 
|  6437 /* Order by term ascending, segment ascending (oldest to newest), with |  | 
|  6438 ** exhausted readers to the end. |  | 
|  6439 */ |  | 
|  6440 static int optLeavesReaderCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){ |  | 
|  6441   int c = optLeavesReaderTermCmp(lr1, lr2); |  | 
|  6442   if( c!=0 ) return c; |  | 
|  6443   return lr1->segment-lr2->segment; |  | 
|  6444 } |  | 
|  6445 /* Bubble pLr[0] to appropriate place in pLr[1..nLr-1].  Assumes that |  | 
|  6446 ** pLr[1..nLr-1] is already sorted. |  | 
|  6447 */ |  | 
|  6448 static void optLeavesReaderReorder(OptLeavesReader *pLr, int nLr){ |  | 
|  6449   while( nLr>1 && optLeavesReaderCmp(pLr, pLr+1)>0 ){ |  | 
|  6450     OptLeavesReader tmp = pLr[0]; |  | 
|  6451     pLr[0] = pLr[1]; |  | 
|  6452     pLr[1] = tmp; |  | 
|  6453     nLr--; |  | 
|  6454     pLr++; |  | 
|  6455   } |  | 
|  6456 } |  | 
|  6457  |  | 
|  6458 /* optimize() helper function.  Put the readers in order and iterate |  | 
|  6459 ** through them, merging doclists for matching terms into pWriter. |  | 
|  6460 ** Returns SQLITE_OK on success, or the SQLite error code which |  | 
|  6461 ** prevented success. |  | 
|  6462 */ |  | 
|  6463 static int optimizeInternal(fulltext_vtab *v, |  | 
|  6464                             OptLeavesReader *readers, int nReaders, |  | 
|  6465                             LeafWriter *pWriter){ |  | 
|  6466   int i, rc = SQLITE_OK; |  | 
|  6467   DataBuffer doclist, merged, tmp; |  | 
|  6468   const char *pData; |  | 
|  6469  |  | 
|  6470   /* Order the readers. */ |  | 
|  6471   i = nReaders; |  | 
|  6472   while( i-- > 0 ){ |  | 
|  6473     optLeavesReaderReorder(&readers[i], nReaders-i); |  | 
|  6474   } |  | 
|  6475  |  | 
|  6476   dataBufferInit(&doclist, LEAF_MAX); |  | 
|  6477   dataBufferInit(&merged, LEAF_MAX); |  | 
|  6478  |  | 
|  6479   /* Exhausted readers bubble to the end, so when the first reader is |  | 
|  6480   ** at eof, all are at eof. |  | 
|  6481   */ |  | 
|  6482   while( !optLeavesReaderAtEnd(&readers[0]) ){ |  | 
|  6483  |  | 
|  6484     /* Figure out how many readers share the next term. */ |  | 
|  6485     for(i=1; i<nReaders && !optLeavesReaderAtEnd(&readers[i]); i++){ |  | 
|  6486       if( 0!=optLeavesReaderTermCmp(&readers[0], &readers[i]) ) break; |  | 
|  6487     } |  | 
|  6488  |  | 
|  6489     pData = optLeavesReaderData(&readers[0]); |  | 
|  6490     if( pData==NULL ){ |  | 
|  6491       rc = SQLITE_CORRUPT_BKPT; |  | 
|  6492       break; |  | 
|  6493     } |  | 
|  6494  |  | 
|  6495     /* Special-case for no merge. */ |  | 
|  6496     if( i==1 ){ |  | 
|  6497       /* Trim deletions from the doclist. */ |  | 
|  6498       dataBufferReset(&merged); |  | 
|  6499       rc = docListTrim(DL_DEFAULT, |  | 
|  6500                        pData, |  | 
|  6501                        optLeavesReaderDataBytes(&readers[0]), |  | 
|  6502                        -1, DL_DEFAULT, &merged); |  | 
|  6503       if( rc!= SQLITE_OK ) break; |  | 
|  6504     }else{ |  | 
|  6505       DLReader dlReaders[MERGE_COUNT]; |  | 
|  6506       int iReader, nReaders; |  | 
|  6507  |  | 
|  6508       /* Prime the pipeline with the first reader's doclist.  After |  | 
|  6509       ** one pass index 0 will reference the accumulated doclist. |  | 
|  6510       */ |  | 
|  6511       rc = dlrInit(&dlReaders[0], DL_DEFAULT, |  | 
|  6512                    pData, |  | 
|  6513                    optLeavesReaderDataBytes(&readers[0])); |  | 
|  6514       if( rc!=SQLITE_OK ) break; |  | 
|  6515       iReader = 1; |  | 
|  6516  |  | 
|  6517       assert( iReader<i );  /* Must execute the loop at least once. */ |  | 
|  6518       while( iReader<i ){ |  | 
|  6519         /* Merge 16 inputs per pass. */ |  | 
|  6520         for( nReaders=1; iReader<i && nReaders<MERGE_COUNT; |  | 
|  6521              iReader++, nReaders++ ){ |  | 
|  6522           pData = optLeavesReaderData(&readers[iReader]); |  | 
|  6523           if( pData == NULL ){ |  | 
|  6524             rc = SQLITE_CORRUPT_BKPT; |  | 
|  6525             break; |  | 
|  6526           } |  | 
|  6527           rc = dlrInit(&dlReaders[nReaders], DL_DEFAULT, |  | 
|  6528                        pData, |  | 
|  6529                        optLeavesReaderDataBytes(&readers[iReader])); |  | 
|  6530           if( rc != SQLITE_OK ) break; |  | 
|  6531         } |  | 
|  6532  |  | 
|  6533         /* Merge doclists and swap result into accumulator. */ |  | 
|  6534         if( rc==SQLITE_OK ){ |  | 
|  6535           dataBufferReset(&merged); |  | 
|  6536           rc = docListMerge(&merged, dlReaders, nReaders); |  | 
|  6537           tmp = merged; |  | 
|  6538           merged = doclist; |  | 
|  6539           doclist = tmp; |  | 
|  6540         } |  | 
|  6541  |  | 
|  6542         while( nReaders-- > 0 ){ |  | 
|  6543           dlrDestroy(&dlReaders[nReaders]); |  | 
|  6544         } |  | 
|  6545  |  | 
|  6546         if( rc!=SQLITE_OK ) goto err; |  | 
|  6547  |  | 
|  6548         /* Accumulated doclist to reader 0 for next pass. */ |  | 
|  6549         rc = dlrInit(&dlReaders[0], DL_DEFAULT, doclist.pData, doclist.nData); |  | 
|  6550         if( rc!=SQLITE_OK ) goto err; |  | 
|  6551       } |  | 
|  6552  |  | 
|  6553       /* Destroy reader that was left in the pipeline. */ |  | 
|  6554       dlrDestroy(&dlReaders[0]); |  | 
|  6555  |  | 
|  6556       /* Trim deletions from the doclist. */ |  | 
|  6557       dataBufferReset(&merged); |  | 
|  6558       rc = docListTrim(DL_DEFAULT, doclist.pData, doclist.nData, |  | 
|  6559                        -1, DL_DEFAULT, &merged); |  | 
|  6560       if( rc!=SQLITE_OK ) goto err; |  | 
|  6561     } |  | 
|  6562  |  | 
|  6563     /* Only pass doclists with hits (skip if all hits deleted). */ |  | 
|  6564     if( merged.nData>0 ){ |  | 
|  6565       rc = leafWriterStep(v, pWriter, |  | 
|  6566                           optLeavesReaderTerm(&readers[0]), |  | 
|  6567                           optLeavesReaderTermBytes(&readers[0]), |  | 
|  6568                           merged.pData, merged.nData); |  | 
|  6569       if( rc!=SQLITE_OK ) goto err; |  | 
|  6570     } |  | 
|  6571  |  | 
|  6572     /* Step merged readers to next term and reorder. */ |  | 
|  6573     while( i-- > 0 ){ |  | 
|  6574       rc = optLeavesReaderStep(v, &readers[i]); |  | 
|  6575       if( rc!=SQLITE_OK ) goto err; |  | 
|  6576  |  | 
|  6577       optLeavesReaderReorder(&readers[i], nReaders-i); |  | 
|  6578     } |  | 
|  6579   } |  | 
|  6580  |  | 
|  6581  err: |  | 
|  6582   dataBufferDestroy(&doclist); |  | 
|  6583   dataBufferDestroy(&merged); |  | 
|  6584   return rc; |  | 
|  6585 } |  | 
|  6586  |  | 
|  6587 /* Implement optimize() function for FTS3.  optimize(t) merges all |  | 
|  6588 ** segments in the fts index into a single segment.  't' is the magic |  | 
|  6589 ** table-named column. |  | 
|  6590 */ |  | 
|  6591 static void optimizeFunc(sqlite3_context *pContext, |  | 
|  6592                          int argc, sqlite3_value **argv){ |  | 
|  6593   fulltext_cursor *pCursor; |  | 
|  6594   if( argc>1 ){ |  | 
|  6595     sqlite3_result_error(pContext, "excess arguments to optimize()",-1); |  | 
|  6596   }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || |  | 
|  6597             sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ |  | 
|  6598     sqlite3_result_error(pContext, "illegal first argument to optimize",-1); |  | 
|  6599   }else{ |  | 
|  6600     fulltext_vtab *v; |  | 
|  6601     int i, rc, iMaxLevel; |  | 
|  6602     OptLeavesReader *readers; |  | 
|  6603     int nReaders; |  | 
|  6604     LeafWriter writer; |  | 
|  6605     sqlite3_stmt *s; |  | 
|  6606  |  | 
|  6607     memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); |  | 
|  6608     v = cursor_vtab(pCursor); |  | 
|  6609  |  | 
|  6610     /* Flush any buffered updates before optimizing. */ |  | 
|  6611     rc = flushPendingTerms(v); |  | 
|  6612     if( rc!=SQLITE_OK ) goto err; |  | 
|  6613  |  | 
|  6614     rc = segdir_count(v, &nReaders, &iMaxLevel); |  | 
|  6615     if( rc!=SQLITE_OK ) goto err; |  | 
|  6616     if( nReaders==0 || nReaders==1 ){ |  | 
|  6617       sqlite3_result_text(pContext, "Index already optimal", -1, |  | 
|  6618                           SQLITE_STATIC); |  | 
|  6619       return; |  | 
|  6620     } |  | 
|  6621  |  | 
|  6622     rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s); |  | 
|  6623     if( rc!=SQLITE_OK ) goto err; |  | 
|  6624  |  | 
|  6625     readers = sqlite3_malloc(nReaders*sizeof(readers[0])); |  | 
|  6626     if( readers==NULL ) goto err; |  | 
|  6627  |  | 
|  6628     /* Note that there will already be a segment at this position |  | 
|  6629     ** until we call segdir_delete() on iMaxLevel. |  | 
|  6630     */ |  | 
|  6631     leafWriterInit(iMaxLevel, 0, &writer); |  | 
|  6632  |  | 
|  6633     i = 0; |  | 
|  6634     while( (rc = sqlite3_step(s))==SQLITE_ROW ){ |  | 
|  6635       sqlite_int64 iStart = sqlite3_column_int64(s, 0); |  | 
|  6636       sqlite_int64 iEnd = sqlite3_column_int64(s, 1); |  | 
|  6637       const char *pRootData = sqlite3_column_blob(s, 2); |  | 
|  6638       int nRootData = sqlite3_column_bytes(s, 2); |  | 
|  6639  |  | 
|  6640       /* Corrupt if we get back different types than we stored. */ |  | 
|  6641       if( sqlite3_column_type(s, 0)!=SQLITE_INTEGER || |  | 
|  6642           sqlite3_column_type(s, 1)!=SQLITE_INTEGER || |  | 
|  6643           sqlite3_column_type(s, 2)!=SQLITE_BLOB ){ |  | 
|  6644         rc = SQLITE_CORRUPT_BKPT; |  | 
|  6645         break; |  | 
|  6646       } |  | 
|  6647  |  | 
|  6648       assert( i<nReaders ); |  | 
|  6649       rc = leavesReaderInit(v, -1, iStart, iEnd, pRootData, nRootData, |  | 
|  6650                             &readers[i].reader); |  | 
|  6651       if( rc!=SQLITE_OK ) break; |  | 
|  6652  |  | 
|  6653       readers[i].segment = i; |  | 
|  6654       i++; |  | 
|  6655     } |  | 
|  6656  |  | 
|  6657     /* If we managed to successfully read them all, optimize them. */ |  | 
|  6658     if( rc==SQLITE_DONE ){ |  | 
|  6659       assert( i==nReaders ); |  | 
|  6660       rc = optimizeInternal(v, readers, nReaders, &writer); |  | 
|  6661     }else{ |  | 
|  6662       sqlite3_reset(s);      /* So we don't leave a lock. */ |  | 
|  6663     } |  | 
|  6664  |  | 
|  6665     while( i-- > 0 ){ |  | 
|  6666       leavesReaderDestroy(&readers[i].reader); |  | 
|  6667     } |  | 
|  6668     sqlite3_free(readers); |  | 
|  6669  |  | 
|  6670     /* If we've successfully gotten to here, delete the old segments |  | 
|  6671     ** and flush the interior structure of the new segment. |  | 
|  6672     */ |  | 
|  6673     if( rc==SQLITE_OK ){ |  | 
|  6674       for( i=0; i<=iMaxLevel; i++ ){ |  | 
|  6675         rc = segdir_delete(v, i); |  | 
|  6676         if( rc!=SQLITE_OK ) break; |  | 
|  6677       } |  | 
|  6678  |  | 
|  6679       if( rc==SQLITE_OK ) rc = leafWriterFinalize(v, &writer); |  | 
|  6680     } |  | 
|  6681  |  | 
|  6682     leafWriterDestroy(&writer); |  | 
|  6683  |  | 
|  6684     if( rc!=SQLITE_OK ) goto err; |  | 
|  6685  |  | 
|  6686     sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC); |  | 
|  6687     return; |  | 
|  6688  |  | 
|  6689     /* TODO(shess): Error-handling needs to be improved along the |  | 
|  6690     ** lines of the dump_ functions. |  | 
|  6691     */ |  | 
|  6692  err: |  | 
|  6693     { |  | 
|  6694       char buf[512]; |  | 
|  6695       sqlite3_snprintf(sizeof(buf), buf, "Error in optimize: %s", |  | 
|  6696                        sqlite3_errmsg(sqlite3_context_db_handle(pContext))); |  | 
|  6697       sqlite3_result_error(pContext, buf, -1); |  | 
|  6698     } |  | 
|  6699   } |  | 
|  6700 } |  | 
|  6701  |  | 
|  6702 #ifdef SQLITE_TEST |  | 
|  6703 /* Generate an error of the form "<prefix>: <msg>".  If msg is NULL, |  | 
|  6704 ** pull the error from the context's db handle. |  | 
|  6705 */ |  | 
|  6706 static void generateError(sqlite3_context *pContext, |  | 
|  6707                           const char *prefix, const char *msg){ |  | 
|  6708   char buf[512]; |  | 
|  6709   if( msg==NULL ) msg = sqlite3_errmsg(sqlite3_context_db_handle(pContext)); |  | 
|  6710   sqlite3_snprintf(sizeof(buf), buf, "%s: %s", prefix, msg); |  | 
|  6711   sqlite3_result_error(pContext, buf, -1); |  | 
|  6712 } |  | 
|  6713  |  | 
|  6714 /* Helper function to collect the set of terms in the segment into |  | 
|  6715 ** pTerms.  The segment is defined by the leaf nodes between |  | 
|  6716 ** iStartBlockid and iEndBlockid, inclusive, or by the contents of |  | 
|  6717 ** pRootData if iStartBlockid is 0 (in which case the entire segment |  | 
|  6718 ** fit in a leaf). |  | 
|  6719 */ |  | 
|  6720 static int collectSegmentTerms(fulltext_vtab *v, sqlite3_stmt *s, |  | 
|  6721                                fts2Hash *pTerms){ |  | 
|  6722   const sqlite_int64 iStartBlockid = sqlite3_column_int64(s, 0); |  | 
|  6723   const sqlite_int64 iEndBlockid = sqlite3_column_int64(s, 1); |  | 
|  6724   const char *pRootData = sqlite3_column_blob(s, 2); |  | 
|  6725   const int nRootData = sqlite3_column_bytes(s, 2); |  | 
|  6726   int rc; |  | 
|  6727   LeavesReader reader; |  | 
|  6728  |  | 
|  6729   /* Corrupt if we get back different types than we stored. */ |  | 
|  6730   if( sqlite3_column_type(s, 0)!=SQLITE_INTEGER || |  | 
|  6731       sqlite3_column_type(s, 1)!=SQLITE_INTEGER || |  | 
|  6732       sqlite3_column_type(s, 2)!=SQLITE_BLOB ){ |  | 
|  6733     return SQLITE_CORRUPT_BKPT; |  | 
|  6734   } |  | 
|  6735  |  | 
|  6736   rc = leavesReaderInit(v, 0, iStartBlockid, iEndBlockid, |  | 
|  6737                         pRootData, nRootData, &reader); |  | 
|  6738   if( rc!=SQLITE_OK ) return rc; |  | 
|  6739  |  | 
|  6740   while( rc==SQLITE_OK && !leavesReaderAtEnd(&reader) ){ |  | 
|  6741     const char *pTerm = leavesReaderTerm(&reader); |  | 
|  6742     const int nTerm = leavesReaderTermBytes(&reader); |  | 
|  6743     void *oldValue = sqlite3Fts2HashFind(pTerms, pTerm, nTerm); |  | 
|  6744     void *newValue = (void *)((char *)oldValue+1); |  | 
|  6745  |  | 
|  6746     /* From the comment before sqlite3Fts2HashInsert in fts2_hash.c, |  | 
|  6747     ** the data value passed is returned in case of malloc failure. |  | 
|  6748     */ |  | 
|  6749     if( newValue==sqlite3Fts2HashInsert(pTerms, pTerm, nTerm, newValue) ){ |  | 
|  6750       rc = SQLITE_NOMEM; |  | 
|  6751     }else{ |  | 
|  6752       rc = leavesReaderStep(v, &reader); |  | 
|  6753     } |  | 
|  6754   } |  | 
|  6755  |  | 
|  6756   leavesReaderDestroy(&reader); |  | 
|  6757   return rc; |  | 
|  6758 } |  | 
|  6759  |  | 
|  6760 /* Helper function to build the result string for dump_terms(). */ |  | 
|  6761 static int generateTermsResult(sqlite3_context *pContext, fts2Hash *pTerms){ |  | 
|  6762   int iTerm, nTerms, nResultBytes, iByte; |  | 
|  6763   char *result; |  | 
|  6764   TermData *pData; |  | 
|  6765   fts2HashElem *e; |  | 
|  6766  |  | 
|  6767   /* Iterate pTerms to generate an array of terms in pData for |  | 
|  6768   ** sorting. |  | 
|  6769   */ |  | 
|  6770   nTerms = fts2HashCount(pTerms); |  | 
|  6771   assert( nTerms>0 ); |  | 
|  6772   pData = sqlite3_malloc(nTerms*sizeof(TermData)); |  | 
|  6773   if( pData==NULL ) return SQLITE_NOMEM; |  | 
|  6774  |  | 
|  6775   nResultBytes = 0; |  | 
|  6776   for(iTerm = 0, e = fts2HashFirst(pTerms); e; iTerm++, e = fts2HashNext(e)){ |  | 
|  6777     nResultBytes += fts2HashKeysize(e)+1;   /* Term plus trailing space */ |  | 
|  6778     assert( iTerm<nTerms ); |  | 
|  6779     pData[iTerm].pTerm = fts2HashKey(e); |  | 
|  6780     pData[iTerm].nTerm = fts2HashKeysize(e); |  | 
|  6781     pData[iTerm].pCollector = fts2HashData(e);  /* unused */ |  | 
|  6782   } |  | 
|  6783   assert( iTerm==nTerms ); |  | 
|  6784  |  | 
|  6785   assert( nResultBytes>0 );   /* nTerms>0, nResultsBytes must be, too. */ |  | 
|  6786   result = sqlite3_malloc(nResultBytes); |  | 
|  6787   if( result==NULL ){ |  | 
|  6788     sqlite3_free(pData); |  | 
|  6789     return SQLITE_NOMEM; |  | 
|  6790   } |  | 
|  6791  |  | 
|  6792   if( nTerms>1 ) qsort(pData, nTerms, sizeof(*pData), termDataCmp); |  | 
|  6793  |  | 
|  6794   /* Read the terms in order to build the result. */ |  | 
|  6795   iByte = 0; |  | 
|  6796   for(iTerm=0; iTerm<nTerms; ++iTerm){ |  | 
|  6797     memcpy(result+iByte, pData[iTerm].pTerm, pData[iTerm].nTerm); |  | 
|  6798     iByte += pData[iTerm].nTerm; |  | 
|  6799     result[iByte++] = ' '; |  | 
|  6800   } |  | 
|  6801   assert( iByte==nResultBytes ); |  | 
|  6802   assert( result[nResultBytes-1]==' ' ); |  | 
|  6803   result[nResultBytes-1] = '\0'; |  | 
|  6804  |  | 
|  6805   /* Passes away ownership of result. */ |  | 
|  6806   sqlite3_result_text(pContext, result, nResultBytes-1, sqlite3_free); |  | 
|  6807   sqlite3_free(pData); |  | 
|  6808   return SQLITE_OK; |  | 
|  6809 } |  | 
|  6810  |  | 
|  6811 /* Implements dump_terms() for use in inspecting the fts2 index from |  | 
|  6812 ** tests.  TEXT result containing the ordered list of terms joined by |  | 
|  6813 ** spaces.  dump_terms(t, level, idx) dumps the terms for the segment |  | 
|  6814 ** specified by level, idx (in %_segdir), while dump_terms(t) dumps |  | 
|  6815 ** all terms in the index.  In both cases t is the fts table's magic |  | 
|  6816 ** table-named column. |  | 
|  6817 */ |  | 
|  6818 static void dumpTermsFunc( |  | 
|  6819   sqlite3_context *pContext, |  | 
|  6820   int argc, sqlite3_value **argv |  | 
|  6821 ){ |  | 
|  6822   fulltext_cursor *pCursor; |  | 
|  6823   if( argc!=3 && argc!=1 ){ |  | 
|  6824     generateError(pContext, "dump_terms", "incorrect arguments"); |  | 
|  6825   }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || |  | 
|  6826             sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ |  | 
|  6827     generateError(pContext, "dump_terms", "illegal first argument"); |  | 
|  6828   }else{ |  | 
|  6829     fulltext_vtab *v; |  | 
|  6830     fts2Hash terms; |  | 
|  6831     sqlite3_stmt *s = NULL; |  | 
|  6832     int rc; |  | 
|  6833  |  | 
|  6834     memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); |  | 
|  6835     v = cursor_vtab(pCursor); |  | 
|  6836  |  | 
|  6837     /* If passed only the cursor column, get all segments.  Otherwise |  | 
|  6838     ** get the segment described by the following two arguments. |  | 
|  6839     */ |  | 
|  6840     if( argc==1 ){ |  | 
|  6841       rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s); |  | 
|  6842     }else{ |  | 
|  6843       rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s); |  | 
|  6844       if( rc==SQLITE_OK ){ |  | 
|  6845         rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[1])); |  | 
|  6846         if( rc==SQLITE_OK ){ |  | 
|  6847           rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[2])); |  | 
|  6848         } |  | 
|  6849       } |  | 
|  6850     } |  | 
|  6851  |  | 
|  6852     if( rc!=SQLITE_OK ){ |  | 
|  6853       generateError(pContext, "dump_terms", NULL); |  | 
|  6854       return; |  | 
|  6855     } |  | 
|  6856  |  | 
|  6857     /* Collect the terms for each segment. */ |  | 
|  6858     sqlite3Fts2HashInit(&terms, FTS2_HASH_STRING, 1); |  | 
|  6859     while( (rc = sqlite3_step(s))==SQLITE_ROW ){ |  | 
|  6860       rc = collectSegmentTerms(v, s, &terms); |  | 
|  6861       if( rc!=SQLITE_OK ) break; |  | 
|  6862     } |  | 
|  6863  |  | 
|  6864     if( rc!=SQLITE_DONE ){ |  | 
|  6865       sqlite3_reset(s); |  | 
|  6866       generateError(pContext, "dump_terms", NULL); |  | 
|  6867     }else{ |  | 
|  6868       const int nTerms = fts2HashCount(&terms); |  | 
|  6869       if( nTerms>0 ){ |  | 
|  6870         rc = generateTermsResult(pContext, &terms); |  | 
|  6871         if( rc==SQLITE_NOMEM ){ |  | 
|  6872           generateError(pContext, "dump_terms", "out of memory"); |  | 
|  6873         }else{ |  | 
|  6874           assert( rc==SQLITE_OK ); |  | 
|  6875         } |  | 
|  6876       }else if( argc==3 ){ |  | 
|  6877         /* The specific segment asked for could not be found. */ |  | 
|  6878         generateError(pContext, "dump_terms", "segment not found"); |  | 
|  6879       }else{ |  | 
|  6880         /* No segments found. */ |  | 
|  6881         /* TODO(shess): It should be impossible to reach this.  This |  | 
|  6882         ** case can only happen for an empty table, in which case |  | 
|  6883         ** SQLite has no rows to call this function on. |  | 
|  6884         */ |  | 
|  6885         sqlite3_result_null(pContext); |  | 
|  6886       } |  | 
|  6887     } |  | 
|  6888     sqlite3Fts2HashClear(&terms); |  | 
|  6889   } |  | 
|  6890 } |  | 
|  6891  |  | 
|  6892 /* Expand the DL_DEFAULT doclist in pData into a text result in |  | 
|  6893 ** pContext. |  | 
|  6894 */ |  | 
|  6895 static void createDoclistResult(sqlite3_context *pContext, |  | 
|  6896                                 const char *pData, int nData){ |  | 
|  6897   DataBuffer dump; |  | 
|  6898   DLReader dlReader; |  | 
|  6899   int rc; |  | 
|  6900  |  | 
|  6901   assert( pData!=NULL && nData>0 ); |  | 
|  6902  |  | 
|  6903   rc = dlrInit(&dlReader, DL_DEFAULT, pData, nData); |  | 
|  6904   if( rc!=SQLITE_OK ) return rc; |  | 
|  6905   dataBufferInit(&dump, 0); |  | 
|  6906   for( ; rc==SQLITE_OK && !dlrAtEnd(&dlReader); rc = dlrStep(&dlReader) ){ |  | 
|  6907     char buf[256]; |  | 
|  6908     PLReader plReader; |  | 
|  6909  |  | 
|  6910     rc = plrInit(&plReader, &dlReader); |  | 
|  6911     if( rc!=SQLITE_OK ) break; |  | 
|  6912     if( DL_DEFAULT==DL_DOCIDS || plrAtEnd(&plReader) ){ |  | 
|  6913       sqlite3_snprintf(sizeof(buf), buf, "[%lld] ", dlrDocid(&dlReader)); |  | 
|  6914       dataBufferAppend(&dump, buf, strlen(buf)); |  | 
|  6915     }else{ |  | 
|  6916       int iColumn = plrColumn(&plReader); |  | 
|  6917  |  | 
|  6918       sqlite3_snprintf(sizeof(buf), buf, "[%lld %d[", |  | 
|  6919                        dlrDocid(&dlReader), iColumn); |  | 
|  6920       dataBufferAppend(&dump, buf, strlen(buf)); |  | 
|  6921  |  | 
|  6922       for( ; !plrAtEnd(&plReader); rc = plrStep(&plReader) ){ |  | 
|  6923         if( rc!=SQLITE_OK ) break; |  | 
|  6924         if( plrColumn(&plReader)!=iColumn ){ |  | 
|  6925           iColumn = plrColumn(&plReader); |  | 
|  6926           sqlite3_snprintf(sizeof(buf), buf, "] %d[", iColumn); |  | 
|  6927           assert( dump.nData>0 ); |  | 
|  6928           dump.nData--;                     /* Overwrite trailing space. */ |  | 
|  6929           assert( dump.pData[dump.nData]==' '); |  | 
|  6930           dataBufferAppend(&dump, buf, strlen(buf)); |  | 
|  6931         } |  | 
|  6932         if( DL_DEFAULT==DL_POSITIONS_OFFSETS ){ |  | 
|  6933           sqlite3_snprintf(sizeof(buf), buf, "%d,%d,%d ", |  | 
|  6934                            plrPosition(&plReader), |  | 
|  6935                            plrStartOffset(&plReader), plrEndOffset(&plReader)); |  | 
|  6936         }else if( DL_DEFAULT==DL_POSITIONS ){ |  | 
|  6937           sqlite3_snprintf(sizeof(buf), buf, "%d ", plrPosition(&plReader)); |  | 
|  6938         }else{ |  | 
|  6939           assert( NULL=="Unhandled DL_DEFAULT value"); |  | 
|  6940         } |  | 
|  6941         dataBufferAppend(&dump, buf, strlen(buf)); |  | 
|  6942       } |  | 
|  6943       plrDestroy(&plReader); |  | 
|  6944       if( rc!= SQLITE_OK ) break; |  | 
|  6945  |  | 
|  6946       assert( dump.nData>0 ); |  | 
|  6947       dump.nData--;                     /* Overwrite trailing space. */ |  | 
|  6948       assert( dump.pData[dump.nData]==' '); |  | 
|  6949       dataBufferAppend(&dump, "]] ", 3); |  | 
|  6950     } |  | 
|  6951   } |  | 
|  6952   dlrDestroy(&dlReader); |  | 
|  6953   if( rc!=SQLITE_OK ){ |  | 
|  6954     dataBufferDestroy(&dump); |  | 
|  6955     return rc; |  | 
|  6956   } |  | 
|  6957  |  | 
|  6958   assert( dump.nData>0 ); |  | 
|  6959   dump.nData--;                     /* Overwrite trailing space. */ |  | 
|  6960   assert( dump.pData[dump.nData]==' '); |  | 
|  6961   dump.pData[dump.nData] = '\0'; |  | 
|  6962   assert( dump.nData>0 ); |  | 
|  6963  |  | 
|  6964   /* Passes ownership of dump's buffer to pContext. */ |  | 
|  6965   sqlite3_result_text(pContext, dump.pData, dump.nData, sqlite3_free); |  | 
|  6966   dump.pData = NULL; |  | 
|  6967   dump.nData = dump.nCapacity = 0; |  | 
|  6968   return SQLITE_OK; |  | 
|  6969 } |  | 
|  6970  |  | 
|  6971 /* Implements dump_doclist() for use in inspecting the fts2 index from |  | 
|  6972 ** tests.  TEXT result containing a string representation of the |  | 
|  6973 ** doclist for the indicated term.  dump_doclist(t, term, level, idx) |  | 
|  6974 ** dumps the doclist for term from the segment specified by level, idx |  | 
|  6975 ** (in %_segdir), while dump_doclist(t, term) dumps the logical |  | 
|  6976 ** doclist for the term across all segments.  The per-segment doclist |  | 
|  6977 ** can contain deletions, while the full-index doclist will not |  | 
|  6978 ** (deletions are omitted). |  | 
|  6979 ** |  | 
|  6980 ** Result formats differ with the setting of DL_DEFAULTS.  Examples: |  | 
|  6981 ** |  | 
|  6982 ** DL_DOCIDS: [1] [3] [7] |  | 
|  6983 ** DL_POSITIONS: [1 0[0 4] 1[17]] [3 1[5]] |  | 
|  6984 ** DL_POSITIONS_OFFSETS: [1 0[0,0,3 4,23,26] 1[17,102,105]] [3 1[5,20,23]] |  | 
|  6985 ** |  | 
|  6986 ** In each case the number after the outer '[' is the docid.  In the |  | 
|  6987 ** latter two cases, the number before the inner '[' is the column |  | 
|  6988 ** associated with the values within.  For DL_POSITIONS the numbers |  | 
|  6989 ** within are the positions, for DL_POSITIONS_OFFSETS they are the |  | 
|  6990 ** position, the start offset, and the end offset. |  | 
|  6991 */ |  | 
|  6992 static void dumpDoclistFunc( |  | 
|  6993   sqlite3_context *pContext, |  | 
|  6994   int argc, sqlite3_value **argv |  | 
|  6995 ){ |  | 
|  6996   fulltext_cursor *pCursor; |  | 
|  6997   if( argc!=2 && argc!=4 ){ |  | 
|  6998     generateError(pContext, "dump_doclist", "incorrect arguments"); |  | 
|  6999   }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || |  | 
|  7000             sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ |  | 
|  7001     generateError(pContext, "dump_doclist", "illegal first argument"); |  | 
|  7002   }else if( sqlite3_value_text(argv[1])==NULL || |  | 
|  7003             sqlite3_value_text(argv[1])[0]=='\0' ){ |  | 
|  7004     generateError(pContext, "dump_doclist", "empty second argument"); |  | 
|  7005   }else{ |  | 
|  7006     const char *pTerm = (const char *)sqlite3_value_text(argv[1]); |  | 
|  7007     const int nTerm = strlen(pTerm); |  | 
|  7008     fulltext_vtab *v; |  | 
|  7009     int rc; |  | 
|  7010     DataBuffer doclist; |  | 
|  7011  |  | 
|  7012     memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); |  | 
|  7013     v = cursor_vtab(pCursor); |  | 
|  7014  |  | 
|  7015     dataBufferInit(&doclist, 0); |  | 
|  7016  |  | 
|  7017     /* termSelect() yields the same logical doclist that queries are |  | 
|  7018     ** run against. |  | 
|  7019     */ |  | 
|  7020     if( argc==2 ){ |  | 
|  7021       rc = termSelect(v, v->nColumn, pTerm, nTerm, 0, DL_DEFAULT, &doclist); |  | 
|  7022     }else{ |  | 
|  7023       sqlite3_stmt *s = NULL; |  | 
|  7024  |  | 
|  7025       /* Get our specific segment's information. */ |  | 
|  7026       rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s); |  | 
|  7027       if( rc==SQLITE_OK ){ |  | 
|  7028         rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[2])); |  | 
|  7029         if( rc==SQLITE_OK ){ |  | 
|  7030           rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[3])); |  | 
|  7031         } |  | 
|  7032       } |  | 
|  7033  |  | 
|  7034       if( rc==SQLITE_OK ){ |  | 
|  7035         rc = sqlite3_step(s); |  | 
|  7036  |  | 
|  7037         if( rc==SQLITE_DONE ){ |  | 
|  7038           dataBufferDestroy(&doclist); |  | 
|  7039           generateError(pContext, "dump_doclist", "segment not found"); |  | 
|  7040           return; |  | 
|  7041         } |  | 
|  7042  |  | 
|  7043         /* Found a segment, load it into doclist. */ |  | 
|  7044         if( rc==SQLITE_ROW ){ |  | 
|  7045           const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1); |  | 
|  7046           const char *pData = sqlite3_column_blob(s, 2); |  | 
|  7047           const int nData = sqlite3_column_bytes(s, 2); |  | 
|  7048  |  | 
|  7049           /* loadSegment() is used by termSelect() to load each |  | 
|  7050           ** segment's data. |  | 
|  7051           */ |  | 
|  7052           rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, 0, |  | 
|  7053                            &doclist); |  | 
|  7054           if( rc==SQLITE_OK ){ |  | 
|  7055             rc = sqlite3_step(s); |  | 
|  7056  |  | 
|  7057             /* Should not have more than one matching segment. */ |  | 
|  7058             if( rc!=SQLITE_DONE ){ |  | 
|  7059               sqlite3_reset(s); |  | 
|  7060               dataBufferDestroy(&doclist); |  | 
|  7061               generateError(pContext, "dump_doclist", "invalid segdir"); |  | 
|  7062               return; |  | 
|  7063             } |  | 
|  7064             rc = SQLITE_OK; |  | 
|  7065           } |  | 
|  7066         } |  | 
|  7067       } |  | 
|  7068  |  | 
|  7069       sqlite3_reset(s); |  | 
|  7070     } |  | 
|  7071  |  | 
|  7072     if( rc==SQLITE_OK ){ |  | 
|  7073       if( doclist.nData>0 ){ |  | 
|  7074         createDoclistResult(pContext, doclist.pData, doclist.nData); |  | 
|  7075       }else{ |  | 
|  7076         /* TODO(shess): This can happen if the term is not present, or |  | 
|  7077         ** if all instances of the term have been deleted and this is |  | 
|  7078         ** an all-index dump.  It may be interesting to distinguish |  | 
|  7079         ** these cases. |  | 
|  7080         */ |  | 
|  7081         sqlite3_result_text(pContext, "", 0, SQLITE_STATIC); |  | 
|  7082       } |  | 
|  7083     }else if( rc==SQLITE_NOMEM ){ |  | 
|  7084       /* Handle out-of-memory cases specially because if they are |  | 
|  7085       ** generated in fts2 code they may not be reflected in the db |  | 
|  7086       ** handle. |  | 
|  7087       */ |  | 
|  7088       /* TODO(shess): Handle this more comprehensively. |  | 
|  7089       ** sqlite3ErrStr() has what I need, but is internal. |  | 
|  7090       */ |  | 
|  7091       generateError(pContext, "dump_doclist", "out of memory"); |  | 
|  7092     }else{ |  | 
|  7093       generateError(pContext, "dump_doclist", NULL); |  | 
|  7094     } |  | 
|  7095  |  | 
|  7096     dataBufferDestroy(&doclist); |  | 
|  7097   } |  | 
|  7098 } |  | 
|  7099 #endif |  | 
|  7100  |  | 
|  7101 /* |  | 
|  7102 ** This routine implements the xFindFunction method for the FTS2 |  | 
|  7103 ** virtual table. |  | 
|  7104 */ |  | 
|  7105 static int fulltextFindFunction( |  | 
|  7106   sqlite3_vtab *pVtab, |  | 
|  7107   int nArg, |  | 
|  7108   const char *zName, |  | 
|  7109   void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), |  | 
|  7110   void **ppArg |  | 
|  7111 ){ |  | 
|  7112   if( strcmp(zName,"snippet")==0 ){ |  | 
|  7113     *pxFunc = snippetFunc; |  | 
|  7114     return 1; |  | 
|  7115   }else if( strcmp(zName,"offsets")==0 ){ |  | 
|  7116     *pxFunc = snippetOffsetsFunc; |  | 
|  7117     return 1; |  | 
|  7118   }else if( strcmp(zName,"optimize")==0 ){ |  | 
|  7119     *pxFunc = optimizeFunc; |  | 
|  7120     return 1; |  | 
|  7121 #ifdef SQLITE_TEST |  | 
|  7122     /* NOTE(shess): These functions are present only for testing |  | 
|  7123     ** purposes.  No particular effort is made to optimize their |  | 
|  7124     ** execution or how they build their results. |  | 
|  7125     */ |  | 
|  7126   }else if( strcmp(zName,"dump_terms")==0 ){ |  | 
|  7127     /* fprintf(stderr, "Found dump_terms\n"); */ |  | 
|  7128     *pxFunc = dumpTermsFunc; |  | 
|  7129     return 1; |  | 
|  7130   }else if( strcmp(zName,"dump_doclist")==0 ){ |  | 
|  7131     /* fprintf(stderr, "Found dump_doclist\n"); */ |  | 
|  7132     *pxFunc = dumpDoclistFunc; |  | 
|  7133     return 1; |  | 
|  7134 #endif |  | 
|  7135   } |  | 
|  7136   return 0; |  | 
|  7137 } |  | 
|  7138  |  | 
|  7139 /* |  | 
|  7140 ** Rename an fts2 table. |  | 
|  7141 */ |  | 
|  7142 static int fulltextRename( |  | 
|  7143   sqlite3_vtab *pVtab, |  | 
|  7144   const char *zName |  | 
|  7145 ){ |  | 
|  7146   fulltext_vtab *p = (fulltext_vtab *)pVtab; |  | 
|  7147   int rc = SQLITE_NOMEM; |  | 
|  7148   char *zSql = sqlite3_mprintf( |  | 
|  7149     "ALTER TABLE %Q.'%q_content'  RENAME TO '%q_content';" |  | 
|  7150     "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';" |  | 
|  7151     "ALTER TABLE %Q.'%q_segdir'   RENAME TO '%q_segdir';" |  | 
|  7152     , p->zDb, p->zName, zName  |  | 
|  7153     , p->zDb, p->zName, zName  |  | 
|  7154     , p->zDb, p->zName, zName |  | 
|  7155   ); |  | 
|  7156   if( zSql ){ |  | 
|  7157     rc = sqlite3_exec(p->db, zSql, 0, 0, 0); |  | 
|  7158     sqlite3_free(zSql); |  | 
|  7159   } |  | 
|  7160   return rc; |  | 
|  7161 } |  | 
|  7162  |  | 
|  7163 static const sqlite3_module fts2Module = { |  | 
|  7164   /* iVersion      */ 0, |  | 
|  7165   /* xCreate       */ fulltextCreate, |  | 
|  7166   /* xConnect      */ fulltextConnect, |  | 
|  7167   /* xBestIndex    */ fulltextBestIndex, |  | 
|  7168   /* xDisconnect   */ fulltextDisconnect, |  | 
|  7169   /* xDestroy      */ fulltextDestroy, |  | 
|  7170   /* xOpen         */ fulltextOpen, |  | 
|  7171   /* xClose        */ fulltextClose, |  | 
|  7172   /* xFilter       */ fulltextFilter, |  | 
|  7173   /* xNext         */ fulltextNext, |  | 
|  7174   /* xEof          */ fulltextEof, |  | 
|  7175   /* xColumn       */ fulltextColumn, |  | 
|  7176   /* xRowid        */ fulltextRowid, |  | 
|  7177   /* xUpdate       */ fulltextUpdate, |  | 
|  7178   /* xBegin        */ fulltextBegin, |  | 
|  7179   /* xSync         */ fulltextSync, |  | 
|  7180   /* xCommit       */ fulltextCommit, |  | 
|  7181   /* xRollback     */ fulltextRollback, |  | 
|  7182   /* xFindFunction */ fulltextFindFunction, |  | 
|  7183   /* xRename */       fulltextRename, |  | 
|  7184 }; |  | 
|  7185  |  | 
|  7186 static void hashDestroy(void *p){ |  | 
|  7187   fts2Hash *pHash = (fts2Hash *)p; |  | 
|  7188   sqlite3Fts2HashClear(pHash); |  | 
|  7189   sqlite3_free(pHash); |  | 
|  7190 } |  | 
|  7191  |  | 
|  7192 /* |  | 
|  7193 ** The fts2 built-in tokenizers - "simple" and "porter" - are implemented |  | 
|  7194 ** in files fts2_tokenizer1.c and fts2_porter.c respectively. The following |  | 
|  7195 ** two forward declarations are for functions declared in these files |  | 
|  7196 ** used to retrieve the respective implementations. |  | 
|  7197 ** |  | 
|  7198 ** Calling sqlite3Fts2SimpleTokenizerModule() sets the value pointed |  | 
|  7199 ** to by the argument to point a the "simple" tokenizer implementation. |  | 
|  7200 ** Function ...PorterTokenizerModule() sets *pModule to point to the |  | 
|  7201 ** porter tokenizer/stemmer implementation. |  | 
|  7202 */ |  | 
|  7203 void sqlite3Fts2SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule); |  | 
|  7204 void sqlite3Fts2PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule); |  | 
|  7205 void sqlite3Fts2IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule); |  | 
|  7206  |  | 
|  7207 int sqlite3Fts2InitHashTable(sqlite3 *, fts2Hash *, const char *); |  | 
|  7208  |  | 
|  7209 /* |  | 
|  7210 ** Initialise the fts2 extension. If this extension is built as part |  | 
|  7211 ** of the sqlite library, then this function is called directly by |  | 
|  7212 ** SQLite. If fts2 is built as a dynamically loadable extension, this |  | 
|  7213 ** function is called by the sqlite3_extension_init() entry point. |  | 
|  7214 */ |  | 
|  7215 int sqlite3Fts2Init(sqlite3 *db){ |  | 
|  7216   int rc = SQLITE_OK; |  | 
|  7217   fts2Hash *pHash = 0; |  | 
|  7218   const sqlite3_tokenizer_module *pSimple = 0; |  | 
|  7219   const sqlite3_tokenizer_module *pPorter = 0; |  | 
|  7220   const sqlite3_tokenizer_module *pIcu = 0; |  | 
|  7221  |  | 
|  7222   sqlite3Fts2SimpleTokenizerModule(&pSimple); |  | 
|  7223   sqlite3Fts2PorterTokenizerModule(&pPorter); |  | 
|  7224 #ifdef SQLITE_ENABLE_ICU |  | 
|  7225   sqlite3Fts2IcuTokenizerModule(&pIcu); |  | 
|  7226 #endif |  | 
|  7227  |  | 
|  7228   /* Allocate and initialise the hash-table used to store tokenizers. */ |  | 
|  7229   pHash = sqlite3_malloc(sizeof(fts2Hash)); |  | 
|  7230   if( !pHash ){ |  | 
|  7231     rc = SQLITE_NOMEM; |  | 
|  7232   }else{ |  | 
|  7233     sqlite3Fts2HashInit(pHash, FTS2_HASH_STRING, 1); |  | 
|  7234   } |  | 
|  7235  |  | 
|  7236   /* Load the built-in tokenizers into the hash table */ |  | 
|  7237   if( rc==SQLITE_OK ){ |  | 
|  7238     if( sqlite3Fts2HashInsert(pHash, "simple", 7, (void *)pSimple) |  | 
|  7239      || sqlite3Fts2HashInsert(pHash, "porter", 7, (void *)pPorter)  |  | 
|  7240      || (pIcu && sqlite3Fts2HashInsert(pHash, "icu", 4, (void *)pIcu)) |  | 
|  7241     ){ |  | 
|  7242       rc = SQLITE_NOMEM; |  | 
|  7243     } |  | 
|  7244   } |  | 
|  7245  |  | 
|  7246   /* Create the virtual table wrapper around the hash-table and overload  |  | 
|  7247   ** the two scalar functions. If this is successful, register the |  | 
|  7248   ** module with sqlite. |  | 
|  7249   */ |  | 
|  7250   if( SQLITE_OK==rc  |  | 
|  7251 #if GEARS_FTS2_CHANGES && !SQLITE_TEST |  | 
|  7252       /* fts2_tokenizer() disabled for security reasons. */ |  | 
|  7253 #else |  | 
|  7254    && SQLITE_OK==(rc = sqlite3Fts2InitHashTable(db, pHash, "fts2_tokenizer")) |  | 
|  7255 #endif |  | 
|  7256    && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1)) |  | 
|  7257    && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", -1)) |  | 
|  7258    && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", -1)) |  | 
|  7259 #ifdef SQLITE_TEST |  | 
|  7260    && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_terms", -1)) |  | 
|  7261    && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_doclist", -1)) |  | 
|  7262 #endif |  | 
|  7263   ){ |  | 
|  7264     return sqlite3_create_module_v2( |  | 
|  7265         db, "fts2", &fts2Module, (void *)pHash, hashDestroy |  | 
|  7266     ); |  | 
|  7267   } |  | 
|  7268  |  | 
|  7269   /* An error has occurred. Delete the hash table and return the error code. */ |  | 
|  7270   assert( rc!=SQLITE_OK ); |  | 
|  7271   if( pHash ){ |  | 
|  7272     sqlite3Fts2HashClear(pHash); |  | 
|  7273     sqlite3_free(pHash); |  | 
|  7274   } |  | 
|  7275   return rc; |  | 
|  7276 } |  | 
|  7277  |  | 
|  7278 #if !SQLITE_CORE |  | 
|  7279 int sqlite3_extension_init( |  | 
|  7280   sqlite3 *db,  |  | 
|  7281   char **pzErrMsg, |  | 
|  7282   const sqlite3_api_routines *pApi |  | 
|  7283 ){ |  | 
|  7284   SQLITE_EXTENSION_INIT2(pApi) |  | 
|  7285   return sqlite3Fts2Init(db); |  | 
|  7286 } |  | 
|  7287 #endif |  | 
|  7288  |  | 
|  7289 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) */ |  | 
| OLD | NEW |