Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(65)

Side by Side Diff: third_party/sqlite/ext/async/sqlite3async.c

Issue 3108030: Move bundled copy of sqlite one level deeper to better separate it... (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src/
Patch Set: Created 10 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « third_party/sqlite/ext/async/sqlite3async.h ('k') | third_party/sqlite/ext/fts1/README.txt » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /*
2 ** 2005 December 14
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** $Id: sqlite3async.c,v 1.7 2009/07/18 11:52:04 danielk1977 Exp $
14 **
15 ** This file contains the implementation of an asynchronous IO backend
16 ** for SQLite.
17 */
18
19 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ASYNCIO)
20
21 #include "sqlite3async.h"
22 #include "sqlite3.h"
23 #include <stdarg.h>
24 #include <string.h>
25 #include <assert.h>
26
27 /* Useful macros used in several places */
28 #define MIN(x,y) ((x)<(y)?(x):(y))
29 #define MAX(x,y) ((x)>(y)?(x):(y))
30
31 #ifndef SQLITE_AMALGAMATION
32 /* Macro to mark parameters as unused and silence compiler warnings. */
33 #define UNUSED_PARAMETER(x) (void)(x)
34 #endif
35
36 /* Forward references */
37 typedef struct AsyncWrite AsyncWrite;
38 typedef struct AsyncFile AsyncFile;
39 typedef struct AsyncFileData AsyncFileData;
40 typedef struct AsyncFileLock AsyncFileLock;
41 typedef struct AsyncLock AsyncLock;
42
43 /* Enable for debugging */
44 #ifndef NDEBUG
45 #include <stdio.h>
46 static int sqlite3async_trace = 0;
47 # define ASYNC_TRACE(X) if( sqlite3async_trace ) asyncTrace X
48 static void asyncTrace(const char *zFormat, ...){
49 char *z;
50 va_list ap;
51 va_start(ap, zFormat);
52 z = sqlite3_vmprintf(zFormat, ap);
53 va_end(ap);
54 fprintf(stderr, "[%d] %s", 0 /* (int)pthread_self() */, z);
55 sqlite3_free(z);
56 }
57 #else
58 # define ASYNC_TRACE(X)
59 #endif
60
61 /*
62 ** THREAD SAFETY NOTES
63 **
64 ** Basic rules:
65 **
66 ** * Both read and write access to the global write-op queue must be
67 ** protected by the async.queueMutex. As are the async.ioError and
68 ** async.nFile variables.
69 **
70 ** * The async.pLock list and all AsyncLock and AsyncFileLock
71 ** structures must be protected by the async.lockMutex mutex.
72 **
73 ** * The file handles from the underlying system are not assumed to
74 ** be thread safe.
75 **
76 ** * See the last two paragraphs under "The Writer Thread" for
77 ** an assumption to do with file-handle synchronization by the Os.
78 **
79 ** Deadlock prevention:
80 **
81 ** There are three mutex used by the system: the "writer" mutex,
82 ** the "queue" mutex and the "lock" mutex. Rules are:
83 **
84 ** * It is illegal to block on the writer mutex when any other mutex
85 ** are held, and
86 **
87 ** * It is illegal to block on the queue mutex when the lock mutex
88 ** is held.
89 **
90 ** i.e. mutex's must be grabbed in the order "writer", "queue", "lock".
91 **
92 ** File system operations (invoked by SQLite thread):
93 **
94 ** xOpen
95 ** xDelete
96 ** xFileExists
97 **
98 ** File handle operations (invoked by SQLite thread):
99 **
100 ** asyncWrite, asyncClose, asyncTruncate, asyncSync
101 **
102 ** The operations above add an entry to the global write-op list. They
103 ** prepare the entry, acquire the async.queueMutex momentarily while
104 ** list pointers are manipulated to insert the new entry, then release
105 ** the mutex and signal the writer thread to wake up in case it happens
106 ** to be asleep.
107 **
108 **
109 ** asyncRead, asyncFileSize.
110 **
111 ** Read operations. Both of these read from both the underlying file
112 ** first then adjust their result based on pending writes in the
113 ** write-op queue. So async.queueMutex is held for the duration
114 ** of these operations to prevent other threads from changing the
115 ** queue in mid operation.
116 **
117 **
118 ** asyncLock, asyncUnlock, asyncCheckReservedLock
119 **
120 ** These primitives implement in-process locking using a hash table
121 ** on the file name. Files are locked correctly for connections coming
122 ** from the same process. But other processes cannot see these locks
123 ** and will therefore not honor them.
124 **
125 **
126 ** The writer thread:
127 **
128 ** The async.writerMutex is used to make sure only there is only
129 ** a single writer thread running at a time.
130 **
131 ** Inside the writer thread is a loop that works like this:
132 **
133 ** WHILE (write-op list is not empty)
134 ** Do IO operation at head of write-op list
135 ** Remove entry from head of write-op list
136 ** END WHILE
137 **
138 ** The async.queueMutex is always held during the <write-op list is
139 ** not empty> test, and when the entry is removed from the head
140 ** of the write-op list. Sometimes it is held for the interim
141 ** period (while the IO is performed), and sometimes it is
142 ** relinquished. It is relinquished if (a) the IO op is an
143 ** ASYNC_CLOSE or (b) when the file handle was opened, two of
144 ** the underlying systems handles were opened on the same
145 ** file-system entry.
146 **
147 ** If condition (b) above is true, then one file-handle
148 ** (AsyncFile.pBaseRead) is used exclusively by sqlite threads to read the
149 ** file, the other (AsyncFile.pBaseWrite) by sqlite3_async_flush()
150 ** threads to perform write() operations. This means that read
151 ** operations are not blocked by asynchronous writes (although
152 ** asynchronous writes may still be blocked by reads).
153 **
154 ** This assumes that the OS keeps two handles open on the same file
155 ** properly in sync. That is, any read operation that starts after a
156 ** write operation on the same file system entry has completed returns
157 ** data consistent with the write. We also assume that if one thread
158 ** reads a file while another is writing it all bytes other than the
159 ** ones actually being written contain valid data.
160 **
161 ** If the above assumptions are not true, set the preprocessor symbol
162 ** SQLITE_ASYNC_TWO_FILEHANDLES to 0.
163 */
164
165
166 #ifndef NDEBUG
167 # define TESTONLY( X ) X
168 #else
169 # define TESTONLY( X )
170 #endif
171
172 /*
173 ** PORTING FUNCTIONS
174 **
175 ** There are two definitions of the following functions. One for pthreads
176 ** compatible systems and one for Win32. These functions isolate the OS
177 ** specific code required by each platform.
178 **
179 ** The system uses three mutexes and a single condition variable. To
180 ** block on a mutex, async_mutex_enter() is called. The parameter passed
181 ** to async_mutex_enter(), which must be one of ASYNC_MUTEX_LOCK,
182 ** ASYNC_MUTEX_QUEUE or ASYNC_MUTEX_WRITER, identifies which of the three
183 ** mutexes to lock. Similarly, to unlock a mutex, async_mutex_leave() is
184 ** called with a parameter identifying the mutex being unlocked. Mutexes
185 ** are not recursive - it is an error to call async_mutex_enter() to
186 ** lock a mutex that is already locked, or to call async_mutex_leave()
187 ** to unlock a mutex that is not currently locked.
188 **
189 ** The async_cond_wait() and async_cond_signal() functions are modelled
190 ** on the pthreads functions with similar names. The first parameter to
191 ** both functions is always ASYNC_COND_QUEUE. When async_cond_wait()
192 ** is called the mutex identified by the second parameter must be held.
193 ** The mutex is unlocked, and the calling thread simultaneously begins
194 ** waiting for the condition variable to be signalled by another thread.
195 ** After another thread signals the condition variable, the calling
196 ** thread stops waiting, locks mutex eMutex and returns. The
197 ** async_cond_signal() function is used to signal the condition variable.
198 ** It is assumed that the mutex used by the thread calling async_cond_wait()
199 ** is held by the caller of async_cond_signal() (otherwise there would be
200 ** a race condition).
201 **
202 ** It is guaranteed that no other thread will call async_cond_wait() when
203 ** there is already a thread waiting on the condition variable.
204 **
205 ** The async_sched_yield() function is called to suggest to the operating
206 ** system that it would be a good time to shift the current thread off the
207 ** CPU. The system will still work if this function is not implemented
208 ** (it is not currently implemented for win32), but it might be marginally
209 ** more efficient if it is.
210 */
211 static void async_mutex_enter(int eMutex);
212 static void async_mutex_leave(int eMutex);
213 static void async_cond_wait(int eCond, int eMutex);
214 static void async_cond_signal(int eCond);
215 static void async_sched_yield(void);
216
217 /*
218 ** There are also two definitions of the following. async_os_initialize()
219 ** is called when the asynchronous VFS is first installed, and os_shutdown()
220 ** is called when it is uninstalled (from within sqlite3async_shutdown()).
221 **
222 ** For pthreads builds, both of these functions are no-ops. For win32,
223 ** they provide an opportunity to initialize and finalize the required
224 ** mutex and condition variables.
225 **
226 ** If async_os_initialize() returns other than zero, then the initialization
227 ** fails and SQLITE_ERROR is returned to the user.
228 */
229 static int async_os_initialize(void);
230 static void async_os_shutdown(void);
231
232 /* Values for use as the 'eMutex' argument of the above functions. The
233 ** integer values assigned to these constants are important for assert()
234 ** statements that verify that mutexes are locked in the correct order.
235 ** Specifically, it is unsafe to try to lock mutex N while holding a lock
236 ** on mutex M if (M<=N).
237 */
238 #define ASYNC_MUTEX_LOCK 0
239 #define ASYNC_MUTEX_QUEUE 1
240 #define ASYNC_MUTEX_WRITER 2
241
242 /* Values for use as the 'eCond' argument of the above functions. */
243 #define ASYNC_COND_QUEUE 0
244
245 /*************************************************************************
246 ** Start of OS specific code.
247 */
248 #if SQLITE_OS_WIN || defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__)
249
250 #include <windows.h>
251
252 /* The following block contains the win32 specific code. */
253
254 #define mutex_held(X) (GetCurrentThreadId()==primitives.aHolder[X])
255
256 static struct AsyncPrimitives {
257 int isInit;
258 DWORD aHolder[3];
259 CRITICAL_SECTION aMutex[3];
260 HANDLE aCond[1];
261 } primitives = { 0 };
262
263 static int async_os_initialize(void){
264 if( !primitives.isInit ){
265 primitives.aCond[0] = CreateEvent(NULL, TRUE, FALSE, 0);
266 if( primitives.aCond[0]==NULL ){
267 return 1;
268 }
269 InitializeCriticalSection(&primitives.aMutex[0]);
270 InitializeCriticalSection(&primitives.aMutex[1]);
271 InitializeCriticalSection(&primitives.aMutex[2]);
272 primitives.isInit = 1;
273 }
274 return 0;
275 }
276 static void async_os_shutdown(void){
277 if( primitives.isInit ){
278 DeleteCriticalSection(&primitives.aMutex[0]);
279 DeleteCriticalSection(&primitives.aMutex[1]);
280 DeleteCriticalSection(&primitives.aMutex[2]);
281 CloseHandle(primitives.aCond[0]);
282 primitives.isInit = 0;
283 }
284 }
285
286 /* The following block contains the Win32 specific code. */
287 static void async_mutex_enter(int eMutex){
288 assert( eMutex==0 || eMutex==1 || eMutex==2 );
289 assert( eMutex!=2 || (!mutex_held(0) && !mutex_held(1) && !mutex_held(2)) );
290 assert( eMutex!=1 || (!mutex_held(0) && !mutex_held(1)) );
291 assert( eMutex!=0 || (!mutex_held(0)) );
292 EnterCriticalSection(&primitives.aMutex[eMutex]);
293 TESTONLY( primitives.aHolder[eMutex] = GetCurrentThreadId(); )
294 }
295 static void async_mutex_leave(int eMutex){
296 assert( eMutex==0 || eMutex==1 || eMutex==2 );
297 assert( mutex_held(eMutex) );
298 TESTONLY( primitives.aHolder[eMutex] = 0; )
299 LeaveCriticalSection(&primitives.aMutex[eMutex]);
300 }
301 static void async_cond_wait(int eCond, int eMutex){
302 ResetEvent(primitives.aCond[eCond]);
303 async_mutex_leave(eMutex);
304 WaitForSingleObject(primitives.aCond[eCond], INFINITE);
305 async_mutex_enter(eMutex);
306 }
307 static void async_cond_signal(int eCond){
308 assert( mutex_held(ASYNC_MUTEX_QUEUE) );
309 SetEvent(primitives.aCond[eCond]);
310 }
311 static void async_sched_yield(void){
312 Sleep(0);
313 }
314 #else
315
316 /* The following block contains the pthreads specific code. */
317 #include <pthread.h>
318 #include <sched.h>
319
320 #define mutex_held(X) pthread_equal(primitives.aHolder[X], pthread_self())
321
322 static int async_os_initialize(void) {return 0;}
323 static void async_os_shutdown(void) {}
324
325 static struct AsyncPrimitives {
326 pthread_mutex_t aMutex[3];
327 pthread_cond_t aCond[1];
328 pthread_t aHolder[3];
329 } primitives = {
330 { PTHREAD_MUTEX_INITIALIZER,
331 PTHREAD_MUTEX_INITIALIZER,
332 PTHREAD_MUTEX_INITIALIZER
333 } , {
334 PTHREAD_COND_INITIALIZER
335 } , { 0, 0, 0 }
336 };
337
338 static void async_mutex_enter(int eMutex){
339 assert( eMutex==0 || eMutex==1 || eMutex==2 );
340 assert( eMutex!=2 || (!mutex_held(0) && !mutex_held(1) && !mutex_held(2)) );
341 assert( eMutex!=1 || (!mutex_held(0) && !mutex_held(1)) );
342 assert( eMutex!=0 || (!mutex_held(0)) );
343 pthread_mutex_lock(&primitives.aMutex[eMutex]);
344 TESTONLY( primitives.aHolder[eMutex] = pthread_self(); )
345 }
346 static void async_mutex_leave(int eMutex){
347 assert( eMutex==0 || eMutex==1 || eMutex==2 );
348 assert( mutex_held(eMutex) );
349 TESTONLY( primitives.aHolder[eMutex] = 0; )
350 pthread_mutex_unlock(&primitives.aMutex[eMutex]);
351 }
352 static void async_cond_wait(int eCond, int eMutex){
353 assert( eMutex==0 || eMutex==1 || eMutex==2 );
354 assert( mutex_held(eMutex) );
355 TESTONLY( primitives.aHolder[eMutex] = 0; )
356 pthread_cond_wait(&primitives.aCond[eCond], &primitives.aMutex[eMutex]);
357 TESTONLY( primitives.aHolder[eMutex] = pthread_self(); )
358 }
359 static void async_cond_signal(int eCond){
360 assert( mutex_held(ASYNC_MUTEX_QUEUE) );
361 pthread_cond_signal(&primitives.aCond[eCond]);
362 }
363 static void async_sched_yield(void){
364 sched_yield();
365 }
366 #endif
367 /*
368 ** End of OS specific code.
369 *************************************************************************/
370
371 #define assert_mutex_is_held(X) assert( mutex_held(X) )
372
373
374 #ifndef SQLITE_ASYNC_TWO_FILEHANDLES
375 /* #define SQLITE_ASYNC_TWO_FILEHANDLES 0 */
376 #define SQLITE_ASYNC_TWO_FILEHANDLES 1
377 #endif
378
379 /*
380 ** State information is held in the static variable "async" defined
381 ** as the following structure.
382 **
383 ** Both async.ioError and async.nFile are protected by async.queueMutex.
384 */
385 static struct TestAsyncStaticData {
386 AsyncWrite *pQueueFirst; /* Next write operation to be processed */
387 AsyncWrite *pQueueLast; /* Last write operation on the list */
388 AsyncLock *pLock; /* Linked list of all AsyncLock structures */
389 volatile int ioDelay; /* Extra delay between write operations */
390 volatile int eHalt; /* One of the SQLITEASYNC_HALT_XXX values */
391 volatile int bLockFiles; /* Current value of "lockfiles" parameter */
392 int ioError; /* True if an IO error has occurred */
393 int nFile; /* Number of open files (from sqlite pov) */
394 } async = { 0,0,0,0,0,1,0,0 };
395
396 /* Possible values of AsyncWrite.op */
397 #define ASYNC_NOOP 0
398 #define ASYNC_WRITE 1
399 #define ASYNC_SYNC 2
400 #define ASYNC_TRUNCATE 3
401 #define ASYNC_CLOSE 4
402 #define ASYNC_DELETE 5
403 #define ASYNC_OPENEXCLUSIVE 6
404 #define ASYNC_UNLOCK 7
405
406 /* Names of opcodes. Used for debugging only.
407 ** Make sure these stay in sync with the macros above!
408 */
409 static const char *azOpcodeName[] = {
410 "NOOP", "WRITE", "SYNC", "TRUNCATE", "CLOSE", "DELETE", "OPENEX", "UNLOCK"
411 };
412
413 /*
414 ** Entries on the write-op queue are instances of the AsyncWrite
415 ** structure, defined here.
416 **
417 ** The interpretation of the iOffset and nByte variables varies depending
418 ** on the value of AsyncWrite.op:
419 **
420 ** ASYNC_NOOP:
421 ** No values used.
422 **
423 ** ASYNC_WRITE:
424 ** iOffset -> Offset in file to write to.
425 ** nByte -> Number of bytes of data to write (pointed to by zBuf).
426 **
427 ** ASYNC_SYNC:
428 ** nByte -> flags to pass to sqlite3OsSync().
429 **
430 ** ASYNC_TRUNCATE:
431 ** iOffset -> Size to truncate file to.
432 ** nByte -> Unused.
433 **
434 ** ASYNC_CLOSE:
435 ** iOffset -> Unused.
436 ** nByte -> Unused.
437 **
438 ** ASYNC_DELETE:
439 ** iOffset -> Contains the "syncDir" flag.
440 ** nByte -> Number of bytes of zBuf points to (file name).
441 **
442 ** ASYNC_OPENEXCLUSIVE:
443 ** iOffset -> Value of "delflag".
444 ** nByte -> Number of bytes of zBuf points to (file name).
445 **
446 ** ASYNC_UNLOCK:
447 ** nByte -> Argument to sqlite3OsUnlock().
448 **
449 **
450 ** For an ASYNC_WRITE operation, zBuf points to the data to write to the file.
451 ** This space is sqlite3_malloc()d along with the AsyncWrite structure in a
452 ** single blob, so is deleted when sqlite3_free() is called on the parent
453 ** structure.
454 */
455 struct AsyncWrite {
456 AsyncFileData *pFileData; /* File to write data to or sync */
457 int op; /* One of ASYNC_xxx etc. */
458 sqlite_int64 iOffset; /* See above */
459 int nByte; /* See above */
460 char *zBuf; /* Data to write to file (or NULL if op!=ASYNC_WRITE) */
461 AsyncWrite *pNext; /* Next write operation (to any file) */
462 };
463
464 /*
465 ** An instance of this structure is created for each distinct open file
466 ** (i.e. if two handles are opened on the one file, only one of these
467 ** structures is allocated) and stored in the async.aLock hash table. The
468 ** keys for async.aLock are the full pathnames of the opened files.
469 **
470 ** AsyncLock.pList points to the head of a linked list of AsyncFileLock
471 ** structures, one for each handle currently open on the file.
472 **
473 ** If the opened file is not a main-database (the SQLITE_OPEN_MAIN_DB is
474 ** not passed to the sqlite3OsOpen() call), or if async.bLockFiles is
475 ** false, variables AsyncLock.pFile and AsyncLock.eLock are never used.
476 ** Otherwise, pFile is a file handle opened on the file in question and
477 ** used to obtain the file-system locks required by database connections
478 ** within this process.
479 **
480 ** See comments above the asyncLock() function for more details on
481 ** the implementation of database locking used by this backend.
482 */
483 struct AsyncLock {
484 char *zFile;
485 int nFile;
486 sqlite3_file *pFile;
487 int eLock;
488 AsyncFileLock *pList;
489 AsyncLock *pNext; /* Next in linked list headed by async.pLock */
490 };
491
492 /*
493 ** An instance of the following structure is allocated along with each
494 ** AsyncFileData structure (see AsyncFileData.lock), but is only used if the
495 ** file was opened with the SQLITE_OPEN_MAIN_DB.
496 */
497 struct AsyncFileLock {
498 int eLock; /* Internally visible lock state (sqlite pov) */
499 int eAsyncLock; /* Lock-state with write-queue unlock */
500 AsyncFileLock *pNext;
501 };
502
503 /*
504 ** The AsyncFile structure is a subclass of sqlite3_file used for
505 ** asynchronous IO.
506 **
507 ** All of the actual data for the structure is stored in the structure
508 ** pointed to by AsyncFile.pData, which is allocated as part of the
509 ** sqlite3OsOpen() using sqlite3_malloc(). The reason for this is that the
510 ** lifetime of the AsyncFile structure is ended by the caller after OsClose()
511 ** is called, but the data in AsyncFileData may be required by the
512 ** writer thread after that point.
513 */
514 struct AsyncFile {
515 sqlite3_io_methods *pMethod;
516 AsyncFileData *pData;
517 };
518 struct AsyncFileData {
519 char *zName; /* Underlying OS filename - used for debugging */
520 int nName; /* Number of characters in zName */
521 sqlite3_file *pBaseRead; /* Read handle to the underlying Os file */
522 sqlite3_file *pBaseWrite; /* Write handle to the underlying Os file */
523 AsyncFileLock lock; /* Lock state for this handle */
524 AsyncLock *pLock; /* AsyncLock object for this file system entry */
525 AsyncWrite closeOp; /* Preallocated close operation */
526 };
527
528 /*
529 ** Add an entry to the end of the global write-op list. pWrite should point
530 ** to an AsyncWrite structure allocated using sqlite3_malloc(). The writer
531 ** thread will call sqlite3_free() to free the structure after the specified
532 ** operation has been completed.
533 **
534 ** Once an AsyncWrite structure has been added to the list, it becomes the
535 ** property of the writer thread and must not be read or modified by the
536 ** caller.
537 */
538 static void addAsyncWrite(AsyncWrite *pWrite){
539 /* We must hold the queue mutex in order to modify the queue pointers */
540 if( pWrite->op!=ASYNC_UNLOCK ){
541 async_mutex_enter(ASYNC_MUTEX_QUEUE);
542 }
543
544 /* Add the record to the end of the write-op queue */
545 assert( !pWrite->pNext );
546 if( async.pQueueLast ){
547 assert( async.pQueueFirst );
548 async.pQueueLast->pNext = pWrite;
549 }else{
550 async.pQueueFirst = pWrite;
551 }
552 async.pQueueLast = pWrite;
553 ASYNC_TRACE(("PUSH %p (%s %s %d)\n", pWrite, azOpcodeName[pWrite->op],
554 pWrite->pFileData ? pWrite->pFileData->zName : "-", pWrite->iOffset));
555
556 if( pWrite->op==ASYNC_CLOSE ){
557 async.nFile--;
558 }
559
560 /* The writer thread might have been idle because there was nothing
561 ** on the write-op queue for it to do. So wake it up. */
562 async_cond_signal(ASYNC_COND_QUEUE);
563
564 /* Drop the queue mutex */
565 if( pWrite->op!=ASYNC_UNLOCK ){
566 async_mutex_leave(ASYNC_MUTEX_QUEUE);
567 }
568 }
569
570 /*
571 ** Increment async.nFile in a thread-safe manner.
572 */
573 static void incrOpenFileCount(void){
574 /* We must hold the queue mutex in order to modify async.nFile */
575 async_mutex_enter(ASYNC_MUTEX_QUEUE);
576 if( async.nFile==0 ){
577 async.ioError = SQLITE_OK;
578 }
579 async.nFile++;
580 async_mutex_leave(ASYNC_MUTEX_QUEUE);
581 }
582
583 /*
584 ** This is a utility function to allocate and populate a new AsyncWrite
585 ** structure and insert it (via addAsyncWrite() ) into the global list.
586 */
587 static int addNewAsyncWrite(
588 AsyncFileData *pFileData,
589 int op,
590 sqlite3_int64 iOffset,
591 int nByte,
592 const char *zByte
593 ){
594 AsyncWrite *p;
595 if( op!=ASYNC_CLOSE && async.ioError ){
596 return async.ioError;
597 }
598 p = sqlite3_malloc(sizeof(AsyncWrite) + (zByte?nByte:0));
599 if( !p ){
600 /* The upper layer does not expect operations like OsWrite() to
601 ** return SQLITE_NOMEM. This is partly because under normal conditions
602 ** SQLite is required to do rollback without calling malloc(). So
603 ** if malloc() fails here, treat it as an I/O error. The above
604 ** layer knows how to handle that.
605 */
606 return SQLITE_IOERR;
607 }
608 p->op = op;
609 p->iOffset = iOffset;
610 p->nByte = nByte;
611 p->pFileData = pFileData;
612 p->pNext = 0;
613 if( zByte ){
614 p->zBuf = (char *)&p[1];
615 memcpy(p->zBuf, zByte, nByte);
616 }else{
617 p->zBuf = 0;
618 }
619 addAsyncWrite(p);
620 return SQLITE_OK;
621 }
622
623 /*
624 ** Close the file. This just adds an entry to the write-op list, the file is
625 ** not actually closed.
626 */
627 static int asyncClose(sqlite3_file *pFile){
628 AsyncFileData *p = ((AsyncFile *)pFile)->pData;
629
630 /* Unlock the file, if it is locked */
631 async_mutex_enter(ASYNC_MUTEX_LOCK);
632 p->lock.eLock = 0;
633 async_mutex_leave(ASYNC_MUTEX_LOCK);
634
635 addAsyncWrite(&p->closeOp);
636 return SQLITE_OK;
637 }
638
639 /*
640 ** Implementation of sqlite3OsWrite() for asynchronous files. Instead of
641 ** writing to the underlying file, this function adds an entry to the end of
642 ** the global AsyncWrite list. Either SQLITE_OK or SQLITE_NOMEM may be
643 ** returned.
644 */
645 static int asyncWrite(
646 sqlite3_file *pFile,
647 const void *pBuf,
648 int amt,
649 sqlite3_int64 iOff
650 ){
651 AsyncFileData *p = ((AsyncFile *)pFile)->pData;
652 return addNewAsyncWrite(p, ASYNC_WRITE, iOff, amt, pBuf);
653 }
654
655 /*
656 ** Read data from the file. First we read from the filesystem, then adjust
657 ** the contents of the buffer based on ASYNC_WRITE operations in the
658 ** write-op queue.
659 **
660 ** This method holds the mutex from start to finish.
661 */
662 static int asyncRead(
663 sqlite3_file *pFile,
664 void *zOut,
665 int iAmt,
666 sqlite3_int64 iOffset
667 ){
668 AsyncFileData *p = ((AsyncFile *)pFile)->pData;
669 int rc = SQLITE_OK;
670 sqlite3_int64 filesize;
671 int nRead;
672 sqlite3_file *pBase = p->pBaseRead;
673
674 /* Grab the write queue mutex for the duration of the call */
675 async_mutex_enter(ASYNC_MUTEX_QUEUE);
676
677 /* If an I/O error has previously occurred in this virtual file
678 ** system, then all subsequent operations fail.
679 */
680 if( async.ioError!=SQLITE_OK ){
681 rc = async.ioError;
682 goto asyncread_out;
683 }
684
685 if( pBase->pMethods ){
686 rc = pBase->pMethods->xFileSize(pBase, &filesize);
687 if( rc!=SQLITE_OK ){
688 goto asyncread_out;
689 }
690 nRead = (int)MIN(filesize - iOffset, iAmt);
691 if( nRead>0 ){
692 rc = pBase->pMethods->xRead(pBase, zOut, nRead, iOffset);
693 ASYNC_TRACE(("READ %s %d bytes at %d\n", p->zName, nRead, iOffset));
694 }
695 }
696
697 if( rc==SQLITE_OK ){
698 AsyncWrite *pWrite;
699 char *zName = p->zName;
700
701 for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){
702 if( pWrite->op==ASYNC_WRITE && (
703 (pWrite->pFileData==p) ||
704 (zName && pWrite->pFileData->zName==zName)
705 )){
706 sqlite3_int64 iBeginOut = (pWrite->iOffset-iOffset);
707 sqlite3_int64 iBeginIn = -iBeginOut;
708 int nCopy;
709
710 if( iBeginIn<0 ) iBeginIn = 0;
711 if( iBeginOut<0 ) iBeginOut = 0;
712 nCopy = (int)MIN(pWrite->nByte-iBeginIn, iAmt-iBeginOut);
713
714 if( nCopy>0 ){
715 memcpy(&((char *)zOut)[iBeginOut], &pWrite->zBuf[iBeginIn], nCopy);
716 ASYNC_TRACE(("OVERREAD %d bytes at %d\n", nCopy, iBeginOut+iOffset));
717 }
718 }
719 }
720 }
721
722 asyncread_out:
723 async_mutex_leave(ASYNC_MUTEX_QUEUE);
724 return rc;
725 }
726
727 /*
728 ** Truncate the file to nByte bytes in length. This just adds an entry to
729 ** the write-op list, no IO actually takes place.
730 */
731 static int asyncTruncate(sqlite3_file *pFile, sqlite3_int64 nByte){
732 AsyncFileData *p = ((AsyncFile *)pFile)->pData;
733 return addNewAsyncWrite(p, ASYNC_TRUNCATE, nByte, 0, 0);
734 }
735
736 /*
737 ** Sync the file. This just adds an entry to the write-op list, the
738 ** sync() is done later by sqlite3_async_flush().
739 */
740 static int asyncSync(sqlite3_file *pFile, int flags){
741 AsyncFileData *p = ((AsyncFile *)pFile)->pData;
742 return addNewAsyncWrite(p, ASYNC_SYNC, 0, flags, 0);
743 }
744
745 /*
746 ** Read the size of the file. First we read the size of the file system
747 ** entry, then adjust for any ASYNC_WRITE or ASYNC_TRUNCATE operations
748 ** currently in the write-op list.
749 **
750 ** This method holds the mutex from start to finish.
751 */
752 int asyncFileSize(sqlite3_file *pFile, sqlite3_int64 *piSize){
753 AsyncFileData *p = ((AsyncFile *)pFile)->pData;
754 int rc = SQLITE_OK;
755 sqlite3_int64 s = 0;
756 sqlite3_file *pBase;
757
758 async_mutex_enter(ASYNC_MUTEX_QUEUE);
759
760 /* Read the filesystem size from the base file. If pMethods is NULL, this
761 ** means the file hasn't been opened yet. In this case all relevant data
762 ** must be in the write-op queue anyway, so we can omit reading from the
763 ** file-system.
764 */
765 pBase = p->pBaseRead;
766 if( pBase->pMethods ){
767 rc = pBase->pMethods->xFileSize(pBase, &s);
768 }
769
770 if( rc==SQLITE_OK ){
771 AsyncWrite *pWrite;
772 for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){
773 if( pWrite->op==ASYNC_DELETE
774 && p->zName
775 && strcmp(p->zName, pWrite->zBuf)==0
776 ){
777 s = 0;
778 }else if( pWrite->pFileData && (
779 (pWrite->pFileData==p)
780 || (p->zName && pWrite->pFileData->zName==p->zName)
781 )){
782 switch( pWrite->op ){
783 case ASYNC_WRITE:
784 s = MAX(pWrite->iOffset + (sqlite3_int64)(pWrite->nByte), s);
785 break;
786 case ASYNC_TRUNCATE:
787 s = MIN(s, pWrite->iOffset);
788 break;
789 }
790 }
791 }
792 *piSize = s;
793 }
794 async_mutex_leave(ASYNC_MUTEX_QUEUE);
795 return rc;
796 }
797
798 /*
799 ** Lock or unlock the actual file-system entry.
800 */
801 static int getFileLock(AsyncLock *pLock){
802 int rc = SQLITE_OK;
803 AsyncFileLock *pIter;
804 int eRequired = 0;
805
806 if( pLock->pFile ){
807 for(pIter=pLock->pList; pIter; pIter=pIter->pNext){
808 assert(pIter->eAsyncLock>=pIter->eLock);
809 if( pIter->eAsyncLock>eRequired ){
810 eRequired = pIter->eAsyncLock;
811 assert(eRequired>=0 && eRequired<=SQLITE_LOCK_EXCLUSIVE);
812 }
813 }
814
815 if( eRequired>pLock->eLock ){
816 rc = pLock->pFile->pMethods->xLock(pLock->pFile, eRequired);
817 if( rc==SQLITE_OK ){
818 pLock->eLock = eRequired;
819 }
820 }
821 else if( eRequired<pLock->eLock && eRequired<=SQLITE_LOCK_SHARED ){
822 rc = pLock->pFile->pMethods->xUnlock(pLock->pFile, eRequired);
823 if( rc==SQLITE_OK ){
824 pLock->eLock = eRequired;
825 }
826 }
827 }
828
829 return rc;
830 }
831
832 /*
833 ** Return the AsyncLock structure from the global async.pLock list
834 ** associated with the file-system entry identified by path zName
835 ** (a string of nName bytes). If no such structure exists, return 0.
836 */
837 static AsyncLock *findLock(const char *zName, int nName){
838 AsyncLock *p = async.pLock;
839 while( p && (p->nFile!=nName || memcmp(p->zFile, zName, nName)) ){
840 p = p->pNext;
841 }
842 return p;
843 }
844
845 /*
846 ** The following two methods - asyncLock() and asyncUnlock() - are used
847 ** to obtain and release locks on database files opened with the
848 ** asynchronous backend.
849 */
850 static int asyncLock(sqlite3_file *pFile, int eLock){
851 int rc = SQLITE_OK;
852 AsyncFileData *p = ((AsyncFile *)pFile)->pData;
853
854 if( p->zName ){
855 async_mutex_enter(ASYNC_MUTEX_LOCK);
856 if( p->lock.eLock<eLock ){
857 AsyncLock *pLock = p->pLock;
858 AsyncFileLock *pIter;
859 assert(pLock && pLock->pList);
860 for(pIter=pLock->pList; pIter; pIter=pIter->pNext){
861 if( pIter!=&p->lock && (
862 (eLock==SQLITE_LOCK_EXCLUSIVE && pIter->eLock>=SQLITE_LOCK_SHARED) ||
863 (eLock==SQLITE_LOCK_PENDING && pIter->eLock>=SQLITE_LOCK_RESERVED) ||
864 (eLock==SQLITE_LOCK_RESERVED && pIter->eLock>=SQLITE_LOCK_RESERVED) ||
865 (eLock==SQLITE_LOCK_SHARED && pIter->eLock>=SQLITE_LOCK_PENDING)
866 )){
867 rc = SQLITE_BUSY;
868 }
869 }
870 if( rc==SQLITE_OK ){
871 p->lock.eLock = eLock;
872 p->lock.eAsyncLock = MAX(p->lock.eAsyncLock, eLock);
873 }
874 assert(p->lock.eAsyncLock>=p->lock.eLock);
875 if( rc==SQLITE_OK ){
876 rc = getFileLock(pLock);
877 }
878 }
879 async_mutex_leave(ASYNC_MUTEX_LOCK);
880 }
881
882 ASYNC_TRACE(("LOCK %d (%s) rc=%d\n", eLock, p->zName, rc));
883 return rc;
884 }
885 static int asyncUnlock(sqlite3_file *pFile, int eLock){
886 int rc = SQLITE_OK;
887 AsyncFileData *p = ((AsyncFile *)pFile)->pData;
888 if( p->zName ){
889 AsyncFileLock *pLock = &p->lock;
890 async_mutex_enter(ASYNC_MUTEX_QUEUE);
891 async_mutex_enter(ASYNC_MUTEX_LOCK);
892 pLock->eLock = MIN(pLock->eLock, eLock);
893 rc = addNewAsyncWrite(p, ASYNC_UNLOCK, 0, eLock, 0);
894 async_mutex_leave(ASYNC_MUTEX_LOCK);
895 async_mutex_leave(ASYNC_MUTEX_QUEUE);
896 }
897 return rc;
898 }
899
900 /*
901 ** This function is called when the pager layer first opens a database file
902 ** and is checking for a hot-journal.
903 */
904 static int asyncCheckReservedLock(sqlite3_file *pFile, int *pResOut){
905 int ret = 0;
906 AsyncFileLock *pIter;
907 AsyncFileData *p = ((AsyncFile *)pFile)->pData;
908
909 async_mutex_enter(ASYNC_MUTEX_LOCK);
910 for(pIter=p->pLock->pList; pIter; pIter=pIter->pNext){
911 if( pIter->eLock>=SQLITE_LOCK_RESERVED ){
912 ret = 1;
913 break;
914 }
915 }
916 async_mutex_leave(ASYNC_MUTEX_LOCK);
917
918 ASYNC_TRACE(("CHECK-LOCK %d (%s)\n", ret, p->zName));
919 *pResOut = ret;
920 return SQLITE_OK;
921 }
922
923 /*
924 ** sqlite3_file_control() implementation.
925 */
926 static int asyncFileControl(sqlite3_file *id, int op, void *pArg){
927 switch( op ){
928 case SQLITE_FCNTL_LOCKSTATE: {
929 async_mutex_enter(ASYNC_MUTEX_LOCK);
930 *(int*)pArg = ((AsyncFile*)id)->pData->lock.eLock;
931 async_mutex_leave(ASYNC_MUTEX_LOCK);
932 return SQLITE_OK;
933 }
934 }
935 return SQLITE_ERROR;
936 }
937
938 /*
939 ** Return the device characteristics and sector-size of the device. It
940 ** is tricky to implement these correctly, as this backend might
941 ** not have an open file handle at this point.
942 */
943 static int asyncSectorSize(sqlite3_file *pFile){
944 UNUSED_PARAMETER(pFile);
945 return 512;
946 }
947 static int asyncDeviceCharacteristics(sqlite3_file *pFile){
948 UNUSED_PARAMETER(pFile);
949 return 0;
950 }
951
952 static int unlinkAsyncFile(AsyncFileData *pData){
953 AsyncFileLock **ppIter;
954 int rc = SQLITE_OK;
955
956 if( pData->zName ){
957 AsyncLock *pLock = pData->pLock;
958 for(ppIter=&pLock->pList; *ppIter; ppIter=&((*ppIter)->pNext)){
959 if( (*ppIter)==&pData->lock ){
960 *ppIter = pData->lock.pNext;
961 break;
962 }
963 }
964 if( !pLock->pList ){
965 AsyncLock **pp;
966 if( pLock->pFile ){
967 pLock->pFile->pMethods->xClose(pLock->pFile);
968 }
969 for(pp=&async.pLock; *pp!=pLock; pp=&((*pp)->pNext));
970 *pp = pLock->pNext;
971 sqlite3_free(pLock);
972 }else{
973 rc = getFileLock(pLock);
974 }
975 }
976
977 return rc;
978 }
979
980 /*
981 ** The parameter passed to this function is a copy of a 'flags' parameter
982 ** passed to this modules xOpen() method. This function returns true
983 ** if the file should be opened asynchronously, or false if it should
984 ** be opened immediately.
985 **
986 ** If the file is to be opened asynchronously, then asyncOpen() will add
987 ** an entry to the event queue and the file will not actually be opened
988 ** until the event is processed. Otherwise, the file is opened directly
989 ** by the caller.
990 */
991 static int doAsynchronousOpen(int flags){
992 return (flags&SQLITE_OPEN_CREATE) && (
993 (flags&SQLITE_OPEN_MAIN_JOURNAL) ||
994 (flags&SQLITE_OPEN_TEMP_JOURNAL) ||
995 (flags&SQLITE_OPEN_DELETEONCLOSE)
996 );
997 }
998
999 /*
1000 ** Open a file.
1001 */
1002 static int asyncOpen(
1003 sqlite3_vfs *pAsyncVfs,
1004 const char *zName,
1005 sqlite3_file *pFile,
1006 int flags,
1007 int *pOutFlags
1008 ){
1009 static sqlite3_io_methods async_methods = {
1010 1, /* iVersion */
1011 asyncClose, /* xClose */
1012 asyncRead, /* xRead */
1013 asyncWrite, /* xWrite */
1014 asyncTruncate, /* xTruncate */
1015 asyncSync, /* xSync */
1016 asyncFileSize, /* xFileSize */
1017 asyncLock, /* xLock */
1018 asyncUnlock, /* xUnlock */
1019 asyncCheckReservedLock, /* xCheckReservedLock */
1020 asyncFileControl, /* xFileControl */
1021 asyncSectorSize, /* xSectorSize */
1022 asyncDeviceCharacteristics /* xDeviceCharacteristics */
1023 };
1024
1025 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1026 AsyncFile *p = (AsyncFile *)pFile;
1027 int nName = 0;
1028 int rc = SQLITE_OK;
1029 int nByte;
1030 AsyncFileData *pData;
1031 AsyncLock *pLock = 0;
1032 char *z;
1033 int isAsyncOpen = doAsynchronousOpen(flags);
1034
1035 /* If zName is NULL, then the upper layer is requesting an anonymous file */
1036 if( zName ){
1037 nName = (int)strlen(zName)+1;
1038 }
1039
1040 nByte = (
1041 sizeof(AsyncFileData) + /* AsyncFileData structure */
1042 2 * pVfs->szOsFile + /* AsyncFileData.pBaseRead and pBaseWrite */
1043 nName /* AsyncFileData.zName */
1044 );
1045 z = sqlite3_malloc(nByte);
1046 if( !z ){
1047 return SQLITE_NOMEM;
1048 }
1049 memset(z, 0, nByte);
1050 pData = (AsyncFileData*)z;
1051 z += sizeof(pData[0]);
1052 pData->pBaseRead = (sqlite3_file*)z;
1053 z += pVfs->szOsFile;
1054 pData->pBaseWrite = (sqlite3_file*)z;
1055 pData->closeOp.pFileData = pData;
1056 pData->closeOp.op = ASYNC_CLOSE;
1057
1058 if( zName ){
1059 z += pVfs->szOsFile;
1060 pData->zName = z;
1061 pData->nName = nName;
1062 memcpy(pData->zName, zName, nName);
1063 }
1064
1065 if( !isAsyncOpen ){
1066 int flagsout;
1067 rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, &flagsout);
1068 if( rc==SQLITE_OK
1069 && (flagsout&SQLITE_OPEN_READWRITE)
1070 && (flags&SQLITE_OPEN_EXCLUSIVE)==0
1071 ){
1072 rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseWrite, flags, 0);
1073 }
1074 if( pOutFlags ){
1075 *pOutFlags = flagsout;
1076 }
1077 }
1078
1079 async_mutex_enter(ASYNC_MUTEX_LOCK);
1080
1081 if( zName && rc==SQLITE_OK ){
1082 pLock = findLock(pData->zName, pData->nName);
1083 if( !pLock ){
1084 int nByte = pVfs->szOsFile + sizeof(AsyncLock) + pData->nName + 1;
1085 pLock = (AsyncLock *)sqlite3_malloc(nByte);
1086 if( pLock ){
1087 memset(pLock, 0, nByte);
1088 if( async.bLockFiles && (flags&SQLITE_OPEN_MAIN_DB) ){
1089 pLock->pFile = (sqlite3_file *)&pLock[1];
1090 rc = pVfs->xOpen(pVfs, pData->zName, pLock->pFile, flags, 0);
1091 if( rc!=SQLITE_OK ){
1092 sqlite3_free(pLock);
1093 pLock = 0;
1094 }
1095 }
1096 if( pLock ){
1097 pLock->nFile = pData->nName;
1098 pLock->zFile = &((char *)(&pLock[1]))[pVfs->szOsFile];
1099 memcpy(pLock->zFile, pData->zName, pLock->nFile);
1100 pLock->pNext = async.pLock;
1101 async.pLock = pLock;
1102 }
1103 }else{
1104 rc = SQLITE_NOMEM;
1105 }
1106 }
1107 }
1108
1109 if( rc==SQLITE_OK ){
1110 p->pMethod = &async_methods;
1111 p->pData = pData;
1112
1113 /* Link AsyncFileData.lock into the linked list of
1114 ** AsyncFileLock structures for this file.
1115 */
1116 if( zName ){
1117 pData->lock.pNext = pLock->pList;
1118 pLock->pList = &pData->lock;
1119 pData->zName = pLock->zFile;
1120 }
1121 }else{
1122 if( pData->pBaseRead->pMethods ){
1123 pData->pBaseRead->pMethods->xClose(pData->pBaseRead);
1124 }
1125 if( pData->pBaseWrite->pMethods ){
1126 pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite);
1127 }
1128 sqlite3_free(pData);
1129 }
1130
1131 async_mutex_leave(ASYNC_MUTEX_LOCK);
1132
1133 if( rc==SQLITE_OK ){
1134 incrOpenFileCount();
1135 pData->pLock = pLock;
1136 }
1137
1138 if( rc==SQLITE_OK && isAsyncOpen ){
1139 rc = addNewAsyncWrite(pData, ASYNC_OPENEXCLUSIVE, (sqlite3_int64)flags,0,0);
1140 if( rc==SQLITE_OK ){
1141 if( pOutFlags ) *pOutFlags = flags;
1142 }else{
1143 async_mutex_enter(ASYNC_MUTEX_LOCK);
1144 unlinkAsyncFile(pData);
1145 async_mutex_leave(ASYNC_MUTEX_LOCK);
1146 sqlite3_free(pData);
1147 }
1148 }
1149 if( rc!=SQLITE_OK ){
1150 p->pMethod = 0;
1151 }
1152 return rc;
1153 }
1154
1155 /*
1156 ** Implementation of sqlite3OsDelete. Add an entry to the end of the
1157 ** write-op queue to perform the delete.
1158 */
1159 static int asyncDelete(sqlite3_vfs *pAsyncVfs, const char *z, int syncDir){
1160 UNUSED_PARAMETER(pAsyncVfs);
1161 return addNewAsyncWrite(0, ASYNC_DELETE, syncDir, (int)strlen(z)+1, z);
1162 }
1163
1164 /*
1165 ** Implementation of sqlite3OsAccess. This method holds the mutex from
1166 ** start to finish.
1167 */
1168 static int asyncAccess(
1169 sqlite3_vfs *pAsyncVfs,
1170 const char *zName,
1171 int flags,
1172 int *pResOut
1173 ){
1174 int rc;
1175 int ret;
1176 AsyncWrite *p;
1177 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1178
1179 assert(flags==SQLITE_ACCESS_READWRITE
1180 || flags==SQLITE_ACCESS_READ
1181 || flags==SQLITE_ACCESS_EXISTS
1182 );
1183
1184 async_mutex_enter(ASYNC_MUTEX_QUEUE);
1185 rc = pVfs->xAccess(pVfs, zName, flags, &ret);
1186 if( rc==SQLITE_OK && flags==SQLITE_ACCESS_EXISTS ){
1187 for(p=async.pQueueFirst; p; p = p->pNext){
1188 if( p->op==ASYNC_DELETE && 0==strcmp(p->zBuf, zName) ){
1189 ret = 0;
1190 }else if( p->op==ASYNC_OPENEXCLUSIVE
1191 && p->pFileData->zName
1192 && 0==strcmp(p->pFileData->zName, zName)
1193 ){
1194 ret = 1;
1195 }
1196 }
1197 }
1198 ASYNC_TRACE(("ACCESS(%s): %s = %d\n",
1199 flags==SQLITE_ACCESS_READWRITE?"read-write":
1200 flags==SQLITE_ACCESS_READ?"read":"exists"
1201 , zName, ret)
1202 );
1203 async_mutex_leave(ASYNC_MUTEX_QUEUE);
1204 *pResOut = ret;
1205 return rc;
1206 }
1207
1208 /*
1209 ** Fill in zPathOut with the full path to the file identified by zPath.
1210 */
1211 static int asyncFullPathname(
1212 sqlite3_vfs *pAsyncVfs,
1213 const char *zPath,
1214 int nPathOut,
1215 char *zPathOut
1216 ){
1217 int rc;
1218 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1219 rc = pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut);
1220
1221 /* Because of the way intra-process file locking works, this backend
1222 ** needs to return a canonical path. The following block assumes the
1223 ** file-system uses unix style paths.
1224 */
1225 if( rc==SQLITE_OK ){
1226 int i, j;
1227 int n = nPathOut;
1228 char *z = zPathOut;
1229 while( n>1 && z[n-1]=='/' ){ n--; }
1230 for(i=j=0; i<n; i++){
1231 if( z[i]=='/' ){
1232 if( z[i+1]=='/' ) continue;
1233 if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){
1234 i += 1;
1235 continue;
1236 }
1237 if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){
1238 while( j>0 && z[j-1]!='/' ){ j--; }
1239 if( j>0 ){ j--; }
1240 i += 2;
1241 continue;
1242 }
1243 }
1244 z[j++] = z[i];
1245 }
1246 z[j] = 0;
1247 }
1248
1249 return rc;
1250 }
1251 static void *asyncDlOpen(sqlite3_vfs *pAsyncVfs, const char *zPath){
1252 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1253 return pVfs->xDlOpen(pVfs, zPath);
1254 }
1255 static void asyncDlError(sqlite3_vfs *pAsyncVfs, int nByte, char *zErrMsg){
1256 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1257 pVfs->xDlError(pVfs, nByte, zErrMsg);
1258 }
1259 static void (*asyncDlSym(
1260 sqlite3_vfs *pAsyncVfs,
1261 void *pHandle,
1262 const char *zSymbol
1263 ))(void){
1264 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1265 return pVfs->xDlSym(pVfs, pHandle, zSymbol);
1266 }
1267 static void asyncDlClose(sqlite3_vfs *pAsyncVfs, void *pHandle){
1268 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1269 pVfs->xDlClose(pVfs, pHandle);
1270 }
1271 static int asyncRandomness(sqlite3_vfs *pAsyncVfs, int nByte, char *zBufOut){
1272 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1273 return pVfs->xRandomness(pVfs, nByte, zBufOut);
1274 }
1275 static int asyncSleep(sqlite3_vfs *pAsyncVfs, int nMicro){
1276 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1277 return pVfs->xSleep(pVfs, nMicro);
1278 }
1279 static int asyncCurrentTime(sqlite3_vfs *pAsyncVfs, double *pTimeOut){
1280 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1281 return pVfs->xCurrentTime(pVfs, pTimeOut);
1282 }
1283
1284 static sqlite3_vfs async_vfs = {
1285 1, /* iVersion */
1286 sizeof(AsyncFile), /* szOsFile */
1287 0, /* mxPathname */
1288 0, /* pNext */
1289 SQLITEASYNC_VFSNAME, /* zName */
1290 0, /* pAppData */
1291 asyncOpen, /* xOpen */
1292 asyncDelete, /* xDelete */
1293 asyncAccess, /* xAccess */
1294 asyncFullPathname, /* xFullPathname */
1295 asyncDlOpen, /* xDlOpen */
1296 asyncDlError, /* xDlError */
1297 asyncDlSym, /* xDlSym */
1298 asyncDlClose, /* xDlClose */
1299 asyncRandomness, /* xDlError */
1300 asyncSleep, /* xDlSym */
1301 asyncCurrentTime /* xDlClose */
1302 };
1303
1304 /*
1305 ** This procedure runs in a separate thread, reading messages off of the
1306 ** write queue and processing them one by one.
1307 **
1308 ** If async.writerHaltNow is true, then this procedure exits
1309 ** after processing a single message.
1310 **
1311 ** If async.writerHaltWhenIdle is true, then this procedure exits when
1312 ** the write queue is empty.
1313 **
1314 ** If both of the above variables are false, this procedure runs
1315 ** indefinately, waiting for operations to be added to the write queue
1316 ** and processing them in the order in which they arrive.
1317 **
1318 ** An artifical delay of async.ioDelay milliseconds is inserted before
1319 ** each write operation in order to simulate the effect of a slow disk.
1320 **
1321 ** Only one instance of this procedure may be running at a time.
1322 */
1323 static void asyncWriterThread(void){
1324 sqlite3_vfs *pVfs = (sqlite3_vfs *)(async_vfs.pAppData);
1325 AsyncWrite *p = 0;
1326 int rc = SQLITE_OK;
1327 int holdingMutex = 0;
1328
1329 async_mutex_enter(ASYNC_MUTEX_WRITER);
1330
1331 while( async.eHalt!=SQLITEASYNC_HALT_NOW ){
1332 int doNotFree = 0;
1333 sqlite3_file *pBase = 0;
1334
1335 if( !holdingMutex ){
1336 async_mutex_enter(ASYNC_MUTEX_QUEUE);
1337 }
1338 while( (p = async.pQueueFirst)==0 ){
1339 if( async.eHalt!=SQLITEASYNC_HALT_NEVER ){
1340 async_mutex_leave(ASYNC_MUTEX_QUEUE);
1341 break;
1342 }else{
1343 ASYNC_TRACE(("IDLE\n"));
1344 async_cond_wait(ASYNC_COND_QUEUE, ASYNC_MUTEX_QUEUE);
1345 ASYNC_TRACE(("WAKEUP\n"));
1346 }
1347 }
1348 if( p==0 ) break;
1349 holdingMutex = 1;
1350
1351 /* Right now this thread is holding the mutex on the write-op queue.
1352 ** Variable 'p' points to the first entry in the write-op queue. In
1353 ** the general case, we hold on to the mutex for the entire body of
1354 ** the loop.
1355 **
1356 ** However in the cases enumerated below, we relinquish the mutex,
1357 ** perform the IO, and then re-request the mutex before removing 'p' from
1358 ** the head of the write-op queue. The idea is to increase concurrency with
1359 ** sqlite threads.
1360 **
1361 ** * An ASYNC_CLOSE operation.
1362 ** * An ASYNC_OPENEXCLUSIVE operation. For this one, we relinquish
1363 ** the mutex, call the underlying xOpenExclusive() function, then
1364 ** re-aquire the mutex before seting the AsyncFile.pBaseRead
1365 ** variable.
1366 ** * ASYNC_SYNC and ASYNC_WRITE operations, if
1367 ** SQLITE_ASYNC_TWO_FILEHANDLES was set at compile time and two
1368 ** file-handles are open for the particular file being "synced".
1369 */
1370 if( async.ioError!=SQLITE_OK && p->op!=ASYNC_CLOSE ){
1371 p->op = ASYNC_NOOP;
1372 }
1373 if( p->pFileData ){
1374 pBase = p->pFileData->pBaseWrite;
1375 if(
1376 p->op==ASYNC_CLOSE ||
1377 p->op==ASYNC_OPENEXCLUSIVE ||
1378 (pBase->pMethods && (p->op==ASYNC_SYNC || p->op==ASYNC_WRITE) )
1379 ){
1380 async_mutex_leave(ASYNC_MUTEX_QUEUE);
1381 holdingMutex = 0;
1382 }
1383 if( !pBase->pMethods ){
1384 pBase = p->pFileData->pBaseRead;
1385 }
1386 }
1387
1388 switch( p->op ){
1389 case ASYNC_NOOP:
1390 break;
1391
1392 case ASYNC_WRITE:
1393 assert( pBase );
1394 ASYNC_TRACE(("WRITE %s %d bytes at %d\n",
1395 p->pFileData->zName, p->nByte, p->iOffset));
1396 rc = pBase->pMethods->xWrite(pBase, (void *)(p->zBuf), p->nByte, p->iOff set);
1397 break;
1398
1399 case ASYNC_SYNC:
1400 assert( pBase );
1401 ASYNC_TRACE(("SYNC %s\n", p->pFileData->zName));
1402 rc = pBase->pMethods->xSync(pBase, p->nByte);
1403 break;
1404
1405 case ASYNC_TRUNCATE:
1406 assert( pBase );
1407 ASYNC_TRACE(("TRUNCATE %s to %d bytes\n",
1408 p->pFileData->zName, p->iOffset));
1409 rc = pBase->pMethods->xTruncate(pBase, p->iOffset);
1410 break;
1411
1412 case ASYNC_CLOSE: {
1413 AsyncFileData *pData = p->pFileData;
1414 ASYNC_TRACE(("CLOSE %s\n", p->pFileData->zName));
1415 if( pData->pBaseWrite->pMethods ){
1416 pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite);
1417 }
1418 if( pData->pBaseRead->pMethods ){
1419 pData->pBaseRead->pMethods->xClose(pData->pBaseRead);
1420 }
1421
1422 /* Unlink AsyncFileData.lock from the linked list of AsyncFileLock
1423 ** structures for this file. Obtain the async.lockMutex mutex
1424 ** before doing so.
1425 */
1426 async_mutex_enter(ASYNC_MUTEX_LOCK);
1427 rc = unlinkAsyncFile(pData);
1428 async_mutex_leave(ASYNC_MUTEX_LOCK);
1429
1430 if( !holdingMutex ){
1431 async_mutex_enter(ASYNC_MUTEX_QUEUE);
1432 holdingMutex = 1;
1433 }
1434 assert_mutex_is_held(ASYNC_MUTEX_QUEUE);
1435 async.pQueueFirst = p->pNext;
1436 sqlite3_free(pData);
1437 doNotFree = 1;
1438 break;
1439 }
1440
1441 case ASYNC_UNLOCK: {
1442 AsyncWrite *pIter;
1443 AsyncFileData *pData = p->pFileData;
1444 int eLock = p->nByte;
1445
1446 /* When a file is locked by SQLite using the async backend, it is
1447 ** locked within the 'real' file-system synchronously. When it is
1448 ** unlocked, an ASYNC_UNLOCK event is added to the write-queue to
1449 ** unlock the file asynchronously. The design of the async backend
1450 ** requires that the 'real' file-system file be locked from the
1451 ** time that SQLite first locks it (and probably reads from it)
1452 ** until all asynchronous write events that were scheduled before
1453 ** SQLite unlocked the file have been processed.
1454 **
1455 ** This is more complex if SQLite locks and unlocks the file multiple
1456 ** times in quick succession. For example, if SQLite does:
1457 **
1458 ** lock, write, unlock, lock, write, unlock
1459 **
1460 ** Each "lock" operation locks the file immediately. Each "write"
1461 ** and "unlock" operation adds an event to the event queue. If the
1462 ** second "lock" operation is performed before the first "unlock"
1463 ** operation has been processed asynchronously, then the first
1464 ** "unlock" cannot be safely processed as is, since this would mean
1465 ** the file was unlocked when the second "write" operation is
1466 ** processed. To work around this, when processing an ASYNC_UNLOCK
1467 ** operation, SQLite:
1468 **
1469 ** 1) Unlocks the file to the minimum of the argument passed to
1470 ** the xUnlock() call and the current lock from SQLite's point
1471 ** of view, and
1472 **
1473 ** 2) Only unlocks the file at all if this event is the last
1474 ** ASYNC_UNLOCK event on this file in the write-queue.
1475 */
1476 assert( holdingMutex==1 );
1477 assert( async.pQueueFirst==p );
1478 for(pIter=async.pQueueFirst->pNext; pIter; pIter=pIter->pNext){
1479 if( pIter->pFileData==pData && pIter->op==ASYNC_UNLOCK ) break;
1480 }
1481 if( !pIter ){
1482 async_mutex_enter(ASYNC_MUTEX_LOCK);
1483 pData->lock.eAsyncLock = MIN(
1484 pData->lock.eAsyncLock, MAX(pData->lock.eLock, eLock)
1485 );
1486 assert(pData->lock.eAsyncLock>=pData->lock.eLock);
1487 rc = getFileLock(pData->pLock);
1488 async_mutex_leave(ASYNC_MUTEX_LOCK);
1489 }
1490 break;
1491 }
1492
1493 case ASYNC_DELETE:
1494 ASYNC_TRACE(("DELETE %s\n", p->zBuf));
1495 rc = pVfs->xDelete(pVfs, p->zBuf, (int)p->iOffset);
1496 break;
1497
1498 case ASYNC_OPENEXCLUSIVE: {
1499 int flags = (int)p->iOffset;
1500 AsyncFileData *pData = p->pFileData;
1501 ASYNC_TRACE(("OPEN %s flags=%d\n", p->zBuf, (int)p->iOffset));
1502 assert(pData->pBaseRead->pMethods==0 && pData->pBaseWrite->pMethods==0);
1503 rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, 0);
1504 assert( holdingMutex==0 );
1505 async_mutex_enter(ASYNC_MUTEX_QUEUE);
1506 holdingMutex = 1;
1507 break;
1508 }
1509
1510 default: assert(!"Illegal value for AsyncWrite.op");
1511 }
1512
1513 /* If we didn't hang on to the mutex during the IO op, obtain it now
1514 ** so that the AsyncWrite structure can be safely removed from the
1515 ** global write-op queue.
1516 */
1517 if( !holdingMutex ){
1518 async_mutex_enter(ASYNC_MUTEX_QUEUE);
1519 holdingMutex = 1;
1520 }
1521 /* ASYNC_TRACE(("UNLINK %p\n", p)); */
1522 if( p==async.pQueueLast ){
1523 async.pQueueLast = 0;
1524 }
1525 if( !doNotFree ){
1526 assert_mutex_is_held(ASYNC_MUTEX_QUEUE);
1527 async.pQueueFirst = p->pNext;
1528 sqlite3_free(p);
1529 }
1530 assert( holdingMutex );
1531
1532 /* An IO error has occurred. We cannot report the error back to the
1533 ** connection that requested the I/O since the error happened
1534 ** asynchronously. The connection has already moved on. There
1535 ** really is nobody to report the error to.
1536 **
1537 ** The file for which the error occurred may have been a database or
1538 ** journal file. Regardless, none of the currently queued operations
1539 ** associated with the same database should now be performed. Nor should
1540 ** any subsequently requested IO on either a database or journal file
1541 ** handle for the same database be accepted until the main database
1542 ** file handle has been closed and reopened.
1543 **
1544 ** Furthermore, no further IO should be queued or performed on any file
1545 ** handle associated with a database that may have been part of a
1546 ** multi-file transaction that included the database associated with
1547 ** the IO error (i.e. a database ATTACHed to the same handle at some
1548 ** point in time).
1549 */
1550 if( rc!=SQLITE_OK ){
1551 async.ioError = rc;
1552 }
1553
1554 if( async.ioError && !async.pQueueFirst ){
1555 async_mutex_enter(ASYNC_MUTEX_LOCK);
1556 if( 0==async.pLock ){
1557 async.ioError = SQLITE_OK;
1558 }
1559 async_mutex_leave(ASYNC_MUTEX_LOCK);
1560 }
1561
1562 /* Drop the queue mutex before continuing to the next write operation
1563 ** in order to give other threads a chance to work with the write queue.
1564 */
1565 if( !async.pQueueFirst || !async.ioError ){
1566 async_mutex_leave(ASYNC_MUTEX_QUEUE);
1567 holdingMutex = 0;
1568 if( async.ioDelay>0 ){
1569 pVfs->xSleep(pVfs, async.ioDelay*1000);
1570 }else{
1571 async_sched_yield();
1572 }
1573 }
1574 }
1575
1576 async_mutex_leave(ASYNC_MUTEX_WRITER);
1577 return;
1578 }
1579
1580 /*
1581 ** Install the asynchronous VFS.
1582 */
1583 int sqlite3async_initialize(const char *zParent, int isDefault){
1584 int rc = SQLITE_OK;
1585 if( async_vfs.pAppData==0 ){
1586 sqlite3_vfs *pParent = sqlite3_vfs_find(zParent);
1587 if( !pParent || async_os_initialize() ){
1588 rc = SQLITE_ERROR;
1589 }else if( SQLITE_OK!=(rc = sqlite3_vfs_register(&async_vfs, isDefault)) ){
1590 async_os_shutdown();
1591 }else{
1592 async_vfs.pAppData = (void *)pParent;
1593 async_vfs.mxPathname = ((sqlite3_vfs *)async_vfs.pAppData)->mxPathname;
1594 }
1595 }
1596 return rc;
1597 }
1598
1599 /*
1600 ** Uninstall the asynchronous VFS.
1601 */
1602 void sqlite3async_shutdown(void){
1603 if( async_vfs.pAppData ){
1604 async_os_shutdown();
1605 sqlite3_vfs_unregister((sqlite3_vfs *)&async_vfs);
1606 async_vfs.pAppData = 0;
1607 }
1608 }
1609
1610 /*
1611 ** Process events on the write-queue.
1612 */
1613 void sqlite3async_run(void){
1614 asyncWriterThread();
1615 }
1616
1617 /*
1618 ** Control/configure the asynchronous IO system.
1619 */
1620 int sqlite3async_control(int op, ...){
1621 va_list ap;
1622 va_start(ap, op);
1623 switch( op ){
1624 case SQLITEASYNC_HALT: {
1625 int eWhen = va_arg(ap, int);
1626 if( eWhen!=SQLITEASYNC_HALT_NEVER
1627 && eWhen!=SQLITEASYNC_HALT_NOW
1628 && eWhen!=SQLITEASYNC_HALT_IDLE
1629 ){
1630 return SQLITE_MISUSE;
1631 }
1632 async.eHalt = eWhen;
1633 async_mutex_enter(ASYNC_MUTEX_QUEUE);
1634 async_cond_signal(ASYNC_COND_QUEUE);
1635 async_mutex_leave(ASYNC_MUTEX_QUEUE);
1636 break;
1637 }
1638
1639 case SQLITEASYNC_DELAY: {
1640 int iDelay = va_arg(ap, int);
1641 if( iDelay<0 ){
1642 return SQLITE_MISUSE;
1643 }
1644 async.ioDelay = iDelay;
1645 break;
1646 }
1647
1648 case SQLITEASYNC_LOCKFILES: {
1649 int bLock = va_arg(ap, int);
1650 async_mutex_enter(ASYNC_MUTEX_QUEUE);
1651 if( async.nFile || async.pQueueFirst ){
1652 async_mutex_leave(ASYNC_MUTEX_QUEUE);
1653 return SQLITE_MISUSE;
1654 }
1655 async.bLockFiles = bLock;
1656 async_mutex_leave(ASYNC_MUTEX_QUEUE);
1657 break;
1658 }
1659
1660 case SQLITEASYNC_GET_HALT: {
1661 int *peWhen = va_arg(ap, int *);
1662 *peWhen = async.eHalt;
1663 break;
1664 }
1665 case SQLITEASYNC_GET_DELAY: {
1666 int *piDelay = va_arg(ap, int *);
1667 *piDelay = async.ioDelay;
1668 break;
1669 }
1670 case SQLITEASYNC_GET_LOCKFILES: {
1671 int *piDelay = va_arg(ap, int *);
1672 *piDelay = async.bLockFiles;
1673 break;
1674 }
1675
1676 default:
1677 return SQLITE_ERROR;
1678 }
1679 return SQLITE_OK;
1680 }
1681
1682 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ASYNCIO) */
1683
OLDNEW
« no previous file with comments | « third_party/sqlite/ext/async/sqlite3async.h ('k') | third_party/sqlite/ext/fts1/README.txt » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698