Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(68)

Unified Diff: gcc/gcc/cp/init.c

Issue 3050029: [gcc] GCC 4.5.0=>4.5.1 (Closed) Base URL: ssh://git@gitrw.chromium.org:9222/nacl-toolchain.git
Patch Set: Created 10 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « gcc/gcc/cp/expr.c ('k') | gcc/gcc/cp/lang-specs.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: gcc/gcc/cp/init.c
diff --git a/gcc/gcc/cp/init.c b/gcc/gcc/cp/init.c
deleted file mode 100644
index d31c10037a70ee3a1b55da0e90acebdcaa0d7cc1..0000000000000000000000000000000000000000
--- a/gcc/gcc/cp/init.c
+++ /dev/null
@@ -1,3329 +0,0 @@
-/* Handle initialization things in C++.
- Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
- 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
- Free Software Foundation, Inc.
- Contributed by Michael Tiemann (tiemann@cygnus.com)
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 3, or (at your option)
-any later version.
-
-GCC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-/* High-level class interface. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "tree.h"
-#include "rtl.h"
-#include "expr.h"
-#include "cp-tree.h"
-#include "flags.h"
-#include "output.h"
-#include "except.h"
-#include "toplev.h"
-#include "target.h"
-
-static bool begin_init_stmts (tree *, tree *);
-static tree finish_init_stmts (bool, tree, tree);
-static void construct_virtual_base (tree, tree);
-static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
-static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
-static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
-static void perform_member_init (tree, tree);
-static tree build_builtin_delete_call (tree);
-static int member_init_ok_or_else (tree, tree, tree);
-static void expand_virtual_init (tree, tree);
-static tree sort_mem_initializers (tree, tree);
-static tree initializing_context (tree);
-static void expand_cleanup_for_base (tree, tree);
-static tree get_temp_regvar (tree, tree);
-static tree dfs_initialize_vtbl_ptrs (tree, void *);
-static tree build_dtor_call (tree, special_function_kind, int);
-static tree build_field_list (tree, tree, int *);
-static tree build_vtbl_address (tree);
-
-/* We are about to generate some complex initialization code.
- Conceptually, it is all a single expression. However, we may want
- to include conditionals, loops, and other such statement-level
- constructs. Therefore, we build the initialization code inside a
- statement-expression. This function starts such an expression.
- STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
- pass them back to finish_init_stmts when the expression is
- complete. */
-
-static bool
-begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
-{
- bool is_global = !building_stmt_tree ();
-
- *stmt_expr_p = begin_stmt_expr ();
- *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
-
- return is_global;
-}
-
-/* Finish out the statement-expression begun by the previous call to
- begin_init_stmts. Returns the statement-expression itself. */
-
-static tree
-finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
-{
- finish_compound_stmt (compound_stmt);
-
- stmt_expr = finish_stmt_expr (stmt_expr, true);
-
- gcc_assert (!building_stmt_tree () == is_global);
-
- return stmt_expr;
-}
-
-/* Constructors */
-
-/* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
- which we want to initialize the vtable pointer for, DATA is
- TREE_LIST whose TREE_VALUE is the this ptr expression. */
-
-static tree
-dfs_initialize_vtbl_ptrs (tree binfo, void *data)
-{
- if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
- return dfs_skip_bases;
-
- if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
- {
- tree base_ptr = TREE_VALUE ((tree) data);
-
- base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
-
- expand_virtual_init (binfo, base_ptr);
- }
-
- return NULL_TREE;
-}
-
-/* Initialize all the vtable pointers in the object pointed to by
- ADDR. */
-
-void
-initialize_vtbl_ptrs (tree addr)
-{
- tree list;
- tree type;
-
- type = TREE_TYPE (TREE_TYPE (addr));
- list = build_tree_list (type, addr);
-
- /* Walk through the hierarchy, initializing the vptr in each base
- class. We do these in pre-order because we can't find the virtual
- bases for a class until we've initialized the vtbl for that
- class. */
- dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
-}
-
-/* Return an expression for the zero-initialization of an object with
- type T. This expression will either be a constant (in the case
- that T is a scalar), or a CONSTRUCTOR (in the case that T is an
- aggregate), or NULL (in the case that T does not require
- initialization). In either case, the value can be used as
- DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
- initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
- is the number of elements in the array. If STATIC_STORAGE_P is
- TRUE, initializers are only generated for entities for which
- zero-initialization does not simply mean filling the storage with
- zero bytes. */
-
-tree
-build_zero_init (tree type, tree nelts, bool static_storage_p)
-{
- tree init = NULL_TREE;
-
- /* [dcl.init]
-
- To zero-initialize an object of type T means:
-
- -- if T is a scalar type, the storage is set to the value of zero
- converted to T.
-
- -- if T is a non-union class type, the storage for each nonstatic
- data member and each base-class subobject is zero-initialized.
-
- -- if T is a union type, the storage for its first data member is
- zero-initialized.
-
- -- if T is an array type, the storage for each element is
- zero-initialized.
-
- -- if T is a reference type, no initialization is performed. */
-
- gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
-
- if (type == error_mark_node)
- ;
- else if (static_storage_p && zero_init_p (type))
- /* In order to save space, we do not explicitly build initializers
- for items that do not need them. GCC's semantics are that
- items with static storage duration that are not otherwise
- initialized are initialized to zero. */
- ;
- else if (SCALAR_TYPE_P (type))
- init = convert (type, integer_zero_node);
- else if (CLASS_TYPE_P (type))
- {
- tree field;
- VEC(constructor_elt,gc) *v = NULL;
-
- /* Iterate over the fields, building initializations. */
- for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
- {
- if (TREE_CODE (field) != FIELD_DECL)
- continue;
-
- /* Note that for class types there will be FIELD_DECLs
- corresponding to base classes as well. Thus, iterating
- over TYPE_FIELDs will result in correct initialization of
- all of the subobjects. */
- if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
- {
- tree value = build_zero_init (TREE_TYPE (field),
- /*nelts=*/NULL_TREE,
- static_storage_p);
- if (value)
- CONSTRUCTOR_APPEND_ELT(v, field, value);
- }
-
- /* For unions, only the first field is initialized. */
- if (TREE_CODE (type) == UNION_TYPE)
- break;
- }
-
- /* Build a constructor to contain the initializations. */
- init = build_constructor (type, v);
- }
- else if (TREE_CODE (type) == ARRAY_TYPE)
- {
- tree max_index;
- VEC(constructor_elt,gc) *v = NULL;
-
- /* Iterate over the array elements, building initializations. */
- if (nelts)
- max_index = fold_build2 (MINUS_EXPR, TREE_TYPE (nelts),
- nelts, integer_one_node);
- else
- max_index = array_type_nelts (type);
-
- /* If we have an error_mark here, we should just return error mark
- as we don't know the size of the array yet. */
- if (max_index == error_mark_node)
- return error_mark_node;
- gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
-
- /* A zero-sized array, which is accepted as an extension, will
- have an upper bound of -1. */
- if (!tree_int_cst_equal (max_index, integer_minus_one_node))
- {
- constructor_elt *ce;
-
- v = VEC_alloc (constructor_elt, gc, 1);
- ce = VEC_quick_push (constructor_elt, v, NULL);
-
- /* If this is a one element array, we just use a regular init. */
- if (tree_int_cst_equal (size_zero_node, max_index))
- ce->index = size_zero_node;
- else
- ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
- max_index);
-
- ce->value = build_zero_init (TREE_TYPE (type),
- /*nelts=*/NULL_TREE,
- static_storage_p);
- }
-
- /* Build a constructor to contain the initializations. */
- init = build_constructor (type, v);
- }
- else if (TREE_CODE (type) == VECTOR_TYPE)
- init = fold_convert (type, integer_zero_node);
- else
- gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
-
- /* In all cases, the initializer is a constant. */
- if (init)
- TREE_CONSTANT (init) = 1;
-
- return init;
-}
-
-/* Return a suitable initializer for value-initializing an object of type
- TYPE, as described in [dcl.init]. */
-
-tree
-build_value_init (tree type)
-{
- /* [dcl.init]
-
- To value-initialize an object of type T means:
-
- - if T is a class type (clause 9) with a user-provided constructor
- (12.1), then the default constructor for T is called (and the
- initialization is ill-formed if T has no accessible default
- constructor);
-
- - if T is a non-union class type without a user-provided constructor,
- then every non-static data member and base-class component of T is
- value-initialized;92)
-
- - if T is an array type, then each element is value-initialized;
-
- - otherwise, the object is zero-initialized.
-
- A program that calls for default-initialization or
- value-initialization of an entity of reference type is ill-formed.
-
- 92) Value-initialization for such a class object may be implemented by
- zero-initializing the object and then calling the default
- constructor. */
-
- if (CLASS_TYPE_P (type))
- {
- if (type_has_user_provided_constructor (type))
- return build_aggr_init_expr
- (type,
- build_special_member_call (NULL_TREE, complete_ctor_identifier,
- NULL_TREE, type, LOOKUP_NORMAL,
- tf_warning_or_error));
- else if (TREE_CODE (type) != UNION_TYPE && TYPE_NEEDS_CONSTRUCTING (type))
- {
- /* This is a class that needs constructing, but doesn't have
- a user-provided constructor. So we need to zero-initialize
- the object and then call the implicitly defined ctor.
- This will be handled in simplify_aggr_init_expr. */
- tree ctor = build_special_member_call
- (NULL_TREE, complete_ctor_identifier,
- NULL_TREE, type, LOOKUP_NORMAL, tf_warning_or_error);
-
- ctor = build_aggr_init_expr (type, ctor);
- AGGR_INIT_ZERO_FIRST (ctor) = 1;
- return ctor;
- }
- }
- return build_value_init_noctor (type);
-}
-
-/* Like build_value_init, but don't call the constructor for TYPE. Used
- for base initializers. */
-
-tree
-build_value_init_noctor (tree type)
-{
- if (CLASS_TYPE_P (type))
- {
- gcc_assert (!TYPE_NEEDS_CONSTRUCTING (type));
-
- if (TREE_CODE (type) != UNION_TYPE)
- {
- tree field;
- VEC(constructor_elt,gc) *v = NULL;
-
- /* Iterate over the fields, building initializations. */
- for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
- {
- tree ftype, value;
-
- if (TREE_CODE (field) != FIELD_DECL)
- continue;
-
- ftype = TREE_TYPE (field);
-
- if (TREE_CODE (ftype) == REFERENCE_TYPE)
- error ("value-initialization of reference");
-
- /* We could skip vfields and fields of types with
- user-defined constructors, but I think that won't improve
- performance at all; it should be simpler in general just
- to zero out the entire object than try to only zero the
- bits that actually need it. */
-
- /* Note that for class types there will be FIELD_DECLs
- corresponding to base classes as well. Thus, iterating
- over TYPE_FIELDs will result in correct initialization of
- all of the subobjects. */
- value = build_value_init (ftype);
-
- if (value)
- CONSTRUCTOR_APPEND_ELT(v, field, value);
- }
-
- /* Build a constructor to contain the zero- initializations. */
- return build_constructor (type, v);
- }
- }
- else if (TREE_CODE (type) == ARRAY_TYPE)
- {
- VEC(constructor_elt,gc) *v = NULL;
-
- /* Iterate over the array elements, building initializations. */
- tree max_index = array_type_nelts (type);
-
- /* If we have an error_mark here, we should just return error mark
- as we don't know the size of the array yet. */
- if (max_index == error_mark_node)
- return error_mark_node;
- gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
-
- /* A zero-sized array, which is accepted as an extension, will
- have an upper bound of -1. */
- if (!tree_int_cst_equal (max_index, integer_minus_one_node))
- {
- constructor_elt *ce;
-
- v = VEC_alloc (constructor_elt, gc, 1);
- ce = VEC_quick_push (constructor_elt, v, NULL);
-
- /* If this is a one element array, we just use a regular init. */
- if (tree_int_cst_equal (size_zero_node, max_index))
- ce->index = size_zero_node;
- else
- ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
- max_index);
-
- ce->value = build_value_init (TREE_TYPE (type));
-
- /* The gimplifier can't deal with a RANGE_EXPR of TARGET_EXPRs. */
- gcc_assert (TREE_CODE (ce->value) != TARGET_EXPR
- && TREE_CODE (ce->value) != AGGR_INIT_EXPR);
- }
-
- /* Build a constructor to contain the initializations. */
- return build_constructor (type, v);
- }
-
- return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
-}
-
-/* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
- arguments. If TREE_LIST is void_type_node, an empty initializer
- list was given; if NULL_TREE no initializer was given. */
-
-static void
-perform_member_init (tree member, tree init)
-{
- tree decl;
- tree type = TREE_TYPE (member);
-
- /* Effective C++ rule 12 requires that all data members be
- initialized. */
- if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
- warning (OPT_Weffc__, "%J%qD should be initialized in the member initialization "
- "list", current_function_decl, member);
-
- /* Get an lvalue for the data member. */
- decl = build_class_member_access_expr (current_class_ref, member,
- /*access_path=*/NULL_TREE,
- /*preserve_reference=*/true,
- tf_warning_or_error);
- if (decl == error_mark_node)
- return;
-
- if (init == void_type_node)
- {
- /* mem() means value-initialization. */
- if (TREE_CODE (type) == ARRAY_TYPE)
- {
- init = build_vec_init (decl, NULL_TREE, NULL_TREE,
- /*explicit_value_init_p=*/true,
- /* from_array=*/0,
- tf_warning_or_error);
- finish_expr_stmt (init);
- }
- else
- {
- if (TREE_CODE (type) == REFERENCE_TYPE)
- permerror (input_location, "%Jvalue-initialization of %q#D, "
- "which has reference type",
- current_function_decl, member);
- else
- {
- init = build2 (INIT_EXPR, type, decl, build_value_init (type));
- finish_expr_stmt (init);
- }
- }
- }
- /* Deal with this here, as we will get confused if we try to call the
- assignment op for an anonymous union. This can happen in a
- synthesized copy constructor. */
- else if (ANON_AGGR_TYPE_P (type))
- {
- if (init)
- {
- init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
- finish_expr_stmt (init);
- }
- }
- else if (TYPE_NEEDS_CONSTRUCTING (type))
- {
- if (init != NULL_TREE
- && TREE_CODE (type) == ARRAY_TYPE
- && TREE_CHAIN (init) == NULL_TREE
- && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
- {
- /* Initialization of one array from another. */
- finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
- /*explicit_value_init_p=*/false,
- /* from_array=*/1,
- tf_warning_or_error));
- }
- else
- {
- if (CP_TYPE_CONST_P (type)
- && init == NULL_TREE
- && !type_has_user_provided_default_constructor (type))
- /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
- vtable; still give this diagnostic. */
- permerror (input_location, "%Juninitialized member %qD with %<const%> type %qT",
- current_function_decl, member, type);
- finish_expr_stmt (build_aggr_init (decl, init, 0,
- tf_warning_or_error));
- }
- }
- else
- {
- if (init == NULL_TREE)
- {
- /* member traversal: note it leaves init NULL */
- if (TREE_CODE (type) == REFERENCE_TYPE)
- permerror (input_location, "%Juninitialized reference member %qD",
- current_function_decl, member);
- else if (CP_TYPE_CONST_P (type))
- permerror (input_location, "%Juninitialized member %qD with %<const%> type %qT",
- current_function_decl, member, type);
- }
- else if (TREE_CODE (init) == TREE_LIST)
- /* There was an explicit member initialization. Do some work
- in that case. */
- init = build_x_compound_expr_from_list (init, "member initializer");
-
- if (init)
- finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
- tf_warning_or_error));
- }
-
- if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
- {
- tree expr;
-
- expr = build_class_member_access_expr (current_class_ref, member,
- /*access_path=*/NULL_TREE,
- /*preserve_reference=*/false,
- tf_warning_or_error);
- expr = build_delete (type, expr, sfk_complete_destructor,
- LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
-
- if (expr != error_mark_node)
- finish_eh_cleanup (expr);
- }
-}
-
-/* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
- the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
-
-static tree
-build_field_list (tree t, tree list, int *uses_unions_p)
-{
- tree fields;
-
- *uses_unions_p = 0;
-
- /* Note whether or not T is a union. */
- if (TREE_CODE (t) == UNION_TYPE)
- *uses_unions_p = 1;
-
- for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
- {
- /* Skip CONST_DECLs for enumeration constants and so forth. */
- if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
- continue;
-
- /* Keep track of whether or not any fields are unions. */
- if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
- *uses_unions_p = 1;
-
- /* For an anonymous struct or union, we must recursively
- consider the fields of the anonymous type. They can be
- directly initialized from the constructor. */
- if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
- {
- /* Add this field itself. Synthesized copy constructors
- initialize the entire aggregate. */
- list = tree_cons (fields, NULL_TREE, list);
- /* And now add the fields in the anonymous aggregate. */
- list = build_field_list (TREE_TYPE (fields), list,
- uses_unions_p);
- }
- /* Add this field. */
- else if (DECL_NAME (fields))
- list = tree_cons (fields, NULL_TREE, list);
- }
-
- return list;
-}
-
-/* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
- a FIELD_DECL or BINFO in T that needs initialization. The
- TREE_VALUE gives the initializer, or list of initializer arguments.
-
- Return a TREE_LIST containing all of the initializations required
- for T, in the order in which they should be performed. The output
- list has the same format as the input. */
-
-static tree
-sort_mem_initializers (tree t, tree mem_inits)
-{
- tree init;
- tree base, binfo, base_binfo;
- tree sorted_inits;
- tree next_subobject;
- VEC(tree,gc) *vbases;
- int i;
- int uses_unions_p;
-
- /* Build up a list of initializations. The TREE_PURPOSE of entry
- will be the subobject (a FIELD_DECL or BINFO) to initialize. The
- TREE_VALUE will be the constructor arguments, or NULL if no
- explicit initialization was provided. */
- sorted_inits = NULL_TREE;
-
- /* Process the virtual bases. */
- for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
- VEC_iterate (tree, vbases, i, base); i++)
- sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
-
- /* Process the direct bases. */
- for (binfo = TYPE_BINFO (t), i = 0;
- BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
- if (!BINFO_VIRTUAL_P (base_binfo))
- sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
-
- /* Process the non-static data members. */
- sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
- /* Reverse the entire list of initializations, so that they are in
- the order that they will actually be performed. */
- sorted_inits = nreverse (sorted_inits);
-
- /* If the user presented the initializers in an order different from
- that in which they will actually occur, we issue a warning. Keep
- track of the next subobject which can be explicitly initialized
- without issuing a warning. */
- next_subobject = sorted_inits;
-
- /* Go through the explicit initializers, filling in TREE_PURPOSE in
- the SORTED_INITS. */
- for (init = mem_inits; init; init = TREE_CHAIN (init))
- {
- tree subobject;
- tree subobject_init;
-
- subobject = TREE_PURPOSE (init);
-
- /* If the explicit initializers are in sorted order, then
- SUBOBJECT will be NEXT_SUBOBJECT, or something following
- it. */
- for (subobject_init = next_subobject;
- subobject_init;
- subobject_init = TREE_CHAIN (subobject_init))
- if (TREE_PURPOSE (subobject_init) == subobject)
- break;
-
- /* Issue a warning if the explicit initializer order does not
- match that which will actually occur.
- ??? Are all these on the correct lines? */
- if (warn_reorder && !subobject_init)
- {
- if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
- warning (OPT_Wreorder, "%q+D will be initialized after",
- TREE_PURPOSE (next_subobject));
- else
- warning (OPT_Wreorder, "base %qT will be initialized after",
- TREE_PURPOSE (next_subobject));
- if (TREE_CODE (subobject) == FIELD_DECL)
- warning (OPT_Wreorder, " %q+#D", subobject);
- else
- warning (OPT_Wreorder, " base %qT", subobject);
- warning (OPT_Wreorder, "%J when initialized here", current_function_decl);
- }
-
- /* Look again, from the beginning of the list. */
- if (!subobject_init)
- {
- subobject_init = sorted_inits;
- while (TREE_PURPOSE (subobject_init) != subobject)
- subobject_init = TREE_CHAIN (subobject_init);
- }
-
- /* It is invalid to initialize the same subobject more than
- once. */
- if (TREE_VALUE (subobject_init))
- {
- if (TREE_CODE (subobject) == FIELD_DECL)
- error ("%Jmultiple initializations given for %qD",
- current_function_decl, subobject);
- else
- error ("%Jmultiple initializations given for base %qT",
- current_function_decl, subobject);
- }
-
- /* Record the initialization. */
- TREE_VALUE (subobject_init) = TREE_VALUE (init);
- next_subobject = subobject_init;
- }
-
- /* [class.base.init]
-
- If a ctor-initializer specifies more than one mem-initializer for
- multiple members of the same union (including members of
- anonymous unions), the ctor-initializer is ill-formed. */
- if (uses_unions_p)
- {
- tree last_field = NULL_TREE;
- for (init = sorted_inits; init; init = TREE_CHAIN (init))
- {
- tree field;
- tree field_type;
- int done;
-
- /* Skip uninitialized members and base classes. */
- if (!TREE_VALUE (init)
- || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
- continue;
- /* See if this field is a member of a union, or a member of a
- structure contained in a union, etc. */
- field = TREE_PURPOSE (init);
- for (field_type = DECL_CONTEXT (field);
- !same_type_p (field_type, t);
- field_type = TYPE_CONTEXT (field_type))
- if (TREE_CODE (field_type) == UNION_TYPE)
- break;
- /* If this field is not a member of a union, skip it. */
- if (TREE_CODE (field_type) != UNION_TYPE)
- continue;
-
- /* It's only an error if we have two initializers for the same
- union type. */
- if (!last_field)
- {
- last_field = field;
- continue;
- }
-
- /* See if LAST_FIELD and the field initialized by INIT are
- members of the same union. If so, there's a problem,
- unless they're actually members of the same structure
- which is itself a member of a union. For example, given:
-
- union { struct { int i; int j; }; };
-
- initializing both `i' and `j' makes sense. */
- field_type = DECL_CONTEXT (field);
- done = 0;
- do
- {
- tree last_field_type;
-
- last_field_type = DECL_CONTEXT (last_field);
- while (1)
- {
- if (same_type_p (last_field_type, field_type))
- {
- if (TREE_CODE (field_type) == UNION_TYPE)
- error ("%Jinitializations for multiple members of %qT",
- current_function_decl, last_field_type);
- done = 1;
- break;
- }
-
- if (same_type_p (last_field_type, t))
- break;
-
- last_field_type = TYPE_CONTEXT (last_field_type);
- }
-
- /* If we've reached the outermost class, then we're
- done. */
- if (same_type_p (field_type, t))
- break;
-
- field_type = TYPE_CONTEXT (field_type);
- }
- while (!done);
-
- last_field = field;
- }
- }
-
- return sorted_inits;
-}
-
-/* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
- is a TREE_LIST giving the explicit mem-initializer-list for the
- constructor. The TREE_PURPOSE of each entry is a subobject (a
- FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
- is a TREE_LIST giving the arguments to the constructor or
- void_type_node for an empty list of arguments. */
-
-void
-emit_mem_initializers (tree mem_inits)
-{
- /* We will already have issued an error message about the fact that
- the type is incomplete. */
- if (!COMPLETE_TYPE_P (current_class_type))
- return;
-
- /* Sort the mem-initializers into the order in which the
- initializations should be performed. */
- mem_inits = sort_mem_initializers (current_class_type, mem_inits);
-
- in_base_initializer = 1;
-
- /* Initialize base classes. */
- while (mem_inits
- && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
- {
- tree subobject = TREE_PURPOSE (mem_inits);
- tree arguments = TREE_VALUE (mem_inits);
-
- /* If these initializations are taking place in a copy constructor,
- the base class should probably be explicitly initialized if there
- is a user-defined constructor in the base class (other than the
- default constructor, which will be called anyway). */
- if (extra_warnings && !arguments
- && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
- && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
- warning (OPT_Wextra, "%Jbase class %q#T should be explicitly initialized in the "
- "copy constructor",
- current_function_decl, BINFO_TYPE (subobject));
-
- /* Initialize the base. */
- if (BINFO_VIRTUAL_P (subobject))
- construct_virtual_base (subobject, arguments);
- else
- {
- tree base_addr;
-
- base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
- subobject, 1);
- expand_aggr_init_1 (subobject, NULL_TREE,
- cp_build_indirect_ref (base_addr, NULL,
- tf_warning_or_error),
- arguments,
- LOOKUP_NORMAL,
- tf_warning_or_error);
- expand_cleanup_for_base (subobject, NULL_TREE);
- }
-
- mem_inits = TREE_CHAIN (mem_inits);
- }
- in_base_initializer = 0;
-
- /* Initialize the vptrs. */
- initialize_vtbl_ptrs (current_class_ptr);
-
- /* Initialize the data members. */
- while (mem_inits)
- {
- perform_member_init (TREE_PURPOSE (mem_inits),
- TREE_VALUE (mem_inits));
- mem_inits = TREE_CHAIN (mem_inits);
- }
-}
-
-/* Returns the address of the vtable (i.e., the value that should be
- assigned to the vptr) for BINFO. */
-
-static tree
-build_vtbl_address (tree binfo)
-{
- tree binfo_for = binfo;
- tree vtbl;
-
- if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
- /* If this is a virtual primary base, then the vtable we want to store
- is that for the base this is being used as the primary base of. We
- can't simply skip the initialization, because we may be expanding the
- inits of a subobject constructor where the virtual base layout
- can be different. */
- while (BINFO_PRIMARY_P (binfo_for))
- binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
-
- /* Figure out what vtable BINFO's vtable is based on, and mark it as
- used. */
- vtbl = get_vtbl_decl_for_binfo (binfo_for);
- assemble_external (vtbl);
- TREE_USED (vtbl) = 1;
-
- /* Now compute the address to use when initializing the vptr. */
- vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
- if (TREE_CODE (vtbl) == VAR_DECL)
- vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
-
- return vtbl;
-}
-
-/* This code sets up the virtual function tables appropriate for
- the pointer DECL. It is a one-ply initialization.
-
- BINFO is the exact type that DECL is supposed to be. In
- multiple inheritance, this might mean "C's A" if C : A, B. */
-
-static void
-expand_virtual_init (tree binfo, tree decl)
-{
- tree vtbl, vtbl_ptr;
- tree vtt_index;
-
- /* Compute the initializer for vptr. */
- vtbl = build_vtbl_address (binfo);
-
- /* We may get this vptr from a VTT, if this is a subobject
- constructor or subobject destructor. */
- vtt_index = BINFO_VPTR_INDEX (binfo);
- if (vtt_index)
- {
- tree vtbl2;
- tree vtt_parm;
-
- /* Compute the value to use, when there's a VTT. */
- vtt_parm = current_vtt_parm;
- vtbl2 = build2 (POINTER_PLUS_EXPR,
- TREE_TYPE (vtt_parm),
- vtt_parm,
- vtt_index);
- vtbl2 = cp_build_indirect_ref (vtbl2, NULL, tf_warning_or_error);
- vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
-
- /* The actual initializer is the VTT value only in the subobject
- constructor. In maybe_clone_body we'll substitute NULL for
- the vtt_parm in the case of the non-subobject constructor. */
- vtbl = build3 (COND_EXPR,
- TREE_TYPE (vtbl),
- build2 (EQ_EXPR, boolean_type_node,
- current_in_charge_parm, integer_zero_node),
- vtbl2,
- vtbl);
- }
-
- /* Compute the location of the vtpr. */
- vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, NULL,
- tf_warning_or_error),
- TREE_TYPE (binfo));
- gcc_assert (vtbl_ptr != error_mark_node);
-
- /* Assign the vtable to the vptr. */
- vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
- finish_expr_stmt (cp_build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl,
- tf_warning_or_error));
-}
-
-/* If an exception is thrown in a constructor, those base classes already
- constructed must be destroyed. This function creates the cleanup
- for BINFO, which has just been constructed. If FLAG is non-NULL,
- it is a DECL which is nonzero when this base needs to be
- destroyed. */
-
-static void
-expand_cleanup_for_base (tree binfo, tree flag)
-{
- tree expr;
-
- if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
- return;
-
- /* Call the destructor. */
- expr = build_special_member_call (current_class_ref,
- base_dtor_identifier,
- NULL_TREE,
- binfo,
- LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
- tf_warning_or_error);
- if (flag)
- expr = fold_build3 (COND_EXPR, void_type_node,
- c_common_truthvalue_conversion (input_location, flag),
- expr, integer_zero_node);
-
- finish_eh_cleanup (expr);
-}
-
-/* Construct the virtual base-class VBASE passing the ARGUMENTS to its
- constructor. */
-
-static void
-construct_virtual_base (tree vbase, tree arguments)
-{
- tree inner_if_stmt;
- tree exp;
- tree flag;
-
- /* If there are virtual base classes with destructors, we need to
- emit cleanups to destroy them if an exception is thrown during
- the construction process. These exception regions (i.e., the
- period during which the cleanups must occur) begin from the time
- the construction is complete to the end of the function. If we
- create a conditional block in which to initialize the
- base-classes, then the cleanup region for the virtual base begins
- inside a block, and ends outside of that block. This situation
- confuses the sjlj exception-handling code. Therefore, we do not
- create a single conditional block, but one for each
- initialization. (That way the cleanup regions always begin
- in the outer block.) We trust the back end to figure out
- that the FLAG will not change across initializations, and
- avoid doing multiple tests. */
- flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
- inner_if_stmt = begin_if_stmt ();
- finish_if_stmt_cond (flag, inner_if_stmt);
-
- /* Compute the location of the virtual base. If we're
- constructing virtual bases, then we must be the most derived
- class. Therefore, we don't have to look up the virtual base;
- we already know where it is. */
- exp = convert_to_base_statically (current_class_ref, vbase);
-
- expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
- LOOKUP_COMPLAIN, tf_warning_or_error);
- finish_then_clause (inner_if_stmt);
- finish_if_stmt (inner_if_stmt);
-
- expand_cleanup_for_base (vbase, flag);
-}
-
-/* Find the context in which this FIELD can be initialized. */
-
-static tree
-initializing_context (tree field)
-{
- tree t = DECL_CONTEXT (field);
-
- /* Anonymous union members can be initialized in the first enclosing
- non-anonymous union context. */
- while (t && ANON_AGGR_TYPE_P (t))
- t = TYPE_CONTEXT (t);
- return t;
-}
-
-/* Function to give error message if member initialization specification
- is erroneous. FIELD is the member we decided to initialize.
- TYPE is the type for which the initialization is being performed.
- FIELD must be a member of TYPE.
-
- MEMBER_NAME is the name of the member. */
-
-static int
-member_init_ok_or_else (tree field, tree type, tree member_name)
-{
- if (field == error_mark_node)
- return 0;
- if (!field)
- {
- error ("class %qT does not have any field named %qD", type,
- member_name);
- return 0;
- }
- if (TREE_CODE (field) == VAR_DECL)
- {
- error ("%q#D is a static data member; it can only be "
- "initialized at its definition",
- field);
- return 0;
- }
- if (TREE_CODE (field) != FIELD_DECL)
- {
- error ("%q#D is not a non-static data member of %qT",
- field, type);
- return 0;
- }
- if (initializing_context (field) != type)
- {
- error ("class %qT does not have any field named %qD", type,
- member_name);
- return 0;
- }
-
- return 1;
-}
-
-/* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
- is a _TYPE node or TYPE_DECL which names a base for that type.
- Check the validity of NAME, and return either the base _TYPE, base
- binfo, or the FIELD_DECL of the member. If NAME is invalid, return
- NULL_TREE and issue a diagnostic.
-
- An old style unnamed direct single base construction is permitted,
- where NAME is NULL. */
-
-tree
-expand_member_init (tree name)
-{
- tree basetype;
- tree field;
-
- if (!current_class_ref)
- return NULL_TREE;
-
- if (!name)
- {
- /* This is an obsolete unnamed base class initializer. The
- parser will already have warned about its use. */
- switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
- {
- case 0:
- error ("unnamed initializer for %qT, which has no base classes",
- current_class_type);
- return NULL_TREE;
- case 1:
- basetype = BINFO_TYPE
- (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
- break;
- default:
- error ("unnamed initializer for %qT, which uses multiple inheritance",
- current_class_type);
- return NULL_TREE;
- }
- }
- else if (TYPE_P (name))
- {
- basetype = TYPE_MAIN_VARIANT (name);
- name = TYPE_NAME (name);
- }
- else if (TREE_CODE (name) == TYPE_DECL)
- basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
- else
- basetype = NULL_TREE;
-
- if (basetype)
- {
- tree class_binfo;
- tree direct_binfo;
- tree virtual_binfo;
- int i;
-
- if (current_template_parms)
- return basetype;
-
- class_binfo = TYPE_BINFO (current_class_type);
- direct_binfo = NULL_TREE;
- virtual_binfo = NULL_TREE;
-
- /* Look for a direct base. */
- for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
- if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
- break;
-
- /* Look for a virtual base -- unless the direct base is itself
- virtual. */
- if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
- virtual_binfo = binfo_for_vbase (basetype, current_class_type);
-
- /* [class.base.init]
-
- If a mem-initializer-id is ambiguous because it designates
- both a direct non-virtual base class and an inherited virtual
- base class, the mem-initializer is ill-formed. */
- if (direct_binfo && virtual_binfo)
- {
- error ("%qD is both a direct base and an indirect virtual base",
- basetype);
- return NULL_TREE;
- }
-
- if (!direct_binfo && !virtual_binfo)
- {
- if (CLASSTYPE_VBASECLASSES (current_class_type))
- error ("type %qT is not a direct or virtual base of %qT",
- basetype, current_class_type);
- else
- error ("type %qT is not a direct base of %qT",
- basetype, current_class_type);
- return NULL_TREE;
- }
-
- return direct_binfo ? direct_binfo : virtual_binfo;
- }
- else
- {
- if (TREE_CODE (name) == IDENTIFIER_NODE)
- field = lookup_field (current_class_type, name, 1, false);
- else
- field = name;
-
- if (member_init_ok_or_else (field, current_class_type, name))
- return field;
- }
-
- return NULL_TREE;
-}
-
-/* This is like `expand_member_init', only it stores one aggregate
- value into another.
-
- INIT comes in two flavors: it is either a value which
- is to be stored in EXP, or it is a parameter list
- to go to a constructor, which will operate on EXP.
- If INIT is not a parameter list for a constructor, then set
- LOOKUP_ONLYCONVERTING.
- If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
- the initializer, if FLAGS is 0, then it is the (init) form.
- If `init' is a CONSTRUCTOR, then we emit a warning message,
- explaining that such initializations are invalid.
-
- If INIT resolves to a CALL_EXPR which happens to return
- something of the type we are looking for, then we know
- that we can safely use that call to perform the
- initialization.
-
- The virtual function table pointer cannot be set up here, because
- we do not really know its type.
-
- This never calls operator=().
-
- When initializing, nothing is CONST.
-
- A default copy constructor may have to be used to perform the
- initialization.
-
- A constructor or a conversion operator may have to be used to
- perform the initialization, but not both, as it would be ambiguous. */
-
-tree
-build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
-{
- tree stmt_expr;
- tree compound_stmt;
- int destroy_temps;
- tree type = TREE_TYPE (exp);
- int was_const = TREE_READONLY (exp);
- int was_volatile = TREE_THIS_VOLATILE (exp);
- int is_global;
-
- if (init == error_mark_node)
- return error_mark_node;
-
- TREE_READONLY (exp) = 0;
- TREE_THIS_VOLATILE (exp) = 0;
-
- if (init && TREE_CODE (init) != TREE_LIST)
- flags |= LOOKUP_ONLYCONVERTING;
-
- if (TREE_CODE (type) == ARRAY_TYPE)
- {
- tree itype;
-
- /* An array may not be initialized use the parenthesized
- initialization form -- unless the initializer is "()". */
- if (init && TREE_CODE (init) == TREE_LIST)
- {
- if (complain & tf_error)
- error ("bad array initializer");
- return error_mark_node;
- }
- /* Must arrange to initialize each element of EXP
- from elements of INIT. */
- itype = init ? TREE_TYPE (init) : NULL_TREE;
- if (cp_type_quals (type) != TYPE_UNQUALIFIED)
- TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
- if (itype && cp_type_quals (itype) != TYPE_UNQUALIFIED)
- itype = TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
- stmt_expr = build_vec_init (exp, NULL_TREE, init,
- /*explicit_value_init_p=*/false,
- itype && same_type_p (itype,
- TREE_TYPE (exp)),
- complain);
- TREE_READONLY (exp) = was_const;
- TREE_THIS_VOLATILE (exp) = was_volatile;
- TREE_TYPE (exp) = type;
- if (init)
- TREE_TYPE (init) = itype;
- return stmt_expr;
- }
-
- if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
- /* Just know that we've seen something for this node. */
- TREE_USED (exp) = 1;
-
- is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
- destroy_temps = stmts_are_full_exprs_p ();
- current_stmt_tree ()->stmts_are_full_exprs_p = 0;
- expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
- init, LOOKUP_NORMAL|flags, complain);
- stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
- current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
- TREE_READONLY (exp) = was_const;
- TREE_THIS_VOLATILE (exp) = was_volatile;
-
- return stmt_expr;
-}
-
-static void
-expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
- tsubst_flags_t complain)
-{
- tree type = TREE_TYPE (exp);
- tree ctor_name;
-
- /* It fails because there may not be a constructor which takes
- its own type as the first (or only parameter), but which does
- take other types via a conversion. So, if the thing initializing
- the expression is a unit element of type X, first try X(X&),
- followed by initialization by X. If neither of these work
- out, then look hard. */
- tree rval;
- tree parms;
-
- if (init && TREE_CODE (init) != TREE_LIST
- && (flags & LOOKUP_ONLYCONVERTING))
- {
- /* Base subobjects should only get direct-initialization. */
- gcc_assert (true_exp == exp);
-
- if (flags & DIRECT_BIND)
- /* Do nothing. We hit this in two cases: Reference initialization,
- where we aren't initializing a real variable, so we don't want
- to run a new constructor; and catching an exception, where we
- have already built up the constructor call so we could wrap it
- in an exception region. */;
- else if (BRACE_ENCLOSED_INITIALIZER_P (init)
- && CP_AGGREGATE_TYPE_P (type))
- {
- /* A brace-enclosed initializer for an aggregate. */
- init = digest_init (type, init);
- }
- else
- init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
-
- if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
- /* We need to protect the initialization of a catch parm with a
- call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
- around the TARGET_EXPR for the copy constructor. See
- initialize_handler_parm. */
- {
- TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
- TREE_OPERAND (init, 0));
- TREE_TYPE (init) = void_type_node;
- }
- else
- init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
- TREE_SIDE_EFFECTS (init) = 1;
- finish_expr_stmt (init);
- return;
- }
-
- if (init == NULL_TREE
- || (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
- {
- parms = init;
- if (parms)
- init = TREE_VALUE (parms);
- }
- else
- parms = build_tree_list (NULL_TREE, init);
-
- if (true_exp == exp)
- ctor_name = complete_ctor_identifier;
- else
- ctor_name = base_ctor_identifier;
-
- rval = build_special_member_call (exp, ctor_name, parms, binfo, flags,
- complain);
- if (TREE_SIDE_EFFECTS (rval))
- finish_expr_stmt (convert_to_void (rval, NULL, complain));
-}
-
-/* This function is responsible for initializing EXP with INIT
- (if any).
-
- BINFO is the binfo of the type for who we are performing the
- initialization. For example, if W is a virtual base class of A and B,
- and C : A, B.
- If we are initializing B, then W must contain B's W vtable, whereas
- were we initializing C, W must contain C's W vtable.
-
- TRUE_EXP is nonzero if it is the true expression being initialized.
- In this case, it may be EXP, or may just contain EXP. The reason we
- need this is because if EXP is a base element of TRUE_EXP, we
- don't necessarily know by looking at EXP where its virtual
- baseclass fields should really be pointing. But we do know
- from TRUE_EXP. In constructors, we don't know anything about
- the value being initialized.
-
- FLAGS is just passed to `build_new_method_call'. See that function
- for its description. */
-
-static void
-expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
- tsubst_flags_t complain)
-{
- tree type = TREE_TYPE (exp);
-
- gcc_assert (init != error_mark_node && type != error_mark_node);
- gcc_assert (building_stmt_tree ());
-
- /* Use a function returning the desired type to initialize EXP for us.
- If the function is a constructor, and its first argument is
- NULL_TREE, know that it was meant for us--just slide exp on
- in and expand the constructor. Constructors now come
- as TARGET_EXPRs. */
-
- if (init && TREE_CODE (exp) == VAR_DECL
- && COMPOUND_LITERAL_P (init))
- {
- /* If store_init_value returns NULL_TREE, the INIT has been
- recorded as the DECL_INITIAL for EXP. That means there's
- nothing more we have to do. */
- init = store_init_value (exp, init);
- if (init)
- finish_expr_stmt (init);
- return;
- }
-
- /* If an explicit -- but empty -- initializer list was present,
- that's value-initialization. */
- if (init == void_type_node)
- {
- /* If there's a user-provided constructor, we just call that. */
- if (type_has_user_provided_constructor (type))
- /* Fall through. */;
- /* If there isn't, but we still need to call the constructor,
- zero out the object first. */
- else if (TYPE_NEEDS_CONSTRUCTING (type))
- {
- init = build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
- init = build2 (INIT_EXPR, type, exp, init);
- finish_expr_stmt (init);
- /* And then call the constructor. */
- }
- /* If we don't need to mess with the constructor at all,
- then just zero out the object and we're done. */
- else
- {
- init = build2 (INIT_EXPR, type, exp, build_value_init_noctor (type));
- finish_expr_stmt (init);
- return;
- }
- init = NULL_TREE;
- }
-
- /* We know that expand_default_init can handle everything we want
- at this point. */
- expand_default_init (binfo, true_exp, exp, init, flags, complain);
-}
-
-/* Report an error if TYPE is not a user-defined, class type. If
- OR_ELSE is nonzero, give an error message. */
-
-int
-is_class_type (tree type, int or_else)
-{
- if (type == error_mark_node)
- return 0;
-
- if (! CLASS_TYPE_P (type))
- {
- if (or_else)
- error ("%qT is not a class type", type);
- return 0;
- }
- return 1;
-}
-
-tree
-get_type_value (tree name)
-{
- if (name == error_mark_node)
- return NULL_TREE;
-
- if (IDENTIFIER_HAS_TYPE_VALUE (name))
- return IDENTIFIER_TYPE_VALUE (name);
- else
- return NULL_TREE;
-}
-
-/* Build a reference to a member of an aggregate. This is not a C++
- `&', but really something which can have its address taken, and
- then act as a pointer to member, for example TYPE :: FIELD can have
- its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
- this expression is the operand of "&".
-
- @@ Prints out lousy diagnostics for operator <typename>
- @@ fields.
-
- @@ This function should be rewritten and placed in search.c. */
-
-tree
-build_offset_ref (tree type, tree member, bool address_p)
-{
- tree decl;
- tree basebinfo = NULL_TREE;
-
- /* class templates can come in as TEMPLATE_DECLs here. */
- if (TREE_CODE (member) == TEMPLATE_DECL)
- return member;
-
- if (dependent_type_p (type) || type_dependent_expression_p (member))
- return build_qualified_name (NULL_TREE, type, member,
- /*template_p=*/false);
-
- gcc_assert (TYPE_P (type));
- if (! is_class_type (type, 1))
- return error_mark_node;
-
- gcc_assert (DECL_P (member) || BASELINK_P (member));
- /* Callers should call mark_used before this point. */
- gcc_assert (!DECL_P (member) || TREE_USED (member));
-
- if (!COMPLETE_TYPE_P (complete_type (type))
- && !TYPE_BEING_DEFINED (type))
- {
- error ("incomplete type %qT does not have member %qD", type, member);
- return error_mark_node;
- }
-
- /* Entities other than non-static members need no further
- processing. */
- if (TREE_CODE (member) == TYPE_DECL)
- return member;
- if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
- return convert_from_reference (member);
-
- if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
- {
- error ("invalid pointer to bit-field %qD", member);
- return error_mark_node;
- }
-
- /* Set up BASEBINFO for member lookup. */
- decl = maybe_dummy_object (type, &basebinfo);
-
- /* A lot of this logic is now handled in lookup_member. */
- if (BASELINK_P (member))
- {
- /* Go from the TREE_BASELINK to the member function info. */
- tree t = BASELINK_FUNCTIONS (member);
-
- if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
- {
- /* Get rid of a potential OVERLOAD around it. */
- t = OVL_CURRENT (t);
-
- /* Unique functions are handled easily. */
-
- /* For non-static member of base class, we need a special rule
- for access checking [class.protected]:
-
- If the access is to form a pointer to member, the
- nested-name-specifier shall name the derived class
- (or any class derived from that class). */
- if (address_p && DECL_P (t)
- && DECL_NONSTATIC_MEMBER_P (t))
- perform_or_defer_access_check (TYPE_BINFO (type), t, t);
- else
- perform_or_defer_access_check (basebinfo, t, t);
-
- if (DECL_STATIC_FUNCTION_P (t))
- return t;
- member = t;
- }
- else
- TREE_TYPE (member) = unknown_type_node;
- }
- else if (address_p && TREE_CODE (member) == FIELD_DECL)
- /* We need additional test besides the one in
- check_accessibility_of_qualified_id in case it is
- a pointer to non-static member. */
- perform_or_defer_access_check (TYPE_BINFO (type), member, member);
-
- if (!address_p)
- {
- /* If MEMBER is non-static, then the program has fallen afoul of
- [expr.prim]:
-
- An id-expression that denotes a nonstatic data member or
- nonstatic member function of a class can only be used:
-
- -- as part of a class member access (_expr.ref_) in which the
- object-expression refers to the member's class or a class
- derived from that class, or
-
- -- to form a pointer to member (_expr.unary.op_), or
-
- -- in the body of a nonstatic member function of that class or
- of a class derived from that class (_class.mfct.nonstatic_), or
-
- -- in a mem-initializer for a constructor for that class or for
- a class derived from that class (_class.base.init_). */
- if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
- {
- /* Build a representation of the qualified name suitable
- for use as the operand to "&" -- even though the "&" is
- not actually present. */
- member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
- /* In Microsoft mode, treat a non-static member function as if
- it were a pointer-to-member. */
- if (flag_ms_extensions)
- {
- PTRMEM_OK_P (member) = 1;
- return cp_build_unary_op (ADDR_EXPR, member, 0,
- tf_warning_or_error);
- }
- error ("invalid use of non-static member function %qD",
- TREE_OPERAND (member, 1));
- return error_mark_node;
- }
- else if (TREE_CODE (member) == FIELD_DECL)
- {
- error ("invalid use of non-static data member %qD", member);
- return error_mark_node;
- }
- return member;
- }
-
- member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
- PTRMEM_OK_P (member) = 1;
- return member;
-}
-
-/* If DECL is a scalar enumeration constant or variable with a
- constant initializer, return the initializer (or, its initializers,
- recursively); otherwise, return DECL. If INTEGRAL_P, the
- initializer is only returned if DECL is an integral
- constant-expression. */
-
-static tree
-constant_value_1 (tree decl, bool integral_p)
-{
- while (TREE_CODE (decl) == CONST_DECL
- || (integral_p
- ? DECL_INTEGRAL_CONSTANT_VAR_P (decl)
- : (TREE_CODE (decl) == VAR_DECL
- && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
- {
- tree init;
- /* Static data members in template classes may have
- non-dependent initializers. References to such non-static
- data members are not value-dependent, so we must retrieve the
- initializer here. The DECL_INITIAL will have the right type,
- but will not have been folded because that would prevent us
- from performing all appropriate semantic checks at
- instantiation time. */
- if (DECL_CLASS_SCOPE_P (decl)
- && CLASSTYPE_TEMPLATE_INFO (DECL_CONTEXT (decl))
- && uses_template_parms (CLASSTYPE_TI_ARGS
- (DECL_CONTEXT (decl))))
- {
- ++processing_template_decl;
- init = fold_non_dependent_expr (DECL_INITIAL (decl));
- --processing_template_decl;
- }
- else
- {
- /* If DECL is a static data member in a template
- specialization, we must instantiate it here. The
- initializer for the static data member is not processed
- until needed; we need it now. */
- mark_used (decl);
- init = DECL_INITIAL (decl);
- }
- if (init == error_mark_node)
- return decl;
- /* Initializers in templates are generally expanded during
- instantiation, so before that for const int i(2)
- INIT is a TREE_LIST with the actual initializer as
- TREE_VALUE. */
- if (processing_template_decl
- && init
- && TREE_CODE (init) == TREE_LIST
- && TREE_CHAIN (init) == NULL_TREE)
- init = TREE_VALUE (init);
- if (!init
- || !TREE_TYPE (init)
- || (integral_p
- ? !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (init))
- : (!TREE_CONSTANT (init)
- /* Do not return an aggregate constant (of which
- string literals are a special case), as we do not
- want to make inadvertent copies of such entities,
- and we must be sure that their addresses are the
- same everywhere. */
- || TREE_CODE (init) == CONSTRUCTOR
- || TREE_CODE (init) == STRING_CST)))
- break;
- decl = unshare_expr (init);
- }
- return decl;
-}
-
-/* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
- constant of integral or enumeration type, then return that value.
- These are those variables permitted in constant expressions by
- [5.19/1]. */
-
-tree
-integral_constant_value (tree decl)
-{
- return constant_value_1 (decl, /*integral_p=*/true);
-}
-
-/* A more relaxed version of integral_constant_value, used by the
- common C/C++ code and by the C++ front end for optimization
- purposes. */
-
-tree
-decl_constant_value (tree decl)
-{
- return constant_value_1 (decl,
- /*integral_p=*/processing_template_decl);
-}
-
-/* Common subroutines of build_new and build_vec_delete. */
-
-/* Call the global __builtin_delete to delete ADDR. */
-
-static tree
-build_builtin_delete_call (tree addr)
-{
- mark_used (global_delete_fndecl);
- return build_call_n (global_delete_fndecl, 1, addr);
-}
-
-/* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
- the type of the object being allocated; otherwise, it's just TYPE.
- INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
- user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
- the TREE_LIST of arguments to be provided as arguments to a
- placement new operator. This routine performs no semantic checks;
- it just creates and returns a NEW_EXPR. */
-
-static tree
-build_raw_new_expr (tree placement, tree type, tree nelts, tree init,
- int use_global_new)
-{
- tree new_expr;
-
- new_expr = build4 (NEW_EXPR, build_pointer_type (type), placement, type,
- nelts, init);
- NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
- TREE_SIDE_EFFECTS (new_expr) = 1;
-
- return new_expr;
-}
-
-/* Make sure that there are no aliasing issues with T, a placement new
- expression applied to PLACEMENT, by recording the change in dynamic
- type. If placement new is inlined, as it is with libstdc++, and if
- the type of the placement new differs from the type of the
- placement location itself, then alias analysis may think it is OK
- to interchange writes to the location from before the placement new
- and from after the placement new. We have to prevent type-based
- alias analysis from applying. PLACEMENT may be NULL, which means
- that we couldn't capture it in a temporary variable, in which case
- we use a memory clobber. */
-
-static tree
-avoid_placement_new_aliasing (tree t, tree placement)
-{
- tree type_change;
-
- if (processing_template_decl)
- return t;
-
- /* If we are not using type based aliasing, we don't have to do
- anything. */
- if (!flag_strict_aliasing)
- return t;
-
- /* If we have a pointer and a location, record the change in dynamic
- type. Otherwise we need a general memory clobber. */
- if (TREE_CODE (TREE_TYPE (t)) == POINTER_TYPE
- && placement != NULL_TREE
- && TREE_CODE (TREE_TYPE (placement)) == POINTER_TYPE)
- type_change = build_stmt (CHANGE_DYNAMIC_TYPE_EXPR,
- TREE_TYPE (t),
- placement);
- else
- {
- /* Build a memory clobber. */
- type_change = build_stmt (ASM_EXPR,
- build_string (0, ""),
- NULL_TREE,
- NULL_TREE,
- tree_cons (NULL_TREE,
- build_string (6, "memory"),
- NULL_TREE));
-
- ASM_VOLATILE_P (type_change) = 1;
- }
-
- return build2 (COMPOUND_EXPR, TREE_TYPE (t), type_change, t);
-}
-
-/* Generate code for a new-expression, including calling the "operator
- new" function, initializing the object, and, if an exception occurs
- during construction, cleaning up. The arguments are as for
- build_raw_new_expr. */
-
-static tree
-build_new_1 (tree placement, tree type, tree nelts, tree init,
- bool globally_qualified_p, tsubst_flags_t complain)
-{
- tree size, rval;
- /* True iff this is a call to "operator new[]" instead of just
- "operator new". */
- bool array_p = false;
- /* If ARRAY_P is true, the element type of the array. This is never
- an ARRAY_TYPE; for something like "new int[3][4]", the
- ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
- TYPE. */
- tree elt_type;
- /* The type of the new-expression. (This type is always a pointer
- type.) */
- tree pointer_type;
- tree outer_nelts = NULL_TREE;
- tree alloc_call, alloc_expr;
- /* The address returned by the call to "operator new". This node is
- a VAR_DECL and is therefore reusable. */
- tree alloc_node;
- tree alloc_fn;
- tree cookie_expr, init_expr;
- int nothrow, check_new;
- int use_java_new = 0;
- /* If non-NULL, the number of extra bytes to allocate at the
- beginning of the storage allocated for an array-new expression in
- order to store the number of elements. */
- tree cookie_size = NULL_TREE;
- tree placement_expr = NULL_TREE;
- /* True if the function we are calling is a placement allocation
- function. */
- bool placement_allocation_fn_p;
- tree args = NULL_TREE;
- /* True if the storage must be initialized, either by a constructor
- or due to an explicit new-initializer. */
- bool is_initialized;
- /* The address of the thing allocated, not including any cookie. In
- particular, if an array cookie is in use, DATA_ADDR is the
- address of the first array element. This node is a VAR_DECL, and
- is therefore reusable. */
- tree data_addr;
- tree init_preeval_expr = NULL_TREE;
-
- if (nelts)
- {
- outer_nelts = nelts;
- array_p = true;
- }
- else if (TREE_CODE (type) == ARRAY_TYPE)
- {
- array_p = true;
- nelts = array_type_nelts_top (type);
- outer_nelts = nelts;
- type = TREE_TYPE (type);
- }
-
- /* If our base type is an array, then make sure we know how many elements
- it has. */
- for (elt_type = type;
- TREE_CODE (elt_type) == ARRAY_TYPE;
- elt_type = TREE_TYPE (elt_type))
- nelts = cp_build_binary_op (input_location,
- MULT_EXPR, nelts,
- array_type_nelts_top (elt_type),
- complain);
-
- if (TREE_CODE (elt_type) == VOID_TYPE)
- {
- if (complain & tf_error)
- error ("invalid type %<void%> for new");
- return error_mark_node;
- }
-
- if (abstract_virtuals_error (NULL_TREE, elt_type))
- return error_mark_node;
-
- is_initialized = (TYPE_NEEDS_CONSTRUCTING (elt_type) || init);
-
- if (CP_TYPE_CONST_P (elt_type) && !init
- && !type_has_user_provided_default_constructor (elt_type))
- {
- if (complain & tf_error)
- error ("uninitialized const in %<new%> of %q#T", elt_type);
- return error_mark_node;
- }
-
- size = size_in_bytes (elt_type);
- if (array_p)
- size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
-
- alloc_fn = NULL_TREE;
-
- /* Allocate the object. */
- if (! placement && TYPE_FOR_JAVA (elt_type))
- {
- tree class_addr;
- tree class_decl = build_java_class_ref (elt_type);
- static const char alloc_name[] = "_Jv_AllocObject";
-
- if (class_decl == error_mark_node)
- return error_mark_node;
-
- use_java_new = 1;
- if (!get_global_value_if_present (get_identifier (alloc_name),
- &alloc_fn))
- {
- if (complain & tf_error)
- error ("call to Java constructor with %qs undefined", alloc_name);
- return error_mark_node;
- }
- else if (really_overloaded_fn (alloc_fn))
- {
- if (complain & tf_error)
- error ("%qD should never be overloaded", alloc_fn);
- return error_mark_node;
- }
- alloc_fn = OVL_CURRENT (alloc_fn);
- class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
- alloc_call = (cp_build_function_call
- (alloc_fn,
- build_tree_list (NULL_TREE, class_addr),
- complain));
- }
- else if (TYPE_FOR_JAVA (elt_type) && MAYBE_CLASS_TYPE_P (elt_type))
- {
- error ("Java class %q#T object allocated using placement new", elt_type);
- return error_mark_node;
- }
- else
- {
- tree fnname;
- tree fns;
-
- fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
-
- if (!globally_qualified_p
- && CLASS_TYPE_P (elt_type)
- && (array_p
- ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
- : TYPE_HAS_NEW_OPERATOR (elt_type)))
- {
- /* Use a class-specific operator new. */
- /* If a cookie is required, add some extra space. */
- if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
- {
- cookie_size = targetm.cxx.get_cookie_size (elt_type);
- size = size_binop (PLUS_EXPR, size, cookie_size);
- }
- /* Create the argument list. */
- args = tree_cons (NULL_TREE, size, placement);
- /* Do name-lookup to find the appropriate operator. */
- fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
- if (fns == NULL_TREE)
- {
- if (complain & tf_error)
- error ("no suitable %qD found in class %qT", fnname, elt_type);
- return error_mark_node;
- }
- if (TREE_CODE (fns) == TREE_LIST)
- {
- if (complain & tf_error)
- {
- error ("request for member %qD is ambiguous", fnname);
- print_candidates (fns);
- }
- return error_mark_node;
- }
- alloc_call = build_new_method_call (build_dummy_object (elt_type),
- fns, args,
- /*conversion_path=*/NULL_TREE,
- LOOKUP_NORMAL,
- &alloc_fn,
- complain);
- }
- else
- {
- /* Use a global operator new. */
- /* See if a cookie might be required. */
- if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
- cookie_size = targetm.cxx.get_cookie_size (elt_type);
- else
- cookie_size = NULL_TREE;
-
- alloc_call = build_operator_new_call (fnname, placement,
- &size, &cookie_size,
- &alloc_fn);
- }
- }
-
- if (alloc_call == error_mark_node)
- return error_mark_node;
-
- gcc_assert (alloc_fn != NULL_TREE);
-
- /* If PLACEMENT is a simple pointer type and is not passed by reference,
- then copy it into PLACEMENT_EXPR. */
- if (!processing_template_decl
- && placement != NULL_TREE
- && TREE_CHAIN (placement) == NULL_TREE
- && TREE_CODE (TREE_TYPE (TREE_VALUE (placement))) == POINTER_TYPE
- && TREE_CODE (alloc_call) == CALL_EXPR
- && call_expr_nargs (alloc_call) == 2
- && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
- && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))) == POINTER_TYPE)
- {
- tree placement_arg = CALL_EXPR_ARG (alloc_call, 1);
-
- if (INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg)))
- || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg))))
- {
- placement_expr = get_target_expr (TREE_VALUE (placement));
- CALL_EXPR_ARG (alloc_call, 1)
- = convert (TREE_TYPE (placement_arg), placement_expr);
- }
- }
-
- /* In the simple case, we can stop now. */
- pointer_type = build_pointer_type (type);
- if (!cookie_size && !is_initialized)
- {
- rval = build_nop (pointer_type, alloc_call);
- if (placement != NULL)
- rval = avoid_placement_new_aliasing (rval, placement_expr);
- return rval;
- }
-
- /* Store the result of the allocation call in a variable so that we can
- use it more than once. */
- alloc_expr = get_target_expr (alloc_call);
- alloc_node = TARGET_EXPR_SLOT (alloc_expr);
-
- /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
- while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
- alloc_call = TREE_OPERAND (alloc_call, 1);
-
- /* Now, check to see if this function is actually a placement
- allocation function. This can happen even when PLACEMENT is NULL
- because we might have something like:
-
- struct S { void* operator new (size_t, int i = 0); };
-
- A call to `new S' will get this allocation function, even though
- there is no explicit placement argument. If there is more than
- one argument, or there are variable arguments, then this is a
- placement allocation function. */
- placement_allocation_fn_p
- = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
- || varargs_function_p (alloc_fn));
-
- /* Preevaluate the placement args so that we don't reevaluate them for a
- placement delete. */
- if (placement_allocation_fn_p)
- {
- tree inits;
- stabilize_call (alloc_call, &inits);
- if (inits)
- alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
- alloc_expr);
- }
-
- /* unless an allocation function is declared with an empty excep-
- tion-specification (_except.spec_), throw(), it indicates failure to
- allocate storage by throwing a bad_alloc exception (clause _except_,
- _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
- cation function is declared with an empty exception-specification,
- throw(), it returns null to indicate failure to allocate storage and a
- non-null pointer otherwise.
-
- So check for a null exception spec on the op new we just called. */
-
- nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
- check_new = (flag_check_new || nothrow) && ! use_java_new;
-
- if (cookie_size)
- {
- tree cookie;
- tree cookie_ptr;
- tree size_ptr_type;
-
- /* Adjust so we're pointing to the start of the object. */
- data_addr = build2 (POINTER_PLUS_EXPR, TREE_TYPE (alloc_node),
- alloc_node, cookie_size);
-
- /* Store the number of bytes allocated so that we can know how
- many elements to destroy later. We use the last sizeof
- (size_t) bytes to store the number of elements. */
- cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
- cookie_ptr = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (alloc_node),
- alloc_node, cookie_ptr);
- size_ptr_type = build_pointer_type (sizetype);
- cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
- cookie = cp_build_indirect_ref (cookie_ptr, NULL, complain);
-
- cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
-
- if (targetm.cxx.cookie_has_size ())
- {
- /* Also store the element size. */
- cookie_ptr = build2 (POINTER_PLUS_EXPR, size_ptr_type, cookie_ptr,
- fold_build1 (NEGATE_EXPR, sizetype,
- size_in_bytes (sizetype)));
-
- cookie = cp_build_indirect_ref (cookie_ptr, NULL, complain);
- cookie = build2 (MODIFY_EXPR, sizetype, cookie,
- size_in_bytes (elt_type));
- cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
- cookie, cookie_expr);
- }
- }
- else
- {
- cookie_expr = NULL_TREE;
- data_addr = alloc_node;
- }
-
- /* Now use a pointer to the type we've actually allocated. */
- data_addr = fold_convert (pointer_type, data_addr);
- /* Any further uses of alloc_node will want this type, too. */
- alloc_node = fold_convert (pointer_type, alloc_node);
-
- /* Now initialize the allocated object. Note that we preevaluate the
- initialization expression, apart from the actual constructor call or
- assignment--we do this because we want to delay the allocation as long
- as possible in order to minimize the size of the exception region for
- placement delete. */
- if (is_initialized)
- {
- bool stable;
- bool explicit_value_init_p = false;
-
- if (init == void_zero_node)
- {
- init = NULL_TREE;
- explicit_value_init_p = true;
- }
-
- if (array_p)
- {
- tree non_const_pointer_type = build_pointer_type
- (cp_build_qualified_type (type, TYPE_QUALS (type) & ~TYPE_QUAL_CONST));
-
- if (init && TREE_CHAIN (init) == NULL_TREE
- && BRACE_ENCLOSED_INITIALIZER_P (TREE_VALUE (init))
- && CONSTRUCTOR_IS_DIRECT_INIT (TREE_VALUE (init)))
- {
- tree arraytype, domain;
- init = TREE_VALUE (init);
- if (TREE_CONSTANT (nelts))
- domain = compute_array_index_type (NULL_TREE, nelts);
- else
- {
- domain = NULL_TREE;
- if (CONSTRUCTOR_NELTS (init) > 0)
- warning (0, "non-constant array size in new, unable to "
- "verify length of initializer-list");
- }
- arraytype = build_cplus_array_type (type, domain);
- init = digest_init (arraytype, init);
- }
- else if (init)
- {
- if (complain & tf_error)
- permerror (input_location, "ISO C++ forbids initialization in array new");
- else
- return error_mark_node;
- }
- init_expr
- = build_vec_init (fold_convert (non_const_pointer_type, data_addr),
- cp_build_binary_op (input_location,
- MINUS_EXPR, outer_nelts,
- integer_one_node,
- complain),
- init,
- explicit_value_init_p,
- /*from_array=*/0,
- complain);
-
- /* An array initialization is stable because the initialization
- of each element is a full-expression, so the temporaries don't
- leak out. */
- stable = true;
- }
- else
- {
- init_expr = cp_build_indirect_ref (data_addr, NULL, complain);
-
- if (TYPE_NEEDS_CONSTRUCTING (type) && !explicit_value_init_p)
- {
- init_expr = build_special_member_call (init_expr,
- complete_ctor_identifier,
- init, elt_type,
- LOOKUP_NORMAL,
- complain);
- }
- else if (explicit_value_init_p)
- {
- /* Something like `new int()'. */
- init_expr = build2 (INIT_EXPR, type,
- init_expr, build_value_init (type));
- }
- else
- {
- /* We are processing something like `new int (10)', which
- means allocate an int, and initialize it with 10. */
-
- if (TREE_CODE (init) == TREE_LIST)
- init = build_x_compound_expr_from_list (init,
- "new initializer");
- else
- gcc_assert (TREE_CODE (init) != CONSTRUCTOR
- || TREE_TYPE (init) != NULL_TREE);
-
- init_expr = cp_build_modify_expr (init_expr, INIT_EXPR, init,
- complain);
- }
- stable = stabilize_init (init_expr, &init_preeval_expr);
- }
-
- if (init_expr == error_mark_node)
- return error_mark_node;
-
- /* If any part of the object initialization terminates by throwing an
- exception and a suitable deallocation function can be found, the
- deallocation function is called to free the memory in which the
- object was being constructed, after which the exception continues
- to propagate in the context of the new-expression. If no
- unambiguous matching deallocation function can be found,
- propagating the exception does not cause the object's memory to be
- freed. */
- if (flag_exceptions && ! use_java_new)
- {
- enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
- tree cleanup;
-
- /* The Standard is unclear here, but the right thing to do
- is to use the same method for finding deallocation
- functions that we use for finding allocation functions. */
- cleanup = (build_op_delete_call
- (dcode,
- alloc_node,
- size,
- globally_qualified_p,
- placement_allocation_fn_p ? alloc_call : NULL_TREE,
- alloc_fn));
-
- if (!cleanup)
- /* We're done. */;
- else if (stable)
- /* This is much simpler if we were able to preevaluate all of
- the arguments to the constructor call. */
- init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
- init_expr, cleanup);
- else
- /* Ack! First we allocate the memory. Then we set our sentry
- variable to true, and expand a cleanup that deletes the
- memory if sentry is true. Then we run the constructor, and
- finally clear the sentry.
-
- We need to do this because we allocate the space first, so
- if there are any temporaries with cleanups in the
- constructor args and we weren't able to preevaluate them, we
- need this EH region to extend until end of full-expression
- to preserve nesting. */
- {
- tree end, sentry, begin;
-
- begin = get_target_expr (boolean_true_node);
- CLEANUP_EH_ONLY (begin) = 1;
-
- sentry = TARGET_EXPR_SLOT (begin);
-
- TARGET_EXPR_CLEANUP (begin)
- = build3 (COND_EXPR, void_type_node, sentry,
- cleanup, void_zero_node);
-
- end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
- sentry, boolean_false_node);
-
- init_expr
- = build2 (COMPOUND_EXPR, void_type_node, begin,
- build2 (COMPOUND_EXPR, void_type_node, init_expr,
- end));
- }
-
- }
- }
- else
- init_expr = NULL_TREE;
-
- /* Now build up the return value in reverse order. */
-
- rval = data_addr;
-
- if (init_expr)
- rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
- if (cookie_expr)
- rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
-
- if (rval == data_addr)
- /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
- and return the call (which doesn't need to be adjusted). */
- rval = TARGET_EXPR_INITIAL (alloc_expr);
- else
- {
- if (check_new)
- {
- tree ifexp = cp_build_binary_op (input_location,
- NE_EXPR, alloc_node,
- integer_zero_node,
- complain);
- rval = build_conditional_expr (ifexp, rval, alloc_node,
- complain);
- }
-
- /* Perform the allocation before anything else, so that ALLOC_NODE
- has been initialized before we start using it. */
- rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
- }
-
- if (init_preeval_expr)
- rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
-
- /* A new-expression is never an lvalue. */
- gcc_assert (!lvalue_p (rval));
-
- if (placement != NULL)
- rval = avoid_placement_new_aliasing (rval, placement_expr);
-
- return rval;
-}
-
-/* Generate a representation for a C++ "new" expression. PLACEMENT is
- a TREE_LIST of placement-new arguments (or NULL_TREE if none). If
- NELTS is NULL, TYPE is the type of the storage to be allocated. If
- NELTS is not NULL, then this is an array-new allocation; TYPE is
- the type of the elements in the array and NELTS is the number of
- elements in the array. INIT, if non-NULL, is the initializer for
- the new object, or void_zero_node to indicate an initializer of
- "()". If USE_GLOBAL_NEW is true, then the user explicitly wrote
- "::new" rather than just "new". */
-
-tree
-build_new (tree placement, tree type, tree nelts, tree init,
- int use_global_new, tsubst_flags_t complain)
-{
- tree rval;
- tree orig_placement;
- tree orig_nelts;
- tree orig_init;
-
- if (placement == error_mark_node || type == error_mark_node
- || init == error_mark_node)
- return error_mark_node;
-
- orig_placement = placement;
- orig_nelts = nelts;
- orig_init = init;
-
- if (nelts == NULL_TREE && init != void_zero_node && list_length (init) == 1)
- {
- tree auto_node = type_uses_auto (type);
- if (auto_node && describable_type (TREE_VALUE (init)))
- type = do_auto_deduction (type, TREE_VALUE (init), auto_node);
- }
-
- if (processing_template_decl)
- {
- if (dependent_type_p (type)
- || any_type_dependent_arguments_p (placement)
- || (nelts && type_dependent_expression_p (nelts))
- || (init != void_zero_node
- && any_type_dependent_arguments_p (init)))
- return build_raw_new_expr (placement, type, nelts, init,
- use_global_new);
- placement = build_non_dependent_args (placement);
- if (nelts)
- nelts = build_non_dependent_expr (nelts);
- if (init != void_zero_node)
- init = build_non_dependent_args (init);
- }
-
- if (nelts)
- {
- if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
- {
- if (complain & tf_error)
- permerror (input_location, "size in array new must have integral type");
- else
- return error_mark_node;
- }
- nelts = cp_save_expr (cp_convert (sizetype, nelts));
- }
-
- /* ``A reference cannot be created by the new operator. A reference
- is not an object (8.2.2, 8.4.3), so a pointer to it could not be
- returned by new.'' ARM 5.3.3 */
- if (TREE_CODE (type) == REFERENCE_TYPE)
- {
- if (complain & tf_error)
- error ("new cannot be applied to a reference type");
- else
- return error_mark_node;
- type = TREE_TYPE (type);
- }
-
- if (TREE_CODE (type) == FUNCTION_TYPE)
- {
- if (complain & tf_error)
- error ("new cannot be applied to a function type");
- return error_mark_node;
- }
-
- /* The type allocated must be complete. If the new-type-id was
- "T[N]" then we are just checking that "T" is complete here, but
- that is equivalent, since the value of "N" doesn't matter. */
- if (!complete_type_or_else (type, NULL_TREE))
- return error_mark_node;
-
- rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
- if (rval == error_mark_node)
- return error_mark_node;
-
- if (processing_template_decl)
- return build_raw_new_expr (orig_placement, type, orig_nelts, orig_init,
- use_global_new);
-
- /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
- rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
- TREE_NO_WARNING (rval) = 1;
-
- return rval;
-}
-
-/* Given a Java class, return a decl for the corresponding java.lang.Class. */
-
-tree
-build_java_class_ref (tree type)
-{
- tree name = NULL_TREE, class_decl;
- static tree CL_suffix = NULL_TREE;
- if (CL_suffix == NULL_TREE)
- CL_suffix = get_identifier("class$");
- if (jclass_node == NULL_TREE)
- {
- jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
- if (jclass_node == NULL_TREE)
- {
- error ("call to Java constructor, while %<jclass%> undefined");
- return error_mark_node;
- }
- jclass_node = TREE_TYPE (jclass_node);
- }
-
- /* Mangle the class$ field. */
- {
- tree field;
- for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
- if (DECL_NAME (field) == CL_suffix)
- {
- mangle_decl (field);
- name = DECL_ASSEMBLER_NAME (field);
- break;
- }
- if (!field)
- {
- error ("can't find %<class$%> in %qT", type);
- return error_mark_node;
- }
- }
-
- class_decl = IDENTIFIER_GLOBAL_VALUE (name);
- if (class_decl == NULL_TREE)
- {
- class_decl = build_decl (VAR_DECL, name, TREE_TYPE (jclass_node));
- TREE_STATIC (class_decl) = 1;
- DECL_EXTERNAL (class_decl) = 1;
- TREE_PUBLIC (class_decl) = 1;
- DECL_ARTIFICIAL (class_decl) = 1;
- DECL_IGNORED_P (class_decl) = 1;
- pushdecl_top_level (class_decl);
- make_decl_rtl (class_decl);
- }
- return class_decl;
-}
-
-static tree
-build_vec_delete_1 (tree base, tree maxindex, tree type,
- special_function_kind auto_delete_vec, int use_global_delete)
-{
- tree virtual_size;
- tree ptype = build_pointer_type (type = complete_type (type));
- tree size_exp = size_in_bytes (type);
-
- /* Temporary variables used by the loop. */
- tree tbase, tbase_init;
-
- /* This is the body of the loop that implements the deletion of a
- single element, and moves temp variables to next elements. */
- tree body;
-
- /* This is the LOOP_EXPR that governs the deletion of the elements. */
- tree loop = 0;
-
- /* This is the thing that governs what to do after the loop has run. */
- tree deallocate_expr = 0;
-
- /* This is the BIND_EXPR which holds the outermost iterator of the
- loop. It is convenient to set this variable up and test it before
- executing any other code in the loop.
- This is also the containing expression returned by this function. */
- tree controller = NULL_TREE;
- tree tmp;
-
- /* We should only have 1-D arrays here. */
- gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
-
- if (! MAYBE_CLASS_TYPE_P (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
- goto no_destructor;
-
- /* The below is short by the cookie size. */
- virtual_size = size_binop (MULT_EXPR, size_exp,
- convert (sizetype, maxindex));
-
- tbase = create_temporary_var (ptype);
- tbase_init = cp_build_modify_expr (tbase, NOP_EXPR,
- fold_build2 (POINTER_PLUS_EXPR, ptype,
- fold_convert (ptype, base),
- virtual_size),
- tf_warning_or_error);
- DECL_REGISTER (tbase) = 1;
- controller = build3 (BIND_EXPR, void_type_node, tbase,
- NULL_TREE, NULL_TREE);
- TREE_SIDE_EFFECTS (controller) = 1;
-
- body = build1 (EXIT_EXPR, void_type_node,
- build2 (EQ_EXPR, boolean_type_node, tbase,
- fold_convert (ptype, base)));
- tmp = fold_build1 (NEGATE_EXPR, sizetype, size_exp);
- body = build_compound_expr
- (body, cp_build_modify_expr (tbase, NOP_EXPR,
- build2 (POINTER_PLUS_EXPR, ptype, tbase, tmp),
- tf_warning_or_error));
- body = build_compound_expr
- (body, build_delete (ptype, tbase, sfk_complete_destructor,
- LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
-
- loop = build1 (LOOP_EXPR, void_type_node, body);
- loop = build_compound_expr (tbase_init, loop);
-
- no_destructor:
- /* If the delete flag is one, or anything else with the low bit set,
- delete the storage. */
- if (auto_delete_vec != sfk_base_destructor)
- {
- tree base_tbd;
-
- /* The below is short by the cookie size. */
- virtual_size = size_binop (MULT_EXPR, size_exp,
- convert (sizetype, maxindex));
-
- if (! TYPE_VEC_NEW_USES_COOKIE (type))
- /* no header */
- base_tbd = base;
- else
- {
- tree cookie_size;
-
- cookie_size = targetm.cxx.get_cookie_size (type);
- base_tbd
- = cp_convert (ptype,
- cp_build_binary_op (input_location,
- MINUS_EXPR,
- cp_convert (string_type_node,
- base),
- cookie_size,
- tf_warning_or_error));
- /* True size with header. */
- virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
- }
-
- if (auto_delete_vec == sfk_deleting_destructor)
- deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
- base_tbd, virtual_size,
- use_global_delete & 1,
- /*placement=*/NULL_TREE,
- /*alloc_fn=*/NULL_TREE);
- }
-
- body = loop;
- if (!deallocate_expr)
- ;
- else if (!body)
- body = deallocate_expr;
- else
- body = build_compound_expr (body, deallocate_expr);
-
- if (!body)
- body = integer_zero_node;
-
- /* Outermost wrapper: If pointer is null, punt. */
- body = fold_build3 (COND_EXPR, void_type_node,
- fold_build2 (NE_EXPR, boolean_type_node, base,
- convert (TREE_TYPE (base),
- integer_zero_node)),
- body, integer_zero_node);
- body = build1 (NOP_EXPR, void_type_node, body);
-
- if (controller)
- {
- TREE_OPERAND (controller, 1) = body;
- body = controller;
- }
-
- if (TREE_CODE (base) == SAVE_EXPR)
- /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
- body = build2 (COMPOUND_EXPR, void_type_node, base, body);
-
- return convert_to_void (body, /*implicit=*/NULL, tf_warning_or_error);
-}
-
-/* Create an unnamed variable of the indicated TYPE. */
-
-tree
-create_temporary_var (tree type)
-{
- tree decl;
-
- decl = build_decl (VAR_DECL, NULL_TREE, type);
- TREE_USED (decl) = 1;
- DECL_ARTIFICIAL (decl) = 1;
- DECL_IGNORED_P (decl) = 1;
- DECL_SOURCE_LOCATION (decl) = input_location;
- DECL_CONTEXT (decl) = current_function_decl;
-
- return decl;
-}
-
-/* Create a new temporary variable of the indicated TYPE, initialized
- to INIT.
-
- It is not entered into current_binding_level, because that breaks
- things when it comes time to do final cleanups (which take place
- "outside" the binding contour of the function). */
-
-static tree
-get_temp_regvar (tree type, tree init)
-{
- tree decl;
-
- decl = create_temporary_var (type);
- add_decl_expr (decl);
-
- finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
- tf_warning_or_error));
-
- return decl;
-}
-
-/* `build_vec_init' returns tree structure that performs
- initialization of a vector of aggregate types.
-
- BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
- to the first element, of POINTER_TYPE.
- MAXINDEX is the maximum index of the array (one less than the
- number of elements). It is only used if BASE is a pointer or
- TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
-
- INIT is the (possibly NULL) initializer.
-
- If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
- elements in the array are value-initialized.
-
- FROM_ARRAY is 0 if we should init everything with INIT
- (i.e., every element initialized from INIT).
- FROM_ARRAY is 1 if we should index into INIT in parallel
- with initialization of DECL.
- FROM_ARRAY is 2 if we should index into INIT in parallel,
- but use assignment instead of initialization. */
-
-tree
-build_vec_init (tree base, tree maxindex, tree init,
- bool explicit_value_init_p,
- int from_array, tsubst_flags_t complain)
-{
- tree rval;
- tree base2 = NULL_TREE;
- tree size;
- tree itype = NULL_TREE;
- tree iterator;
- /* The type of BASE. */
- tree atype = TREE_TYPE (base);
- /* The type of an element in the array. */
- tree type = TREE_TYPE (atype);
- /* The element type reached after removing all outer array
- types. */
- tree inner_elt_type;
- /* The type of a pointer to an element in the array. */
- tree ptype;
- tree stmt_expr;
- tree compound_stmt;
- int destroy_temps;
- tree try_block = NULL_TREE;
- int num_initialized_elts = 0;
- bool is_global;
-
- if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
- maxindex = array_type_nelts (atype);
-
- if (maxindex == NULL_TREE || maxindex == error_mark_node)
- return error_mark_node;
-
- if (explicit_value_init_p)
- gcc_assert (!init);
-
- inner_elt_type = strip_array_types (type);
-
- /* Look through the TARGET_EXPR around a compound literal. */
- if (init && TREE_CODE (init) == TARGET_EXPR
- && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
- && from_array != 2)
- init = TARGET_EXPR_INITIAL (init);
-
- if (init
- && TREE_CODE (atype) == ARRAY_TYPE
- && (from_array == 2
- ? (!CLASS_TYPE_P (inner_elt_type)
- || !TYPE_HAS_COMPLEX_ASSIGN_REF (inner_elt_type))
- : !TYPE_NEEDS_CONSTRUCTING (type))
- && ((TREE_CODE (init) == CONSTRUCTOR
- /* Don't do this if the CONSTRUCTOR might contain something
- that might throw and require us to clean up. */
- && (VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (init))
- || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
- || from_array))
- {
- /* Do non-default initialization of POD arrays resulting from
- brace-enclosed initializers. In this case, digest_init and
- store_constructor will handle the semantics for us. */
-
- stmt_expr = build2 (INIT_EXPR, atype, base, init);
- return stmt_expr;
- }
-
- maxindex = cp_convert (ptrdiff_type_node, maxindex);
- size = size_in_bytes (type);
- if (TREE_CODE (atype) == ARRAY_TYPE)
- {
- ptype = build_pointer_type (type);
- base = cp_convert (ptype, decay_conversion (base));
- }
- else
- ptype = atype;
-
- /* The code we are generating looks like:
- ({
- T* t1 = (T*) base;
- T* rval = t1;
- ptrdiff_t iterator = maxindex;
- try {
- for (; iterator != -1; --iterator) {
- ... initialize *t1 ...
- ++t1;
- }
- } catch (...) {
- ... destroy elements that were constructed ...
- }
- rval;
- })
-
- We can omit the try and catch blocks if we know that the
- initialization will never throw an exception, or if the array
- elements do not have destructors. We can omit the loop completely if
- the elements of the array do not have constructors.
-
- We actually wrap the entire body of the above in a STMT_EXPR, for
- tidiness.
-
- When copying from array to another, when the array elements have
- only trivial copy constructors, we should use __builtin_memcpy
- rather than generating a loop. That way, we could take advantage
- of whatever cleverness the back end has for dealing with copies
- of blocks of memory. */
-
- is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
- destroy_temps = stmts_are_full_exprs_p ();
- current_stmt_tree ()->stmts_are_full_exprs_p = 0;
- rval = get_temp_regvar (ptype, base);
- base = get_temp_regvar (ptype, rval);
- iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
-
- /* If initializing one array from another, initialize element by
- element. We rely upon the below calls to do the argument
- checking. Evaluate the initializer before entering the try block. */
- if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
- {
- base2 = decay_conversion (init);
- itype = TREE_TYPE (base2);
- base2 = get_temp_regvar (itype, base2);
- itype = TREE_TYPE (itype);
- }
-
- /* Protect the entire array initialization so that we can destroy
- the partially constructed array if an exception is thrown.
- But don't do this if we're assigning. */
- if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
- && from_array != 2)
- {
- try_block = begin_try_block ();
- }
-
- if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
- {
- /* Do non-default initialization of non-POD arrays resulting from
- brace-enclosed initializers. */
- unsigned HOST_WIDE_INT idx;
- tree elt;
- from_array = 0;
-
- FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
- {
- tree baseref = build1 (INDIRECT_REF, type, base);
-
- num_initialized_elts++;
-
- current_stmt_tree ()->stmts_are_full_exprs_p = 1;
- if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
- finish_expr_stmt (build_aggr_init (baseref, elt, 0, complain));
- else
- finish_expr_stmt (cp_build_modify_expr (baseref, NOP_EXPR,
- elt, complain));
- current_stmt_tree ()->stmts_are_full_exprs_p = 0;
-
- finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
- complain));
- finish_expr_stmt (cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
- complain));
- }
-
- /* Clear out INIT so that we don't get confused below. */
- init = NULL_TREE;
- }
- else if (from_array)
- {
- if (init)
- /* OK, we set base2 above. */;
- else if (TYPE_LANG_SPECIFIC (type)
- && TYPE_NEEDS_CONSTRUCTING (type)
- && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
- {
- if (complain & tf_error)
- error ("initializer ends prematurely");
- return error_mark_node;
- }
- }
-
- /* Now, default-initialize any remaining elements. We don't need to
- do that if a) the type does not need constructing, or b) we've
- already initialized all the elements.
-
- We do need to keep going if we're copying an array. */
-
- if (from_array
- || ((TYPE_NEEDS_CONSTRUCTING (type) || explicit_value_init_p)
- && ! (host_integerp (maxindex, 0)
- && (num_initialized_elts
- == tree_low_cst (maxindex, 0) + 1))))
- {
- /* If the ITERATOR is equal to -1, then we don't have to loop;
- we've already initialized all the elements. */
- tree for_stmt;
- tree elt_init;
- tree to;
-
- for_stmt = begin_for_stmt ();
- finish_for_init_stmt (for_stmt);
- finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
- build_int_cst (TREE_TYPE (iterator), -1)),
- for_stmt);
- finish_for_expr (cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
- complain),
- for_stmt);
-
- to = build1 (INDIRECT_REF, type, base);
-
- if (from_array)
- {
- tree from;
-
- if (base2)
- from = build1 (INDIRECT_REF, itype, base2);
- else
- from = NULL_TREE;
-
- if (from_array == 2)
- elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
- complain);
- else if (TYPE_NEEDS_CONSTRUCTING (type))
- elt_init = build_aggr_init (to, from, 0, complain);
- else if (from)
- elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
- complain);
- else
- gcc_unreachable ();
- }
- else if (TREE_CODE (type) == ARRAY_TYPE)
- {
- if (init != 0)
- sorry
- ("cannot initialize multi-dimensional array with initializer");
- elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
- 0, 0,
- explicit_value_init_p,
- 0, complain);
- }
- else if (explicit_value_init_p)
- elt_init = build2 (INIT_EXPR, type, to,
- build_value_init (type));
- else
- {
- gcc_assert (TYPE_NEEDS_CONSTRUCTING (type));
- elt_init = build_aggr_init (to, init, 0, complain);
- }
-
- current_stmt_tree ()->stmts_are_full_exprs_p = 1;
- finish_expr_stmt (elt_init);
- current_stmt_tree ()->stmts_are_full_exprs_p = 0;
-
- finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
- complain));
- if (base2)
- finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, 0,
- complain));
-
- finish_for_stmt (for_stmt);
- }
-
- /* Make sure to cleanup any partially constructed elements. */
- if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
- && from_array != 2)
- {
- tree e;
- tree m = cp_build_binary_op (input_location,
- MINUS_EXPR, maxindex, iterator,
- complain);
-
- /* Flatten multi-dimensional array since build_vec_delete only
- expects one-dimensional array. */
- if (TREE_CODE (type) == ARRAY_TYPE)
- m = cp_build_binary_op (input_location,
- MULT_EXPR, m,
- array_type_nelts_total (type),
- complain);
-
- finish_cleanup_try_block (try_block);
- e = build_vec_delete_1 (rval, m,
- inner_elt_type, sfk_base_destructor,
- /*use_global_delete=*/0);
- finish_cleanup (e, try_block);
- }
-
- /* The value of the array initialization is the array itself, RVAL
- is a pointer to the first element. */
- finish_stmt_expr_expr (rval, stmt_expr);
-
- stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
-
- /* Now make the result have the correct type. */
- if (TREE_CODE (atype) == ARRAY_TYPE)
- {
- atype = build_pointer_type (atype);
- stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
- stmt_expr = cp_build_indirect_ref (stmt_expr, NULL, complain);
- }
-
- current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
- return stmt_expr;
-}
-
-/* Call the DTOR_KIND destructor for EXP. FLAGS are as for
- build_delete. */
-
-static tree
-build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
-{
- tree name;
- tree fn;
- switch (dtor_kind)
- {
- case sfk_complete_destructor:
- name = complete_dtor_identifier;
- break;
-
- case sfk_base_destructor:
- name = base_dtor_identifier;
- break;
-
- case sfk_deleting_destructor:
- name = deleting_dtor_identifier;
- break;
-
- default:
- gcc_unreachable ();
- }
- fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
- return build_new_method_call (exp, fn,
- /*args=*/NULL_TREE,
- /*conversion_path=*/NULL_TREE,
- flags,
- /*fn_p=*/NULL,
- tf_warning_or_error);
-}
-
-/* Generate a call to a destructor. TYPE is the type to cast ADDR to.
- ADDR is an expression which yields the store to be destroyed.
- AUTO_DELETE is the name of the destructor to call, i.e., either
- sfk_complete_destructor, sfk_base_destructor, or
- sfk_deleting_destructor.
-
- FLAGS is the logical disjunction of zero or more LOOKUP_
- flags. See cp-tree.h for more info. */
-
-tree
-build_delete (tree type, tree addr, special_function_kind auto_delete,
- int flags, int use_global_delete)
-{
- tree expr;
-
- if (addr == error_mark_node)
- return error_mark_node;
-
- /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
- set to `error_mark_node' before it gets properly cleaned up. */
- if (type == error_mark_node)
- return error_mark_node;
-
- type = TYPE_MAIN_VARIANT (type);
-
- if (TREE_CODE (type) == POINTER_TYPE)
- {
- bool complete_p = true;
-
- type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
- if (TREE_CODE (type) == ARRAY_TYPE)
- goto handle_array;
-
- /* We don't want to warn about delete of void*, only other
- incomplete types. Deleting other incomplete types
- invokes undefined behavior, but it is not ill-formed, so
- compile to something that would even do The Right Thing
- (TM) should the type have a trivial dtor and no delete
- operator. */
- if (!VOID_TYPE_P (type))
- {
- complete_type (type);
- if (!COMPLETE_TYPE_P (type))
- {
- if (warning (0, "possible problem detected in invocation of "
- "delete operator:"))
- {
- cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
- inform (input_location, "neither the destructor nor the class-specific "
- "operator delete will be called, even if they are "
- "declared when the class is defined.");
- }
- complete_p = false;
- }
- }
- if (VOID_TYPE_P (type) || !complete_p || !MAYBE_CLASS_TYPE_P (type))
- /* Call the builtin operator delete. */
- return build_builtin_delete_call (addr);
- if (TREE_SIDE_EFFECTS (addr))
- addr = save_expr (addr);
-
- /* Throw away const and volatile on target type of addr. */
- addr = convert_force (build_pointer_type (type), addr, 0);
- }
- else if (TREE_CODE (type) == ARRAY_TYPE)
- {
- handle_array:
-
- if (TYPE_DOMAIN (type) == NULL_TREE)
- {
- error ("unknown array size in delete");
- return error_mark_node;
- }
- return build_vec_delete (addr, array_type_nelts (type),
- auto_delete, use_global_delete);
- }
- else
- {
- /* Don't check PROTECT here; leave that decision to the
- destructor. If the destructor is accessible, call it,
- else report error. */
- addr = cp_build_unary_op (ADDR_EXPR, addr, 0, tf_warning_or_error);
- if (TREE_SIDE_EFFECTS (addr))
- addr = save_expr (addr);
-
- addr = convert_force (build_pointer_type (type), addr, 0);
- }
-
- gcc_assert (MAYBE_CLASS_TYPE_P (type));
-
- if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
- {
- if (auto_delete != sfk_deleting_destructor)
- return void_zero_node;
-
- return build_op_delete_call (DELETE_EXPR, addr,
- cxx_sizeof_nowarn (type),
- use_global_delete,
- /*placement=*/NULL_TREE,
- /*alloc_fn=*/NULL_TREE);
- }
- else
- {
- tree head = NULL_TREE;
- tree do_delete = NULL_TREE;
- tree ifexp;
-
- if (CLASSTYPE_LAZY_DESTRUCTOR (type))
- lazily_declare_fn (sfk_destructor, type);
-
- /* For `::delete x', we must not use the deleting destructor
- since then we would not be sure to get the global `operator
- delete'. */
- if (use_global_delete && auto_delete == sfk_deleting_destructor)
- {
- /* We will use ADDR multiple times so we must save it. */
- addr = save_expr (addr);
- head = get_target_expr (build_headof (addr));
- /* Delete the object. */
- do_delete = build_builtin_delete_call (head);
- /* Otherwise, treat this like a complete object destructor
- call. */
- auto_delete = sfk_complete_destructor;
- }
- /* If the destructor is non-virtual, there is no deleting
- variant. Instead, we must explicitly call the appropriate
- `operator delete' here. */
- else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
- && auto_delete == sfk_deleting_destructor)
- {
- /* We will use ADDR multiple times so we must save it. */
- addr = save_expr (addr);
- /* Build the call. */
- do_delete = build_op_delete_call (DELETE_EXPR,
- addr,
- cxx_sizeof_nowarn (type),
- /*global_p=*/false,
- /*placement=*/NULL_TREE,
- /*alloc_fn=*/NULL_TREE);
- /* Call the complete object destructor. */
- auto_delete = sfk_complete_destructor;
- }
- else if (auto_delete == sfk_deleting_destructor
- && TYPE_GETS_REG_DELETE (type))
- {
- /* Make sure we have access to the member op delete, even though
- we'll actually be calling it from the destructor. */
- build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
- /*global_p=*/false,
- /*placement=*/NULL_TREE,
- /*alloc_fn=*/NULL_TREE);
- }
-
- expr = build_dtor_call (cp_build_indirect_ref (addr, NULL,
- tf_warning_or_error),
- auto_delete, flags);
- if (do_delete)
- expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
-
- /* We need to calculate this before the dtor changes the vptr. */
- if (head)
- expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
-
- if (flags & LOOKUP_DESTRUCTOR)
- /* Explicit destructor call; don't check for null pointer. */
- ifexp = integer_one_node;
- else
- /* Handle deleting a null pointer. */
- ifexp = fold (cp_build_binary_op (input_location,
- NE_EXPR, addr, integer_zero_node,
- tf_warning_or_error));
-
- if (ifexp != integer_one_node)
- expr = build3 (COND_EXPR, void_type_node,
- ifexp, expr, void_zero_node);
-
- return expr;
- }
-}
-
-/* At the beginning of a destructor, push cleanups that will call the
- destructors for our base classes and members.
-
- Called from begin_destructor_body. */
-
-void
-push_base_cleanups (void)
-{
- tree binfo, base_binfo;
- int i;
- tree member;
- tree expr;
- VEC(tree,gc) *vbases;
-
- /* Run destructors for all virtual baseclasses. */
- if (CLASSTYPE_VBASECLASSES (current_class_type))
- {
- tree cond = (condition_conversion
- (build2 (BIT_AND_EXPR, integer_type_node,
- current_in_charge_parm,
- integer_two_node)));
-
- /* The CLASSTYPE_VBASECLASSES vector is in initialization
- order, which is also the right order for pushing cleanups. */
- for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
- VEC_iterate (tree, vbases, i, base_binfo); i++)
- {
- if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
- {
- expr = build_special_member_call (current_class_ref,
- base_dtor_identifier,
- NULL_TREE,
- base_binfo,
- (LOOKUP_NORMAL
- | LOOKUP_NONVIRTUAL),
- tf_warning_or_error);
- expr = build3 (COND_EXPR, void_type_node, cond,
- expr, void_zero_node);
- finish_decl_cleanup (NULL_TREE, expr);
- }
- }
- }
-
- /* Take care of the remaining baseclasses. */
- for (binfo = TYPE_BINFO (current_class_type), i = 0;
- BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
- {
- if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
- || BINFO_VIRTUAL_P (base_binfo))
- continue;
-
- expr = build_special_member_call (current_class_ref,
- base_dtor_identifier,
- NULL_TREE, base_binfo,
- LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
- tf_warning_or_error);
- finish_decl_cleanup (NULL_TREE, expr);
- }
-
- for (member = TYPE_FIELDS (current_class_type); member;
- member = TREE_CHAIN (member))
- {
- if (TREE_TYPE (member) == error_mark_node
- || TREE_CODE (member) != FIELD_DECL
- || DECL_ARTIFICIAL (member))
- continue;
- if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
- {
- tree this_member = (build_class_member_access_expr
- (current_class_ref, member,
- /*access_path=*/NULL_TREE,
- /*preserve_reference=*/false,
- tf_warning_or_error));
- tree this_type = TREE_TYPE (member);
- expr = build_delete (this_type, this_member,
- sfk_complete_destructor,
- LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
- 0);
- finish_decl_cleanup (NULL_TREE, expr);
- }
- }
-}
-
-/* Build a C++ vector delete expression.
- MAXINDEX is the number of elements to be deleted.
- ELT_SIZE is the nominal size of each element in the vector.
- BASE is the expression that should yield the store to be deleted.
- This function expands (or synthesizes) these calls itself.
- AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
-
- This also calls delete for virtual baseclasses of elements of the vector.
-
- Update: MAXINDEX is no longer needed. The size can be extracted from the
- start of the vector for pointers, and from the type for arrays. We still
- use MAXINDEX for arrays because it happens to already have one of the
- values we'd have to extract. (We could use MAXINDEX with pointers to
- confirm the size, and trap if the numbers differ; not clear that it'd
- be worth bothering.) */
-
-tree
-build_vec_delete (tree base, tree maxindex,
- special_function_kind auto_delete_vec, int use_global_delete)
-{
- tree type;
- tree rval;
- tree base_init = NULL_TREE;
-
- type = TREE_TYPE (base);
-
- if (TREE_CODE (type) == POINTER_TYPE)
- {
- /* Step back one from start of vector, and read dimension. */
- tree cookie_addr;
- tree size_ptr_type = build_pointer_type (sizetype);
-
- if (TREE_SIDE_EFFECTS (base))
- {
- base_init = get_target_expr (base);
- base = TARGET_EXPR_SLOT (base_init);
- }
- type = strip_array_types (TREE_TYPE (type));
- cookie_addr = fold_build1 (NEGATE_EXPR, sizetype, TYPE_SIZE_UNIT (sizetype));
- cookie_addr = build2 (POINTER_PLUS_EXPR,
- size_ptr_type,
- fold_convert (size_ptr_type, base),
- cookie_addr);
- maxindex = cp_build_indirect_ref (cookie_addr, NULL, tf_warning_or_error);
- }
- else if (TREE_CODE (type) == ARRAY_TYPE)
- {
- /* Get the total number of things in the array, maxindex is a
- bad name. */
- maxindex = array_type_nelts_total (type);
- type = strip_array_types (type);
- base = cp_build_unary_op (ADDR_EXPR, base, 1, tf_warning_or_error);
- if (TREE_SIDE_EFFECTS (base))
- {
- base_init = get_target_expr (base);
- base = TARGET_EXPR_SLOT (base_init);
- }
- }
- else
- {
- if (base != error_mark_node)
- error ("type to vector delete is neither pointer or array type");
- return error_mark_node;
- }
-
- rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
- use_global_delete);
- if (base_init)
- rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
-
- return rval;
-}
« no previous file with comments | « gcc/gcc/cp/expr.c ('k') | gcc/gcc/cp/lang-specs.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698