| Index: gcc/gcc/cp/init.c
|
| diff --git a/gcc/gcc/cp/init.c b/gcc/gcc/cp/init.c
|
| deleted file mode 100644
|
| index d31c10037a70ee3a1b55da0e90acebdcaa0d7cc1..0000000000000000000000000000000000000000
|
| --- a/gcc/gcc/cp/init.c
|
| +++ /dev/null
|
| @@ -1,3329 +0,0 @@
|
| -/* Handle initialization things in C++.
|
| - Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
| - 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
|
| - Free Software Foundation, Inc.
|
| - Contributed by Michael Tiemann (tiemann@cygnus.com)
|
| -
|
| -This file is part of GCC.
|
| -
|
| -GCC is free software; you can redistribute it and/or modify
|
| -it under the terms of the GNU General Public License as published by
|
| -the Free Software Foundation; either version 3, or (at your option)
|
| -any later version.
|
| -
|
| -GCC is distributed in the hope that it will be useful,
|
| -but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| -GNU General Public License for more details.
|
| -
|
| -You should have received a copy of the GNU General Public License
|
| -along with GCC; see the file COPYING3. If not see
|
| -<http://www.gnu.org/licenses/>. */
|
| -
|
| -/* High-level class interface. */
|
| -
|
| -#include "config.h"
|
| -#include "system.h"
|
| -#include "coretypes.h"
|
| -#include "tm.h"
|
| -#include "tree.h"
|
| -#include "rtl.h"
|
| -#include "expr.h"
|
| -#include "cp-tree.h"
|
| -#include "flags.h"
|
| -#include "output.h"
|
| -#include "except.h"
|
| -#include "toplev.h"
|
| -#include "target.h"
|
| -
|
| -static bool begin_init_stmts (tree *, tree *);
|
| -static tree finish_init_stmts (bool, tree, tree);
|
| -static void construct_virtual_base (tree, tree);
|
| -static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
|
| -static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
|
| -static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
|
| -static void perform_member_init (tree, tree);
|
| -static tree build_builtin_delete_call (tree);
|
| -static int member_init_ok_or_else (tree, tree, tree);
|
| -static void expand_virtual_init (tree, tree);
|
| -static tree sort_mem_initializers (tree, tree);
|
| -static tree initializing_context (tree);
|
| -static void expand_cleanup_for_base (tree, tree);
|
| -static tree get_temp_regvar (tree, tree);
|
| -static tree dfs_initialize_vtbl_ptrs (tree, void *);
|
| -static tree build_dtor_call (tree, special_function_kind, int);
|
| -static tree build_field_list (tree, tree, int *);
|
| -static tree build_vtbl_address (tree);
|
| -
|
| -/* We are about to generate some complex initialization code.
|
| - Conceptually, it is all a single expression. However, we may want
|
| - to include conditionals, loops, and other such statement-level
|
| - constructs. Therefore, we build the initialization code inside a
|
| - statement-expression. This function starts such an expression.
|
| - STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
|
| - pass them back to finish_init_stmts when the expression is
|
| - complete. */
|
| -
|
| -static bool
|
| -begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
|
| -{
|
| - bool is_global = !building_stmt_tree ();
|
| -
|
| - *stmt_expr_p = begin_stmt_expr ();
|
| - *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
|
| -
|
| - return is_global;
|
| -}
|
| -
|
| -/* Finish out the statement-expression begun by the previous call to
|
| - begin_init_stmts. Returns the statement-expression itself. */
|
| -
|
| -static tree
|
| -finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
|
| -{
|
| - finish_compound_stmt (compound_stmt);
|
| -
|
| - stmt_expr = finish_stmt_expr (stmt_expr, true);
|
| -
|
| - gcc_assert (!building_stmt_tree () == is_global);
|
| -
|
| - return stmt_expr;
|
| -}
|
| -
|
| -/* Constructors */
|
| -
|
| -/* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
|
| - which we want to initialize the vtable pointer for, DATA is
|
| - TREE_LIST whose TREE_VALUE is the this ptr expression. */
|
| -
|
| -static tree
|
| -dfs_initialize_vtbl_ptrs (tree binfo, void *data)
|
| -{
|
| - if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
|
| - return dfs_skip_bases;
|
| -
|
| - if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
|
| - {
|
| - tree base_ptr = TREE_VALUE ((tree) data);
|
| -
|
| - base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
|
| -
|
| - expand_virtual_init (binfo, base_ptr);
|
| - }
|
| -
|
| - return NULL_TREE;
|
| -}
|
| -
|
| -/* Initialize all the vtable pointers in the object pointed to by
|
| - ADDR. */
|
| -
|
| -void
|
| -initialize_vtbl_ptrs (tree addr)
|
| -{
|
| - tree list;
|
| - tree type;
|
| -
|
| - type = TREE_TYPE (TREE_TYPE (addr));
|
| - list = build_tree_list (type, addr);
|
| -
|
| - /* Walk through the hierarchy, initializing the vptr in each base
|
| - class. We do these in pre-order because we can't find the virtual
|
| - bases for a class until we've initialized the vtbl for that
|
| - class. */
|
| - dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
|
| -}
|
| -
|
| -/* Return an expression for the zero-initialization of an object with
|
| - type T. This expression will either be a constant (in the case
|
| - that T is a scalar), or a CONSTRUCTOR (in the case that T is an
|
| - aggregate), or NULL (in the case that T does not require
|
| - initialization). In either case, the value can be used as
|
| - DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
|
| - initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
|
| - is the number of elements in the array. If STATIC_STORAGE_P is
|
| - TRUE, initializers are only generated for entities for which
|
| - zero-initialization does not simply mean filling the storage with
|
| - zero bytes. */
|
| -
|
| -tree
|
| -build_zero_init (tree type, tree nelts, bool static_storage_p)
|
| -{
|
| - tree init = NULL_TREE;
|
| -
|
| - /* [dcl.init]
|
| -
|
| - To zero-initialize an object of type T means:
|
| -
|
| - -- if T is a scalar type, the storage is set to the value of zero
|
| - converted to T.
|
| -
|
| - -- if T is a non-union class type, the storage for each nonstatic
|
| - data member and each base-class subobject is zero-initialized.
|
| -
|
| - -- if T is a union type, the storage for its first data member is
|
| - zero-initialized.
|
| -
|
| - -- if T is an array type, the storage for each element is
|
| - zero-initialized.
|
| -
|
| - -- if T is a reference type, no initialization is performed. */
|
| -
|
| - gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
|
| -
|
| - if (type == error_mark_node)
|
| - ;
|
| - else if (static_storage_p && zero_init_p (type))
|
| - /* In order to save space, we do not explicitly build initializers
|
| - for items that do not need them. GCC's semantics are that
|
| - items with static storage duration that are not otherwise
|
| - initialized are initialized to zero. */
|
| - ;
|
| - else if (SCALAR_TYPE_P (type))
|
| - init = convert (type, integer_zero_node);
|
| - else if (CLASS_TYPE_P (type))
|
| - {
|
| - tree field;
|
| - VEC(constructor_elt,gc) *v = NULL;
|
| -
|
| - /* Iterate over the fields, building initializations. */
|
| - for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
| - {
|
| - if (TREE_CODE (field) != FIELD_DECL)
|
| - continue;
|
| -
|
| - /* Note that for class types there will be FIELD_DECLs
|
| - corresponding to base classes as well. Thus, iterating
|
| - over TYPE_FIELDs will result in correct initialization of
|
| - all of the subobjects. */
|
| - if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
|
| - {
|
| - tree value = build_zero_init (TREE_TYPE (field),
|
| - /*nelts=*/NULL_TREE,
|
| - static_storage_p);
|
| - if (value)
|
| - CONSTRUCTOR_APPEND_ELT(v, field, value);
|
| - }
|
| -
|
| - /* For unions, only the first field is initialized. */
|
| - if (TREE_CODE (type) == UNION_TYPE)
|
| - break;
|
| - }
|
| -
|
| - /* Build a constructor to contain the initializations. */
|
| - init = build_constructor (type, v);
|
| - }
|
| - else if (TREE_CODE (type) == ARRAY_TYPE)
|
| - {
|
| - tree max_index;
|
| - VEC(constructor_elt,gc) *v = NULL;
|
| -
|
| - /* Iterate over the array elements, building initializations. */
|
| - if (nelts)
|
| - max_index = fold_build2 (MINUS_EXPR, TREE_TYPE (nelts),
|
| - nelts, integer_one_node);
|
| - else
|
| - max_index = array_type_nelts (type);
|
| -
|
| - /* If we have an error_mark here, we should just return error mark
|
| - as we don't know the size of the array yet. */
|
| - if (max_index == error_mark_node)
|
| - return error_mark_node;
|
| - gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
|
| -
|
| - /* A zero-sized array, which is accepted as an extension, will
|
| - have an upper bound of -1. */
|
| - if (!tree_int_cst_equal (max_index, integer_minus_one_node))
|
| - {
|
| - constructor_elt *ce;
|
| -
|
| - v = VEC_alloc (constructor_elt, gc, 1);
|
| - ce = VEC_quick_push (constructor_elt, v, NULL);
|
| -
|
| - /* If this is a one element array, we just use a regular init. */
|
| - if (tree_int_cst_equal (size_zero_node, max_index))
|
| - ce->index = size_zero_node;
|
| - else
|
| - ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
|
| - max_index);
|
| -
|
| - ce->value = build_zero_init (TREE_TYPE (type),
|
| - /*nelts=*/NULL_TREE,
|
| - static_storage_p);
|
| - }
|
| -
|
| - /* Build a constructor to contain the initializations. */
|
| - init = build_constructor (type, v);
|
| - }
|
| - else if (TREE_CODE (type) == VECTOR_TYPE)
|
| - init = fold_convert (type, integer_zero_node);
|
| - else
|
| - gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
|
| -
|
| - /* In all cases, the initializer is a constant. */
|
| - if (init)
|
| - TREE_CONSTANT (init) = 1;
|
| -
|
| - return init;
|
| -}
|
| -
|
| -/* Return a suitable initializer for value-initializing an object of type
|
| - TYPE, as described in [dcl.init]. */
|
| -
|
| -tree
|
| -build_value_init (tree type)
|
| -{
|
| - /* [dcl.init]
|
| -
|
| - To value-initialize an object of type T means:
|
| -
|
| - - if T is a class type (clause 9) with a user-provided constructor
|
| - (12.1), then the default constructor for T is called (and the
|
| - initialization is ill-formed if T has no accessible default
|
| - constructor);
|
| -
|
| - - if T is a non-union class type without a user-provided constructor,
|
| - then every non-static data member and base-class component of T is
|
| - value-initialized;92)
|
| -
|
| - - if T is an array type, then each element is value-initialized;
|
| -
|
| - - otherwise, the object is zero-initialized.
|
| -
|
| - A program that calls for default-initialization or
|
| - value-initialization of an entity of reference type is ill-formed.
|
| -
|
| - 92) Value-initialization for such a class object may be implemented by
|
| - zero-initializing the object and then calling the default
|
| - constructor. */
|
| -
|
| - if (CLASS_TYPE_P (type))
|
| - {
|
| - if (type_has_user_provided_constructor (type))
|
| - return build_aggr_init_expr
|
| - (type,
|
| - build_special_member_call (NULL_TREE, complete_ctor_identifier,
|
| - NULL_TREE, type, LOOKUP_NORMAL,
|
| - tf_warning_or_error));
|
| - else if (TREE_CODE (type) != UNION_TYPE && TYPE_NEEDS_CONSTRUCTING (type))
|
| - {
|
| - /* This is a class that needs constructing, but doesn't have
|
| - a user-provided constructor. So we need to zero-initialize
|
| - the object and then call the implicitly defined ctor.
|
| - This will be handled in simplify_aggr_init_expr. */
|
| - tree ctor = build_special_member_call
|
| - (NULL_TREE, complete_ctor_identifier,
|
| - NULL_TREE, type, LOOKUP_NORMAL, tf_warning_or_error);
|
| -
|
| - ctor = build_aggr_init_expr (type, ctor);
|
| - AGGR_INIT_ZERO_FIRST (ctor) = 1;
|
| - return ctor;
|
| - }
|
| - }
|
| - return build_value_init_noctor (type);
|
| -}
|
| -
|
| -/* Like build_value_init, but don't call the constructor for TYPE. Used
|
| - for base initializers. */
|
| -
|
| -tree
|
| -build_value_init_noctor (tree type)
|
| -{
|
| - if (CLASS_TYPE_P (type))
|
| - {
|
| - gcc_assert (!TYPE_NEEDS_CONSTRUCTING (type));
|
| -
|
| - if (TREE_CODE (type) != UNION_TYPE)
|
| - {
|
| - tree field;
|
| - VEC(constructor_elt,gc) *v = NULL;
|
| -
|
| - /* Iterate over the fields, building initializations. */
|
| - for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
| - {
|
| - tree ftype, value;
|
| -
|
| - if (TREE_CODE (field) != FIELD_DECL)
|
| - continue;
|
| -
|
| - ftype = TREE_TYPE (field);
|
| -
|
| - if (TREE_CODE (ftype) == REFERENCE_TYPE)
|
| - error ("value-initialization of reference");
|
| -
|
| - /* We could skip vfields and fields of types with
|
| - user-defined constructors, but I think that won't improve
|
| - performance at all; it should be simpler in general just
|
| - to zero out the entire object than try to only zero the
|
| - bits that actually need it. */
|
| -
|
| - /* Note that for class types there will be FIELD_DECLs
|
| - corresponding to base classes as well. Thus, iterating
|
| - over TYPE_FIELDs will result in correct initialization of
|
| - all of the subobjects. */
|
| - value = build_value_init (ftype);
|
| -
|
| - if (value)
|
| - CONSTRUCTOR_APPEND_ELT(v, field, value);
|
| - }
|
| -
|
| - /* Build a constructor to contain the zero- initializations. */
|
| - return build_constructor (type, v);
|
| - }
|
| - }
|
| - else if (TREE_CODE (type) == ARRAY_TYPE)
|
| - {
|
| - VEC(constructor_elt,gc) *v = NULL;
|
| -
|
| - /* Iterate over the array elements, building initializations. */
|
| - tree max_index = array_type_nelts (type);
|
| -
|
| - /* If we have an error_mark here, we should just return error mark
|
| - as we don't know the size of the array yet. */
|
| - if (max_index == error_mark_node)
|
| - return error_mark_node;
|
| - gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
|
| -
|
| - /* A zero-sized array, which is accepted as an extension, will
|
| - have an upper bound of -1. */
|
| - if (!tree_int_cst_equal (max_index, integer_minus_one_node))
|
| - {
|
| - constructor_elt *ce;
|
| -
|
| - v = VEC_alloc (constructor_elt, gc, 1);
|
| - ce = VEC_quick_push (constructor_elt, v, NULL);
|
| -
|
| - /* If this is a one element array, we just use a regular init. */
|
| - if (tree_int_cst_equal (size_zero_node, max_index))
|
| - ce->index = size_zero_node;
|
| - else
|
| - ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
|
| - max_index);
|
| -
|
| - ce->value = build_value_init (TREE_TYPE (type));
|
| -
|
| - /* The gimplifier can't deal with a RANGE_EXPR of TARGET_EXPRs. */
|
| - gcc_assert (TREE_CODE (ce->value) != TARGET_EXPR
|
| - && TREE_CODE (ce->value) != AGGR_INIT_EXPR);
|
| - }
|
| -
|
| - /* Build a constructor to contain the initializations. */
|
| - return build_constructor (type, v);
|
| - }
|
| -
|
| - return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
|
| -}
|
| -
|
| -/* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
|
| - arguments. If TREE_LIST is void_type_node, an empty initializer
|
| - list was given; if NULL_TREE no initializer was given. */
|
| -
|
| -static void
|
| -perform_member_init (tree member, tree init)
|
| -{
|
| - tree decl;
|
| - tree type = TREE_TYPE (member);
|
| -
|
| - /* Effective C++ rule 12 requires that all data members be
|
| - initialized. */
|
| - if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
|
| - warning (OPT_Weffc__, "%J%qD should be initialized in the member initialization "
|
| - "list", current_function_decl, member);
|
| -
|
| - /* Get an lvalue for the data member. */
|
| - decl = build_class_member_access_expr (current_class_ref, member,
|
| - /*access_path=*/NULL_TREE,
|
| - /*preserve_reference=*/true,
|
| - tf_warning_or_error);
|
| - if (decl == error_mark_node)
|
| - return;
|
| -
|
| - if (init == void_type_node)
|
| - {
|
| - /* mem() means value-initialization. */
|
| - if (TREE_CODE (type) == ARRAY_TYPE)
|
| - {
|
| - init = build_vec_init (decl, NULL_TREE, NULL_TREE,
|
| - /*explicit_value_init_p=*/true,
|
| - /* from_array=*/0,
|
| - tf_warning_or_error);
|
| - finish_expr_stmt (init);
|
| - }
|
| - else
|
| - {
|
| - if (TREE_CODE (type) == REFERENCE_TYPE)
|
| - permerror (input_location, "%Jvalue-initialization of %q#D, "
|
| - "which has reference type",
|
| - current_function_decl, member);
|
| - else
|
| - {
|
| - init = build2 (INIT_EXPR, type, decl, build_value_init (type));
|
| - finish_expr_stmt (init);
|
| - }
|
| - }
|
| - }
|
| - /* Deal with this here, as we will get confused if we try to call the
|
| - assignment op for an anonymous union. This can happen in a
|
| - synthesized copy constructor. */
|
| - else if (ANON_AGGR_TYPE_P (type))
|
| - {
|
| - if (init)
|
| - {
|
| - init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
|
| - finish_expr_stmt (init);
|
| - }
|
| - }
|
| - else if (TYPE_NEEDS_CONSTRUCTING (type))
|
| - {
|
| - if (init != NULL_TREE
|
| - && TREE_CODE (type) == ARRAY_TYPE
|
| - && TREE_CHAIN (init) == NULL_TREE
|
| - && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
|
| - {
|
| - /* Initialization of one array from another. */
|
| - finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
|
| - /*explicit_value_init_p=*/false,
|
| - /* from_array=*/1,
|
| - tf_warning_or_error));
|
| - }
|
| - else
|
| - {
|
| - if (CP_TYPE_CONST_P (type)
|
| - && init == NULL_TREE
|
| - && !type_has_user_provided_default_constructor (type))
|
| - /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
|
| - vtable; still give this diagnostic. */
|
| - permerror (input_location, "%Juninitialized member %qD with %<const%> type %qT",
|
| - current_function_decl, member, type);
|
| - finish_expr_stmt (build_aggr_init (decl, init, 0,
|
| - tf_warning_or_error));
|
| - }
|
| - }
|
| - else
|
| - {
|
| - if (init == NULL_TREE)
|
| - {
|
| - /* member traversal: note it leaves init NULL */
|
| - if (TREE_CODE (type) == REFERENCE_TYPE)
|
| - permerror (input_location, "%Juninitialized reference member %qD",
|
| - current_function_decl, member);
|
| - else if (CP_TYPE_CONST_P (type))
|
| - permerror (input_location, "%Juninitialized member %qD with %<const%> type %qT",
|
| - current_function_decl, member, type);
|
| - }
|
| - else if (TREE_CODE (init) == TREE_LIST)
|
| - /* There was an explicit member initialization. Do some work
|
| - in that case. */
|
| - init = build_x_compound_expr_from_list (init, "member initializer");
|
| -
|
| - if (init)
|
| - finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
|
| - tf_warning_or_error));
|
| - }
|
| -
|
| - if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
|
| - {
|
| - tree expr;
|
| -
|
| - expr = build_class_member_access_expr (current_class_ref, member,
|
| - /*access_path=*/NULL_TREE,
|
| - /*preserve_reference=*/false,
|
| - tf_warning_or_error);
|
| - expr = build_delete (type, expr, sfk_complete_destructor,
|
| - LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
|
| -
|
| - if (expr != error_mark_node)
|
| - finish_eh_cleanup (expr);
|
| - }
|
| -}
|
| -
|
| -/* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
|
| - the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
|
| -
|
| -static tree
|
| -build_field_list (tree t, tree list, int *uses_unions_p)
|
| -{
|
| - tree fields;
|
| -
|
| - *uses_unions_p = 0;
|
| -
|
| - /* Note whether or not T is a union. */
|
| - if (TREE_CODE (t) == UNION_TYPE)
|
| - *uses_unions_p = 1;
|
| -
|
| - for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
|
| - {
|
| - /* Skip CONST_DECLs for enumeration constants and so forth. */
|
| - if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
|
| - continue;
|
| -
|
| - /* Keep track of whether or not any fields are unions. */
|
| - if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
|
| - *uses_unions_p = 1;
|
| -
|
| - /* For an anonymous struct or union, we must recursively
|
| - consider the fields of the anonymous type. They can be
|
| - directly initialized from the constructor. */
|
| - if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
|
| - {
|
| - /* Add this field itself. Synthesized copy constructors
|
| - initialize the entire aggregate. */
|
| - list = tree_cons (fields, NULL_TREE, list);
|
| - /* And now add the fields in the anonymous aggregate. */
|
| - list = build_field_list (TREE_TYPE (fields), list,
|
| - uses_unions_p);
|
| - }
|
| - /* Add this field. */
|
| - else if (DECL_NAME (fields))
|
| - list = tree_cons (fields, NULL_TREE, list);
|
| - }
|
| -
|
| - return list;
|
| -}
|
| -
|
| -/* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
|
| - a FIELD_DECL or BINFO in T that needs initialization. The
|
| - TREE_VALUE gives the initializer, or list of initializer arguments.
|
| -
|
| - Return a TREE_LIST containing all of the initializations required
|
| - for T, in the order in which they should be performed. The output
|
| - list has the same format as the input. */
|
| -
|
| -static tree
|
| -sort_mem_initializers (tree t, tree mem_inits)
|
| -{
|
| - tree init;
|
| - tree base, binfo, base_binfo;
|
| - tree sorted_inits;
|
| - tree next_subobject;
|
| - VEC(tree,gc) *vbases;
|
| - int i;
|
| - int uses_unions_p;
|
| -
|
| - /* Build up a list of initializations. The TREE_PURPOSE of entry
|
| - will be the subobject (a FIELD_DECL or BINFO) to initialize. The
|
| - TREE_VALUE will be the constructor arguments, or NULL if no
|
| - explicit initialization was provided. */
|
| - sorted_inits = NULL_TREE;
|
| -
|
| - /* Process the virtual bases. */
|
| - for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
|
| - VEC_iterate (tree, vbases, i, base); i++)
|
| - sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
|
| -
|
| - /* Process the direct bases. */
|
| - for (binfo = TYPE_BINFO (t), i = 0;
|
| - BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
|
| - if (!BINFO_VIRTUAL_P (base_binfo))
|
| - sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
|
| -
|
| - /* Process the non-static data members. */
|
| - sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
|
| - /* Reverse the entire list of initializations, so that they are in
|
| - the order that they will actually be performed. */
|
| - sorted_inits = nreverse (sorted_inits);
|
| -
|
| - /* If the user presented the initializers in an order different from
|
| - that in which they will actually occur, we issue a warning. Keep
|
| - track of the next subobject which can be explicitly initialized
|
| - without issuing a warning. */
|
| - next_subobject = sorted_inits;
|
| -
|
| - /* Go through the explicit initializers, filling in TREE_PURPOSE in
|
| - the SORTED_INITS. */
|
| - for (init = mem_inits; init; init = TREE_CHAIN (init))
|
| - {
|
| - tree subobject;
|
| - tree subobject_init;
|
| -
|
| - subobject = TREE_PURPOSE (init);
|
| -
|
| - /* If the explicit initializers are in sorted order, then
|
| - SUBOBJECT will be NEXT_SUBOBJECT, or something following
|
| - it. */
|
| - for (subobject_init = next_subobject;
|
| - subobject_init;
|
| - subobject_init = TREE_CHAIN (subobject_init))
|
| - if (TREE_PURPOSE (subobject_init) == subobject)
|
| - break;
|
| -
|
| - /* Issue a warning if the explicit initializer order does not
|
| - match that which will actually occur.
|
| - ??? Are all these on the correct lines? */
|
| - if (warn_reorder && !subobject_init)
|
| - {
|
| - if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
|
| - warning (OPT_Wreorder, "%q+D will be initialized after",
|
| - TREE_PURPOSE (next_subobject));
|
| - else
|
| - warning (OPT_Wreorder, "base %qT will be initialized after",
|
| - TREE_PURPOSE (next_subobject));
|
| - if (TREE_CODE (subobject) == FIELD_DECL)
|
| - warning (OPT_Wreorder, " %q+#D", subobject);
|
| - else
|
| - warning (OPT_Wreorder, " base %qT", subobject);
|
| - warning (OPT_Wreorder, "%J when initialized here", current_function_decl);
|
| - }
|
| -
|
| - /* Look again, from the beginning of the list. */
|
| - if (!subobject_init)
|
| - {
|
| - subobject_init = sorted_inits;
|
| - while (TREE_PURPOSE (subobject_init) != subobject)
|
| - subobject_init = TREE_CHAIN (subobject_init);
|
| - }
|
| -
|
| - /* It is invalid to initialize the same subobject more than
|
| - once. */
|
| - if (TREE_VALUE (subobject_init))
|
| - {
|
| - if (TREE_CODE (subobject) == FIELD_DECL)
|
| - error ("%Jmultiple initializations given for %qD",
|
| - current_function_decl, subobject);
|
| - else
|
| - error ("%Jmultiple initializations given for base %qT",
|
| - current_function_decl, subobject);
|
| - }
|
| -
|
| - /* Record the initialization. */
|
| - TREE_VALUE (subobject_init) = TREE_VALUE (init);
|
| - next_subobject = subobject_init;
|
| - }
|
| -
|
| - /* [class.base.init]
|
| -
|
| - If a ctor-initializer specifies more than one mem-initializer for
|
| - multiple members of the same union (including members of
|
| - anonymous unions), the ctor-initializer is ill-formed. */
|
| - if (uses_unions_p)
|
| - {
|
| - tree last_field = NULL_TREE;
|
| - for (init = sorted_inits; init; init = TREE_CHAIN (init))
|
| - {
|
| - tree field;
|
| - tree field_type;
|
| - int done;
|
| -
|
| - /* Skip uninitialized members and base classes. */
|
| - if (!TREE_VALUE (init)
|
| - || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
|
| - continue;
|
| - /* See if this field is a member of a union, or a member of a
|
| - structure contained in a union, etc. */
|
| - field = TREE_PURPOSE (init);
|
| - for (field_type = DECL_CONTEXT (field);
|
| - !same_type_p (field_type, t);
|
| - field_type = TYPE_CONTEXT (field_type))
|
| - if (TREE_CODE (field_type) == UNION_TYPE)
|
| - break;
|
| - /* If this field is not a member of a union, skip it. */
|
| - if (TREE_CODE (field_type) != UNION_TYPE)
|
| - continue;
|
| -
|
| - /* It's only an error if we have two initializers for the same
|
| - union type. */
|
| - if (!last_field)
|
| - {
|
| - last_field = field;
|
| - continue;
|
| - }
|
| -
|
| - /* See if LAST_FIELD and the field initialized by INIT are
|
| - members of the same union. If so, there's a problem,
|
| - unless they're actually members of the same structure
|
| - which is itself a member of a union. For example, given:
|
| -
|
| - union { struct { int i; int j; }; };
|
| -
|
| - initializing both `i' and `j' makes sense. */
|
| - field_type = DECL_CONTEXT (field);
|
| - done = 0;
|
| - do
|
| - {
|
| - tree last_field_type;
|
| -
|
| - last_field_type = DECL_CONTEXT (last_field);
|
| - while (1)
|
| - {
|
| - if (same_type_p (last_field_type, field_type))
|
| - {
|
| - if (TREE_CODE (field_type) == UNION_TYPE)
|
| - error ("%Jinitializations for multiple members of %qT",
|
| - current_function_decl, last_field_type);
|
| - done = 1;
|
| - break;
|
| - }
|
| -
|
| - if (same_type_p (last_field_type, t))
|
| - break;
|
| -
|
| - last_field_type = TYPE_CONTEXT (last_field_type);
|
| - }
|
| -
|
| - /* If we've reached the outermost class, then we're
|
| - done. */
|
| - if (same_type_p (field_type, t))
|
| - break;
|
| -
|
| - field_type = TYPE_CONTEXT (field_type);
|
| - }
|
| - while (!done);
|
| -
|
| - last_field = field;
|
| - }
|
| - }
|
| -
|
| - return sorted_inits;
|
| -}
|
| -
|
| -/* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
|
| - is a TREE_LIST giving the explicit mem-initializer-list for the
|
| - constructor. The TREE_PURPOSE of each entry is a subobject (a
|
| - FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
|
| - is a TREE_LIST giving the arguments to the constructor or
|
| - void_type_node for an empty list of arguments. */
|
| -
|
| -void
|
| -emit_mem_initializers (tree mem_inits)
|
| -{
|
| - /* We will already have issued an error message about the fact that
|
| - the type is incomplete. */
|
| - if (!COMPLETE_TYPE_P (current_class_type))
|
| - return;
|
| -
|
| - /* Sort the mem-initializers into the order in which the
|
| - initializations should be performed. */
|
| - mem_inits = sort_mem_initializers (current_class_type, mem_inits);
|
| -
|
| - in_base_initializer = 1;
|
| -
|
| - /* Initialize base classes. */
|
| - while (mem_inits
|
| - && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
|
| - {
|
| - tree subobject = TREE_PURPOSE (mem_inits);
|
| - tree arguments = TREE_VALUE (mem_inits);
|
| -
|
| - /* If these initializations are taking place in a copy constructor,
|
| - the base class should probably be explicitly initialized if there
|
| - is a user-defined constructor in the base class (other than the
|
| - default constructor, which will be called anyway). */
|
| - if (extra_warnings && !arguments
|
| - && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
|
| - && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
|
| - warning (OPT_Wextra, "%Jbase class %q#T should be explicitly initialized in the "
|
| - "copy constructor",
|
| - current_function_decl, BINFO_TYPE (subobject));
|
| -
|
| - /* Initialize the base. */
|
| - if (BINFO_VIRTUAL_P (subobject))
|
| - construct_virtual_base (subobject, arguments);
|
| - else
|
| - {
|
| - tree base_addr;
|
| -
|
| - base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
|
| - subobject, 1);
|
| - expand_aggr_init_1 (subobject, NULL_TREE,
|
| - cp_build_indirect_ref (base_addr, NULL,
|
| - tf_warning_or_error),
|
| - arguments,
|
| - LOOKUP_NORMAL,
|
| - tf_warning_or_error);
|
| - expand_cleanup_for_base (subobject, NULL_TREE);
|
| - }
|
| -
|
| - mem_inits = TREE_CHAIN (mem_inits);
|
| - }
|
| - in_base_initializer = 0;
|
| -
|
| - /* Initialize the vptrs. */
|
| - initialize_vtbl_ptrs (current_class_ptr);
|
| -
|
| - /* Initialize the data members. */
|
| - while (mem_inits)
|
| - {
|
| - perform_member_init (TREE_PURPOSE (mem_inits),
|
| - TREE_VALUE (mem_inits));
|
| - mem_inits = TREE_CHAIN (mem_inits);
|
| - }
|
| -}
|
| -
|
| -/* Returns the address of the vtable (i.e., the value that should be
|
| - assigned to the vptr) for BINFO. */
|
| -
|
| -static tree
|
| -build_vtbl_address (tree binfo)
|
| -{
|
| - tree binfo_for = binfo;
|
| - tree vtbl;
|
| -
|
| - if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
|
| - /* If this is a virtual primary base, then the vtable we want to store
|
| - is that for the base this is being used as the primary base of. We
|
| - can't simply skip the initialization, because we may be expanding the
|
| - inits of a subobject constructor where the virtual base layout
|
| - can be different. */
|
| - while (BINFO_PRIMARY_P (binfo_for))
|
| - binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
|
| -
|
| - /* Figure out what vtable BINFO's vtable is based on, and mark it as
|
| - used. */
|
| - vtbl = get_vtbl_decl_for_binfo (binfo_for);
|
| - assemble_external (vtbl);
|
| - TREE_USED (vtbl) = 1;
|
| -
|
| - /* Now compute the address to use when initializing the vptr. */
|
| - vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
|
| - if (TREE_CODE (vtbl) == VAR_DECL)
|
| - vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
|
| -
|
| - return vtbl;
|
| -}
|
| -
|
| -/* This code sets up the virtual function tables appropriate for
|
| - the pointer DECL. It is a one-ply initialization.
|
| -
|
| - BINFO is the exact type that DECL is supposed to be. In
|
| - multiple inheritance, this might mean "C's A" if C : A, B. */
|
| -
|
| -static void
|
| -expand_virtual_init (tree binfo, tree decl)
|
| -{
|
| - tree vtbl, vtbl_ptr;
|
| - tree vtt_index;
|
| -
|
| - /* Compute the initializer for vptr. */
|
| - vtbl = build_vtbl_address (binfo);
|
| -
|
| - /* We may get this vptr from a VTT, if this is a subobject
|
| - constructor or subobject destructor. */
|
| - vtt_index = BINFO_VPTR_INDEX (binfo);
|
| - if (vtt_index)
|
| - {
|
| - tree vtbl2;
|
| - tree vtt_parm;
|
| -
|
| - /* Compute the value to use, when there's a VTT. */
|
| - vtt_parm = current_vtt_parm;
|
| - vtbl2 = build2 (POINTER_PLUS_EXPR,
|
| - TREE_TYPE (vtt_parm),
|
| - vtt_parm,
|
| - vtt_index);
|
| - vtbl2 = cp_build_indirect_ref (vtbl2, NULL, tf_warning_or_error);
|
| - vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
|
| -
|
| - /* The actual initializer is the VTT value only in the subobject
|
| - constructor. In maybe_clone_body we'll substitute NULL for
|
| - the vtt_parm in the case of the non-subobject constructor. */
|
| - vtbl = build3 (COND_EXPR,
|
| - TREE_TYPE (vtbl),
|
| - build2 (EQ_EXPR, boolean_type_node,
|
| - current_in_charge_parm, integer_zero_node),
|
| - vtbl2,
|
| - vtbl);
|
| - }
|
| -
|
| - /* Compute the location of the vtpr. */
|
| - vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, NULL,
|
| - tf_warning_or_error),
|
| - TREE_TYPE (binfo));
|
| - gcc_assert (vtbl_ptr != error_mark_node);
|
| -
|
| - /* Assign the vtable to the vptr. */
|
| - vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
|
| - finish_expr_stmt (cp_build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl,
|
| - tf_warning_or_error));
|
| -}
|
| -
|
| -/* If an exception is thrown in a constructor, those base classes already
|
| - constructed must be destroyed. This function creates the cleanup
|
| - for BINFO, which has just been constructed. If FLAG is non-NULL,
|
| - it is a DECL which is nonzero when this base needs to be
|
| - destroyed. */
|
| -
|
| -static void
|
| -expand_cleanup_for_base (tree binfo, tree flag)
|
| -{
|
| - tree expr;
|
| -
|
| - if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
|
| - return;
|
| -
|
| - /* Call the destructor. */
|
| - expr = build_special_member_call (current_class_ref,
|
| - base_dtor_identifier,
|
| - NULL_TREE,
|
| - binfo,
|
| - LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
|
| - tf_warning_or_error);
|
| - if (flag)
|
| - expr = fold_build3 (COND_EXPR, void_type_node,
|
| - c_common_truthvalue_conversion (input_location, flag),
|
| - expr, integer_zero_node);
|
| -
|
| - finish_eh_cleanup (expr);
|
| -}
|
| -
|
| -/* Construct the virtual base-class VBASE passing the ARGUMENTS to its
|
| - constructor. */
|
| -
|
| -static void
|
| -construct_virtual_base (tree vbase, tree arguments)
|
| -{
|
| - tree inner_if_stmt;
|
| - tree exp;
|
| - tree flag;
|
| -
|
| - /* If there are virtual base classes with destructors, we need to
|
| - emit cleanups to destroy them if an exception is thrown during
|
| - the construction process. These exception regions (i.e., the
|
| - period during which the cleanups must occur) begin from the time
|
| - the construction is complete to the end of the function. If we
|
| - create a conditional block in which to initialize the
|
| - base-classes, then the cleanup region for the virtual base begins
|
| - inside a block, and ends outside of that block. This situation
|
| - confuses the sjlj exception-handling code. Therefore, we do not
|
| - create a single conditional block, but one for each
|
| - initialization. (That way the cleanup regions always begin
|
| - in the outer block.) We trust the back end to figure out
|
| - that the FLAG will not change across initializations, and
|
| - avoid doing multiple tests. */
|
| - flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
|
| - inner_if_stmt = begin_if_stmt ();
|
| - finish_if_stmt_cond (flag, inner_if_stmt);
|
| -
|
| - /* Compute the location of the virtual base. If we're
|
| - constructing virtual bases, then we must be the most derived
|
| - class. Therefore, we don't have to look up the virtual base;
|
| - we already know where it is. */
|
| - exp = convert_to_base_statically (current_class_ref, vbase);
|
| -
|
| - expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
|
| - LOOKUP_COMPLAIN, tf_warning_or_error);
|
| - finish_then_clause (inner_if_stmt);
|
| - finish_if_stmt (inner_if_stmt);
|
| -
|
| - expand_cleanup_for_base (vbase, flag);
|
| -}
|
| -
|
| -/* Find the context in which this FIELD can be initialized. */
|
| -
|
| -static tree
|
| -initializing_context (tree field)
|
| -{
|
| - tree t = DECL_CONTEXT (field);
|
| -
|
| - /* Anonymous union members can be initialized in the first enclosing
|
| - non-anonymous union context. */
|
| - while (t && ANON_AGGR_TYPE_P (t))
|
| - t = TYPE_CONTEXT (t);
|
| - return t;
|
| -}
|
| -
|
| -/* Function to give error message if member initialization specification
|
| - is erroneous. FIELD is the member we decided to initialize.
|
| - TYPE is the type for which the initialization is being performed.
|
| - FIELD must be a member of TYPE.
|
| -
|
| - MEMBER_NAME is the name of the member. */
|
| -
|
| -static int
|
| -member_init_ok_or_else (tree field, tree type, tree member_name)
|
| -{
|
| - if (field == error_mark_node)
|
| - return 0;
|
| - if (!field)
|
| - {
|
| - error ("class %qT does not have any field named %qD", type,
|
| - member_name);
|
| - return 0;
|
| - }
|
| - if (TREE_CODE (field) == VAR_DECL)
|
| - {
|
| - error ("%q#D is a static data member; it can only be "
|
| - "initialized at its definition",
|
| - field);
|
| - return 0;
|
| - }
|
| - if (TREE_CODE (field) != FIELD_DECL)
|
| - {
|
| - error ("%q#D is not a non-static data member of %qT",
|
| - field, type);
|
| - return 0;
|
| - }
|
| - if (initializing_context (field) != type)
|
| - {
|
| - error ("class %qT does not have any field named %qD", type,
|
| - member_name);
|
| - return 0;
|
| - }
|
| -
|
| - return 1;
|
| -}
|
| -
|
| -/* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
|
| - is a _TYPE node or TYPE_DECL which names a base for that type.
|
| - Check the validity of NAME, and return either the base _TYPE, base
|
| - binfo, or the FIELD_DECL of the member. If NAME is invalid, return
|
| - NULL_TREE and issue a diagnostic.
|
| -
|
| - An old style unnamed direct single base construction is permitted,
|
| - where NAME is NULL. */
|
| -
|
| -tree
|
| -expand_member_init (tree name)
|
| -{
|
| - tree basetype;
|
| - tree field;
|
| -
|
| - if (!current_class_ref)
|
| - return NULL_TREE;
|
| -
|
| - if (!name)
|
| - {
|
| - /* This is an obsolete unnamed base class initializer. The
|
| - parser will already have warned about its use. */
|
| - switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
|
| - {
|
| - case 0:
|
| - error ("unnamed initializer for %qT, which has no base classes",
|
| - current_class_type);
|
| - return NULL_TREE;
|
| - case 1:
|
| - basetype = BINFO_TYPE
|
| - (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
|
| - break;
|
| - default:
|
| - error ("unnamed initializer for %qT, which uses multiple inheritance",
|
| - current_class_type);
|
| - return NULL_TREE;
|
| - }
|
| - }
|
| - else if (TYPE_P (name))
|
| - {
|
| - basetype = TYPE_MAIN_VARIANT (name);
|
| - name = TYPE_NAME (name);
|
| - }
|
| - else if (TREE_CODE (name) == TYPE_DECL)
|
| - basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
|
| - else
|
| - basetype = NULL_TREE;
|
| -
|
| - if (basetype)
|
| - {
|
| - tree class_binfo;
|
| - tree direct_binfo;
|
| - tree virtual_binfo;
|
| - int i;
|
| -
|
| - if (current_template_parms)
|
| - return basetype;
|
| -
|
| - class_binfo = TYPE_BINFO (current_class_type);
|
| - direct_binfo = NULL_TREE;
|
| - virtual_binfo = NULL_TREE;
|
| -
|
| - /* Look for a direct base. */
|
| - for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
|
| - if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
|
| - break;
|
| -
|
| - /* Look for a virtual base -- unless the direct base is itself
|
| - virtual. */
|
| - if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
|
| - virtual_binfo = binfo_for_vbase (basetype, current_class_type);
|
| -
|
| - /* [class.base.init]
|
| -
|
| - If a mem-initializer-id is ambiguous because it designates
|
| - both a direct non-virtual base class and an inherited virtual
|
| - base class, the mem-initializer is ill-formed. */
|
| - if (direct_binfo && virtual_binfo)
|
| - {
|
| - error ("%qD is both a direct base and an indirect virtual base",
|
| - basetype);
|
| - return NULL_TREE;
|
| - }
|
| -
|
| - if (!direct_binfo && !virtual_binfo)
|
| - {
|
| - if (CLASSTYPE_VBASECLASSES (current_class_type))
|
| - error ("type %qT is not a direct or virtual base of %qT",
|
| - basetype, current_class_type);
|
| - else
|
| - error ("type %qT is not a direct base of %qT",
|
| - basetype, current_class_type);
|
| - return NULL_TREE;
|
| - }
|
| -
|
| - return direct_binfo ? direct_binfo : virtual_binfo;
|
| - }
|
| - else
|
| - {
|
| - if (TREE_CODE (name) == IDENTIFIER_NODE)
|
| - field = lookup_field (current_class_type, name, 1, false);
|
| - else
|
| - field = name;
|
| -
|
| - if (member_init_ok_or_else (field, current_class_type, name))
|
| - return field;
|
| - }
|
| -
|
| - return NULL_TREE;
|
| -}
|
| -
|
| -/* This is like `expand_member_init', only it stores one aggregate
|
| - value into another.
|
| -
|
| - INIT comes in two flavors: it is either a value which
|
| - is to be stored in EXP, or it is a parameter list
|
| - to go to a constructor, which will operate on EXP.
|
| - If INIT is not a parameter list for a constructor, then set
|
| - LOOKUP_ONLYCONVERTING.
|
| - If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
|
| - the initializer, if FLAGS is 0, then it is the (init) form.
|
| - If `init' is a CONSTRUCTOR, then we emit a warning message,
|
| - explaining that such initializations are invalid.
|
| -
|
| - If INIT resolves to a CALL_EXPR which happens to return
|
| - something of the type we are looking for, then we know
|
| - that we can safely use that call to perform the
|
| - initialization.
|
| -
|
| - The virtual function table pointer cannot be set up here, because
|
| - we do not really know its type.
|
| -
|
| - This never calls operator=().
|
| -
|
| - When initializing, nothing is CONST.
|
| -
|
| - A default copy constructor may have to be used to perform the
|
| - initialization.
|
| -
|
| - A constructor or a conversion operator may have to be used to
|
| - perform the initialization, but not both, as it would be ambiguous. */
|
| -
|
| -tree
|
| -build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
|
| -{
|
| - tree stmt_expr;
|
| - tree compound_stmt;
|
| - int destroy_temps;
|
| - tree type = TREE_TYPE (exp);
|
| - int was_const = TREE_READONLY (exp);
|
| - int was_volatile = TREE_THIS_VOLATILE (exp);
|
| - int is_global;
|
| -
|
| - if (init == error_mark_node)
|
| - return error_mark_node;
|
| -
|
| - TREE_READONLY (exp) = 0;
|
| - TREE_THIS_VOLATILE (exp) = 0;
|
| -
|
| - if (init && TREE_CODE (init) != TREE_LIST)
|
| - flags |= LOOKUP_ONLYCONVERTING;
|
| -
|
| - if (TREE_CODE (type) == ARRAY_TYPE)
|
| - {
|
| - tree itype;
|
| -
|
| - /* An array may not be initialized use the parenthesized
|
| - initialization form -- unless the initializer is "()". */
|
| - if (init && TREE_CODE (init) == TREE_LIST)
|
| - {
|
| - if (complain & tf_error)
|
| - error ("bad array initializer");
|
| - return error_mark_node;
|
| - }
|
| - /* Must arrange to initialize each element of EXP
|
| - from elements of INIT. */
|
| - itype = init ? TREE_TYPE (init) : NULL_TREE;
|
| - if (cp_type_quals (type) != TYPE_UNQUALIFIED)
|
| - TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
|
| - if (itype && cp_type_quals (itype) != TYPE_UNQUALIFIED)
|
| - itype = TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
|
| - stmt_expr = build_vec_init (exp, NULL_TREE, init,
|
| - /*explicit_value_init_p=*/false,
|
| - itype && same_type_p (itype,
|
| - TREE_TYPE (exp)),
|
| - complain);
|
| - TREE_READONLY (exp) = was_const;
|
| - TREE_THIS_VOLATILE (exp) = was_volatile;
|
| - TREE_TYPE (exp) = type;
|
| - if (init)
|
| - TREE_TYPE (init) = itype;
|
| - return stmt_expr;
|
| - }
|
| -
|
| - if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
|
| - /* Just know that we've seen something for this node. */
|
| - TREE_USED (exp) = 1;
|
| -
|
| - is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
|
| - destroy_temps = stmts_are_full_exprs_p ();
|
| - current_stmt_tree ()->stmts_are_full_exprs_p = 0;
|
| - expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
|
| - init, LOOKUP_NORMAL|flags, complain);
|
| - stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
|
| - current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
|
| - TREE_READONLY (exp) = was_const;
|
| - TREE_THIS_VOLATILE (exp) = was_volatile;
|
| -
|
| - return stmt_expr;
|
| -}
|
| -
|
| -static void
|
| -expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
|
| - tsubst_flags_t complain)
|
| -{
|
| - tree type = TREE_TYPE (exp);
|
| - tree ctor_name;
|
| -
|
| - /* It fails because there may not be a constructor which takes
|
| - its own type as the first (or only parameter), but which does
|
| - take other types via a conversion. So, if the thing initializing
|
| - the expression is a unit element of type X, first try X(X&),
|
| - followed by initialization by X. If neither of these work
|
| - out, then look hard. */
|
| - tree rval;
|
| - tree parms;
|
| -
|
| - if (init && TREE_CODE (init) != TREE_LIST
|
| - && (flags & LOOKUP_ONLYCONVERTING))
|
| - {
|
| - /* Base subobjects should only get direct-initialization. */
|
| - gcc_assert (true_exp == exp);
|
| -
|
| - if (flags & DIRECT_BIND)
|
| - /* Do nothing. We hit this in two cases: Reference initialization,
|
| - where we aren't initializing a real variable, so we don't want
|
| - to run a new constructor; and catching an exception, where we
|
| - have already built up the constructor call so we could wrap it
|
| - in an exception region. */;
|
| - else if (BRACE_ENCLOSED_INITIALIZER_P (init)
|
| - && CP_AGGREGATE_TYPE_P (type))
|
| - {
|
| - /* A brace-enclosed initializer for an aggregate. */
|
| - init = digest_init (type, init);
|
| - }
|
| - else
|
| - init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
|
| -
|
| - if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
|
| - /* We need to protect the initialization of a catch parm with a
|
| - call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
|
| - around the TARGET_EXPR for the copy constructor. See
|
| - initialize_handler_parm. */
|
| - {
|
| - TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
|
| - TREE_OPERAND (init, 0));
|
| - TREE_TYPE (init) = void_type_node;
|
| - }
|
| - else
|
| - init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
|
| - TREE_SIDE_EFFECTS (init) = 1;
|
| - finish_expr_stmt (init);
|
| - return;
|
| - }
|
| -
|
| - if (init == NULL_TREE
|
| - || (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
|
| - {
|
| - parms = init;
|
| - if (parms)
|
| - init = TREE_VALUE (parms);
|
| - }
|
| - else
|
| - parms = build_tree_list (NULL_TREE, init);
|
| -
|
| - if (true_exp == exp)
|
| - ctor_name = complete_ctor_identifier;
|
| - else
|
| - ctor_name = base_ctor_identifier;
|
| -
|
| - rval = build_special_member_call (exp, ctor_name, parms, binfo, flags,
|
| - complain);
|
| - if (TREE_SIDE_EFFECTS (rval))
|
| - finish_expr_stmt (convert_to_void (rval, NULL, complain));
|
| -}
|
| -
|
| -/* This function is responsible for initializing EXP with INIT
|
| - (if any).
|
| -
|
| - BINFO is the binfo of the type for who we are performing the
|
| - initialization. For example, if W is a virtual base class of A and B,
|
| - and C : A, B.
|
| - If we are initializing B, then W must contain B's W vtable, whereas
|
| - were we initializing C, W must contain C's W vtable.
|
| -
|
| - TRUE_EXP is nonzero if it is the true expression being initialized.
|
| - In this case, it may be EXP, or may just contain EXP. The reason we
|
| - need this is because if EXP is a base element of TRUE_EXP, we
|
| - don't necessarily know by looking at EXP where its virtual
|
| - baseclass fields should really be pointing. But we do know
|
| - from TRUE_EXP. In constructors, we don't know anything about
|
| - the value being initialized.
|
| -
|
| - FLAGS is just passed to `build_new_method_call'. See that function
|
| - for its description. */
|
| -
|
| -static void
|
| -expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
|
| - tsubst_flags_t complain)
|
| -{
|
| - tree type = TREE_TYPE (exp);
|
| -
|
| - gcc_assert (init != error_mark_node && type != error_mark_node);
|
| - gcc_assert (building_stmt_tree ());
|
| -
|
| - /* Use a function returning the desired type to initialize EXP for us.
|
| - If the function is a constructor, and its first argument is
|
| - NULL_TREE, know that it was meant for us--just slide exp on
|
| - in and expand the constructor. Constructors now come
|
| - as TARGET_EXPRs. */
|
| -
|
| - if (init && TREE_CODE (exp) == VAR_DECL
|
| - && COMPOUND_LITERAL_P (init))
|
| - {
|
| - /* If store_init_value returns NULL_TREE, the INIT has been
|
| - recorded as the DECL_INITIAL for EXP. That means there's
|
| - nothing more we have to do. */
|
| - init = store_init_value (exp, init);
|
| - if (init)
|
| - finish_expr_stmt (init);
|
| - return;
|
| - }
|
| -
|
| - /* If an explicit -- but empty -- initializer list was present,
|
| - that's value-initialization. */
|
| - if (init == void_type_node)
|
| - {
|
| - /* If there's a user-provided constructor, we just call that. */
|
| - if (type_has_user_provided_constructor (type))
|
| - /* Fall through. */;
|
| - /* If there isn't, but we still need to call the constructor,
|
| - zero out the object first. */
|
| - else if (TYPE_NEEDS_CONSTRUCTING (type))
|
| - {
|
| - init = build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
|
| - init = build2 (INIT_EXPR, type, exp, init);
|
| - finish_expr_stmt (init);
|
| - /* And then call the constructor. */
|
| - }
|
| - /* If we don't need to mess with the constructor at all,
|
| - then just zero out the object and we're done. */
|
| - else
|
| - {
|
| - init = build2 (INIT_EXPR, type, exp, build_value_init_noctor (type));
|
| - finish_expr_stmt (init);
|
| - return;
|
| - }
|
| - init = NULL_TREE;
|
| - }
|
| -
|
| - /* We know that expand_default_init can handle everything we want
|
| - at this point. */
|
| - expand_default_init (binfo, true_exp, exp, init, flags, complain);
|
| -}
|
| -
|
| -/* Report an error if TYPE is not a user-defined, class type. If
|
| - OR_ELSE is nonzero, give an error message. */
|
| -
|
| -int
|
| -is_class_type (tree type, int or_else)
|
| -{
|
| - if (type == error_mark_node)
|
| - return 0;
|
| -
|
| - if (! CLASS_TYPE_P (type))
|
| - {
|
| - if (or_else)
|
| - error ("%qT is not a class type", type);
|
| - return 0;
|
| - }
|
| - return 1;
|
| -}
|
| -
|
| -tree
|
| -get_type_value (tree name)
|
| -{
|
| - if (name == error_mark_node)
|
| - return NULL_TREE;
|
| -
|
| - if (IDENTIFIER_HAS_TYPE_VALUE (name))
|
| - return IDENTIFIER_TYPE_VALUE (name);
|
| - else
|
| - return NULL_TREE;
|
| -}
|
| -
|
| -/* Build a reference to a member of an aggregate. This is not a C++
|
| - `&', but really something which can have its address taken, and
|
| - then act as a pointer to member, for example TYPE :: FIELD can have
|
| - its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
|
| - this expression is the operand of "&".
|
| -
|
| - @@ Prints out lousy diagnostics for operator <typename>
|
| - @@ fields.
|
| -
|
| - @@ This function should be rewritten and placed in search.c. */
|
| -
|
| -tree
|
| -build_offset_ref (tree type, tree member, bool address_p)
|
| -{
|
| - tree decl;
|
| - tree basebinfo = NULL_TREE;
|
| -
|
| - /* class templates can come in as TEMPLATE_DECLs here. */
|
| - if (TREE_CODE (member) == TEMPLATE_DECL)
|
| - return member;
|
| -
|
| - if (dependent_type_p (type) || type_dependent_expression_p (member))
|
| - return build_qualified_name (NULL_TREE, type, member,
|
| - /*template_p=*/false);
|
| -
|
| - gcc_assert (TYPE_P (type));
|
| - if (! is_class_type (type, 1))
|
| - return error_mark_node;
|
| -
|
| - gcc_assert (DECL_P (member) || BASELINK_P (member));
|
| - /* Callers should call mark_used before this point. */
|
| - gcc_assert (!DECL_P (member) || TREE_USED (member));
|
| -
|
| - if (!COMPLETE_TYPE_P (complete_type (type))
|
| - && !TYPE_BEING_DEFINED (type))
|
| - {
|
| - error ("incomplete type %qT does not have member %qD", type, member);
|
| - return error_mark_node;
|
| - }
|
| -
|
| - /* Entities other than non-static members need no further
|
| - processing. */
|
| - if (TREE_CODE (member) == TYPE_DECL)
|
| - return member;
|
| - if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
|
| - return convert_from_reference (member);
|
| -
|
| - if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
|
| - {
|
| - error ("invalid pointer to bit-field %qD", member);
|
| - return error_mark_node;
|
| - }
|
| -
|
| - /* Set up BASEBINFO for member lookup. */
|
| - decl = maybe_dummy_object (type, &basebinfo);
|
| -
|
| - /* A lot of this logic is now handled in lookup_member. */
|
| - if (BASELINK_P (member))
|
| - {
|
| - /* Go from the TREE_BASELINK to the member function info. */
|
| - tree t = BASELINK_FUNCTIONS (member);
|
| -
|
| - if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
|
| - {
|
| - /* Get rid of a potential OVERLOAD around it. */
|
| - t = OVL_CURRENT (t);
|
| -
|
| - /* Unique functions are handled easily. */
|
| -
|
| - /* For non-static member of base class, we need a special rule
|
| - for access checking [class.protected]:
|
| -
|
| - If the access is to form a pointer to member, the
|
| - nested-name-specifier shall name the derived class
|
| - (or any class derived from that class). */
|
| - if (address_p && DECL_P (t)
|
| - && DECL_NONSTATIC_MEMBER_P (t))
|
| - perform_or_defer_access_check (TYPE_BINFO (type), t, t);
|
| - else
|
| - perform_or_defer_access_check (basebinfo, t, t);
|
| -
|
| - if (DECL_STATIC_FUNCTION_P (t))
|
| - return t;
|
| - member = t;
|
| - }
|
| - else
|
| - TREE_TYPE (member) = unknown_type_node;
|
| - }
|
| - else if (address_p && TREE_CODE (member) == FIELD_DECL)
|
| - /* We need additional test besides the one in
|
| - check_accessibility_of_qualified_id in case it is
|
| - a pointer to non-static member. */
|
| - perform_or_defer_access_check (TYPE_BINFO (type), member, member);
|
| -
|
| - if (!address_p)
|
| - {
|
| - /* If MEMBER is non-static, then the program has fallen afoul of
|
| - [expr.prim]:
|
| -
|
| - An id-expression that denotes a nonstatic data member or
|
| - nonstatic member function of a class can only be used:
|
| -
|
| - -- as part of a class member access (_expr.ref_) in which the
|
| - object-expression refers to the member's class or a class
|
| - derived from that class, or
|
| -
|
| - -- to form a pointer to member (_expr.unary.op_), or
|
| -
|
| - -- in the body of a nonstatic member function of that class or
|
| - of a class derived from that class (_class.mfct.nonstatic_), or
|
| -
|
| - -- in a mem-initializer for a constructor for that class or for
|
| - a class derived from that class (_class.base.init_). */
|
| - if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
|
| - {
|
| - /* Build a representation of the qualified name suitable
|
| - for use as the operand to "&" -- even though the "&" is
|
| - not actually present. */
|
| - member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
|
| - /* In Microsoft mode, treat a non-static member function as if
|
| - it were a pointer-to-member. */
|
| - if (flag_ms_extensions)
|
| - {
|
| - PTRMEM_OK_P (member) = 1;
|
| - return cp_build_unary_op (ADDR_EXPR, member, 0,
|
| - tf_warning_or_error);
|
| - }
|
| - error ("invalid use of non-static member function %qD",
|
| - TREE_OPERAND (member, 1));
|
| - return error_mark_node;
|
| - }
|
| - else if (TREE_CODE (member) == FIELD_DECL)
|
| - {
|
| - error ("invalid use of non-static data member %qD", member);
|
| - return error_mark_node;
|
| - }
|
| - return member;
|
| - }
|
| -
|
| - member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
|
| - PTRMEM_OK_P (member) = 1;
|
| - return member;
|
| -}
|
| -
|
| -/* If DECL is a scalar enumeration constant or variable with a
|
| - constant initializer, return the initializer (or, its initializers,
|
| - recursively); otherwise, return DECL. If INTEGRAL_P, the
|
| - initializer is only returned if DECL is an integral
|
| - constant-expression. */
|
| -
|
| -static tree
|
| -constant_value_1 (tree decl, bool integral_p)
|
| -{
|
| - while (TREE_CODE (decl) == CONST_DECL
|
| - || (integral_p
|
| - ? DECL_INTEGRAL_CONSTANT_VAR_P (decl)
|
| - : (TREE_CODE (decl) == VAR_DECL
|
| - && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
|
| - {
|
| - tree init;
|
| - /* Static data members in template classes may have
|
| - non-dependent initializers. References to such non-static
|
| - data members are not value-dependent, so we must retrieve the
|
| - initializer here. The DECL_INITIAL will have the right type,
|
| - but will not have been folded because that would prevent us
|
| - from performing all appropriate semantic checks at
|
| - instantiation time. */
|
| - if (DECL_CLASS_SCOPE_P (decl)
|
| - && CLASSTYPE_TEMPLATE_INFO (DECL_CONTEXT (decl))
|
| - && uses_template_parms (CLASSTYPE_TI_ARGS
|
| - (DECL_CONTEXT (decl))))
|
| - {
|
| - ++processing_template_decl;
|
| - init = fold_non_dependent_expr (DECL_INITIAL (decl));
|
| - --processing_template_decl;
|
| - }
|
| - else
|
| - {
|
| - /* If DECL is a static data member in a template
|
| - specialization, we must instantiate it here. The
|
| - initializer for the static data member is not processed
|
| - until needed; we need it now. */
|
| - mark_used (decl);
|
| - init = DECL_INITIAL (decl);
|
| - }
|
| - if (init == error_mark_node)
|
| - return decl;
|
| - /* Initializers in templates are generally expanded during
|
| - instantiation, so before that for const int i(2)
|
| - INIT is a TREE_LIST with the actual initializer as
|
| - TREE_VALUE. */
|
| - if (processing_template_decl
|
| - && init
|
| - && TREE_CODE (init) == TREE_LIST
|
| - && TREE_CHAIN (init) == NULL_TREE)
|
| - init = TREE_VALUE (init);
|
| - if (!init
|
| - || !TREE_TYPE (init)
|
| - || (integral_p
|
| - ? !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (init))
|
| - : (!TREE_CONSTANT (init)
|
| - /* Do not return an aggregate constant (of which
|
| - string literals are a special case), as we do not
|
| - want to make inadvertent copies of such entities,
|
| - and we must be sure that their addresses are the
|
| - same everywhere. */
|
| - || TREE_CODE (init) == CONSTRUCTOR
|
| - || TREE_CODE (init) == STRING_CST)))
|
| - break;
|
| - decl = unshare_expr (init);
|
| - }
|
| - return decl;
|
| -}
|
| -
|
| -/* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
|
| - constant of integral or enumeration type, then return that value.
|
| - These are those variables permitted in constant expressions by
|
| - [5.19/1]. */
|
| -
|
| -tree
|
| -integral_constant_value (tree decl)
|
| -{
|
| - return constant_value_1 (decl, /*integral_p=*/true);
|
| -}
|
| -
|
| -/* A more relaxed version of integral_constant_value, used by the
|
| - common C/C++ code and by the C++ front end for optimization
|
| - purposes. */
|
| -
|
| -tree
|
| -decl_constant_value (tree decl)
|
| -{
|
| - return constant_value_1 (decl,
|
| - /*integral_p=*/processing_template_decl);
|
| -}
|
| -
|
| -/* Common subroutines of build_new and build_vec_delete. */
|
| -
|
| -/* Call the global __builtin_delete to delete ADDR. */
|
| -
|
| -static tree
|
| -build_builtin_delete_call (tree addr)
|
| -{
|
| - mark_used (global_delete_fndecl);
|
| - return build_call_n (global_delete_fndecl, 1, addr);
|
| -}
|
| -
|
| -/* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
|
| - the type of the object being allocated; otherwise, it's just TYPE.
|
| - INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
|
| - user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
|
| - the TREE_LIST of arguments to be provided as arguments to a
|
| - placement new operator. This routine performs no semantic checks;
|
| - it just creates and returns a NEW_EXPR. */
|
| -
|
| -static tree
|
| -build_raw_new_expr (tree placement, tree type, tree nelts, tree init,
|
| - int use_global_new)
|
| -{
|
| - tree new_expr;
|
| -
|
| - new_expr = build4 (NEW_EXPR, build_pointer_type (type), placement, type,
|
| - nelts, init);
|
| - NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
|
| - TREE_SIDE_EFFECTS (new_expr) = 1;
|
| -
|
| - return new_expr;
|
| -}
|
| -
|
| -/* Make sure that there are no aliasing issues with T, a placement new
|
| - expression applied to PLACEMENT, by recording the change in dynamic
|
| - type. If placement new is inlined, as it is with libstdc++, and if
|
| - the type of the placement new differs from the type of the
|
| - placement location itself, then alias analysis may think it is OK
|
| - to interchange writes to the location from before the placement new
|
| - and from after the placement new. We have to prevent type-based
|
| - alias analysis from applying. PLACEMENT may be NULL, which means
|
| - that we couldn't capture it in a temporary variable, in which case
|
| - we use a memory clobber. */
|
| -
|
| -static tree
|
| -avoid_placement_new_aliasing (tree t, tree placement)
|
| -{
|
| - tree type_change;
|
| -
|
| - if (processing_template_decl)
|
| - return t;
|
| -
|
| - /* If we are not using type based aliasing, we don't have to do
|
| - anything. */
|
| - if (!flag_strict_aliasing)
|
| - return t;
|
| -
|
| - /* If we have a pointer and a location, record the change in dynamic
|
| - type. Otherwise we need a general memory clobber. */
|
| - if (TREE_CODE (TREE_TYPE (t)) == POINTER_TYPE
|
| - && placement != NULL_TREE
|
| - && TREE_CODE (TREE_TYPE (placement)) == POINTER_TYPE)
|
| - type_change = build_stmt (CHANGE_DYNAMIC_TYPE_EXPR,
|
| - TREE_TYPE (t),
|
| - placement);
|
| - else
|
| - {
|
| - /* Build a memory clobber. */
|
| - type_change = build_stmt (ASM_EXPR,
|
| - build_string (0, ""),
|
| - NULL_TREE,
|
| - NULL_TREE,
|
| - tree_cons (NULL_TREE,
|
| - build_string (6, "memory"),
|
| - NULL_TREE));
|
| -
|
| - ASM_VOLATILE_P (type_change) = 1;
|
| - }
|
| -
|
| - return build2 (COMPOUND_EXPR, TREE_TYPE (t), type_change, t);
|
| -}
|
| -
|
| -/* Generate code for a new-expression, including calling the "operator
|
| - new" function, initializing the object, and, if an exception occurs
|
| - during construction, cleaning up. The arguments are as for
|
| - build_raw_new_expr. */
|
| -
|
| -static tree
|
| -build_new_1 (tree placement, tree type, tree nelts, tree init,
|
| - bool globally_qualified_p, tsubst_flags_t complain)
|
| -{
|
| - tree size, rval;
|
| - /* True iff this is a call to "operator new[]" instead of just
|
| - "operator new". */
|
| - bool array_p = false;
|
| - /* If ARRAY_P is true, the element type of the array. This is never
|
| - an ARRAY_TYPE; for something like "new int[3][4]", the
|
| - ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
|
| - TYPE. */
|
| - tree elt_type;
|
| - /* The type of the new-expression. (This type is always a pointer
|
| - type.) */
|
| - tree pointer_type;
|
| - tree outer_nelts = NULL_TREE;
|
| - tree alloc_call, alloc_expr;
|
| - /* The address returned by the call to "operator new". This node is
|
| - a VAR_DECL and is therefore reusable. */
|
| - tree alloc_node;
|
| - tree alloc_fn;
|
| - tree cookie_expr, init_expr;
|
| - int nothrow, check_new;
|
| - int use_java_new = 0;
|
| - /* If non-NULL, the number of extra bytes to allocate at the
|
| - beginning of the storage allocated for an array-new expression in
|
| - order to store the number of elements. */
|
| - tree cookie_size = NULL_TREE;
|
| - tree placement_expr = NULL_TREE;
|
| - /* True if the function we are calling is a placement allocation
|
| - function. */
|
| - bool placement_allocation_fn_p;
|
| - tree args = NULL_TREE;
|
| - /* True if the storage must be initialized, either by a constructor
|
| - or due to an explicit new-initializer. */
|
| - bool is_initialized;
|
| - /* The address of the thing allocated, not including any cookie. In
|
| - particular, if an array cookie is in use, DATA_ADDR is the
|
| - address of the first array element. This node is a VAR_DECL, and
|
| - is therefore reusable. */
|
| - tree data_addr;
|
| - tree init_preeval_expr = NULL_TREE;
|
| -
|
| - if (nelts)
|
| - {
|
| - outer_nelts = nelts;
|
| - array_p = true;
|
| - }
|
| - else if (TREE_CODE (type) == ARRAY_TYPE)
|
| - {
|
| - array_p = true;
|
| - nelts = array_type_nelts_top (type);
|
| - outer_nelts = nelts;
|
| - type = TREE_TYPE (type);
|
| - }
|
| -
|
| - /* If our base type is an array, then make sure we know how many elements
|
| - it has. */
|
| - for (elt_type = type;
|
| - TREE_CODE (elt_type) == ARRAY_TYPE;
|
| - elt_type = TREE_TYPE (elt_type))
|
| - nelts = cp_build_binary_op (input_location,
|
| - MULT_EXPR, nelts,
|
| - array_type_nelts_top (elt_type),
|
| - complain);
|
| -
|
| - if (TREE_CODE (elt_type) == VOID_TYPE)
|
| - {
|
| - if (complain & tf_error)
|
| - error ("invalid type %<void%> for new");
|
| - return error_mark_node;
|
| - }
|
| -
|
| - if (abstract_virtuals_error (NULL_TREE, elt_type))
|
| - return error_mark_node;
|
| -
|
| - is_initialized = (TYPE_NEEDS_CONSTRUCTING (elt_type) || init);
|
| -
|
| - if (CP_TYPE_CONST_P (elt_type) && !init
|
| - && !type_has_user_provided_default_constructor (elt_type))
|
| - {
|
| - if (complain & tf_error)
|
| - error ("uninitialized const in %<new%> of %q#T", elt_type);
|
| - return error_mark_node;
|
| - }
|
| -
|
| - size = size_in_bytes (elt_type);
|
| - if (array_p)
|
| - size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
|
| -
|
| - alloc_fn = NULL_TREE;
|
| -
|
| - /* Allocate the object. */
|
| - if (! placement && TYPE_FOR_JAVA (elt_type))
|
| - {
|
| - tree class_addr;
|
| - tree class_decl = build_java_class_ref (elt_type);
|
| - static const char alloc_name[] = "_Jv_AllocObject";
|
| -
|
| - if (class_decl == error_mark_node)
|
| - return error_mark_node;
|
| -
|
| - use_java_new = 1;
|
| - if (!get_global_value_if_present (get_identifier (alloc_name),
|
| - &alloc_fn))
|
| - {
|
| - if (complain & tf_error)
|
| - error ("call to Java constructor with %qs undefined", alloc_name);
|
| - return error_mark_node;
|
| - }
|
| - else if (really_overloaded_fn (alloc_fn))
|
| - {
|
| - if (complain & tf_error)
|
| - error ("%qD should never be overloaded", alloc_fn);
|
| - return error_mark_node;
|
| - }
|
| - alloc_fn = OVL_CURRENT (alloc_fn);
|
| - class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
|
| - alloc_call = (cp_build_function_call
|
| - (alloc_fn,
|
| - build_tree_list (NULL_TREE, class_addr),
|
| - complain));
|
| - }
|
| - else if (TYPE_FOR_JAVA (elt_type) && MAYBE_CLASS_TYPE_P (elt_type))
|
| - {
|
| - error ("Java class %q#T object allocated using placement new", elt_type);
|
| - return error_mark_node;
|
| - }
|
| - else
|
| - {
|
| - tree fnname;
|
| - tree fns;
|
| -
|
| - fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
|
| -
|
| - if (!globally_qualified_p
|
| - && CLASS_TYPE_P (elt_type)
|
| - && (array_p
|
| - ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
|
| - : TYPE_HAS_NEW_OPERATOR (elt_type)))
|
| - {
|
| - /* Use a class-specific operator new. */
|
| - /* If a cookie is required, add some extra space. */
|
| - if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
|
| - {
|
| - cookie_size = targetm.cxx.get_cookie_size (elt_type);
|
| - size = size_binop (PLUS_EXPR, size, cookie_size);
|
| - }
|
| - /* Create the argument list. */
|
| - args = tree_cons (NULL_TREE, size, placement);
|
| - /* Do name-lookup to find the appropriate operator. */
|
| - fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
|
| - if (fns == NULL_TREE)
|
| - {
|
| - if (complain & tf_error)
|
| - error ("no suitable %qD found in class %qT", fnname, elt_type);
|
| - return error_mark_node;
|
| - }
|
| - if (TREE_CODE (fns) == TREE_LIST)
|
| - {
|
| - if (complain & tf_error)
|
| - {
|
| - error ("request for member %qD is ambiguous", fnname);
|
| - print_candidates (fns);
|
| - }
|
| - return error_mark_node;
|
| - }
|
| - alloc_call = build_new_method_call (build_dummy_object (elt_type),
|
| - fns, args,
|
| - /*conversion_path=*/NULL_TREE,
|
| - LOOKUP_NORMAL,
|
| - &alloc_fn,
|
| - complain);
|
| - }
|
| - else
|
| - {
|
| - /* Use a global operator new. */
|
| - /* See if a cookie might be required. */
|
| - if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
|
| - cookie_size = targetm.cxx.get_cookie_size (elt_type);
|
| - else
|
| - cookie_size = NULL_TREE;
|
| -
|
| - alloc_call = build_operator_new_call (fnname, placement,
|
| - &size, &cookie_size,
|
| - &alloc_fn);
|
| - }
|
| - }
|
| -
|
| - if (alloc_call == error_mark_node)
|
| - return error_mark_node;
|
| -
|
| - gcc_assert (alloc_fn != NULL_TREE);
|
| -
|
| - /* If PLACEMENT is a simple pointer type and is not passed by reference,
|
| - then copy it into PLACEMENT_EXPR. */
|
| - if (!processing_template_decl
|
| - && placement != NULL_TREE
|
| - && TREE_CHAIN (placement) == NULL_TREE
|
| - && TREE_CODE (TREE_TYPE (TREE_VALUE (placement))) == POINTER_TYPE
|
| - && TREE_CODE (alloc_call) == CALL_EXPR
|
| - && call_expr_nargs (alloc_call) == 2
|
| - && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
|
| - && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))) == POINTER_TYPE)
|
| - {
|
| - tree placement_arg = CALL_EXPR_ARG (alloc_call, 1);
|
| -
|
| - if (INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg)))
|
| - || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg))))
|
| - {
|
| - placement_expr = get_target_expr (TREE_VALUE (placement));
|
| - CALL_EXPR_ARG (alloc_call, 1)
|
| - = convert (TREE_TYPE (placement_arg), placement_expr);
|
| - }
|
| - }
|
| -
|
| - /* In the simple case, we can stop now. */
|
| - pointer_type = build_pointer_type (type);
|
| - if (!cookie_size && !is_initialized)
|
| - {
|
| - rval = build_nop (pointer_type, alloc_call);
|
| - if (placement != NULL)
|
| - rval = avoid_placement_new_aliasing (rval, placement_expr);
|
| - return rval;
|
| - }
|
| -
|
| - /* Store the result of the allocation call in a variable so that we can
|
| - use it more than once. */
|
| - alloc_expr = get_target_expr (alloc_call);
|
| - alloc_node = TARGET_EXPR_SLOT (alloc_expr);
|
| -
|
| - /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
|
| - while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
|
| - alloc_call = TREE_OPERAND (alloc_call, 1);
|
| -
|
| - /* Now, check to see if this function is actually a placement
|
| - allocation function. This can happen even when PLACEMENT is NULL
|
| - because we might have something like:
|
| -
|
| - struct S { void* operator new (size_t, int i = 0); };
|
| -
|
| - A call to `new S' will get this allocation function, even though
|
| - there is no explicit placement argument. If there is more than
|
| - one argument, or there are variable arguments, then this is a
|
| - placement allocation function. */
|
| - placement_allocation_fn_p
|
| - = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
|
| - || varargs_function_p (alloc_fn));
|
| -
|
| - /* Preevaluate the placement args so that we don't reevaluate them for a
|
| - placement delete. */
|
| - if (placement_allocation_fn_p)
|
| - {
|
| - tree inits;
|
| - stabilize_call (alloc_call, &inits);
|
| - if (inits)
|
| - alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
|
| - alloc_expr);
|
| - }
|
| -
|
| - /* unless an allocation function is declared with an empty excep-
|
| - tion-specification (_except.spec_), throw(), it indicates failure to
|
| - allocate storage by throwing a bad_alloc exception (clause _except_,
|
| - _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
|
| - cation function is declared with an empty exception-specification,
|
| - throw(), it returns null to indicate failure to allocate storage and a
|
| - non-null pointer otherwise.
|
| -
|
| - So check for a null exception spec on the op new we just called. */
|
| -
|
| - nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
|
| - check_new = (flag_check_new || nothrow) && ! use_java_new;
|
| -
|
| - if (cookie_size)
|
| - {
|
| - tree cookie;
|
| - tree cookie_ptr;
|
| - tree size_ptr_type;
|
| -
|
| - /* Adjust so we're pointing to the start of the object. */
|
| - data_addr = build2 (POINTER_PLUS_EXPR, TREE_TYPE (alloc_node),
|
| - alloc_node, cookie_size);
|
| -
|
| - /* Store the number of bytes allocated so that we can know how
|
| - many elements to destroy later. We use the last sizeof
|
| - (size_t) bytes to store the number of elements. */
|
| - cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
|
| - cookie_ptr = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (alloc_node),
|
| - alloc_node, cookie_ptr);
|
| - size_ptr_type = build_pointer_type (sizetype);
|
| - cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
|
| - cookie = cp_build_indirect_ref (cookie_ptr, NULL, complain);
|
| -
|
| - cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
|
| -
|
| - if (targetm.cxx.cookie_has_size ())
|
| - {
|
| - /* Also store the element size. */
|
| - cookie_ptr = build2 (POINTER_PLUS_EXPR, size_ptr_type, cookie_ptr,
|
| - fold_build1 (NEGATE_EXPR, sizetype,
|
| - size_in_bytes (sizetype)));
|
| -
|
| - cookie = cp_build_indirect_ref (cookie_ptr, NULL, complain);
|
| - cookie = build2 (MODIFY_EXPR, sizetype, cookie,
|
| - size_in_bytes (elt_type));
|
| - cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
|
| - cookie, cookie_expr);
|
| - }
|
| - }
|
| - else
|
| - {
|
| - cookie_expr = NULL_TREE;
|
| - data_addr = alloc_node;
|
| - }
|
| -
|
| - /* Now use a pointer to the type we've actually allocated. */
|
| - data_addr = fold_convert (pointer_type, data_addr);
|
| - /* Any further uses of alloc_node will want this type, too. */
|
| - alloc_node = fold_convert (pointer_type, alloc_node);
|
| -
|
| - /* Now initialize the allocated object. Note that we preevaluate the
|
| - initialization expression, apart from the actual constructor call or
|
| - assignment--we do this because we want to delay the allocation as long
|
| - as possible in order to minimize the size of the exception region for
|
| - placement delete. */
|
| - if (is_initialized)
|
| - {
|
| - bool stable;
|
| - bool explicit_value_init_p = false;
|
| -
|
| - if (init == void_zero_node)
|
| - {
|
| - init = NULL_TREE;
|
| - explicit_value_init_p = true;
|
| - }
|
| -
|
| - if (array_p)
|
| - {
|
| - tree non_const_pointer_type = build_pointer_type
|
| - (cp_build_qualified_type (type, TYPE_QUALS (type) & ~TYPE_QUAL_CONST));
|
| -
|
| - if (init && TREE_CHAIN (init) == NULL_TREE
|
| - && BRACE_ENCLOSED_INITIALIZER_P (TREE_VALUE (init))
|
| - && CONSTRUCTOR_IS_DIRECT_INIT (TREE_VALUE (init)))
|
| - {
|
| - tree arraytype, domain;
|
| - init = TREE_VALUE (init);
|
| - if (TREE_CONSTANT (nelts))
|
| - domain = compute_array_index_type (NULL_TREE, nelts);
|
| - else
|
| - {
|
| - domain = NULL_TREE;
|
| - if (CONSTRUCTOR_NELTS (init) > 0)
|
| - warning (0, "non-constant array size in new, unable to "
|
| - "verify length of initializer-list");
|
| - }
|
| - arraytype = build_cplus_array_type (type, domain);
|
| - init = digest_init (arraytype, init);
|
| - }
|
| - else if (init)
|
| - {
|
| - if (complain & tf_error)
|
| - permerror (input_location, "ISO C++ forbids initialization in array new");
|
| - else
|
| - return error_mark_node;
|
| - }
|
| - init_expr
|
| - = build_vec_init (fold_convert (non_const_pointer_type, data_addr),
|
| - cp_build_binary_op (input_location,
|
| - MINUS_EXPR, outer_nelts,
|
| - integer_one_node,
|
| - complain),
|
| - init,
|
| - explicit_value_init_p,
|
| - /*from_array=*/0,
|
| - complain);
|
| -
|
| - /* An array initialization is stable because the initialization
|
| - of each element is a full-expression, so the temporaries don't
|
| - leak out. */
|
| - stable = true;
|
| - }
|
| - else
|
| - {
|
| - init_expr = cp_build_indirect_ref (data_addr, NULL, complain);
|
| -
|
| - if (TYPE_NEEDS_CONSTRUCTING (type) && !explicit_value_init_p)
|
| - {
|
| - init_expr = build_special_member_call (init_expr,
|
| - complete_ctor_identifier,
|
| - init, elt_type,
|
| - LOOKUP_NORMAL,
|
| - complain);
|
| - }
|
| - else if (explicit_value_init_p)
|
| - {
|
| - /* Something like `new int()'. */
|
| - init_expr = build2 (INIT_EXPR, type,
|
| - init_expr, build_value_init (type));
|
| - }
|
| - else
|
| - {
|
| - /* We are processing something like `new int (10)', which
|
| - means allocate an int, and initialize it with 10. */
|
| -
|
| - if (TREE_CODE (init) == TREE_LIST)
|
| - init = build_x_compound_expr_from_list (init,
|
| - "new initializer");
|
| - else
|
| - gcc_assert (TREE_CODE (init) != CONSTRUCTOR
|
| - || TREE_TYPE (init) != NULL_TREE);
|
| -
|
| - init_expr = cp_build_modify_expr (init_expr, INIT_EXPR, init,
|
| - complain);
|
| - }
|
| - stable = stabilize_init (init_expr, &init_preeval_expr);
|
| - }
|
| -
|
| - if (init_expr == error_mark_node)
|
| - return error_mark_node;
|
| -
|
| - /* If any part of the object initialization terminates by throwing an
|
| - exception and a suitable deallocation function can be found, the
|
| - deallocation function is called to free the memory in which the
|
| - object was being constructed, after which the exception continues
|
| - to propagate in the context of the new-expression. If no
|
| - unambiguous matching deallocation function can be found,
|
| - propagating the exception does not cause the object's memory to be
|
| - freed. */
|
| - if (flag_exceptions && ! use_java_new)
|
| - {
|
| - enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
|
| - tree cleanup;
|
| -
|
| - /* The Standard is unclear here, but the right thing to do
|
| - is to use the same method for finding deallocation
|
| - functions that we use for finding allocation functions. */
|
| - cleanup = (build_op_delete_call
|
| - (dcode,
|
| - alloc_node,
|
| - size,
|
| - globally_qualified_p,
|
| - placement_allocation_fn_p ? alloc_call : NULL_TREE,
|
| - alloc_fn));
|
| -
|
| - if (!cleanup)
|
| - /* We're done. */;
|
| - else if (stable)
|
| - /* This is much simpler if we were able to preevaluate all of
|
| - the arguments to the constructor call. */
|
| - init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
|
| - init_expr, cleanup);
|
| - else
|
| - /* Ack! First we allocate the memory. Then we set our sentry
|
| - variable to true, and expand a cleanup that deletes the
|
| - memory if sentry is true. Then we run the constructor, and
|
| - finally clear the sentry.
|
| -
|
| - We need to do this because we allocate the space first, so
|
| - if there are any temporaries with cleanups in the
|
| - constructor args and we weren't able to preevaluate them, we
|
| - need this EH region to extend until end of full-expression
|
| - to preserve nesting. */
|
| - {
|
| - tree end, sentry, begin;
|
| -
|
| - begin = get_target_expr (boolean_true_node);
|
| - CLEANUP_EH_ONLY (begin) = 1;
|
| -
|
| - sentry = TARGET_EXPR_SLOT (begin);
|
| -
|
| - TARGET_EXPR_CLEANUP (begin)
|
| - = build3 (COND_EXPR, void_type_node, sentry,
|
| - cleanup, void_zero_node);
|
| -
|
| - end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
|
| - sentry, boolean_false_node);
|
| -
|
| - init_expr
|
| - = build2 (COMPOUND_EXPR, void_type_node, begin,
|
| - build2 (COMPOUND_EXPR, void_type_node, init_expr,
|
| - end));
|
| - }
|
| -
|
| - }
|
| - }
|
| - else
|
| - init_expr = NULL_TREE;
|
| -
|
| - /* Now build up the return value in reverse order. */
|
| -
|
| - rval = data_addr;
|
| -
|
| - if (init_expr)
|
| - rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
|
| - if (cookie_expr)
|
| - rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
|
| -
|
| - if (rval == data_addr)
|
| - /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
|
| - and return the call (which doesn't need to be adjusted). */
|
| - rval = TARGET_EXPR_INITIAL (alloc_expr);
|
| - else
|
| - {
|
| - if (check_new)
|
| - {
|
| - tree ifexp = cp_build_binary_op (input_location,
|
| - NE_EXPR, alloc_node,
|
| - integer_zero_node,
|
| - complain);
|
| - rval = build_conditional_expr (ifexp, rval, alloc_node,
|
| - complain);
|
| - }
|
| -
|
| - /* Perform the allocation before anything else, so that ALLOC_NODE
|
| - has been initialized before we start using it. */
|
| - rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
|
| - }
|
| -
|
| - if (init_preeval_expr)
|
| - rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
|
| -
|
| - /* A new-expression is never an lvalue. */
|
| - gcc_assert (!lvalue_p (rval));
|
| -
|
| - if (placement != NULL)
|
| - rval = avoid_placement_new_aliasing (rval, placement_expr);
|
| -
|
| - return rval;
|
| -}
|
| -
|
| -/* Generate a representation for a C++ "new" expression. PLACEMENT is
|
| - a TREE_LIST of placement-new arguments (or NULL_TREE if none). If
|
| - NELTS is NULL, TYPE is the type of the storage to be allocated. If
|
| - NELTS is not NULL, then this is an array-new allocation; TYPE is
|
| - the type of the elements in the array and NELTS is the number of
|
| - elements in the array. INIT, if non-NULL, is the initializer for
|
| - the new object, or void_zero_node to indicate an initializer of
|
| - "()". If USE_GLOBAL_NEW is true, then the user explicitly wrote
|
| - "::new" rather than just "new". */
|
| -
|
| -tree
|
| -build_new (tree placement, tree type, tree nelts, tree init,
|
| - int use_global_new, tsubst_flags_t complain)
|
| -{
|
| - tree rval;
|
| - tree orig_placement;
|
| - tree orig_nelts;
|
| - tree orig_init;
|
| -
|
| - if (placement == error_mark_node || type == error_mark_node
|
| - || init == error_mark_node)
|
| - return error_mark_node;
|
| -
|
| - orig_placement = placement;
|
| - orig_nelts = nelts;
|
| - orig_init = init;
|
| -
|
| - if (nelts == NULL_TREE && init != void_zero_node && list_length (init) == 1)
|
| - {
|
| - tree auto_node = type_uses_auto (type);
|
| - if (auto_node && describable_type (TREE_VALUE (init)))
|
| - type = do_auto_deduction (type, TREE_VALUE (init), auto_node);
|
| - }
|
| -
|
| - if (processing_template_decl)
|
| - {
|
| - if (dependent_type_p (type)
|
| - || any_type_dependent_arguments_p (placement)
|
| - || (nelts && type_dependent_expression_p (nelts))
|
| - || (init != void_zero_node
|
| - && any_type_dependent_arguments_p (init)))
|
| - return build_raw_new_expr (placement, type, nelts, init,
|
| - use_global_new);
|
| - placement = build_non_dependent_args (placement);
|
| - if (nelts)
|
| - nelts = build_non_dependent_expr (nelts);
|
| - if (init != void_zero_node)
|
| - init = build_non_dependent_args (init);
|
| - }
|
| -
|
| - if (nelts)
|
| - {
|
| - if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
|
| - {
|
| - if (complain & tf_error)
|
| - permerror (input_location, "size in array new must have integral type");
|
| - else
|
| - return error_mark_node;
|
| - }
|
| - nelts = cp_save_expr (cp_convert (sizetype, nelts));
|
| - }
|
| -
|
| - /* ``A reference cannot be created by the new operator. A reference
|
| - is not an object (8.2.2, 8.4.3), so a pointer to it could not be
|
| - returned by new.'' ARM 5.3.3 */
|
| - if (TREE_CODE (type) == REFERENCE_TYPE)
|
| - {
|
| - if (complain & tf_error)
|
| - error ("new cannot be applied to a reference type");
|
| - else
|
| - return error_mark_node;
|
| - type = TREE_TYPE (type);
|
| - }
|
| -
|
| - if (TREE_CODE (type) == FUNCTION_TYPE)
|
| - {
|
| - if (complain & tf_error)
|
| - error ("new cannot be applied to a function type");
|
| - return error_mark_node;
|
| - }
|
| -
|
| - /* The type allocated must be complete. If the new-type-id was
|
| - "T[N]" then we are just checking that "T" is complete here, but
|
| - that is equivalent, since the value of "N" doesn't matter. */
|
| - if (!complete_type_or_else (type, NULL_TREE))
|
| - return error_mark_node;
|
| -
|
| - rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
|
| - if (rval == error_mark_node)
|
| - return error_mark_node;
|
| -
|
| - if (processing_template_decl)
|
| - return build_raw_new_expr (orig_placement, type, orig_nelts, orig_init,
|
| - use_global_new);
|
| -
|
| - /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
|
| - rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
|
| - TREE_NO_WARNING (rval) = 1;
|
| -
|
| - return rval;
|
| -}
|
| -
|
| -/* Given a Java class, return a decl for the corresponding java.lang.Class. */
|
| -
|
| -tree
|
| -build_java_class_ref (tree type)
|
| -{
|
| - tree name = NULL_TREE, class_decl;
|
| - static tree CL_suffix = NULL_TREE;
|
| - if (CL_suffix == NULL_TREE)
|
| - CL_suffix = get_identifier("class$");
|
| - if (jclass_node == NULL_TREE)
|
| - {
|
| - jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
|
| - if (jclass_node == NULL_TREE)
|
| - {
|
| - error ("call to Java constructor, while %<jclass%> undefined");
|
| - return error_mark_node;
|
| - }
|
| - jclass_node = TREE_TYPE (jclass_node);
|
| - }
|
| -
|
| - /* Mangle the class$ field. */
|
| - {
|
| - tree field;
|
| - for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
| - if (DECL_NAME (field) == CL_suffix)
|
| - {
|
| - mangle_decl (field);
|
| - name = DECL_ASSEMBLER_NAME (field);
|
| - break;
|
| - }
|
| - if (!field)
|
| - {
|
| - error ("can't find %<class$%> in %qT", type);
|
| - return error_mark_node;
|
| - }
|
| - }
|
| -
|
| - class_decl = IDENTIFIER_GLOBAL_VALUE (name);
|
| - if (class_decl == NULL_TREE)
|
| - {
|
| - class_decl = build_decl (VAR_DECL, name, TREE_TYPE (jclass_node));
|
| - TREE_STATIC (class_decl) = 1;
|
| - DECL_EXTERNAL (class_decl) = 1;
|
| - TREE_PUBLIC (class_decl) = 1;
|
| - DECL_ARTIFICIAL (class_decl) = 1;
|
| - DECL_IGNORED_P (class_decl) = 1;
|
| - pushdecl_top_level (class_decl);
|
| - make_decl_rtl (class_decl);
|
| - }
|
| - return class_decl;
|
| -}
|
| -
|
| -static tree
|
| -build_vec_delete_1 (tree base, tree maxindex, tree type,
|
| - special_function_kind auto_delete_vec, int use_global_delete)
|
| -{
|
| - tree virtual_size;
|
| - tree ptype = build_pointer_type (type = complete_type (type));
|
| - tree size_exp = size_in_bytes (type);
|
| -
|
| - /* Temporary variables used by the loop. */
|
| - tree tbase, tbase_init;
|
| -
|
| - /* This is the body of the loop that implements the deletion of a
|
| - single element, and moves temp variables to next elements. */
|
| - tree body;
|
| -
|
| - /* This is the LOOP_EXPR that governs the deletion of the elements. */
|
| - tree loop = 0;
|
| -
|
| - /* This is the thing that governs what to do after the loop has run. */
|
| - tree deallocate_expr = 0;
|
| -
|
| - /* This is the BIND_EXPR which holds the outermost iterator of the
|
| - loop. It is convenient to set this variable up and test it before
|
| - executing any other code in the loop.
|
| - This is also the containing expression returned by this function. */
|
| - tree controller = NULL_TREE;
|
| - tree tmp;
|
| -
|
| - /* We should only have 1-D arrays here. */
|
| - gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
|
| -
|
| - if (! MAYBE_CLASS_TYPE_P (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
|
| - goto no_destructor;
|
| -
|
| - /* The below is short by the cookie size. */
|
| - virtual_size = size_binop (MULT_EXPR, size_exp,
|
| - convert (sizetype, maxindex));
|
| -
|
| - tbase = create_temporary_var (ptype);
|
| - tbase_init = cp_build_modify_expr (tbase, NOP_EXPR,
|
| - fold_build2 (POINTER_PLUS_EXPR, ptype,
|
| - fold_convert (ptype, base),
|
| - virtual_size),
|
| - tf_warning_or_error);
|
| - DECL_REGISTER (tbase) = 1;
|
| - controller = build3 (BIND_EXPR, void_type_node, tbase,
|
| - NULL_TREE, NULL_TREE);
|
| - TREE_SIDE_EFFECTS (controller) = 1;
|
| -
|
| - body = build1 (EXIT_EXPR, void_type_node,
|
| - build2 (EQ_EXPR, boolean_type_node, tbase,
|
| - fold_convert (ptype, base)));
|
| - tmp = fold_build1 (NEGATE_EXPR, sizetype, size_exp);
|
| - body = build_compound_expr
|
| - (body, cp_build_modify_expr (tbase, NOP_EXPR,
|
| - build2 (POINTER_PLUS_EXPR, ptype, tbase, tmp),
|
| - tf_warning_or_error));
|
| - body = build_compound_expr
|
| - (body, build_delete (ptype, tbase, sfk_complete_destructor,
|
| - LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
|
| -
|
| - loop = build1 (LOOP_EXPR, void_type_node, body);
|
| - loop = build_compound_expr (tbase_init, loop);
|
| -
|
| - no_destructor:
|
| - /* If the delete flag is one, or anything else with the low bit set,
|
| - delete the storage. */
|
| - if (auto_delete_vec != sfk_base_destructor)
|
| - {
|
| - tree base_tbd;
|
| -
|
| - /* The below is short by the cookie size. */
|
| - virtual_size = size_binop (MULT_EXPR, size_exp,
|
| - convert (sizetype, maxindex));
|
| -
|
| - if (! TYPE_VEC_NEW_USES_COOKIE (type))
|
| - /* no header */
|
| - base_tbd = base;
|
| - else
|
| - {
|
| - tree cookie_size;
|
| -
|
| - cookie_size = targetm.cxx.get_cookie_size (type);
|
| - base_tbd
|
| - = cp_convert (ptype,
|
| - cp_build_binary_op (input_location,
|
| - MINUS_EXPR,
|
| - cp_convert (string_type_node,
|
| - base),
|
| - cookie_size,
|
| - tf_warning_or_error));
|
| - /* True size with header. */
|
| - virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
|
| - }
|
| -
|
| - if (auto_delete_vec == sfk_deleting_destructor)
|
| - deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
|
| - base_tbd, virtual_size,
|
| - use_global_delete & 1,
|
| - /*placement=*/NULL_TREE,
|
| - /*alloc_fn=*/NULL_TREE);
|
| - }
|
| -
|
| - body = loop;
|
| - if (!deallocate_expr)
|
| - ;
|
| - else if (!body)
|
| - body = deallocate_expr;
|
| - else
|
| - body = build_compound_expr (body, deallocate_expr);
|
| -
|
| - if (!body)
|
| - body = integer_zero_node;
|
| -
|
| - /* Outermost wrapper: If pointer is null, punt. */
|
| - body = fold_build3 (COND_EXPR, void_type_node,
|
| - fold_build2 (NE_EXPR, boolean_type_node, base,
|
| - convert (TREE_TYPE (base),
|
| - integer_zero_node)),
|
| - body, integer_zero_node);
|
| - body = build1 (NOP_EXPR, void_type_node, body);
|
| -
|
| - if (controller)
|
| - {
|
| - TREE_OPERAND (controller, 1) = body;
|
| - body = controller;
|
| - }
|
| -
|
| - if (TREE_CODE (base) == SAVE_EXPR)
|
| - /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
|
| - body = build2 (COMPOUND_EXPR, void_type_node, base, body);
|
| -
|
| - return convert_to_void (body, /*implicit=*/NULL, tf_warning_or_error);
|
| -}
|
| -
|
| -/* Create an unnamed variable of the indicated TYPE. */
|
| -
|
| -tree
|
| -create_temporary_var (tree type)
|
| -{
|
| - tree decl;
|
| -
|
| - decl = build_decl (VAR_DECL, NULL_TREE, type);
|
| - TREE_USED (decl) = 1;
|
| - DECL_ARTIFICIAL (decl) = 1;
|
| - DECL_IGNORED_P (decl) = 1;
|
| - DECL_SOURCE_LOCATION (decl) = input_location;
|
| - DECL_CONTEXT (decl) = current_function_decl;
|
| -
|
| - return decl;
|
| -}
|
| -
|
| -/* Create a new temporary variable of the indicated TYPE, initialized
|
| - to INIT.
|
| -
|
| - It is not entered into current_binding_level, because that breaks
|
| - things when it comes time to do final cleanups (which take place
|
| - "outside" the binding contour of the function). */
|
| -
|
| -static tree
|
| -get_temp_regvar (tree type, tree init)
|
| -{
|
| - tree decl;
|
| -
|
| - decl = create_temporary_var (type);
|
| - add_decl_expr (decl);
|
| -
|
| - finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
|
| - tf_warning_or_error));
|
| -
|
| - return decl;
|
| -}
|
| -
|
| -/* `build_vec_init' returns tree structure that performs
|
| - initialization of a vector of aggregate types.
|
| -
|
| - BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
|
| - to the first element, of POINTER_TYPE.
|
| - MAXINDEX is the maximum index of the array (one less than the
|
| - number of elements). It is only used if BASE is a pointer or
|
| - TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
|
| -
|
| - INIT is the (possibly NULL) initializer.
|
| -
|
| - If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
|
| - elements in the array are value-initialized.
|
| -
|
| - FROM_ARRAY is 0 if we should init everything with INIT
|
| - (i.e., every element initialized from INIT).
|
| - FROM_ARRAY is 1 if we should index into INIT in parallel
|
| - with initialization of DECL.
|
| - FROM_ARRAY is 2 if we should index into INIT in parallel,
|
| - but use assignment instead of initialization. */
|
| -
|
| -tree
|
| -build_vec_init (tree base, tree maxindex, tree init,
|
| - bool explicit_value_init_p,
|
| - int from_array, tsubst_flags_t complain)
|
| -{
|
| - tree rval;
|
| - tree base2 = NULL_TREE;
|
| - tree size;
|
| - tree itype = NULL_TREE;
|
| - tree iterator;
|
| - /* The type of BASE. */
|
| - tree atype = TREE_TYPE (base);
|
| - /* The type of an element in the array. */
|
| - tree type = TREE_TYPE (atype);
|
| - /* The element type reached after removing all outer array
|
| - types. */
|
| - tree inner_elt_type;
|
| - /* The type of a pointer to an element in the array. */
|
| - tree ptype;
|
| - tree stmt_expr;
|
| - tree compound_stmt;
|
| - int destroy_temps;
|
| - tree try_block = NULL_TREE;
|
| - int num_initialized_elts = 0;
|
| - bool is_global;
|
| -
|
| - if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
|
| - maxindex = array_type_nelts (atype);
|
| -
|
| - if (maxindex == NULL_TREE || maxindex == error_mark_node)
|
| - return error_mark_node;
|
| -
|
| - if (explicit_value_init_p)
|
| - gcc_assert (!init);
|
| -
|
| - inner_elt_type = strip_array_types (type);
|
| -
|
| - /* Look through the TARGET_EXPR around a compound literal. */
|
| - if (init && TREE_CODE (init) == TARGET_EXPR
|
| - && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
|
| - && from_array != 2)
|
| - init = TARGET_EXPR_INITIAL (init);
|
| -
|
| - if (init
|
| - && TREE_CODE (atype) == ARRAY_TYPE
|
| - && (from_array == 2
|
| - ? (!CLASS_TYPE_P (inner_elt_type)
|
| - || !TYPE_HAS_COMPLEX_ASSIGN_REF (inner_elt_type))
|
| - : !TYPE_NEEDS_CONSTRUCTING (type))
|
| - && ((TREE_CODE (init) == CONSTRUCTOR
|
| - /* Don't do this if the CONSTRUCTOR might contain something
|
| - that might throw and require us to clean up. */
|
| - && (VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (init))
|
| - || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
|
| - || from_array))
|
| - {
|
| - /* Do non-default initialization of POD arrays resulting from
|
| - brace-enclosed initializers. In this case, digest_init and
|
| - store_constructor will handle the semantics for us. */
|
| -
|
| - stmt_expr = build2 (INIT_EXPR, atype, base, init);
|
| - return stmt_expr;
|
| - }
|
| -
|
| - maxindex = cp_convert (ptrdiff_type_node, maxindex);
|
| - size = size_in_bytes (type);
|
| - if (TREE_CODE (atype) == ARRAY_TYPE)
|
| - {
|
| - ptype = build_pointer_type (type);
|
| - base = cp_convert (ptype, decay_conversion (base));
|
| - }
|
| - else
|
| - ptype = atype;
|
| -
|
| - /* The code we are generating looks like:
|
| - ({
|
| - T* t1 = (T*) base;
|
| - T* rval = t1;
|
| - ptrdiff_t iterator = maxindex;
|
| - try {
|
| - for (; iterator != -1; --iterator) {
|
| - ... initialize *t1 ...
|
| - ++t1;
|
| - }
|
| - } catch (...) {
|
| - ... destroy elements that were constructed ...
|
| - }
|
| - rval;
|
| - })
|
| -
|
| - We can omit the try and catch blocks if we know that the
|
| - initialization will never throw an exception, or if the array
|
| - elements do not have destructors. We can omit the loop completely if
|
| - the elements of the array do not have constructors.
|
| -
|
| - We actually wrap the entire body of the above in a STMT_EXPR, for
|
| - tidiness.
|
| -
|
| - When copying from array to another, when the array elements have
|
| - only trivial copy constructors, we should use __builtin_memcpy
|
| - rather than generating a loop. That way, we could take advantage
|
| - of whatever cleverness the back end has for dealing with copies
|
| - of blocks of memory. */
|
| -
|
| - is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
|
| - destroy_temps = stmts_are_full_exprs_p ();
|
| - current_stmt_tree ()->stmts_are_full_exprs_p = 0;
|
| - rval = get_temp_regvar (ptype, base);
|
| - base = get_temp_regvar (ptype, rval);
|
| - iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
|
| -
|
| - /* If initializing one array from another, initialize element by
|
| - element. We rely upon the below calls to do the argument
|
| - checking. Evaluate the initializer before entering the try block. */
|
| - if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
|
| - {
|
| - base2 = decay_conversion (init);
|
| - itype = TREE_TYPE (base2);
|
| - base2 = get_temp_regvar (itype, base2);
|
| - itype = TREE_TYPE (itype);
|
| - }
|
| -
|
| - /* Protect the entire array initialization so that we can destroy
|
| - the partially constructed array if an exception is thrown.
|
| - But don't do this if we're assigning. */
|
| - if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
|
| - && from_array != 2)
|
| - {
|
| - try_block = begin_try_block ();
|
| - }
|
| -
|
| - if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
|
| - {
|
| - /* Do non-default initialization of non-POD arrays resulting from
|
| - brace-enclosed initializers. */
|
| - unsigned HOST_WIDE_INT idx;
|
| - tree elt;
|
| - from_array = 0;
|
| -
|
| - FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
|
| - {
|
| - tree baseref = build1 (INDIRECT_REF, type, base);
|
| -
|
| - num_initialized_elts++;
|
| -
|
| - current_stmt_tree ()->stmts_are_full_exprs_p = 1;
|
| - if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
|
| - finish_expr_stmt (build_aggr_init (baseref, elt, 0, complain));
|
| - else
|
| - finish_expr_stmt (cp_build_modify_expr (baseref, NOP_EXPR,
|
| - elt, complain));
|
| - current_stmt_tree ()->stmts_are_full_exprs_p = 0;
|
| -
|
| - finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
|
| - complain));
|
| - finish_expr_stmt (cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
|
| - complain));
|
| - }
|
| -
|
| - /* Clear out INIT so that we don't get confused below. */
|
| - init = NULL_TREE;
|
| - }
|
| - else if (from_array)
|
| - {
|
| - if (init)
|
| - /* OK, we set base2 above. */;
|
| - else if (TYPE_LANG_SPECIFIC (type)
|
| - && TYPE_NEEDS_CONSTRUCTING (type)
|
| - && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
|
| - {
|
| - if (complain & tf_error)
|
| - error ("initializer ends prematurely");
|
| - return error_mark_node;
|
| - }
|
| - }
|
| -
|
| - /* Now, default-initialize any remaining elements. We don't need to
|
| - do that if a) the type does not need constructing, or b) we've
|
| - already initialized all the elements.
|
| -
|
| - We do need to keep going if we're copying an array. */
|
| -
|
| - if (from_array
|
| - || ((TYPE_NEEDS_CONSTRUCTING (type) || explicit_value_init_p)
|
| - && ! (host_integerp (maxindex, 0)
|
| - && (num_initialized_elts
|
| - == tree_low_cst (maxindex, 0) + 1))))
|
| - {
|
| - /* If the ITERATOR is equal to -1, then we don't have to loop;
|
| - we've already initialized all the elements. */
|
| - tree for_stmt;
|
| - tree elt_init;
|
| - tree to;
|
| -
|
| - for_stmt = begin_for_stmt ();
|
| - finish_for_init_stmt (for_stmt);
|
| - finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
|
| - build_int_cst (TREE_TYPE (iterator), -1)),
|
| - for_stmt);
|
| - finish_for_expr (cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
|
| - complain),
|
| - for_stmt);
|
| -
|
| - to = build1 (INDIRECT_REF, type, base);
|
| -
|
| - if (from_array)
|
| - {
|
| - tree from;
|
| -
|
| - if (base2)
|
| - from = build1 (INDIRECT_REF, itype, base2);
|
| - else
|
| - from = NULL_TREE;
|
| -
|
| - if (from_array == 2)
|
| - elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
|
| - complain);
|
| - else if (TYPE_NEEDS_CONSTRUCTING (type))
|
| - elt_init = build_aggr_init (to, from, 0, complain);
|
| - else if (from)
|
| - elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
|
| - complain);
|
| - else
|
| - gcc_unreachable ();
|
| - }
|
| - else if (TREE_CODE (type) == ARRAY_TYPE)
|
| - {
|
| - if (init != 0)
|
| - sorry
|
| - ("cannot initialize multi-dimensional array with initializer");
|
| - elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
|
| - 0, 0,
|
| - explicit_value_init_p,
|
| - 0, complain);
|
| - }
|
| - else if (explicit_value_init_p)
|
| - elt_init = build2 (INIT_EXPR, type, to,
|
| - build_value_init (type));
|
| - else
|
| - {
|
| - gcc_assert (TYPE_NEEDS_CONSTRUCTING (type));
|
| - elt_init = build_aggr_init (to, init, 0, complain);
|
| - }
|
| -
|
| - current_stmt_tree ()->stmts_are_full_exprs_p = 1;
|
| - finish_expr_stmt (elt_init);
|
| - current_stmt_tree ()->stmts_are_full_exprs_p = 0;
|
| -
|
| - finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
|
| - complain));
|
| - if (base2)
|
| - finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, 0,
|
| - complain));
|
| -
|
| - finish_for_stmt (for_stmt);
|
| - }
|
| -
|
| - /* Make sure to cleanup any partially constructed elements. */
|
| - if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
|
| - && from_array != 2)
|
| - {
|
| - tree e;
|
| - tree m = cp_build_binary_op (input_location,
|
| - MINUS_EXPR, maxindex, iterator,
|
| - complain);
|
| -
|
| - /* Flatten multi-dimensional array since build_vec_delete only
|
| - expects one-dimensional array. */
|
| - if (TREE_CODE (type) == ARRAY_TYPE)
|
| - m = cp_build_binary_op (input_location,
|
| - MULT_EXPR, m,
|
| - array_type_nelts_total (type),
|
| - complain);
|
| -
|
| - finish_cleanup_try_block (try_block);
|
| - e = build_vec_delete_1 (rval, m,
|
| - inner_elt_type, sfk_base_destructor,
|
| - /*use_global_delete=*/0);
|
| - finish_cleanup (e, try_block);
|
| - }
|
| -
|
| - /* The value of the array initialization is the array itself, RVAL
|
| - is a pointer to the first element. */
|
| - finish_stmt_expr_expr (rval, stmt_expr);
|
| -
|
| - stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
|
| -
|
| - /* Now make the result have the correct type. */
|
| - if (TREE_CODE (atype) == ARRAY_TYPE)
|
| - {
|
| - atype = build_pointer_type (atype);
|
| - stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
|
| - stmt_expr = cp_build_indirect_ref (stmt_expr, NULL, complain);
|
| - }
|
| -
|
| - current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
|
| - return stmt_expr;
|
| -}
|
| -
|
| -/* Call the DTOR_KIND destructor for EXP. FLAGS are as for
|
| - build_delete. */
|
| -
|
| -static tree
|
| -build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
|
| -{
|
| - tree name;
|
| - tree fn;
|
| - switch (dtor_kind)
|
| - {
|
| - case sfk_complete_destructor:
|
| - name = complete_dtor_identifier;
|
| - break;
|
| -
|
| - case sfk_base_destructor:
|
| - name = base_dtor_identifier;
|
| - break;
|
| -
|
| - case sfk_deleting_destructor:
|
| - name = deleting_dtor_identifier;
|
| - break;
|
| -
|
| - default:
|
| - gcc_unreachable ();
|
| - }
|
| - fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
|
| - return build_new_method_call (exp, fn,
|
| - /*args=*/NULL_TREE,
|
| - /*conversion_path=*/NULL_TREE,
|
| - flags,
|
| - /*fn_p=*/NULL,
|
| - tf_warning_or_error);
|
| -}
|
| -
|
| -/* Generate a call to a destructor. TYPE is the type to cast ADDR to.
|
| - ADDR is an expression which yields the store to be destroyed.
|
| - AUTO_DELETE is the name of the destructor to call, i.e., either
|
| - sfk_complete_destructor, sfk_base_destructor, or
|
| - sfk_deleting_destructor.
|
| -
|
| - FLAGS is the logical disjunction of zero or more LOOKUP_
|
| - flags. See cp-tree.h for more info. */
|
| -
|
| -tree
|
| -build_delete (tree type, tree addr, special_function_kind auto_delete,
|
| - int flags, int use_global_delete)
|
| -{
|
| - tree expr;
|
| -
|
| - if (addr == error_mark_node)
|
| - return error_mark_node;
|
| -
|
| - /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
|
| - set to `error_mark_node' before it gets properly cleaned up. */
|
| - if (type == error_mark_node)
|
| - return error_mark_node;
|
| -
|
| - type = TYPE_MAIN_VARIANT (type);
|
| -
|
| - if (TREE_CODE (type) == POINTER_TYPE)
|
| - {
|
| - bool complete_p = true;
|
| -
|
| - type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
|
| - if (TREE_CODE (type) == ARRAY_TYPE)
|
| - goto handle_array;
|
| -
|
| - /* We don't want to warn about delete of void*, only other
|
| - incomplete types. Deleting other incomplete types
|
| - invokes undefined behavior, but it is not ill-formed, so
|
| - compile to something that would even do The Right Thing
|
| - (TM) should the type have a trivial dtor and no delete
|
| - operator. */
|
| - if (!VOID_TYPE_P (type))
|
| - {
|
| - complete_type (type);
|
| - if (!COMPLETE_TYPE_P (type))
|
| - {
|
| - if (warning (0, "possible problem detected in invocation of "
|
| - "delete operator:"))
|
| - {
|
| - cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
|
| - inform (input_location, "neither the destructor nor the class-specific "
|
| - "operator delete will be called, even if they are "
|
| - "declared when the class is defined.");
|
| - }
|
| - complete_p = false;
|
| - }
|
| - }
|
| - if (VOID_TYPE_P (type) || !complete_p || !MAYBE_CLASS_TYPE_P (type))
|
| - /* Call the builtin operator delete. */
|
| - return build_builtin_delete_call (addr);
|
| - if (TREE_SIDE_EFFECTS (addr))
|
| - addr = save_expr (addr);
|
| -
|
| - /* Throw away const and volatile on target type of addr. */
|
| - addr = convert_force (build_pointer_type (type), addr, 0);
|
| - }
|
| - else if (TREE_CODE (type) == ARRAY_TYPE)
|
| - {
|
| - handle_array:
|
| -
|
| - if (TYPE_DOMAIN (type) == NULL_TREE)
|
| - {
|
| - error ("unknown array size in delete");
|
| - return error_mark_node;
|
| - }
|
| - return build_vec_delete (addr, array_type_nelts (type),
|
| - auto_delete, use_global_delete);
|
| - }
|
| - else
|
| - {
|
| - /* Don't check PROTECT here; leave that decision to the
|
| - destructor. If the destructor is accessible, call it,
|
| - else report error. */
|
| - addr = cp_build_unary_op (ADDR_EXPR, addr, 0, tf_warning_or_error);
|
| - if (TREE_SIDE_EFFECTS (addr))
|
| - addr = save_expr (addr);
|
| -
|
| - addr = convert_force (build_pointer_type (type), addr, 0);
|
| - }
|
| -
|
| - gcc_assert (MAYBE_CLASS_TYPE_P (type));
|
| -
|
| - if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
|
| - {
|
| - if (auto_delete != sfk_deleting_destructor)
|
| - return void_zero_node;
|
| -
|
| - return build_op_delete_call (DELETE_EXPR, addr,
|
| - cxx_sizeof_nowarn (type),
|
| - use_global_delete,
|
| - /*placement=*/NULL_TREE,
|
| - /*alloc_fn=*/NULL_TREE);
|
| - }
|
| - else
|
| - {
|
| - tree head = NULL_TREE;
|
| - tree do_delete = NULL_TREE;
|
| - tree ifexp;
|
| -
|
| - if (CLASSTYPE_LAZY_DESTRUCTOR (type))
|
| - lazily_declare_fn (sfk_destructor, type);
|
| -
|
| - /* For `::delete x', we must not use the deleting destructor
|
| - since then we would not be sure to get the global `operator
|
| - delete'. */
|
| - if (use_global_delete && auto_delete == sfk_deleting_destructor)
|
| - {
|
| - /* We will use ADDR multiple times so we must save it. */
|
| - addr = save_expr (addr);
|
| - head = get_target_expr (build_headof (addr));
|
| - /* Delete the object. */
|
| - do_delete = build_builtin_delete_call (head);
|
| - /* Otherwise, treat this like a complete object destructor
|
| - call. */
|
| - auto_delete = sfk_complete_destructor;
|
| - }
|
| - /* If the destructor is non-virtual, there is no deleting
|
| - variant. Instead, we must explicitly call the appropriate
|
| - `operator delete' here. */
|
| - else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
|
| - && auto_delete == sfk_deleting_destructor)
|
| - {
|
| - /* We will use ADDR multiple times so we must save it. */
|
| - addr = save_expr (addr);
|
| - /* Build the call. */
|
| - do_delete = build_op_delete_call (DELETE_EXPR,
|
| - addr,
|
| - cxx_sizeof_nowarn (type),
|
| - /*global_p=*/false,
|
| - /*placement=*/NULL_TREE,
|
| - /*alloc_fn=*/NULL_TREE);
|
| - /* Call the complete object destructor. */
|
| - auto_delete = sfk_complete_destructor;
|
| - }
|
| - else if (auto_delete == sfk_deleting_destructor
|
| - && TYPE_GETS_REG_DELETE (type))
|
| - {
|
| - /* Make sure we have access to the member op delete, even though
|
| - we'll actually be calling it from the destructor. */
|
| - build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
|
| - /*global_p=*/false,
|
| - /*placement=*/NULL_TREE,
|
| - /*alloc_fn=*/NULL_TREE);
|
| - }
|
| -
|
| - expr = build_dtor_call (cp_build_indirect_ref (addr, NULL,
|
| - tf_warning_or_error),
|
| - auto_delete, flags);
|
| - if (do_delete)
|
| - expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
|
| -
|
| - /* We need to calculate this before the dtor changes the vptr. */
|
| - if (head)
|
| - expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
|
| -
|
| - if (flags & LOOKUP_DESTRUCTOR)
|
| - /* Explicit destructor call; don't check for null pointer. */
|
| - ifexp = integer_one_node;
|
| - else
|
| - /* Handle deleting a null pointer. */
|
| - ifexp = fold (cp_build_binary_op (input_location,
|
| - NE_EXPR, addr, integer_zero_node,
|
| - tf_warning_or_error));
|
| -
|
| - if (ifexp != integer_one_node)
|
| - expr = build3 (COND_EXPR, void_type_node,
|
| - ifexp, expr, void_zero_node);
|
| -
|
| - return expr;
|
| - }
|
| -}
|
| -
|
| -/* At the beginning of a destructor, push cleanups that will call the
|
| - destructors for our base classes and members.
|
| -
|
| - Called from begin_destructor_body. */
|
| -
|
| -void
|
| -push_base_cleanups (void)
|
| -{
|
| - tree binfo, base_binfo;
|
| - int i;
|
| - tree member;
|
| - tree expr;
|
| - VEC(tree,gc) *vbases;
|
| -
|
| - /* Run destructors for all virtual baseclasses. */
|
| - if (CLASSTYPE_VBASECLASSES (current_class_type))
|
| - {
|
| - tree cond = (condition_conversion
|
| - (build2 (BIT_AND_EXPR, integer_type_node,
|
| - current_in_charge_parm,
|
| - integer_two_node)));
|
| -
|
| - /* The CLASSTYPE_VBASECLASSES vector is in initialization
|
| - order, which is also the right order for pushing cleanups. */
|
| - for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
|
| - VEC_iterate (tree, vbases, i, base_binfo); i++)
|
| - {
|
| - if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
|
| - {
|
| - expr = build_special_member_call (current_class_ref,
|
| - base_dtor_identifier,
|
| - NULL_TREE,
|
| - base_binfo,
|
| - (LOOKUP_NORMAL
|
| - | LOOKUP_NONVIRTUAL),
|
| - tf_warning_or_error);
|
| - expr = build3 (COND_EXPR, void_type_node, cond,
|
| - expr, void_zero_node);
|
| - finish_decl_cleanup (NULL_TREE, expr);
|
| - }
|
| - }
|
| - }
|
| -
|
| - /* Take care of the remaining baseclasses. */
|
| - for (binfo = TYPE_BINFO (current_class_type), i = 0;
|
| - BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
|
| - {
|
| - if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
|
| - || BINFO_VIRTUAL_P (base_binfo))
|
| - continue;
|
| -
|
| - expr = build_special_member_call (current_class_ref,
|
| - base_dtor_identifier,
|
| - NULL_TREE, base_binfo,
|
| - LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
|
| - tf_warning_or_error);
|
| - finish_decl_cleanup (NULL_TREE, expr);
|
| - }
|
| -
|
| - for (member = TYPE_FIELDS (current_class_type); member;
|
| - member = TREE_CHAIN (member))
|
| - {
|
| - if (TREE_TYPE (member) == error_mark_node
|
| - || TREE_CODE (member) != FIELD_DECL
|
| - || DECL_ARTIFICIAL (member))
|
| - continue;
|
| - if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
|
| - {
|
| - tree this_member = (build_class_member_access_expr
|
| - (current_class_ref, member,
|
| - /*access_path=*/NULL_TREE,
|
| - /*preserve_reference=*/false,
|
| - tf_warning_or_error));
|
| - tree this_type = TREE_TYPE (member);
|
| - expr = build_delete (this_type, this_member,
|
| - sfk_complete_destructor,
|
| - LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
|
| - 0);
|
| - finish_decl_cleanup (NULL_TREE, expr);
|
| - }
|
| - }
|
| -}
|
| -
|
| -/* Build a C++ vector delete expression.
|
| - MAXINDEX is the number of elements to be deleted.
|
| - ELT_SIZE is the nominal size of each element in the vector.
|
| - BASE is the expression that should yield the store to be deleted.
|
| - This function expands (or synthesizes) these calls itself.
|
| - AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
|
| -
|
| - This also calls delete for virtual baseclasses of elements of the vector.
|
| -
|
| - Update: MAXINDEX is no longer needed. The size can be extracted from the
|
| - start of the vector for pointers, and from the type for arrays. We still
|
| - use MAXINDEX for arrays because it happens to already have one of the
|
| - values we'd have to extract. (We could use MAXINDEX with pointers to
|
| - confirm the size, and trap if the numbers differ; not clear that it'd
|
| - be worth bothering.) */
|
| -
|
| -tree
|
| -build_vec_delete (tree base, tree maxindex,
|
| - special_function_kind auto_delete_vec, int use_global_delete)
|
| -{
|
| - tree type;
|
| - tree rval;
|
| - tree base_init = NULL_TREE;
|
| -
|
| - type = TREE_TYPE (base);
|
| -
|
| - if (TREE_CODE (type) == POINTER_TYPE)
|
| - {
|
| - /* Step back one from start of vector, and read dimension. */
|
| - tree cookie_addr;
|
| - tree size_ptr_type = build_pointer_type (sizetype);
|
| -
|
| - if (TREE_SIDE_EFFECTS (base))
|
| - {
|
| - base_init = get_target_expr (base);
|
| - base = TARGET_EXPR_SLOT (base_init);
|
| - }
|
| - type = strip_array_types (TREE_TYPE (type));
|
| - cookie_addr = fold_build1 (NEGATE_EXPR, sizetype, TYPE_SIZE_UNIT (sizetype));
|
| - cookie_addr = build2 (POINTER_PLUS_EXPR,
|
| - size_ptr_type,
|
| - fold_convert (size_ptr_type, base),
|
| - cookie_addr);
|
| - maxindex = cp_build_indirect_ref (cookie_addr, NULL, tf_warning_or_error);
|
| - }
|
| - else if (TREE_CODE (type) == ARRAY_TYPE)
|
| - {
|
| - /* Get the total number of things in the array, maxindex is a
|
| - bad name. */
|
| - maxindex = array_type_nelts_total (type);
|
| - type = strip_array_types (type);
|
| - base = cp_build_unary_op (ADDR_EXPR, base, 1, tf_warning_or_error);
|
| - if (TREE_SIDE_EFFECTS (base))
|
| - {
|
| - base_init = get_target_expr (base);
|
| - base = TARGET_EXPR_SLOT (base_init);
|
| - }
|
| - }
|
| - else
|
| - {
|
| - if (base != error_mark_node)
|
| - error ("type to vector delete is neither pointer or array type");
|
| - return error_mark_node;
|
| - }
|
| -
|
| - rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
|
| - use_global_delete);
|
| - if (base_init)
|
| - rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
|
| -
|
| - return rval;
|
| -}
|
|
|