| Index: gcc/mpfr/const_catalan.c
|
| diff --git a/gcc/mpfr/const_catalan.c b/gcc/mpfr/const_catalan.c
|
| deleted file mode 100644
|
| index 51f14f65c8725dde041f6af6e504eafff1350cac..0000000000000000000000000000000000000000
|
| --- a/gcc/mpfr/const_catalan.c
|
| +++ /dev/null
|
| @@ -1,153 +0,0 @@
|
| -/* mpfr_const_catalan -- compute Catalan's constant.
|
| -
|
| -Copyright 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
|
| -Contributed by the Arenaire and Cacao projects, INRIA.
|
| -
|
| -This file is part of the GNU MPFR Library.
|
| -
|
| -The GNU MPFR Library is free software; you can redistribute it and/or modify
|
| -it under the terms of the GNU Lesser General Public License as published by
|
| -the Free Software Foundation; either version 2.1 of the License, or (at your
|
| -option) any later version.
|
| -
|
| -The GNU MPFR Library is distributed in the hope that it will be useful, but
|
| -WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
| -or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
| -License for more details.
|
| -
|
| -You should have received a copy of the GNU Lesser General Public License
|
| -along with the GNU MPFR Library; see the file COPYING.LIB. If not, write to
|
| -the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
|
| -MA 02110-1301, USA. */
|
| -
|
| -#define MPFR_NEED_LONGLONG_H
|
| -#include "mpfr-impl.h"
|
| -
|
| -/* Declare the cache */
|
| -MPFR_DECL_INIT_CACHE(__gmpfr_cache_const_catalan, mpfr_const_catalan_internal);
|
| -
|
| -/* Set User Interface */
|
| -#undef mpfr_const_catalan
|
| -int
|
| -mpfr_const_catalan (mpfr_ptr x, mp_rnd_t rnd_mode) {
|
| - return mpfr_cache (x, __gmpfr_cache_const_catalan, rnd_mode);
|
| -}
|
| -
|
| -/* return T, Q such that T/Q = sum(k!^2/(2k)!/(2k+1)^2, k=n1..n2-1) */
|
| -static void
|
| -S (mpz_t T, mpz_t P, mpz_t Q, unsigned long n1, unsigned long n2)
|
| -{
|
| - if (n2 == n1 + 1)
|
| - {
|
| - if (n1 == 0)
|
| - {
|
| - mpz_set_ui (P, 1);
|
| - mpz_set_ui (Q, 1);
|
| - }
|
| - else
|
| - {
|
| - mpz_set_ui (P, 2 * n1 - 1);
|
| - mpz_mul_ui (P, P, n1);
|
| - mpz_ui_pow_ui (Q, 2 * n1 + 1, 2);
|
| - mpz_mul_2exp (Q, Q, 1);
|
| - }
|
| - mpz_set (T, P);
|
| - }
|
| - else
|
| - {
|
| - unsigned long m = (n1 + n2) / 2;
|
| - mpz_t T2, P2, Q2;
|
| - S (T, P, Q, n1, m);
|
| - mpz_init (T2);
|
| - mpz_init (P2);
|
| - mpz_init (Q2);
|
| - S (T2, P2, Q2, m, n2);
|
| - mpz_mul (T, T, Q2);
|
| - mpz_mul (T2, T2, P);
|
| - mpz_add (T, T, T2);
|
| - mpz_mul (P, P, P2);
|
| - mpz_mul (Q, Q, Q2);
|
| - mpz_clear (T2);
|
| - mpz_clear (P2);
|
| - mpz_clear (Q2);
|
| - }
|
| -}
|
| -
|
| -/* Don't need to save/restore exponent range: the cache does it.
|
| - Catalan's constant is G = sum((-1)^k/(2*k+1)^2, k=0..infinity).
|
| - We compute it using formula (31) of Victor Adamchik's page
|
| - "33 representations for Catalan's constant"
|
| - http://www-2.cs.cmu.edu/~adamchik/articles/catalan/catalan.htm
|
| -
|
| - G = Pi/8*log(2+sqrt(3)) + 3/8*sum(k!^2/(2k)!/(2k+1)^2,k=0..infinity)
|
| -*/
|
| -int
|
| -mpfr_const_catalan_internal (mpfr_ptr g, mp_rnd_t rnd_mode)
|
| -{
|
| - mpfr_t x, y, z;
|
| - mpz_t T, P, Q;
|
| - mp_prec_t pg, p;
|
| - int inex;
|
| - MPFR_ZIV_DECL (loop);
|
| - MPFR_GROUP_DECL (group);
|
| -
|
| - MPFR_LOG_FUNC (("rnd_mode=%d", rnd_mode), ("g[%#R]=%R inex=%d", g, g, inex));
|
| -
|
| - /* Here are the WC (max prec = 100.000.000)
|
| - Once we have found a chain of 11, we only look for bigger chain.
|
| - Found 3 '1' at 0
|
| - Found 5 '1' at 9
|
| - Found 6 '0' at 34
|
| - Found 9 '1' at 176
|
| - Found 11 '1' at 705
|
| - Found 12 '0' at 913
|
| - Found 14 '1' at 12762
|
| - Found 15 '1' at 152561
|
| - Found 16 '0' at 171725
|
| - Found 18 '0' at 525355
|
| - Found 20 '0' at 529245
|
| - Found 21 '1' at 6390133
|
| - Found 22 '0' at 7806417
|
| - Found 25 '1' at 11936239
|
| - Found 27 '1' at 51752950
|
| - */
|
| - pg = MPFR_PREC (g);
|
| - p = pg + 9;
|
| - p += MPFR_INT_CEIL_LOG2 (p);
|
| -
|
| - MPFR_GROUP_INIT_3 (group, p, x, y, z);
|
| - mpz_init (T);
|
| - mpz_init (P);
|
| - mpz_init (Q);
|
| -
|
| - MPFR_ZIV_INIT (loop, p);
|
| - for (;;) {
|
| - mpfr_sqrt_ui (x, 3, GMP_RNDU);
|
| - mpfr_add_ui (x, x, 2, GMP_RNDU);
|
| - mpfr_log (x, x, GMP_RNDU);
|
| - mpfr_const_pi (y, GMP_RNDU);
|
| - mpfr_mul (x, x, y, GMP_RNDN);
|
| - S (T, P, Q, 0, (p - 1) / 2);
|
| - mpz_mul_ui (T, T, 3);
|
| - mpfr_set_z (y, T, GMP_RNDU);
|
| - mpfr_set_z (z, Q, GMP_RNDD);
|
| - mpfr_div (y, y, z, GMP_RNDN);
|
| - mpfr_add (x, x, y, GMP_RNDN);
|
| - mpfr_div_2ui (x, x, 3, GMP_RNDN);
|
| -
|
| - if (MPFR_LIKELY (MPFR_CAN_ROUND (x, p - 5, pg, rnd_mode)))
|
| - break;
|
| - /* Fixme: Is it possible? */
|
| - MPFR_ZIV_NEXT (loop, p);
|
| - MPFR_GROUP_REPREC_3 (group, p, x, y, z);
|
| - }
|
| - MPFR_ZIV_FREE (loop);
|
| - inex = mpfr_set (g, x, rnd_mode);
|
| -
|
| - MPFR_GROUP_CLEAR (group);
|
| - mpz_clear (T);
|
| - mpz_clear (P);
|
| - mpz_clear (Q);
|
| -
|
| - return inex;
|
| -}
|
|
|