Index: gcc/libstdc++-v3/include/tr1/gamma.tcc |
diff --git a/gcc/libstdc++-v3/include/tr1/gamma.tcc b/gcc/libstdc++-v3/include/tr1/gamma.tcc |
deleted file mode 100644 |
index f456da32b63f08c9a508ea1c525231738d558d41..0000000000000000000000000000000000000000 |
--- a/gcc/libstdc++-v3/include/tr1/gamma.tcc |
+++ /dev/null |
@@ -1,471 +0,0 @@ |
-// Special functions -*- C++ -*- |
- |
-// Copyright (C) 2006, 2007, 2008, 2009 |
-// Free Software Foundation, Inc. |
-// |
-// This file is part of the GNU ISO C++ Library. This library is free |
-// software; you can redistribute it and/or modify it under the |
-// terms of the GNU General Public License as published by the |
-// Free Software Foundation; either version 3, or (at your option) |
-// any later version. |
-// |
-// This library is distributed in the hope that it will be useful, |
-// but WITHOUT ANY WARRANTY; without even the implied warranty of |
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
-// GNU General Public License for more details. |
-// |
-// Under Section 7 of GPL version 3, you are granted additional |
-// permissions described in the GCC Runtime Library Exception, version |
-// 3.1, as published by the Free Software Foundation. |
- |
-// You should have received a copy of the GNU General Public License and |
-// a copy of the GCC Runtime Library Exception along with this program; |
-// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
-// <http://www.gnu.org/licenses/>. |
- |
-/** @file tr1/gamma.tcc |
- * This is an internal header file, included by other library headers. |
- * You should not attempt to use it directly. |
- */ |
- |
-// |
-// ISO C++ 14882 TR1: 5.2 Special functions |
-// |
- |
-// Written by Edward Smith-Rowland based on: |
-// (1) Handbook of Mathematical Functions, |
-// ed. Milton Abramowitz and Irene A. Stegun, |
-// Dover Publications, |
-// Section 6, pp. 253-266 |
-// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl |
-// (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, |
-// W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), |
-// 2nd ed, pp. 213-216 |
-// (4) Gamma, Exploring Euler's Constant, Julian Havil, |
-// Princeton, 2003. |
- |
-#ifndef _TR1_GAMMA_TCC |
-#define _TR1_GAMMA_TCC 1 |
- |
-#include "special_function_util.h" |
- |
-namespace std |
-{ |
-namespace tr1 |
-{ |
- // Implementation-space details. |
- namespace __detail |
- { |
- |
- /** |
- * @brief This returns Bernoulli numbers from a table or by summation |
- * for larger values. |
- * |
- * Recursion is unstable. |
- * |
- * @param __n the order n of the Bernoulli number. |
- * @return The Bernoulli number of order n. |
- */ |
- template <typename _Tp> |
- _Tp __bernoulli_series(unsigned int __n) |
- { |
- |
- static const _Tp __num[28] = { |
- _Tp(1UL), -_Tp(1UL) / _Tp(2UL), |
- _Tp(1UL) / _Tp(6UL), _Tp(0UL), |
- -_Tp(1UL) / _Tp(30UL), _Tp(0UL), |
- _Tp(1UL) / _Tp(42UL), _Tp(0UL), |
- -_Tp(1UL) / _Tp(30UL), _Tp(0UL), |
- _Tp(5UL) / _Tp(66UL), _Tp(0UL), |
- -_Tp(691UL) / _Tp(2730UL), _Tp(0UL), |
- _Tp(7UL) / _Tp(6UL), _Tp(0UL), |
- -_Tp(3617UL) / _Tp(510UL), _Tp(0UL), |
- _Tp(43867UL) / _Tp(798UL), _Tp(0UL), |
- -_Tp(174611) / _Tp(330UL), _Tp(0UL), |
- _Tp(854513UL) / _Tp(138UL), _Tp(0UL), |
- -_Tp(236364091UL) / _Tp(2730UL), _Tp(0UL), |
- _Tp(8553103UL) / _Tp(6UL), _Tp(0UL) |
- }; |
- |
- if (__n == 0) |
- return _Tp(1); |
- |
- if (__n == 1) |
- return -_Tp(1) / _Tp(2); |
- |
- // Take care of the rest of the odd ones. |
- if (__n % 2 == 1) |
- return _Tp(0); |
- |
- // Take care of some small evens that are painful for the series. |
- if (__n < 28) |
- return __num[__n]; |
- |
- |
- _Tp __fact = _Tp(1); |
- if ((__n / 2) % 2 == 0) |
- __fact *= _Tp(-1); |
- for (unsigned int __k = 1; __k <= __n; ++__k) |
- __fact *= __k / (_Tp(2) * __numeric_constants<_Tp>::__pi()); |
- __fact *= _Tp(2); |
- |
- _Tp __sum = _Tp(0); |
- for (unsigned int __i = 1; __i < 1000; ++__i) |
- { |
- _Tp __term = std::pow(_Tp(__i), -_Tp(__n)); |
- if (__term < std::numeric_limits<_Tp>::epsilon()) |
- break; |
- __sum += __term; |
- } |
- |
- return __fact * __sum; |
- } |
- |
- |
- /** |
- * @brief This returns Bernoulli number \f$B_n\f$. |
- * |
- * @param __n the order n of the Bernoulli number. |
- * @return The Bernoulli number of order n. |
- */ |
- template<typename _Tp> |
- inline _Tp |
- __bernoulli(const int __n) |
- { |
- return __bernoulli_series<_Tp>(__n); |
- } |
- |
- |
- /** |
- * @brief Return \f$log(\Gamma(x))\f$ by asymptotic expansion |
- * with Bernoulli number coefficients. This is like |
- * Sterling's approximation. |
- * |
- * @param __x The argument of the log of the gamma function. |
- * @return The logarithm of the gamma function. |
- */ |
- template<typename _Tp> |
- _Tp |
- __log_gamma_bernoulli(const _Tp __x) |
- { |
- _Tp __lg = (__x - _Tp(0.5L)) * std::log(__x) - __x |
- + _Tp(0.5L) * std::log(_Tp(2) |
- * __numeric_constants<_Tp>::__pi()); |
- |
- const _Tp __xx = __x * __x; |
- _Tp __help = _Tp(1) / __x; |
- for ( unsigned int __i = 1; __i < 20; ++__i ) |
- { |
- const _Tp __2i = _Tp(2 * __i); |
- __help /= __2i * (__2i - _Tp(1)) * __xx; |
- __lg += __bernoulli<_Tp>(2 * __i) * __help; |
- } |
- |
- return __lg; |
- } |
- |
- |
- /** |
- * @brief Return \f$log(\Gamma(x))\f$ by the Lanczos method. |
- * This method dominates all others on the positive axis I think. |
- * |
- * @param __x The argument of the log of the gamma function. |
- * @return The logarithm of the gamma function. |
- */ |
- template<typename _Tp> |
- _Tp |
- __log_gamma_lanczos(const _Tp __x) |
- { |
- const _Tp __xm1 = __x - _Tp(1); |
- |
- static const _Tp __lanczos_cheb_7[9] = { |
- _Tp( 0.99999999999980993227684700473478L), |
- _Tp( 676.520368121885098567009190444019L), |
- _Tp(-1259.13921672240287047156078755283L), |
- _Tp( 771.3234287776530788486528258894L), |
- _Tp(-176.61502916214059906584551354L), |
- _Tp( 12.507343278686904814458936853L), |
- _Tp(-0.13857109526572011689554707L), |
- _Tp( 9.984369578019570859563e-6L), |
- _Tp( 1.50563273514931155834e-7L) |
- }; |
- |
- static const _Tp __LOGROOT2PI |
- = _Tp(0.9189385332046727417803297364056176L); |
- |
- _Tp __sum = __lanczos_cheb_7[0]; |
- for(unsigned int __k = 1; __k < 9; ++__k) |
- __sum += __lanczos_cheb_7[__k] / (__xm1 + __k); |
- |
- const _Tp __term1 = (__xm1 + _Tp(0.5L)) |
- * std::log((__xm1 + _Tp(7.5L)) |
- / __numeric_constants<_Tp>::__euler()); |
- const _Tp __term2 = __LOGROOT2PI + std::log(__sum); |
- const _Tp __result = __term1 + (__term2 - _Tp(7)); |
- |
- return __result; |
- } |
- |
- |
- /** |
- * @brief Return \f$ log(|\Gamma(x)|) \f$. |
- * This will return values even for \f$ x < 0 \f$. |
- * To recover the sign of \f$ \Gamma(x) \f$ for |
- * any argument use @a __log_gamma_sign. |
- * |
- * @param __x The argument of the log of the gamma function. |
- * @return The logarithm of the gamma function. |
- */ |
- template<typename _Tp> |
- _Tp |
- __log_gamma(const _Tp __x) |
- { |
- if (__x > _Tp(0.5L)) |
- return __log_gamma_lanczos(__x); |
- else |
- { |
- const _Tp __sin_fact |
- = std::abs(std::sin(__numeric_constants<_Tp>::__pi() * __x)); |
- if (__sin_fact == _Tp(0)) |
- std::__throw_domain_error(__N("Argument is nonpositive integer " |
- "in __log_gamma")); |
- return __numeric_constants<_Tp>::__lnpi() |
- - std::log(__sin_fact) |
- - __log_gamma_lanczos(_Tp(1) - __x); |
- } |
- } |
- |
- |
- /** |
- * @brief Return the sign of \f$ \Gamma(x) \f$. |
- * At nonpositive integers zero is returned. |
- * |
- * @param __x The argument of the gamma function. |
- * @return The sign of the gamma function. |
- */ |
- template<typename _Tp> |
- _Tp |
- __log_gamma_sign(const _Tp __x) |
- { |
- if (__x > _Tp(0)) |
- return _Tp(1); |
- else |
- { |
- const _Tp __sin_fact |
- = std::sin(__numeric_constants<_Tp>::__pi() * __x); |
- if (__sin_fact > _Tp(0)) |
- return (1); |
- else if (__sin_fact < _Tp(0)) |
- return -_Tp(1); |
- else |
- return _Tp(0); |
- } |
- } |
- |
- |
- /** |
- * @brief Return the logarithm of the binomial coefficient. |
- * The binomial coefficient is given by: |
- * @f[ |
- * \left( \right) = \frac{n!}{(n-k)! k!} |
- * @f] |
- * |
- * @param __n The first argument of the binomial coefficient. |
- * @param __k The second argument of the binomial coefficient. |
- * @return The binomial coefficient. |
- */ |
- template<typename _Tp> |
- _Tp |
- __log_bincoef(const unsigned int __n, const unsigned int __k) |
- { |
- // Max e exponent before overflow. |
- static const _Tp __max_bincoeff |
- = std::numeric_limits<_Tp>::max_exponent10 |
- * std::log(_Tp(10)) - _Tp(1); |
-#if _GLIBCXX_USE_C99_MATH_TR1 |
- _Tp __coeff = std::tr1::lgamma(_Tp(1 + __n)) |
- - std::tr1::lgamma(_Tp(1 + __k)) |
- - std::tr1::lgamma(_Tp(1 + __n - __k)); |
-#else |
- _Tp __coeff = __log_gamma(_Tp(1 + __n)) |
- - __log_gamma(_Tp(1 + __k)) |
- - __log_gamma(_Tp(1 + __n - __k)); |
-#endif |
- } |
- |
- |
- /** |
- * @brief Return the binomial coefficient. |
- * The binomial coefficient is given by: |
- * @f[ |
- * \left( \right) = \frac{n!}{(n-k)! k!} |
- * @f] |
- * |
- * @param __n The first argument of the binomial coefficient. |
- * @param __k The second argument of the binomial coefficient. |
- * @return The binomial coefficient. |
- */ |
- template<typename _Tp> |
- _Tp |
- __bincoef(const unsigned int __n, const unsigned int __k) |
- { |
- // Max e exponent before overflow. |
- static const _Tp __max_bincoeff |
- = std::numeric_limits<_Tp>::max_exponent10 |
- * std::log(_Tp(10)) - _Tp(1); |
- |
- const _Tp __log_coeff = __log_bincoef<_Tp>(__n, __k); |
- if (__log_coeff > __max_bincoeff) |
- return std::numeric_limits<_Tp>::quiet_NaN(); |
- else |
- return std::exp(__log_coeff); |
- } |
- |
- |
- /** |
- * @brief Return \f$ \Gamma(x) \f$. |
- * |
- * @param __x The argument of the gamma function. |
- * @return The gamma function. |
- */ |
- template<typename _Tp> |
- inline _Tp |
- __gamma(const _Tp __x) |
- { |
- return std::exp(__log_gamma(__x)); |
- } |
- |
- |
- /** |
- * @brief Return the digamma function by series expansion. |
- * The digamma or @f$ \psi(x) @f$ function is defined by |
- * @f[ |
- * \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)} |
- * @f] |
- * |
- * The series is given by: |
- * @f[ |
- * \psi(x) = -\gamma_E - \frac{1}{x} |
- * \sum_{k=1}^{\infty} \frac{x}{k(x + k)} |
- * @f] |
- */ |
- template<typename _Tp> |
- _Tp |
- __psi_series(const _Tp __x) |
- { |
- _Tp __sum = -__numeric_constants<_Tp>::__gamma_e() - _Tp(1) / __x; |
- const unsigned int __max_iter = 100000; |
- for (unsigned int __k = 1; __k < __max_iter; ++__k) |
- { |
- const _Tp __term = __x / (__k * (__k + __x)); |
- __sum += __term; |
- if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon()) |
- break; |
- } |
- return __sum; |
- } |
- |
- |
- /** |
- * @brief Return the digamma function for large argument. |
- * The digamma or @f$ \psi(x) @f$ function is defined by |
- * @f[ |
- * \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)} |
- * @f] |
- * |
- * The asymptotic series is given by: |
- * @f[ |
- * \psi(x) = \ln(x) - \frac{1}{2x} |
- * - \sum_{n=1}^{\infty} \frac{B_{2n}}{2 n x^{2n}} |
- * @f] |
- */ |
- template<typename _Tp> |
- _Tp |
- __psi_asymp(const _Tp __x) |
- { |
- _Tp __sum = std::log(__x) - _Tp(0.5L) / __x; |
- const _Tp __xx = __x * __x; |
- _Tp __xp = __xx; |
- const unsigned int __max_iter = 100; |
- for (unsigned int __k = 1; __k < __max_iter; ++__k) |
- { |
- const _Tp __term = __bernoulli<_Tp>(2 * __k) / (2 * __k * __xp); |
- __sum -= __term; |
- if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon()) |
- break; |
- __xp *= __xx; |
- } |
- return __sum; |
- } |
- |
- |
- /** |
- * @brief Return the digamma function. |
- * The digamma or @f$ \psi(x) @f$ function is defined by |
- * @f[ |
- * \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)} |
- * @f] |
- * For negative argument the reflection formula is used: |
- * @f[ |
- * \psi(x) = \psi(1-x) - \pi \cot(\pi x) |
- * @f] |
- */ |
- template<typename _Tp> |
- _Tp |
- __psi(const _Tp __x) |
- { |
- const int __n = static_cast<int>(__x + 0.5L); |
- const _Tp __eps = _Tp(4) * std::numeric_limits<_Tp>::epsilon(); |
- if (__n <= 0 && std::abs(__x - _Tp(__n)) < __eps) |
- return std::numeric_limits<_Tp>::quiet_NaN(); |
- else if (__x < _Tp(0)) |
- { |
- const _Tp __pi = __numeric_constants<_Tp>::__pi(); |
- return __psi(_Tp(1) - __x) |
- - __pi * std::cos(__pi * __x) / std::sin(__pi * __x); |
- } |
- else if (__x > _Tp(100)) |
- return __psi_asymp(__x); |
- else |
- return __psi_series(__x); |
- } |
- |
- |
- /** |
- * @brief Return the polygamma function @f$ \psi^{(n)}(x) @f$. |
- * |
- * The polygamma function is related to the Hurwitz zeta function: |
- * @f[ |
- * \psi^{(n)}(x) = (-1)^{n+1} m! \zeta(m+1,x) |
- * @f] |
- */ |
- template<typename _Tp> |
- _Tp |
- __psi(const unsigned int __n, const _Tp __x) |
- { |
- if (__x <= _Tp(0)) |
- std::__throw_domain_error(__N("Argument out of range " |
- "in __psi")); |
- else if (__n == 0) |
- return __psi(__x); |
- else |
- { |
- const _Tp __hzeta = __hurwitz_zeta(_Tp(__n + 1), __x); |
-#if _GLIBCXX_USE_C99_MATH_TR1 |
- const _Tp __ln_nfact = std::tr1::lgamma(_Tp(__n + 1)); |
-#else |
- const _Tp __ln_nfact = __log_gamma(_Tp(__n + 1)); |
-#endif |
- _Tp __result = std::exp(__ln_nfact) * __hzeta; |
- if (__n % 2 == 1) |
- __result = -__result; |
- return __result; |
- } |
- } |
- |
- } // namespace std::tr1::__detail |
-} |
-} |
- |
-#endif // _TR1_GAMMA_TCC |
- |