| Index: gcc/libgfortran/generated/maxloc0_4_r4.c
|
| diff --git a/gcc/libgfortran/generated/maxloc0_4_r4.c b/gcc/libgfortran/generated/maxloc0_4_r4.c
|
| index fe4b14080530da222b0cfd98602e24d273381ada..5483fda44a2e7569aed9f0c90b5e2b90b94a0803 100644
|
| --- a/gcc/libgfortran/generated/maxloc0_4_r4.c
|
| +++ b/gcc/libgfortran/generated/maxloc0_4_r4.c
|
| @@ -55,9 +55,7 @@ maxloc0_4_r4 (gfc_array_i4 * const restrict retarray,
|
|
|
| if (retarray->data == NULL)
|
| {
|
| - retarray->dim[0].lbound = 0;
|
| - retarray->dim[0].ubound = rank-1;
|
| - retarray->dim[0].stride = 1;
|
| + GFC_DIMENSION_SET(retarray->dim[0], 0, rank-1, 1);
|
| retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
| retarray->offset = 0;
|
| retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
|
| @@ -65,29 +63,16 @@ maxloc0_4_r4 (gfc_array_i4 * const restrict retarray,
|
| else
|
| {
|
| if (unlikely (compile_options.bounds_check))
|
| - {
|
| - int ret_rank;
|
| - index_type ret_extent;
|
| -
|
| - ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
| - if (ret_rank != 1)
|
| - runtime_error ("rank of return array in MAXLOC intrinsic"
|
| - " should be 1, is %ld", (long int) ret_rank);
|
| -
|
| - ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
| - if (ret_extent != rank)
|
| - runtime_error ("Incorrect extent in return value of"
|
| - " MAXLOC intrnisic: is %ld, should be %ld",
|
| - (long int) ret_extent, (long int) rank);
|
| - }
|
| + bounds_iforeach_return ((array_t *) retarray, (array_t *) array,
|
| + "MAXLOC");
|
| }
|
|
|
| - dstride = retarray->dim[0].stride;
|
| + dstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
|
| dest = retarray->data;
|
| for (n = 0; n < rank; n++)
|
| {
|
| - sstride[n] = array->dim[n].stride;
|
| - extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
| + sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
|
| + extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
| count[n] = 0;
|
| if (extent[n] <= 0)
|
| {
|
| @@ -102,51 +87,83 @@ maxloc0_4_r4 (gfc_array_i4 * const restrict retarray,
|
|
|
| /* Initialize the return value. */
|
| for (n = 0; n < rank; n++)
|
| - dest[n * dstride] = 0;
|
| + dest[n * dstride] = 1;
|
| {
|
|
|
| - GFC_REAL_4 maxval;
|
| -
|
| - maxval = -GFC_REAL_4_HUGE;
|
| + GFC_REAL_4 maxval;
|
| +#if defined(GFC_REAL_4_QUIET_NAN)
|
| + int fast = 0;
|
| +#endif
|
|
|
| +#if defined(GFC_REAL_4_INFINITY)
|
| + maxval = -GFC_REAL_4_INFINITY;
|
| +#else
|
| + maxval = -GFC_REAL_4_HUGE;
|
| +#endif
|
| while (base)
|
| {
|
| - {
|
| - /* Implementation start. */
|
| + do
|
| + {
|
| + /* Implementation start. */
|
|
|
| - if (*base > maxval || !dest[0])
|
| - {
|
| - maxval = *base;
|
| - for (n = 0; n < rank; n++)
|
| - dest[n * dstride] = count[n] + 1;
|
| - }
|
| - /* Implementation end. */
|
| - }
|
| - /* Advance to the next element. */
|
| - count[0]++;
|
| - base += sstride[0];
|
| +#if defined(GFC_REAL_4_QUIET_NAN)
|
| + }
|
| + while (0);
|
| + if (unlikely (!fast))
|
| + {
|
| + do
|
| + {
|
| + if (*base >= maxval)
|
| + {
|
| + fast = 1;
|
| + maxval = *base;
|
| + for (n = 0; n < rank; n++)
|
| + dest[n * dstride] = count[n] + 1;
|
| + break;
|
| + }
|
| + base += sstride[0];
|
| + }
|
| + while (++count[0] != extent[0]);
|
| + if (likely (fast))
|
| + continue;
|
| + }
|
| + else do
|
| + {
|
| +#endif
|
| + if (*base > maxval)
|
| + {
|
| + maxval = *base;
|
| + for (n = 0; n < rank; n++)
|
| + dest[n * dstride] = count[n] + 1;
|
| + }
|
| + /* Implementation end. */
|
| + /* Advance to the next element. */
|
| + base += sstride[0];
|
| + }
|
| + while (++count[0] != extent[0]);
|
| n = 0;
|
| - while (count[n] == extent[n])
|
| - {
|
| - /* When we get to the end of a dimension, reset it and increment
|
| - the next dimension. */
|
| - count[n] = 0;
|
| - /* We could precalculate these products, but this is a less
|
| - frequently used path so probably not worth it. */
|
| - base -= sstride[n] * extent[n];
|
| - n++;
|
| - if (n == rank)
|
| - {
|
| - /* Break out of the loop. */
|
| - base = NULL;
|
| - break;
|
| - }
|
| - else
|
| - {
|
| - count[n]++;
|
| - base += sstride[n];
|
| - }
|
| - }
|
| + do
|
| + {
|
| + /* When we get to the end of a dimension, reset it and increment
|
| + the next dimension. */
|
| + count[n] = 0;
|
| + /* We could precalculate these products, but this is a less
|
| + frequently used path so probably not worth it. */
|
| + base -= sstride[n] * extent[n];
|
| + n++;
|
| + if (n == rank)
|
| + {
|
| + /* Break out of the loop. */
|
| + base = NULL;
|
| + break;
|
| + }
|
| + else
|
| + {
|
| + count[n]++;
|
| + base += sstride[n];
|
| + }
|
| + }
|
| + while (count[n] == extent[n]);
|
| }
|
| }
|
| }
|
| @@ -179,9 +196,7 @@ mmaxloc0_4_r4 (gfc_array_i4 * const restrict retarray,
|
|
|
| if (retarray->data == NULL)
|
| {
|
| - retarray->dim[0].lbound = 0;
|
| - retarray->dim[0].ubound = rank-1;
|
| - retarray->dim[0].stride = 1;
|
| + GFC_DIMENSION_SET(retarray->dim[0], 0, rank - 1, 1);
|
| retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
| retarray->offset = 0;
|
| retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
|
| @@ -190,38 +205,11 @@ mmaxloc0_4_r4 (gfc_array_i4 * const restrict retarray,
|
| {
|
| if (unlikely (compile_options.bounds_check))
|
| {
|
| - int ret_rank, mask_rank;
|
| - index_type ret_extent;
|
| - int n;
|
| - index_type array_extent, mask_extent;
|
| -
|
| - ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
| - if (ret_rank != 1)
|
| - runtime_error ("rank of return array in MAXLOC intrinsic"
|
| - " should be 1, is %ld", (long int) ret_rank);
|
| -
|
| - ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
| - if (ret_extent != rank)
|
| - runtime_error ("Incorrect extent in return value of"
|
| - " MAXLOC intrnisic: is %ld, should be %ld",
|
| - (long int) ret_extent, (long int) rank);
|
| -
|
| - mask_rank = GFC_DESCRIPTOR_RANK (mask);
|
| - if (rank != mask_rank)
|
| - runtime_error ("rank of MASK argument in MAXLOC intrnisic"
|
| - "should be %ld, is %ld", (long int) rank,
|
| - (long int) mask_rank);
|
| -
|
| - for (n=0; n<rank; n++)
|
| - {
|
| - array_extent = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
| - mask_extent = mask->dim[n].ubound + 1 - mask->dim[n].lbound;
|
| - if (array_extent != mask_extent)
|
| - runtime_error ("Incorrect extent in MASK argument of"
|
| - " MAXLOC intrinsic in dimension %ld:"
|
| - " is %ld, should be %ld", (long int) n + 1,
|
| - (long int) mask_extent, (long int) array_extent);
|
| - }
|
| +
|
| + bounds_iforeach_return ((array_t *) retarray, (array_t *) array,
|
| + "MAXLOC");
|
| + bounds_equal_extents ((array_t *) mask, (array_t *) array,
|
| + "MASK argument", "MAXLOC");
|
| }
|
| }
|
|
|
| @@ -238,13 +226,13 @@ mmaxloc0_4_r4 (gfc_array_i4 * const restrict retarray,
|
| else
|
| runtime_error ("Funny sized logical array");
|
|
|
| - dstride = retarray->dim[0].stride;
|
| + dstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
|
| dest = retarray->data;
|
| for (n = 0; n < rank; n++)
|
| {
|
| - sstride[n] = array->dim[n].stride;
|
| - mstride[n] = mask->dim[n].stride * mask_kind;
|
| - extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
| + sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
|
| + mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
|
| + extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
| count[n] = 0;
|
| if (extent[n] <= 0)
|
| {
|
| @@ -263,50 +251,87 @@ mmaxloc0_4_r4 (gfc_array_i4 * const restrict retarray,
|
| {
|
|
|
| GFC_REAL_4 maxval;
|
| + int fast = 0;
|
|
|
| - maxval = -GFC_REAL_4_HUGE;
|
| -
|
| +#if defined(GFC_REAL_4_INFINITY)
|
| + maxval = -GFC_REAL_4_INFINITY;
|
| +#else
|
| + maxval = -GFC_REAL_4_HUGE;
|
| +#endif
|
| while (base)
|
| {
|
| - {
|
| - /* Implementation start. */
|
| + do
|
| + {
|
| + /* Implementation start. */
|
|
|
| - if (*mbase && (*base > maxval || !dest[0]))
|
| - {
|
| - maxval = *base;
|
| - for (n = 0; n < rank; n++)
|
| - dest[n * dstride] = count[n] + 1;
|
| - }
|
| - /* Implementation end. */
|
| - }
|
| - /* Advance to the next element. */
|
| - count[0]++;
|
| - base += sstride[0];
|
| - mbase += mstride[0];
|
| + }
|
| + while (0);
|
| + if (unlikely (!fast))
|
| + {
|
| + do
|
| + {
|
| + if (*mbase)
|
| + {
|
| +#if defined(GFC_REAL_4_QUIET_NAN)
|
| + if (unlikely (dest[0] == 0))
|
| + for (n = 0; n < rank; n++)
|
| + dest[n * dstride] = count[n] + 1;
|
| + if (*base >= maxval)
|
| +#endif
|
| + {
|
| + fast = 1;
|
| + maxval = *base;
|
| + for (n = 0; n < rank; n++)
|
| + dest[n * dstride] = count[n] + 1;
|
| + break;
|
| + }
|
| + }
|
| + base += sstride[0];
|
| + mbase += mstride[0];
|
| + }
|
| + while (++count[0] != extent[0]);
|
| + if (likely (fast))
|
| + continue;
|
| + }
|
| + else do
|
| + {
|
| + if (*mbase && *base > maxval)
|
| + {
|
| + maxval = *base;
|
| + for (n = 0; n < rank; n++)
|
| + dest[n * dstride] = count[n] + 1;
|
| + }
|
| + /* Implementation end. */
|
| + /* Advance to the next element. */
|
| + base += sstride[0];
|
| + mbase += mstride[0];
|
| + }
|
| + while (++count[0] != extent[0]);
|
| n = 0;
|
| - while (count[n] == extent[n])
|
| - {
|
| - /* When we get to the end of a dimension, reset it and increment
|
| - the next dimension. */
|
| - count[n] = 0;
|
| - /* We could precalculate these products, but this is a less
|
| - frequently used path so probably not worth it. */
|
| - base -= sstride[n] * extent[n];
|
| - mbase -= mstride[n] * extent[n];
|
| - n++;
|
| - if (n == rank)
|
| - {
|
| - /* Break out of the loop. */
|
| - base = NULL;
|
| - break;
|
| - }
|
| - else
|
| - {
|
| - count[n]++;
|
| - base += sstride[n];
|
| - mbase += mstride[n];
|
| - }
|
| - }
|
| + do
|
| + {
|
| + /* When we get to the end of a dimension, reset it and increment
|
| + the next dimension. */
|
| + count[n] = 0;
|
| + /* We could precalculate these products, but this is a less
|
| + frequently used path so probably not worth it. */
|
| + base -= sstride[n] * extent[n];
|
| + mbase -= mstride[n] * extent[n];
|
| + n++;
|
| + if (n == rank)
|
| + {
|
| + /* Break out of the loop. */
|
| + base = NULL;
|
| + break;
|
| + }
|
| + else
|
| + {
|
| + count[n]++;
|
| + base += sstride[n];
|
| + mbase += mstride[n];
|
| + }
|
| + }
|
| + while (count[n] == extent[n]);
|
| }
|
| }
|
| }
|
| @@ -339,32 +364,18 @@ smaxloc0_4_r4 (gfc_array_i4 * const restrict retarray,
|
|
|
| if (retarray->data == NULL)
|
| {
|
| - retarray->dim[0].lbound = 0;
|
| - retarray->dim[0].ubound = rank-1;
|
| - retarray->dim[0].stride = 1;
|
| + GFC_DIMENSION_SET(retarray->dim[0], 0, rank-1, 1);
|
| retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
| retarray->offset = 0;
|
| retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
|
| }
|
| - else
|
| + else if (unlikely (compile_options.bounds_check))
|
| {
|
| - if (unlikely (compile_options.bounds_check))
|
| - {
|
| - int ret_rank;
|
| - index_type ret_extent;
|
| -
|
| - ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
| - if (ret_rank != 1)
|
| - runtime_error ("rank of return array in MAXLOC intrinsic"
|
| - " should be 1, is %ld", (long int) ret_rank);
|
| -
|
| - ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
| - if (ret_extent != rank)
|
| - runtime_error ("dimension of return array incorrect");
|
| - }
|
| + bounds_iforeach_return ((array_t *) retarray, (array_t *) array,
|
| + "MAXLOC");
|
| }
|
|
|
| - dstride = retarray->dim[0].stride;
|
| + dstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
|
| dest = retarray->data;
|
| for (n = 0; n<rank; n++)
|
| dest[n * dstride] = 0 ;
|
|
|